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Abstract
The hierarchical deep-learning neural network (HiDeNN) is systematically developed through the construction of structured
deep neural networks (DNNs) in a hierarchical manner, and a special case of HiDeNN for representing Finite ElementMethod
(or HiDeNN-FEM in short) is established. In HiDeNN-FEM, weights and biases are functions of the nodal positions, hence
the training process in HiDeNN-FEM includes the optimization of the nodal coordinates. This is the spirit of r-adaptivity, and
it increases both the local and global accuracy of the interpolants. By fixing the number of hidden layers and increasing the
number of neurons by training the DNNs, rh-adaptivity can be achieved, which leads to further improvement of the accuracy
for the solutions. The generalization of rational functions is achieved by the development of three fundamental building
blocks of constructing deep hierarchical neural networks. The three building blocks are linear functions, multiplication, and
inversion. With these building blocks, the class of deep learning interpolation functions are demonstrated for interpolation
theories such as Lagrange polynomials, NURBS, isogeometric, reproducing kernel particle method, and others. In HiDeNN-
FEM, enrichment functions through the multiplication of neurons is equivalent to the enrichment in standard finite element
methods, that is, generalized, extended, and partition of unity finite element methods. Numerical examples performed by
HiDeNN-FEM exhibit reduced approximation error compared with the standard FEM. Finally, an outlook for the generalized
HiDeNN to high-order continuity for multiple dimensions and topology optimizations are illustrated through the hierarchy
of the proposed DNNs.
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1 Introduction

Machine learning is a process by which computers, when
given data, create their own knowledge by identifying pat-
terns in data [1,2]. Deep learning, being a subfield ofmachine
learning, is where computers understand challenging and
complex concepts by using and building upon several sim-
pler concepts [2] in a hierarchical fashion. This is achieved
by the nonlinear information processing of the deep neural
network (DNN). The superior performance of DNN is guar-
anteed by two core principles: (1) universal approximation
theorem [3,4] and (2) backpropagation [5,6]. These two prin-
ciples allow the approximation of highly nonlinear systems
through the optimization of the weights and biases for a pre-
defined loss function.

Inspired by the universal approximation, solving ordinary
differential equations (ODEs) and partial differential equa-
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tions (PDEs) through neural networks has been explored
in several previous works [7–9], in which shallow neural
networks are studied, and fixed mesh is used for the approx-
imation. With the recent breakthrough in deep learning,
increasing attention has been paid to the development of
DNN-based solutions for the approximation of ODEs and
PDEs [10–16]. Most of these recent methodologies solve
ODEs or PDEs by randomly sampling points in the domain,
defining the loss function as the summation of residuals for
governing equations and boundary conditions, and using the
DNN for the solution approximation.

In this paper, the Hierarchical Deep-learning Neural Net-
work (HiDeNN) is systematically developed through the
construction of structured deep neural networks (DNNs) in
a hierarchical manner, and a special case, HiDeNN-FEM is
introduced. The HiDeNN-FEM aims to create a DNN that
takes in a nodal coordinate as input and produces an associ-
ated global shape function with compact support by means
of a DNN, whose weights and biases are solely based on
the nodal positions. Hence, the training process in HiDeNN-
FEM is centered around optimizing nodal positions. This is
the spirit of r-adaptivity, which not only increases the local
and global accuracy of the interpolants, but also results in
a significant reduction of training variables. By fixing the
depth of the hidden layers, rh-adaptivity can be achieved
by adding neurons based on the required accuracy within
the training process. Specifically, three building blocks are
designed and systematically combined in order to generate
interpolation functions of the finite element method (FEM)
[17,18] , splines [19], NURBS [20], isogeometric analysis
(IGA) [21–23], reproducing kernel particle method (RKPM)
[24–26], and others, making HiDeNN agnostic to the choice
of local interpolation functions. Therefore, structured DNNs
can produce different interpolation functions that use various
discretization strategies in the different regions of a simulated
part. Finally, the hierarchical assembly of structured DNNs
into one neural network allows for the approximation of a
local solution (e.g., nodal displacement) with a coordinate
on the simulated part.

In addition, the enrichment in generalized FEM [27],
extended FEM [28], and a partition of unity [29] is achieved
bymultiplying the enrichment functions by the neurons in the
region of interests. This leads to the intelligent update of the
enrichment regions depending on the object’s physics. Fur-
thermore, HiDeNN-FEM utilizes physics-based functions
(e.g., principle of minimum potential energy) as the loss
function, while the boundary conditions (including both the
natural boundary conditions and necessary boundary condi-
tions) are imposed as in the standard FEM manner. Hence,
the issues of the imposition of the boundary conditions are
avoided, and a more accurate representation of the bound-
ary values is guaranteed. While the standard FEM solves the
problem by assembling a stiffness matrix in order to solve

the differential equations, the HiDeNN-FEM solves the dif-
ferential equations by training the DNNs, leading to more
flexibility in terms of interpolants and discretization.

The structure of this paper is summarized as follows. In
Sect. 2, we present the basics of the HiDeNN-FEM approxi-
mation including the representation of a linear shape function
and rh-adaptivity. In Sect. 3, the three building blocks for
developing DNNs for the rational functions are introduced.
The extension of HiDeNN-FEM to Lagrangian polynomials,
isogeometric analysis, RKPM, as well as enrichment are also
derived in this section. In Sect. 4, the training problem aswell
as several numerical examples are provided to demonstrate
the performance of the proposed methodology. In addition,
an outlook of the performance of the HiDeNN when applied
to the multiple dimensions with high-order continuity and
topology optimization is also demonstrated by constructing
the hierarchical DNNs. Finally, the conclusion is made in
Sect. 5.

2 Basics of hierarchical deep-learning neural
network for finite element method
(HiDeNN-FEM)

In this section, the interpolation function represented by the
structured deep neural networks (DNNs) is developed. For
illustrative purposes, the one-dimensional (1D) linear shape
function is used to demonstrate basic ideas of HiDeNN-
FEM for constructing interpolation functions by weights,
biases and activation functions. Following the construction,
r-adaptivity and rh-adaptivity will be introduced in Sects. 2.1
and 2.2 to improve solution accuracy.

2.1 HiDeNN-FEM representation for 1D linear shape
function

In standard FEM, the computing domain � is discretized by
a set of nodal points xI ∈ �. For an internal node xI , the
global shape function can be formulated as the combination
of the shape function from the left side of xI and that from
the right side of xI , refer to Fig. 1, and written as:

NI (x) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

x − xI−1

xI − xI−1
, xI−1 ≤ x ≤ xI ,

xI+1 − x

xI+1 − xI
, xI ≤ x ≤ xI+1,

0, elsewhere,

(1)

where NI (x) denotes the shape function at node xI , while
xI−1 and xI+1 are the two neighbor points of the node xI
from the left side and right side, respectively.

In HiDeNN-FEM, the above global shape function is
rewritten in aDNN format, which consists of weights, biases,
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Fig. 1 Assembly of the global
shape function at node xI

(a) (b)

Fig. 2 Deep neural network (DNN) representation of the 1D global shape function and interpolation function

Table 1 Notation table of variables used in the DNN representation for
1D shape function in HiDeNN-FEM

A0 A0(x) = x

A1 A1(x) = max(0, x)

Wi j
kl, I Weights connecting of the kth neuron in layer i to l th

neuron in layer j of the DNN for node I

bik, I Bias of the kth neuron in layer i of the DNN for node I

and activation functions. Figure 2a shows the DNN repre-
sentation of the linear shape function. It includes two hidden
layers, in which the weights and biases are the functions of
nodal positions. Based on the DNN representation, the shape
function is formulated as

NI (x;W , b, A)

= W 34
11, IA1

(
W 23

11, IA1
(
W 12

11, I x + b21, I
) + b31, I

)

+W 34
21, IA1

(
W 23

22, IA1
(
W 12

12, I x + b22, I
) + b32, I

) + b41, I

= A1

( −1

xI − xI−1
A1 (−x + xI ) + 1

)

+A1

( −1

xI+1 − xI
A1 (x − xI ) + 1

)

− 1, (2)

where W = [W 12
11, I ,W

12
12, I ,W

23
11, I ,W

23
22, I ,W

34
11, I ,W

34
21, I ],

and b = [b21, I , b22, I , b31, I , b32, I , b41, I ] are the weights and
biases of the connected neurons. Detailed definitions of the
notations are covered in Table 1. Since theweights and biases
in the DNN are functions of nodal positions, the DNN-based

shape function can be further expressed as NI (x; x∗
I ,A),

where x∗
I = [xI−1, xI , xI+1] is the vector that represents

the neighbor nodes of node xI . Once the shape function is
obtained, one more hidden layer is added for the interpola-
tion of the displacement associated with the node xI , which
can be written as

uh
I = NI (x; W , b, A)uI = NI (x; x∗

I , A)uI ; no summation on I

= A0

(

A1

( −1

xI − xI−1
A1 (−x + xI ) + 1

)

− 0.5

)

uI

+A0

(

A1

( −1

xI+1 − xI
A1 (x − xI ) + 1

)

− 0.5

)

uI , (3)

where uh
I and uI are the interpolated displacement and nodal

displacement at node xI , A = [A0, A1] are the activation
functions used for the construction of the DNN approx-
imation. Figure 2b gives the DNN representation of the
interpolation of the nodal displacement at node xI . Unlike the
standard FEM, solving the nodal displacements in HiDeNN-
FEM is equivalent to the training of the weights at the last
hidden layer.

Once the global shape function at the node xI is repre-
sented by the DNN, the DNNs for the entire discretization
are obtained by assembling all DNNs together, and then,
the problem of interest is solved by training the DNNs. The
assembled interpolation for the displacements is thus written
as
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Fig. 3 Deep neural network
(DNN) representation of the 1D
global shape function and
interpolation function (a)

(b)

uh(x) =
np∑

I=1

NI (x; x∗
I , A)uI , (4)

where np represents the total number of nodes within the
domain �. Figure 3a, b illustrate a 1D mesh and its cor-
responding DNN interpolation, respectively. As is evident
from those two figures, the input of the structured DNN is
the nodal coordinates while the output is the interpolated
displacements.

Based on the architecture of the DNN representation and
solving procedure, we have the following Observations:

• Solving the differential equations in HiDeNN-FEM is
equivalent to the training of the weights at the last hidden
layer.

• InHiDeNN-FEM,weights and biases are functions of the
nodal positions, hence the training process in HiDeNN-
FEM includes the optimization of the nodal positions.
This is the spirit of r-adaptivity and leads to the increase
of both the local and global accuracy of the interpolants.

• The r-adaptivity is achieved through a learning process by
the structuredDNN, and the knowledge is gained through
the loss function, i.e., the optimized objective function.
The loss function is designed for specific problems. In
the following numerical examples, we solve mechanical
problems by the variational principle. Thus, here the loss
function is the variational formula with respect to the
DNN interpolation.

In Fig. 4a, b, we show the change of two weights and
two biases,W 23

11,I , W
23
22,I , b

2
1,I , and b

2
2,I , is equivalent to the

movement of the node xI , due to update of nodal coordinate
from xI to x∗

I . The associated changes in theDNNs are shown
in Fig. 4c, d. The training for the weights and biases in the
HiDeNN-FEM is the r-adaptivity in the standard FEM,which
is an intrinsic feature of HiDeNN-FEM.

2.2 The rh-adaptivity in HiDeNN-FEM: Adding
neurons in neuron networks

In the standard FEM, the h-refinement is achieved by adding
new nodes to the existing mesh. This is illustrated in Fig. 5a,
c, as the new node x̃∗

K is added between xI and xI+1. The
region marked by dashed blue box in Fig. 5c is where the
extra node is added.

In the framework of HiDeNN-FEM, the h-refinement is
the process of adding new neurons from the input layer to
the output layer in the global DNN structure of the mesh. For
the global DNN, each new node is represented by an extra
DNN, as illustrated in Fig. 5d. The newly added DNN for
the extra node is marked by the dashed blue box. Since the
r-adpativity is an intrinsic feature of HiDeNN-FEM, adding
the h-refinement leads to rh-adaptivity for HiDeNN-FEM.

For the rh-adaptivity in HiDeNN-FEM, the following
Observations are made:

• By fixing the number of hidden layers (e.g., 3 for linear
shape functions) and increasing the number of neurons
within selected locations, rh-adaptivity can be achieved.

• The h-adaptivity in HiDeNN-FEM is achieved through
a learning process involving the training of the neural
networks and strategic adding of neurons.
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(a)

(c) (d)

(b)

Fig. 4 Illustration of r-adaptivity in HiDeNN-FEM

(a) (b)

(c) (d)

Fig. 5 Illustration of h-adaptivity in HiDeNN-FEM
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Table 2 Notation table of
variables used in the elementary
blocks and rational functions

L(x; xA, xB , yA, yB) Regular piecewise linear function

xA, xB Boundaries of linear part of regular piecewise linear function

yA, yB Value at the boundary of linear part of regular piecewise linear

function

L Neural network block corresponding to the regular piecewise

linear function

f1, f2 Non-negative functions

F Neural network representation for the non-negative function f (x)

M Neural network multiplication building block

V Neural network inversion building block

A1 ReLU activation function defined by max(0, x)

A2 Quadratic activation function

A3 Inverse activation function

Wi j
kl Weights connecting of the kth neuron in layer i to l th neuron in

layer j of the DNN

bik Bias of the kth neuron in layer i of the DNN

• The accuracy can be improved further by including an
adaptivity criterion during the training process.

The h-refinement in the existing FEM is determined by the
error estimation, and the mesh is refined in order to obtain
convergence results. However, this process does not guaran-
tee the optimal solution. In the HiDeNN-FEM, the criterion
for the h-refinement is added into the objective function as
a multiplier term and automatically drives the refinement.
The criterion will be further elaborated on in Sect. 4. This
leads to an optimal strategy compared to the conventional
method: the mesh is automatically refined according to the
desired scheme, such as fine mesh in stress concentration,
heat source, etc. In this paper, we will show how to use the
strain magnitude to achieve automatic refinement.

3 DNN representation for rational functions

In this section, theDNN representation for the shape function
is further extended to various rational functions, includ-
ing Lagrange polynomials, B-spline, Reproducing Kernel
Particle Method (RKPM), NURBS, Isogeometric analysis
(IGA), etc. Specifically, three elementary building blocks are
introduced to construct DNNs in a hierarchical manner and
simplify the architecture for the description.

3.1 Three elementary building blocks

The notations used in this subsection are summarized in the
Table 2.

Linear building block
The first building block is used to formulate the piecewise

linear function, which is defined as:

L(x; xA, xB , yA, yB)

=

⎧
⎪⎨

⎪⎩

yA, x < xA,
yB − yA
xB − xA

(x − xA) + yA, xA ≤ x ≤ xB,

yB, x > xB,

(5)

In DNN representation, the piecewise linear function is
rewritten as:

L(x; xA, xB, yA, yB)

= (yB − yA)A1

(

− 1

xB − xA
A1(−x + xB) + 1

)

+ yA, (6)

where yA and yB are the outputs of linear function at points
xA and xB , respectively. Figure 6a illustrates the DNN rep-
resentation of the linear function.

The piecewise linear function is used to capture the local
property of the shape function. For instance, when xA =
xI−1, xB = xI , yA = 0, yB = 1, the piecewise linear func-
tion becomes the left part of the linear shape function in Eq.
(1). The right side of the shape function can be obtained fol-
lowing a similar rule.

Multiplication building block
The second building block is used to achieve multiplica-

tion in aDNN.Theproduct of any twonon-negative functions
f1 and f2 is defined as

f1 · f2 = 1

2

(
( f1 + f2)

2 − f 21 − f 22

)
. (7)
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Fig. 6 Regular piecewise linear
function and corresponding
linear building block

(b)(a)

Fig. 7 DNN representation of multiplication building block

In a neural network form, the multiplication can be rewritten
by using the activation function as

M(F1,F2) = 1

2
A2(F1 + F2) − 1

2
A2(F1)

−1

2
A2(F2), (8)

where f1 and f2 are two arbitrary non-negative functions,
F1,F2 are the corresponding DNN representations, and A2

denotes the activation function which is defined as

A2 =
{
x2, x ≥ 0,
0, x < 0.

(9)

Figure 7 illustrates the DNNof themultiplication building
block. The inputs are F1 and F2, and the output is F1 · F2.
The symbol M is used to represent the multiplication in a
DNN and is defined at the bottom of Fig. 7.

Inversion building block
The third building block is to construct the inversion of a

given positive function. The inversion block can be used to
represent the inversion of a function, as well as performing
the division operation (e.g., a ÷ b is equivalent to a × 1

b ).

Fig. 8 Neural network representation of inversion building block

First, an activation function A3 is introduced:

A3 =
⎧
⎨

⎩

1

x
, x ≥ 1,

1, x < 1.
(10)

The inversion of a positive function f2 ( f2 > δ > 0) can
thus be expressed as

1

f2
= 1

δ
A3(

1

δ
f2). (11)

In this work, the inversion building block is defined as the
multiplication of a non-negative function f1 with the inver-
sion of the other positive function f2 ( f2 > δ > 0). It can be
formulated in the DNN form as

V(F1,F2) = M

(

F1,
1

δ
A3(

1

δ
F2)

)

, (12)

whereF1 andF2 denote the DNN representation of the func-
tions f1 and f2. The DNN representation of the inversion
building block is presented in Fig. 8. The boxed symbol V

is used for the representation in the construction.
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Fig. 9 Quadratic shape functions in the element [xI , xI+1]

3.2 DNN representation for the pth order Lagrange
shape functions

In this subsection, the three elementary building blocks are
utilized to formulate the pth order Lagrange shape functions.
By using the linear and multiplication building blocks, the
quadratic functions (p = 2) are able to be constructed. Fig-
ure 9 presents the three second order Lagrange polynomials
between the interval [ xI , xI+1], where l

p
I (x) denotes the

pth order Lagrange functions at the nodal point xI .
Hence, the three quadratic shape functions at three nodes

xI , xI+ 1
2
, xI+1 can be written as:

N p=2
I (x) = l

p=2
I (x), N p=2

I+ 1
2
(x) = l

p=2
I+ 1

2
(x),

N p=2
I+1 (x) = l

p=2
I+1 (x), (13)

where N p=2
I (x), N p=2

I+ 1
2
(x), N p=2

I+1 (x) represent the shape

functions at the three coordinates in Fig. 9, respectively.
Taking N p=2

I+1/2(x) as an example, the DNN representation
is expressed by using the linear and multiplication building
blocks as

N
p=2
I+1/2 = − 1

(xI+1/2 − xI )(xI+1/2 − xI+1)

M(L(x; xI , xI+1, 0, xI+1 − xI ),

L(x; xI , xI+1, xI+1 − xI , 0)), (14)

where N
p=2
I+1/2 is the DNN form of N p=2

I+1/2(x), M and L

are the multiplication building block and the linear function
building block, respectively. Figure 10 shows the compact
DNN structure ofNp=2

I+1/2. The part in the blue dashed box is
the linear block of (x − xI ) while the part in the red dashed
box is the linear block of (xI+1 − x). Through the multipli-
cation building block performed on the two linear blocks, the
DNN representation for Np=2

I+1/2 is obtained. Figure 11 gives
the interpolation for displacements with detailed DNNs at
xI+ 1

2
. It can be concluded that the introduction of the build-

Fig. 10 Compact DNN representation of the quadratic shape function
at point xI+ 1

2

ing block significantly simplifies the representation of the
shape function, and thus the architecture of the DNNs.

Following the same process, the quadratic shape function
at points xI and xI+1 is expressed as

N
p=2
I

= − 1

(xI − xI+1/2)(xI − xI+1)
M

(
L(x; xI , xI+1, 0, xI+1 − xI ),

L(x; xI , xI+1, xI+1 − xI , 0)
)

− xI − xI+1/2

(xI − xI+1/2)(xI − xI+1)
L(x; xI , xI+1, xI+1 − xI , 0) (15)

and

N
p=2
I+1

= 1

(xI+1 − xI )(xI+1 − xI+1/2)

M(L(x; xI , xI+1, 0, xI+1 − xI ),

L(x; xI , xI+1, 0, xI+1 − xI ))

+ xI − xI+1/2

(xI+1 − xI )(xI+1 − xI+1/2)

L(x; xI , xI+1, 0, xI+1 − xI ). (16)

pth order Lagrange polynomials
For pth th order Lagrange shape functions, there are p + 1
nodes in the interval [xI , xI+1], denoted by xI , xI+1/p, · · · ,
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Fig. 11 Detailed DNN interpolation for the quadratic interpolation function at point xI+ 1
2

Fig. 12 Recursive way to
construct the power function
P(x, p) by the DNN

xI+(p−1)/p, xI+1.All shape functions are pth orderLagrange
functions, i.e.,

l pI+q/p(x) =
∏p

k=0,k �=q(x − xI+k/p)
∏p

k=0,k �=q(xI+q/p − xI+k/p)
, q = 0, 1, · · · , p.

(17)

These pth order Lagrange functions can be rewritten as

l pI+q/p = ap(x − xI )
p + ap−1(x − xI )

p−1

+ · · · + a1(x − xI )
1 + a0, (18)

where ak, (k = 0, 1, · · · , p) are the coefficients, which are
the functions of the nodal positions

x∗ = [xI , xI+1/p, xI+2/p, · · · , xI+(p−1)/p, xI+1].

For the pth order Lagrange function, the DNN represen-
tation involves two steps:

(1) Constructing the DNN representation of power func-
tions P(x, p) according to the recursive rule (refer to

Fig. 13 Summation of power functions for the pth order polynomials

Fig. 12):

(x − xI ) : P(x, 1) = L(x; xI , xI+1, 0, xI+1 − xI ); (19)

(x − xI )
k : P(x, k) = M(P(x, k − 1),P(x, 1)), k ≥ 2.

(20)

(2) Summing up the power functions P(x, k) with coef-
ficients ak(x∗) as shown in Fig. 13.

By introducing the nodal variable uI+q/p, the pth order
DNNLagrange interpolation functionNp

I+q/pu I+q/p is illus-
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Fig. 14 Nodal interpolation of the pth order polynomials

trated in Fig. 14. Obviously,Np
I+q/pu I+q/p is determined by

the (p+1) nodal positions and the three activation functions
A= [A0,A1,A2].

3.3 DNN representation for B-spline and NURBS
basis functions

The B-spline functions as a class of polynomial shape func-
tions [21] are often used in isogeometric analysis. In 1D, pth

order B-spline basis functions B p
I (x) are constructed by the

following knot vector kx in the computed domain� = [a, b],

kx = [x1 = a, · · · , xn+p+1 = b]T , (21)

where xI is called as a knot. The initial B-spline basis func-
tion B0

I (x) is a characteristic function

B0
I (x) =

{
1, xI ≤ x ≤ xI+1,

0, otherwise.
(22)

We start construction of the DNN from the linear B-spline
basis function:

B1
I (x) = x − xI

xI+1 − xI
B0
I (x) + xI+2 − x

xI+2 − xI+1
B0
I+1

= L(x; xI , xI+1, 0, 1) + L(x; xI+1, xI+2, 1, 0) − 1.

(23)

B1
I is used to denote the corresponding DNN representation

of B1
I (x), while B

p
I , p ∈ N is used for the pth th order B-

spline basis function.
For p ∈ N, the pth order B-spline basis functions are

derived based on the Cox-de Boor formula

B p
I (x) = x − xI

xI+p − xI
B p−1
I (x) + xI+p+1 − x

xI+p+1 − xI+1
B p−1
I+1 .

(24)

By using linear and multiplication building blocks, Eq. (24)
is expressed in the DNN form as

B
p
I (x) = M(L(x; xI , xI+p, 0, 1),B

p−1
I (x))

+M(L(x; xI+1, xI+p+1, 1, 0),B
p−1
I+1 ). (25)

Fig. 15 DNN representation for quadratic B-spline function

Note that the B-spline basis function B p
I (x) is non-negative

and has a compact support x ∈ [xI , xI+p+1]. So, we can use
the multiplication block M, and set linear block L accord-
ingly.

For instance, the second order B-spline basis function
B p=2
I (x) is expressed by:

B p=2
I (x) = x − xI

xI+2 − xI
B p=1
I (x)

+ xI+3 − x

xI+3 − xI+1
B p=1
I+1 (x), (26)

and the correponding DNN representation is:

B
p=2
I (x) = M

(
L(x; xI , xI+2, 0, 1),B

p=1
I

)

+M
(
L(x; xI+1, xI+3, 1, 0),B

p=1
I+1

)
. (27)

Figure 15 presents the detailed DNN structure for Bp=2
I (x).

Blue box is the linear block L(x; xI , xI+2, 0, 1), multiplied
by the DNN substructure of B

p=1
I . And the red box is

L(x; xI+1, xI+3, 1, 0),multiplied by the substructureBp=1
I+1 .

Their combination becomes the second order B-spline basis
function B

p=2
I .

By definition, a set of the B-spline basis functions forms
the partition of unity

n∑

I=1

B p
I (x) = 1. (28)

The NURBS basis functions are weighted generaliza-
tions of B-spline basis functions [21,23]. In particular, a 1D
NURBS basis function reads:

Rp
I (x) = B p

I (x)wI
n∑

J=1

B p
J (x)wJ

, (29)

where wI are the weights.
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Fig. 16 DNN representation for
pth order NURBS function

Any non-negative rational function Rp
I (x) can be repre-

sented by using the inversion building block to combine two

polynomial functions B p
I (x)wI and

n∑

J=1

B p
J (x)wJ , i.e.,

R
p
I (x) = V(B

p
I (x)wI ,

n∑

J=1

B
p
J (x)wJ ) (30)

The DNN representation of the NURBS functions is shown
in Fig. 16.

3.4 DNN representation for RKPM basis function

Considering the meshfree shape functions formulated in a
domain � with np nodes xI , I = 1, 2, · · · , np. A kernel
function φ(x∗ − x) is centered at point x∗, with a compact
influence or support domain measured by a support size s.

The meshfree basis function �I (x) is formulated based
on the reproducing kernel approximation theory [24] given
by

�I (x) = pT (xI )M−1 p(x)φ(xI − x), (31)

where p(x) is the power order basis vector and is defined as

p(x) = [1, x, x2, · · · , x p]T , (32)

and the moment matrix is defined as

M(x) =
np∑

I=1

p(xI ) pT (xI )φ(xI − x). (33)

The reproducing basis functions�I (x), I = 1, 2, · · · , np
defined in Eq. (31) satisfy the reproducing conditions:

np∑

I=1

�I (x) p(xI ) = p(x). (34)

Now we include the zeroth order case corresponding to
the partition of unity:

np∑

I=1

�I (x) = 1. (35)

The analytical expression of Eq. (31) [30] is

�I (x) =
∑

1≤l1<l2<···<l p−1≤np Hl1l2 ···l p−1 I Hl1l2 ···l p−1 pφl1φl2 · · · φl p−1φI
∑

1≤l1<l2<···<l p≤np(Hl1l2 ···l p )2φl1φl2 · · ·φl p
.

(36)

Here, we denote φI = φI (xI − x),

Hl1l2···l p−1 I

= det
([
p(xl1), p(xl2), · · · , p(xlp−1), p(xI )

])
, (37)

Hl1l2···l p−1 p

= det
([
p(xl1), p(xl2), · · · , p(xlp−1), p(x)

])
, (38)

Hl1l2···l p−1l p

= det
([
p(xl1), p(xl2), · · · , p(xlp−1), p(xlp )

])
. (39)

Notice that Hl1l2···l p−1 p and kernel functions are func-
tions of input variable x . Hl1l2···l p−1 I and Hl1l2···l p are the
coefficients, which are functions of nodal positions x∗ =
[xl1 , xl2 , · · · , xlp , xI ].

In this work, we take non-negative bounded polynomial
functions as the kernel function represented by the DNNs.
The vector p(x) and moment matrix M(x) are also polyno-
mials. Combining the inversion operator, the RKPM basis
function can be represented accordingly.

For example, for an equidistant partition of domain� and
a support size s = 4h with the grid size h, Fig. 17 gives a
kernel function

φ(x) =
∣
∣
∣
x

h

∣
∣
∣
3 − 3

∣
∣
∣
x

h

∣
∣
∣
2 + 4 (40)

in the support domain [−2h, 2h].We only consider the linear
basis vector

p(x) = [1 x]T . (41)
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Fig. 17 An example of kernel function: φ(x) = ∣
∣ x
h

∣
∣3 − 3

∣
∣ x
h

∣
∣2 + 4

The right part of basis functions associated with node xI are

�I (x) = pT (xI )M
−1(x) p(x)φ(xI − x)

=

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

I+2∑

k=I−1

(xI − xk)(x − xk)φkφI

I+1∑

k=I−1

I+2∑

l=k+1

(xk − xl )
2φkφl

, x ∈ [xI , xI+1],

I+3∑

k=I

(xI − xk)(x − xk)φkφI

I+2∑

k=I

I+3∑

l=k+1

(xk − xl )
2φkφl

, x ∈ (xI+1, xI+2],

0, x ∈ (xI+2, +∞).

(42)

The left part is obtained in the same way.
The reproducing functions are rational, and the corre-

sponding DNN representations are given by

V

(

(xI − xI−1)M

(

L(x; xI , xI+1, xI − xI−1, xI+1 − xI−1), φI−1φI

)

+ (xI+1 − xI )M

(

L(x; xI , xI+1, xI+1 − xI , 0), φI+1φI

)

+ (xI+2 − xI )M

(

L(x; xI , xI+1, xI+2 − xI , xI+2 − xI+1), φI+2φI

)

,

I+1∑

k=I−1

I+2∑

l=k+1

(xk − xl )
2φkφl

)

,

x ∈ [xI , xI+1] (43)

and

V

(

(xI+2 − xI )M

(

L(x; xI+1, xI+2, xI+2 − xI+1, 0), φI+2φI

)

+(xI+3 − xI )M

(

L(x; xI+1, xI+2, xI+3 − xI+1, xI+3 − xI+2), φI+3φI

)

,

I+2∑

k=I

I+3∑

l=k+1

(xk − xl )
2φkφl

)

−V

(

(xI+1 − xI )M

(

L(x; xI+1, xI+2, 0, xI+2 − xI+1), φI+1φI

)

,

I+2∑

k=I

I+3∑

l=k+1

(xk − xl )
2φkφl

)

,

x ∈ (xI+1, xI+2]. (44)

Figure 18 shows the curve of �I (x) and the corresponding
DNN representation of the part in sub-interval [xI , xI+1].

It is shown that if taking the support size of kernel shape
functions as s = h and the basis vector as p(x) = [1, x]T .
It is actually the same as the linear global shape function
N p=1
I (x) in Sect. 2.1.

3.5 DNN representation for three-dimensional
RKPM

The three-dimensional RKPM can also be constructed to
solve problems, i.e. in � = [xmin, xmax ] × [ymin, ymax ] ×
[zmin, zmax ] with np unstructured nodes x1, x2, · · · , xnp.
Taking the basis vector as

p(x) = [1, x, y, z]T , (45)

the kernel function associated with the node x I is

φI = φI (x − xI , y − yI , z − zI ). (46)

Following Liu et al. [24], the meshfree shape function
associated with the node x I takes the following form

�I (x) = pT (x I )M−1(x) p(x)φI , I = 1, 2, · · · , np, (47)

where the moment matrix M(x) is

M(x) =
np∑

J=1

p(x J ) pT (x J )φJ . (48)

The corresponding analytical expression [30] is

�I (x) =
∑

1≤l1<l2<l3≤np Hl1l2l3 I Hl1l2l3 pφl1φl2φl3φI

det(M)

=
∑

1≤l1<l2<l3≤np Hl1l2l3 I Hl1l2l3 pφl1φl2φl3φI
∑

1≤l1<l2<l3<l4≤np(Hl1l2l3l4)
2φl1φl2φl3φl4

, (49)
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(a) (b)

Fig. 18 RKPM basis function �I (x) and the corresponding neural network representation in the element [xI , xI+1]

where we denote

Hl1l2l3 I = det

⎡

⎢
⎢
⎣

1 1 1 1
xl1 xl2 xl3 xI
yl1 yl2 yl3 yI
zl1 zl2 zl3 zI

⎤

⎥
⎥
⎦ ,

Hl1l2l3 p = det

⎡

⎢
⎢
⎣

1 1 1 1
xl1 xl2 xl3 x
yl1 yl2 yl3 y
zl1 zl2 zl3 z

⎤

⎥
⎥
⎦ ,

Hl1l2l3l4 = det

⎡

⎢
⎢
⎣

1 1 1 1
xl1 xl2 xl3 xl4
yl1 yl2 yl3 yl4
zl1 zl2 zl3 zl4

⎤

⎥
⎥
⎦ . (50)

Note thatHl1l2l3 p andkernel functionsφI (I = 1, 2, · · · , np)
are the functions of variables x, y, z. Hl1l2l3 I and Hl1l2l3l4 are
the coefficients determined by nodal positions.

The development of deep learning involves two steps. The
first step is to rewrite Hl1l2l3 p as a linear combination of non-
negative terms in order to apply the multiplication building
block,

Hl1l2l3 p = a0 + a1(x − xmin)

+ a2(y − ymin) + a3(z − zmin), x ∈ �. (51)

Here, a0, a1, a2, a3 are all the functions of nodal coor-
dinates. The second step is to construct the neural network
using three building blocks.

Figure 19 illustrates �I (x) with only one term in the
numerator

�I (x) = Hl1l2l3 I Hl1l2l3 pφl1φl2φl3φI

det(M)
. (52)

Fig. 19 Illustration for �I (x) with only one term
Hl1l2l3 I Hl1l2l3 pφl1φl2φl3φI in the numerator

Fig. 20 Illustration for one term (Hl1l2l3l4 )
2φl1φl2φl3φl4 in the denom-

inator of �I (x)

The box with “det(M)” in Fig. 19 represents the substruc-
ture of the denominator. Figure 20 illustrates one term in the
denominator

(Hl1l2l3l4)
2φl1φl2φl3φl4 . (53)
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(a) (b)

Fig. 21 Illustration of enrichment in HiDeNN-FEM

3.6 Partition of unity for the enrichment by
HiDeNN-FEM

The partition of unity method (PUM) has been widely
accepted in FEM or meshfree method for solving the PDEs
with non-smooth solutions (i.e. discontinuities, singularities,
high gradient, etc.). The primary goal of the PUM is to extend
the standard approximation space to the problems of inter-
est by using previously established enrichment functions. In
HiDeNN-FEM, the PUM can be formulated as

uh(x) =
np∑

I

Q∑

J

NIψJ (x;W , b, A)a IJ , (54)

where uh(x) is the globally approximated solution by
the proposed HiDeNN-FEM, the subscripts I is the nodal
index, NI denotes the DNN shape function at node I ,
ψJ (x;W , b, A) denotes the enrichment function, which
incorporates the prior knowledge into the approximation
space. In the HiDeNN-FEM, the enrichment function is con-
structed by the DNNs, in which W , b and A represent the
matrix of weights, matrix of biases and activation functions
used for the construction of enrichment functions. a IJ repre-
sents the additional unknowns added by the enrichment on
node I . J and Q are the indices of enrichment functions and
the total number of enrichments applied at the node I . In Eq.
(54), the functions NI (x) build a partition of unity

np∑

I

NI (x) = 1. (55)

Figure 21 presents DNNs of HiDeNN-FEM before and after
enrichments for a 1D problem. It is evident that, in HiDeNN-
FEM, the enrichment is achieved by using the multiplication
building block tomultiply theDNNs of enrichment functions
with the nodal DNN. Specifically, the bottom right corner of
Fig. 21 illustrates the enrichment for nodal I with Q number
of enrichment functions ψJ (x;W , b, A).
Based on the construction of the enrichment in HiDeNN-
FEM, we have the following Observations:

• InHiDeNN-FEM,building an enrichment function through
the multiplication of neurons is equivalent to the enrich-
ment in standard finite element method, such as GFEM,
XFEM, PUFEM, etc.

• The multilevel of enrichments can be achieved by
expanding the substructure of the neural network for each
node.

• The enrichment could be achieved by a learning process
and combined with r and h-adaptivity to obtain better
performance.

3.7 DNN representation for two-dimensional and
three-dimensional element shape functions of
HiDeNN-FEM

We construct 2D and 3D interpolations based on elements
for HiDeNN-FEM. Note the 4-node element in the two-
dimensional case as shown in Fig. 22. xek = (xek , y

e
k ), k =

1, 2, 3, 4 denotes the physical coordinates of 4 nodes of
the element. Considering the DNN structure with (x, y) as
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Fig. 22 DNN representation for 2D element shape function Ne
1 (x, y). The input is physical coordinates (x, y)

inputs, we construct the DNN representation of the follow-
ing bi-linear element shape functions in physical coordinates
directly,

Ne
1 (x, y) = (xe3 − xe2)(y − ye2) − (ye3 − ye2)(x − xe2)

(xe3 − xe2)(y
e
1 − ye2) − (ye3 − ye2)(x

e
1 − xe2)

(xe3 − xe4)(y − ye4) − (ye3 − ye4)(x − xe4)

(xe3 − xe4)(y
e
1 − ye4) − (ye3 − ye4)(x

e
1 − xe4)

,

Ne
2 (x, y) = (xe4 − x3)(y − ye3) − (ye4 − ye3)(x − xe3)

(xe4 − xe3)(y
e
2 − ye3) − (ye4 − ye3)(x

e
2 − xe3)

(xe4 − xe1)(y − ye1) − (ye4 − ye1)(x − xe1)

(xe4 − xe1)(y
e
2 − ye1) − (ye4 − ye1)(x

e
2 − xe1)

,

Ne
3 (x, y) = (xe1 − xe4)(y − ye4) − (ye1 − ye4)(x − xe4)

(xe1 − xe4)(y
e
3 − ye4) − (ye1 − ye4)(x

e
3 − xe4)

(xe1 − xe2)(y − ye2) − (ye1 − ye2)(x − xe2)

(xe1 − xe2)(y
e
3 − ye2) − (ye1 − ye2)(x

e
3 − xe2)

,

Ne
4 (x, y) = (xe2 − xe1)(y − ye1) − (ye2 − ye1)(x − xe1)

(xe2 − xe1)(y
e
4 − ye1) − (ye2 − ye1)(x

e
4 − xe1)

(xe2 − xe3)(y − ye3) − (ye2 − ye3)(x − xe3)

(xe2 − xe3)(y
e
4 − ye3) − (ye2 − ye3)(x

e
4 − xe3)

.

(56)

As displayed in Fig. 22, we construct the DNN repre-
sentation of Ne

1 (x, y), the product of two linear functions
with respect to x and y, by using the multiplication building
blocks, i.e.,

Ne
1 (x, y; xe,∗, A)

= M

(

A0

(
(xe3 − xe2)A0(y − ye2) − (ye3 − ye2)A0(x − xe2)

(xe3 − xe2)(y
e
1 − ye2) − (ye3 − ye2)(x

e
1 − xe2)

)

,

A0

(
(xe3 − xe4)A0(y − ye4) − (ye3 − ye4)A0(x − xe4)

(xe3 − xe4)(y
e
1 − ye4) − (ye3 − ye4)(x

e
1 − xe4)

))

, (57)

which is the function of nodal positions xe,∗ = [xe1, xe2,
xe3, x

e
4].

The other three element shape functions are constructed
in the same manner. The summation of these shape func-
tions, with nodal displacements as the weights of the last
layer, becomes the interpolation in this element, as illus-
trated in Fig. 23. Once the shape functions in each element
are represented by the DNN, the whole DNN interpolation of
HiDeNN-FEM is obtained by assembling all DNNs together.

Following a similar process, we can construct the DNN
representation for 3D element shape functions. The tri-linear
element shape function associated with the first node of an
8-node element is

Ne
1 (x, y, z) = (x − xe7)(ỹ

e
3 z̃

e
8 − z̃e3 ỹ

e
8) + (y − ye7)(z̃

e
3 x̃

e
8 − x̃ e3 z̃

e
8) + (z − ze7)(x̃

e
3 ỹ

e
8 − ỹe3 x̃

e
8)

x̃ e1(ỹ
e
3 z̃

e
8 − z̃e3 ỹ

e
8) + ỹe1(z̃

e
3 x̃

e
8 − x̃ e3 z̃

e
8) + z̃e1(x̃

e
3 ỹ

e
8 − ỹe3 x̃

e
8)

× (x − xe7)(ỹ
e
8 z̃

e
6 − z̃e8 ỹ

e
6) + (y − ye7)(z̃

e
8 x̃

e
6 − x̃ e8 z̃

e
6) + (z − ze7)(x̃

e
8 ỹ

e
6 − ỹe8 x̃

e
6)

x̃ e1(ỹ
e
8 z̃

e
6 − z̃e8 ỹ

e
6) + ỹe1(z̃

e
8 x̃

e
6 − x̃ e8 z̃

e
6) + z̃e1(x̃

e
8 ỹ

e
6 − ỹe8 x̃

e
6)

× (x − xe7)(ỹ
e
6 z̃

e
3 − z̃e6 ỹ

e
3) + (y − ye7)(z̃

e
6 x̃

e
3 − x̃ e6 z̃

e
3) + (z − ze7)(x̃

e
6 ỹ

e
3 − ỹe6 x̃

e
3)

x̃ e1(ỹ
e
6 z̃

e
3 − z̃e6 ỹ

e
3) + ỹe1(z̃

e
6 x̃

e
3 − x̃ e6 z̃

e
3) + z̃e1(x̃

e
6 ỹ

e
3 − ỹe6 x̃

e
3)

(58)
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Fig. 23 Illustration for 2D HiDeNN inporlation in one element

Fig. 24 Illustration for 3D element shape function Ne
1 (x, y, z). The

input is 3D physical coordinates (x, y, z)

with x̃ ek = xek − xe7, ỹ
e
k = yek − ye7, z̃

e
k = zek − ze7, k =

1, 3, 6, 8. xek = (xek , y
e
k , z

e
k) as the coordinates of the k-th

node of the element. The corresponding DNN representation
of Ne

1 (x, y, z) is

Ne
1 (x, y, z; xe,∗, A)

= M

(

M

(

A0

(A0(x − xe7)(ỹ
e
3 z̃

e
8 − z̃e3 ỹ

e
8) + A0(y − ye7)(z̃

e
3 x̃

e
8 − x̃ e3 z̃

e
8) + A0(z − ze7)(x̃

e
3 ỹ

e
8 − ỹe3 x̃

e
8)

x̃ e1(ỹ
e
3 z̃

e
8 − z̃e3 ỹ

e
8) + ỹe1(z̃

e
3 x̃

e
8 − x̃ e3 z̃

e
8) + z̃e1(x̃

e
3 ỹ

e
8 − ỹe3 x̃

e
8)

)
,

A0

(A0(x − xe7)(ỹ
e
8 z̃

e
6 − z̃e8 ỹ

e
6) + A0(y − ye7)(z̃

e
8 x̃

e
6 − x̃ e8 z̃

e
6) + A0(z − ze7)(x̃

e
8 ỹ

e
6 − ỹe8 x̃

e
6)

x̃ e1(ỹ
e
8 z̃

e
6 − z̃e8 ỹ

e
6) + ỹe1(z̃

e
8 x̃

e
6 − x̃ e8 z̃

e
6) + z̃e1(x̃

e
8 ỹ

e
6 − ỹe8 x̃

e
6)

))

,

A0

(A0(x − xe7)(ỹ
e
6 z̃

e
3 − z̃e6 ỹ

e
3) + A0(y − ye7)(z̃

e
6 x̃

e
3 − x̃ e6 z̃

e
3) + A0(z − ze7)(x̃

e
6 ỹ

e
3 − ỹe6 x̃

e
3)

x̃ e1(ỹ
e
6 z̃

e
3 − z̃e6 ỹ

e
3) + ỹe1(z̃

e
6 x̃

e
3 − x̃ e6 z̃

e
3) + z̃e1(x̃

e
6 ỹ

e
3 − ỹe6 x̃

e
3)

))

, (59)

as illustrated in Fig. 24. Notice that the input is the 3D
physical coordinates (x, y, z), and the DNN element shape
function Ne

1 (x, y, z; xe,∗, A) is the function of nodal posi-
tions xe,∗ = [xe1, xe2, · · · , xe8].

4 Numerical examples

In this section, several numerical examples are conducted
to demonstrate the superior performance of the proposed

HiDeNN-FEM framework. For illustrative purposes, 1D
examples are used to investigate the convergence rate of
HiDeNN-FEM (with inherent r-adaptivity), and examine the
behavior of the rh-adaptivity of the HiDeNN-FEM by com-
paring it with the standard FEM. Specially, a 2D example is
employed to further illustrate the capability of the HiDeNN-
FEM for capturing the stress concentration by comparing
it with the fine mesh from commercial software, such as
Abaqus.

4.1 Problem statement

For illustrative purposes, a simple 1D example is presented
here: consider a rod fixed at both ends under body force b(x),
i.e.

d

dx
(AE

du

dx
) + b(x) = 0, x ∈ [0, 10]; (60)

and Dirichlet boundary conditions

u(0) = 0, u(10) = 0. (61)

Here, u(x) is the displacement field, E is the stiffness of the
rod, A is the section area and b(x) is the body force.

Following the works of [17,18], a test function of v is
multiplied on both sides of the Eq. (60) and integrated over
the domain �,

∫

�

v

(
d

dx

(

AE
du

dx

)

+ b(x)

)

dx = 0 ∀v wi th v = 0 on �u

(62)

The associated weak form is given as

∫

�

du

dx
AE

dv

dx
dx −

∫

�
b(x)vdx = 0 ∀v wi th v = 0 on �u

(63)
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Fig. 25 1D numerical model for convergence study

After some organization, the equation, J (u), was rewritten
in minimum potential energy as

J (u) = 1

2

∫

�

AE(
du

dx
)2dx −

∫

�

ub(x)dx ∀u ∈ U ,

(64)

where U is all the admissible displacement field. Find-
ing minimum J (u) gives the local displacement field. In
HiDeNN-FEM, this process is formulated as an optimiza-
tion problem as follows:

find uI , x∗
I

min J (u) = 1

2

∫

�

du

dx
AE

du

dx
dx −

∫

�

ubdx

where uh =
np∑

I=1

N(W , b, x,A)uI =
np∑

I=1

N(x∗
I , x,A)uI

and
np∑

I=1

N(x∗
I , x,A) = 1. (65)

The gradient descent method is applied to iteratively min-
imize J (u) and solve for the local displacement field. Note
that in the training procedure, the gradient of the objective
function with respect to the variables (i.e. nodal coordinates
and nodal displacements) is used to determine the update
direction of the variables. The magnitude of the variables are
computed by un+1 = un +γu

∂ J
∂u andx∗

n+1 = x∗
n +γx∗ ∂ J

∂x∗
iteratively, where n is the iteration number in the training, γu

and γx∗ denote the learning rate for training and are deter-
mined by an optimizer, such as Adams [31].

4.2 Convergence study of HiDeNN-FEM

The convergence of the proposed HiDeNN-FEM method is
first studied and compared with the results obtained by stan-
dard FEM. The 1D example given in Fig. 25 is used as the
objective for the investigation. The cross section of the bar
is set to be A = 1, while the Young’s modulus is defined as
E = 175. For solving the optimization problem, np nodes are
used to uniformly discretize the bar, and nodal coordinates
serve as the initial positions for the r-adaptivity.

The body force is intensively designed as

b(x) = −4π2(x − 2.5)2 − 2π

eπ(x−2.5)2
− 8π2(x − 7.5)2 − 4π

eπ(x−7.5)2
.

(66)

Substituting Eq. (66) into the governing equation of the 1D
linear elasticity problem in Eq. (60) and coupling with the
fixed boundary conditions, one can obtain the analytical solu-
tion for the displacement and its derivative as

u(x) = 1

AE
(e−π(x−2.5)2 − e−6.25π )

+ 2

AE
(e−π(x−7.5)2 − e−56.25π ) − e−6.25π − e−56.25π

10AE
x,

(67)
du

dx
= 2

AE
(−πe−π(x−2.5)2 (x − 2.5))

+ 4

AE
(−πe−π(x−7.5)2 (x − 7.5)) − e−6.25π − e−56.25π

10AE
.

(68)

Figure 26 shows the analytical solution and the deriva-
tives for the given body force. It can be seen that there are
two peaks of different heights in the displacement and four
peaks in the corresponding derivatives. The aim is to explore
the performance of the proposed method for problems of
multiple derivative peaks.

To study the convergence rate, the 1D bar is uniformly
discretized by 23, 45, 89, 177, and 353 nodes, respectively.
The program is developed in MATLAB R2019b, and the
machine error is 2.2204 × 10−16. The L2 norm error and
the H1 error, defined as follows, are used to estimate the
convergence rate:

||e||L2 = ||u − uh ||L2 = (
∫

�
(u − uh)2dx)

1
2

(
∫

�
(u2)dx)

1
2

, (69)

||e||H1 = ||u − uh ||H1 = (
∫

�
(u − uh)2dx + ∫

�
( dudx − duh

dx )2dx)
1
2

(
∫

�
(u2)dx + ∫

�
( dudx )2dx)

1
2

,

(70)

where u and uh represent the exact displacement and the
numerical displacement, respectively. The results of the L2

norm error and the H1 norm error are plotted in Fig. 27. To
further quantify the convergence rate, the slopes and inter-
cepts of the convergence curve are computed and compared
with the results from the standard FEM. Tables 3 and 4 tab-
ulate the slopes and intercepts of the four piecewise lines for
L2 norm error and H1 norm error, respectively.

The following observations can be made based on the
results:
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Fig. 26 1D numerical model for convergence study, a displacement b derivative of displacement, c body force

Fig. 27 Error estimation. a L2
norm error comparison, b H1

norm error comparison

Table 3 Convergence rate of L2 error estimation, log(||e||L2 ) ∼
log(C) + klog(�x)

Refinement FEM/HiDeNN-FEM r-HiDeNN-FEM
Slope Intercept Slope Intercept

1 1.83 −0.372 1.94 −0.382

2 1.95 −0.181 2.44 −0.362

3 1.97 −0.127 1.83 −1.692

4 1.96 −0.194 1.91 −0.774

• When the nodal positions are fixed, FEM and HiDeNN-
FEM have the same convergence rate and accuracy.

• For a given number of nodes, the r-HiDeNN-FEMismore
accurate than the standard FEM for the nodal displace-
ments.

• The displacement accuracy is improved by r-HiDeNN-
FEM as the nodes are uniformly refined.

• The normalized H1 norm error of the r-HiDeNN-FEM
converges to that by the standard FEM/HiDeNN-FEM
when the nodes are uniformly refined.

Table 4 Convergence rate of H1 error estimation, log(||e||H1 ) ∼
log(C) + klog(�x)

Refinement FEM/HiDeNN-FEM r-HiDeNN-FEM
Slope Intercept Slope Intercept

1 1.054 −0.023 1.134 0.167

2 1.019 −0.074 1.080 0.087

3 1.005 −0.104 1.039 −0.002

4 1.001 −0.116 1.008 −0.092

Figure 28 illustrates the derivative of the displacement
with 23 nodes. It can be observed that by learning the position
of the nodes, the r-HiDeNN-FEM is able to move the nodes
to the regions with large derivatives and capture the peaks of
the derivatives. This implies that theHiDeNN-FEMcan learn
the loading conditions and intelligently adjust the nodes to
achieve better performance.

4.3 rh-adaptivity by HiDeNN-FEM

In this case, the rh-adaptivity by HiDeNN-FEM is investi-
gated. The 1D numerical example used in the previous case
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Fig. 28 Derivative of the displacement

is also used in the study of the rh-adaptivity, and the nodal
number is set to 23. In HiDeNN-FEM, the rh-adaptivity is
achieved by learning the objective J (u), adding the neurons
to the regions based on the back propagation, and moving
the nodes to the regions through the derivatives of the loss
function with respect to the nodal positions. This is because
rh-adaptivity can be treated separately in the HiDeNN-FEM.
The h-adaptivity in HiDeNN-FEM is achieved by adding
neurons based on the nodal movement computed by the gra-
dients of the loss function with respect to the nodal positions.
For instance, if two neighbor nodes are moved close to each
other, which implies that more degrees of freedom should
be used between these two nodes, HiDeNN-FEM will add
more neurons in this region and vice versa. Along with the
movement of the nodes, another criterion is the gradient of
themovement.We only add neurons to the regionwith fastest
moving nodes. To avoid the inversion of the neighbor nodes,
the minimum distance between the two neighbor nodes is
constrained to 1/8 of the initial distance of the uniform dis-
tribution.

The updated optimization process for rh-adaptivity is
given as follows,

find uI , ũK , x∗
I , x̃

∗
K

min J (u) = 1

2

∫

�

du

dx
AE

du

dx
dx −

∫

�

ubdx

where uh =
np∑

I=1

N(x∗
I , x,A)uI +

nh∑

K=1

N(x̃∗
K , x,A)ũK

and
np∑

I=1

N(x∗
I , x,A) +

nh∑

K=1

N(x̃∗
K , x,A) = 1 (71)

with nh new nodes x̃∗
K added in the DNN interpolation.

For rh-adaptivity, the nodes are moved based on the iter-
ative learning until the loss function converges. For the
purpose of comparison, the h-adaptivity only adds nodes
to the domain based on the learning process, while the rh-
adaptivity adds and moves nodes simultaneously.

Fig. 29 Derivative of the displacement by rh-adaptivity through
HiDeNN-FEM

Figure 29 presents the derivative of the displacement for
the 1D problem by using the h-adaptivity and rh-adaptivity,
respectively, through the proposed HiDeNN-FEM.

The following observations are made based on the results:

• h-adaptivity inHiDeNN-FEM is achieved by adding neu-
rons based on the nodal movement computed by the
gradients of the loss function with respect to the nodal
positions. For instance, if two neighbor nodes are moved
close to each other, which implies that more degree
of freedoms should be used between these two nodes,
HiDeNN-FEM will add more neurons in this region
and vice versa. Along with the movement of the nodes,
another criterion is the gradient of the movement. We
only add neurons to the region with the fastest moving
nodes.

• h-adaptivity in HiDeNN-FEM is able to capture the large
gradients of the displacement and achieve better per-
formance for the prediction of the displacement and its
derivatives.

• Coupled with the r-HiDeNN-FEM procedure, the rh-
HiDeNN-FEM is able to achieve even better results for
the displacements and the sharp peaks of the derivatives.

Based on these observations, it can be concluded that the
rh-adaptivity in the HiDeNN-FEM is accomplished by a
learning process, in which increased resolution is obtained
in the regions of large derivatives by adding nodes and mov-
ing nodes based on the training of the neurons. This leads
to an intelligent discretization strategy without prior human
knowledge.

4.4 2D example for capturing stress concentration

In this example, we will use the HiDeNN to solve a 2D prob-
lem with stress concentration by training the position of the
nodes. Figure 23 presents a 2D bi-linear HiDeNN element
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Fig. 30 Model and converged
results of beam with three holes.
a Model of the beam with three
holes; values inside the
parentheses denote the
coordinates of the center and R
is radius, b mesh of the
converged results by Abaqus, c
stress distribution after the
convergence of the maximum
stress from Abaqus; d 40 × 20
uniform mesh; e 60 × 30
uniform mesh; f 80 × 40
uniform mesh

constructed by using the proposed building blocks. As illus-
trated in the figure, the inputs of the HiDeNN element are
the nodal coordinates, (x, y), while the outputs are the nodal
displacements, ux and uy . During the training, the nodal
coordinates x∗

I , y
∗
J are updated iteratively in order to obtain

optimal solution accuracy.
In order to show how the HiDeNN trains nodal positions

to intelligently capture the stress concentrations, an elastic
tensile bar with three initial holes (refer to Fig. 30) under
simple tensile loading is solved with plane stress condition.
The dimension of the bar is 2 m by 1m. The left side of the
bar is fixed while a uniform loading of 100 kN is applied
to the right side along the +x-direction. Young’s modulus,
E , of the bar’s material is 10 GPa, and Poisson’s ratio, ν, is
0.3. The coordinates of the centers and the radii of the three
holes are given in Fig. 30a. For comparison, a convergence
study for the maximum local stress is conducted in Abaqus
[32] and taken as the reference to examine the performance
of the HiDeNN. The conforming mesh and corresponding
stress solution from Abaqus are provided in Fig. 30b, c. The
maximum local stress of the beam converges to 0.456 MPa
for 37928 elements. As illustrated in the figure, themaximum
local stress occurs near the bottom surface of the largest hole.
In order to capture the stress peak, extremely fine mesh is
required at this region when using the standard FEM (refer
to Fig. 30b).

For one-to-one comparisonbetween theFEMandHiDeNN
solutions, the domain of the bar is discretized with uniform
quadrilateral elements. Three uniform meshes of 40 × 20,
60×30, and 80×40 are used (see Fig. 30d–f). Both HiDeNN
and FEM are performed on these three meshes and compared
against the conforming mesh solution.

The computed maximal stresses from FEM and HiDeNN,
and their difference from the converged, conforming mesh
solution are tabulated in Table 5. For FEM, although increas-
ing the number of elements increases the maximum stress,
the predicted value is still too low compared with the predic-
tion from conforming mesh (33.99%, 27.85%, and 17.54%
for three cases). On the other hand, the results obtained by
HiDeNN show much better accuracy through learning the
optimal nodal positions. As shown in Fig. 31, HiDeNN
moves the nodes during training to the regions with stress
concentrations. Evenwith the coarsest discretization, 40×20,
and quadrilateral elements, HiDeNN is able to capture the
maximum stress with less than a 2.5% difference from the
converged value. For discretization of 60 × 30, 80 × 40,
and 100 × 50, the differences are further reduced to 1.97%,
1.53%, and 0.88% respectively. The calculation time is
affordable with an accuracy below 1%. The excellent per-
formance of HiDeNN with pixel-like coarse discretization
demonstrates the great potential of the HiDeNN of bypass-
ing computationally expensive conformal mesh generation
for image-based analysis. In concept, this is similar to iso-
geometric analysis (IGA), in that the difficulty of mesh
generation is mitigated.

4.5 Outlook of HiDeNN

In this subsection, the general framework of HiDeNN is
provided to show the flexibility and potential of this devel-
oped methodology for problems ranging from pure data
analysis and semi-data investigation to the governing equa-
tion surrogate modeling. As mentioned in the introduction,
the universal approximation achieved by deep learning has
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Table 5 Summary of difference in maximum von Mises stress between the HiDeNN 2D solutions (uniform mesh) and conforming mesh solution
from FEM

Type of analysis Number of elements Degrees of freedom σvon
max , MPa Difference Computational time (s)

Conformal mesh 37928 0.456 -

Uniform mesh 800 (40 × 20) 1722 0.301 33.99% -

HiDeNN 2D 800 (40 × 20) 3444 0.446 2.19% 10.93

Uniform mesh 1800 (60 × 30) 3782 0.329 27.85% -

HiDeNN 2D 1800 (60 × 30) 7564 0.447 1.97% 24.87

Uniform mesh 3200 (80 × 40) 6642 0.376 17.54% -

HiDeNN 2D 3200 (80 × 40) 13284 0.449 1.53% 45.28

Uniform mesh 5000 (100 × 50) 10302 0.419 8.11% -

HiDeNN 2D 5000 (100 × 50) 20604 0.453 0.88% 90.44

Bold indicates the important values

Fig. 31 Comparison between the conformal mesh and the HiDeNN
discretization for stress concentration regions after learning the nodal
positions. aConformalmesh at themaximum stress regions; bHiDeNN
discretization for 40 × 20; c HiDeNN discretization for 60 × 30; d
HiDeNN discretization for 100 × 50

brought increasing attention to the ability of such methods to
solve partial differential equations. Thewell-knownmethods
in the literature include, but are not limited to, physics-
informedneural network (PINN), the deepRitzmethods [33],
deep Galerkin method(DGM) [16], etc. The general form of
these methods can be described by Fig. 32. The input layer
is the coordinates of the collocation points in the domain
� and the time t , while the output is the solution of PDEs.
The input layer and the solution layer are related by several
layers of fully-connected neural networks. After the solu-
tion layer, several operators are used to calculate the loss
function, where I is the identity matrix, and ∂ is the partial
differential operator. The solutions are obtained by minimiz-
ing the residual of the governing equations and optimizing
the weights and biases of the feed forward DNNs. The loss

function is defined as the square summation of the residual
of the governing equations and the boundary conditions.

The general HiDeNN framework is depicted in Fig. 33,
including an input layer, a pre-processing layer, a customized
DNN layer, a solution layer, and an operation layer. In
HiDeNN, instead of being limited to the spatial and time
space, the input is further extended to include a parame-
ter space, expressed as � × t × D, refer to Fig. 33. This
parameter space D is used to formulate parameters of the
physical systems, except for the scattered points and time.
For instance, the parameters used in the formulation of the
heat source model in additive manufacturing can be involved
in the input vector for solving the temperature field of the
printing process. The geometric constraint in optimization or
the material properties related to spatial distribution can also
be contained in the parametric space. After the input layer, a
layer of pre-processing functions, fi (x, t, p), is introduced
to functionalize the input layer before sending it to theDNNs.
The functionality of these functions is problem dependent.
For instance, it can be used to transform the input variables
into non-dimensional vectors for the training or perform a
type of model order reduction for the input layer. During the
training, these functions can be fixed or relaxed for training,
depending on the specific problem.

Once the input is transformed or reformulated, it is taken
as the input for the customized DNNs, and the solution is
obtained by training the independent variables (i.e. nodal
positions in this work when HiDeNN is degeneralized to
HiDeNN-FEM). The DNNs are constructed in a hierarchi-
cal manner in which the response of each neuron can also
be controlled by a sub-DNN. The depth of the hierarchy is
determined by the investigated problem. In addition to being
related to its upper network and communicating with other
sub-DNNs, each sub-DNN can also connect with the output
layer as part of the solution. The multiscale modeling of the
DNN can be built upon this hierarchical manner and will be
discussed in further work.
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Fig. 32 Physical informed-deep
learning methods for solving the
partial differential equations

Fig. 33 A general framework of Hierarchical Deep-learning Neural Network (HiDeNN)

Fig. 34 Degenerated HiDeNN
for topology optimization
(HiDeNN-TO)

After the output of the solution layer, operation layers are
introduced in order to accomplish scaling law or governing
equation discovery in the training. For pure data analysis,
the operation layers consist of representative functions (i.e.,
polynomials, splines, exponential functions, etc.), and the
training is centered around finding the underlying law or
patterns in the data sets. Functions θ j ( j = 1, ...w) are used
to represent the potential functions for the discovery. When
partial data and partial governing equation or scaling law

is available, the operation layers are used to determine the
coefficients of the governing equations and the potential rela-
tionships between the data sets and the proposed model. If
the full model and the boundary conditions of the problem
are available, the operation layers are used to construct the
governing equations or the law, and the training process is
performed as the surrogate modeling for real time prediction.

To illustrate theflexibility of the proposedHiDeNNframe-
work, a HiDeNN based topology optimization is developed
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to show a degeneralization of the HiDeNN. The degener-
ated HiDeNN for topology optimization (HiDeNN-TO in
short) is illustrated in Fig. 34. Following the Solid Isotropic
Material with Penalization method (SIMP) [34], p1 repre-
sents the maximum allowable material density at a node,
p2 represents the minimum allowable material density at a
node, and p3 defines the total volume allowed in the final
design. Using the pre-processing layer, three design con-
straints ( f1(x, p) : ρ((x)) ≤ ρmax , f2(x, p) : ρmin ≤
ρ((x)), and f3(x, p) : ∫

�
ρ(x)d� = V ) are integrated into

the structured DNN (denoted by dashed arrows). The gov-
erning equation, density filter, as well as objective function
for the problem of interests are formulated by the operation
layers. For example, the functions θi (u, ρ) are used to for-
mulate the filter, the differential operators are used for the
governing equation and the integral operators e used for the
objective function. The relationship among these operators
can be easily formulated for problem of interests in topology
optimization and will be proved in our next work.

5 Conclusions

In this work, a deep learning based numerical discretiza-
tion scheme, the hierarchical deep learning neural network
for finite element method (HiDeNN-FEM), is proposed to
solve the partial differential equation. In the HiDeNN-FEM,
the shape functions, widely used in standard FEM, are con-
structed by a structured deep neural network, and by training
the DNN, HiDeNN-FEM can solve the partial differential
equations. The weights and biases in the DNN are functions
of input nodal coordinates, and thus, the training process in
HiDeNN-FEM includes the optimization of the nodal posi-
tions. This is the spirit of the r-adaptivity, and it increases both
the local and global accuracy of the interpolants. Byfixing the
number of hidden layers, the rh-adaptivity can be achieved
by increasing the number of neurons through a predefined
criterion. The additional nodes can thus be inserted by the
training process, and the accuracy will be further improved.
Numerical examples are performed using the HiDeNN-FEM
for 1D and 2D linear elasticity problems. The convergence
rate of the HiDeNN-FEM and standard FEM is studied, and
the improved accuracy of the HiDeNN-FEM is apparent.
This is due to the fact that nodes tend to move toward the
peaks of the derivative of the solution for capturing the stress
concentration at the largest derivative to the displacement. rh-
adaptivity allows intelligent node insertion and movement,
leading to better solution accuracy for the partial differen-
tial equations. Note that there is no manual control over the
learning process, as the HiDeNN-FEM can understand the
problem through training.

The generalization of the HiDeNN is obtained by intro-
ducing three elementary building blocks to construct hier-

archical neural networks. The building blocks are linear
functions, multiplication and inversion. By using these
building blocks, the rational functions containing Lagrange
polynomials, NURBS, IGA, and RKPM are constructed in
a hierarchical manner by the simple interpolation functions.
Furthermore, the enrichment function in the HiDeNN-FEM
is achieved by the multiplication of neurons, which is equiv-
alent to the generalized, extended, and partition of unity
FEM. Leveraging the universal approximation capability of
DNNs, the assembled hierarchical neural network can be
trained to identify an optimal interpolation function to be
used in the calculation process. This work is a concept proof
and will be extended to learn multi-dimensional polynomials
and arbitrary functions, space-time modeling, reduced order
modeling, as well as topology optimization by constructing
parameterized sub-DNNs in the future. In short, the HiDeNN
will serve as a unification of various numerical methods that
have broad application potential as illustrated in the outlook
section.
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