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Abstract

A mechanistically informed data-driven approach is proposed to simulate the complex plastic behavior of microstruc-
tured/homogenized solids subjected to cyclic loading, especially to simulate the Masing effect. Our proposed approach avoids the
complicated mathematical construction of an appropriate yield surface, and does not require a large amount of data for training,
by virtue of its mechanistic character, which couples the methods and tools of data science to the principles of mechanics.
Specifically, a data-processing method is herein advanced to extract specific internal variables that characterize cyclic plastic
behavior, which cannot be measured directly via physical experiments. A yield surface, represented by an artificial neural
network (ANN), is then trained by stress—strain data and the extracted internal variables. Finally, the ANN is integrated into a
finite element computational framework to solve different boundary value problems (BVPs). Results for demonstrative examples
are presented, which illustrate the effectiveness and the reliability of the proposed approach for solids containing voids and
particles in their microstructure. Compared with direct numerical simulation (DNS), our approach seems to predict the average
levels of stress and plastic strain under cyclic loading more efficiently, as well as the regions of strain localization. In addition,
results for a homogenized three-dimensional truss structure demonstrate that our approach can accurately describe the evolution
of key internal variables. Our mechanistic approach requires much less data than the general pure data-driven methods, which
shows a possible computational efficiency compared with the pure data-driven approach. Limitations of our proposed approach
are also discussed.
© 2022 Elsevier B.V. All rights reserved.
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1. Introduction

Load-bearing members made of elastoplastic materials, such as metals and alloys, are widely used in many
engineering structures, which usually operate under cyclic loading conditions. How to describe the complex plastic
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----------- Masing effect
........... Ratcheting effect

Fig. 1. Two specific effects observed in the experiments under the uniaxial cyclic loadings for many materials: Masing effect and ratcheting
effect.

behavior of these materials has always caught the attention of researchers [1]. Fig. 1 shows a typical stress—strain
curve for cyclic loading. The curve exhibits an incomplete elastic relationship when unloading, which is called the
Masing effect [2]. A related ratcheting effect can also be noted from the curve [3,4]. To capture the Masing effect
under cyclic loads, various constitutive models [5—14] have been proposed, which are based on seminal works on
kinematic hardening [15,16]. In particular, to describe the Masing effect the yielding surface of the proposed models
plays a central role, which can be used to judge the states of loading and unloading, and to characterize plastic
evolution under cyclic loads. For instance, the subloading surface model, as a typical example [13,14], includes a
normal-yield surface, and a subloading surface, which together control back-stress evolution and plastic deformation
flow. Specifically, plastic behavior, under both loading and unloading, can be described by the translation, expansion,
and contraction of the subloading surface, within the normal-yield surface.

Modern day materials are most frequently microstructured (with controlled voids or particles), purposely
developed for and used in diverse engineering applications. To model cyclic plasticity for such complex materials,
both the matrix and the microstructure are defined, and their mechanical behavior under cyclic loading is described.
Thus, the average stress—strain response can be obtained through established homogenization methods, e.g. [17—
21]. It is evident that the matrix and the microstructure may be described by differing yield surfaces and subyield
surfaces. Their evolution during plastic deformation may also exhibit great differences, leading to a strongly
nonlinear coupling between matrix and microstructure. Choosing the appropriate yield surface and subyield surface
is therefore very important to correctly model cyclic plastic behavior (average behavior) for such microstructured
solids. Nevertheless, it remains very difficult to accurately describe the microstructured solid by adding or subtracting
yield surfaces, and/or by interpolating model parameters, leaving the matter open to active research.

With the growth of data science in recent years, numerous data-driven approaches have been proposed to
replace traditional constitutive models and their associated difficulties [22]. Various neural networks were trained
to represent a constitutive law, completely from stress—strain data [23-33]. In addition to using neural networks,
Liu et al. proposed self-consistent clustering analysis (SCA) with the help of clustering technique in machine
learning [34,35]. Based on SCA, FEM-cluster based analysis (FCA) [36,37] and virtual clustering analysis
(VCA) [38] were further developed. In the same vein, without resorting to any constitutive function, Ortiz et al.
proposed a pure (model-free) data-driven approach to solve boundary value problems (BVPs), directly respecting
compatibility and equilibrium constraints simultaneously [39,40]. Specifically, for cyclic plasticity, many pure
data-driven models have been proposed [41—44]. For instance, Mozaffar et al. [43] used data of 15,000 different
cyclic loading/unloading paths to train a recurrent neural network (RNN) on loading-path dependent plasticity.
Theoretically, artificial neural networks can be used to approximate arbitrarily complex functions, based on the
universal approximation theorems [45]. For example, Shen et al. [46] gave the minimum number of neural network
hidden layers and neurons to fit any continuous d-dimensional function. In other words, any constitutive model can
always be replaced by a neural network trained with enough data. However, as the plastic behavior becomes more
complex, the amount of data required to train a constitutive law, through a purely data-driven method, is expected
to increase significantly, as the plastic behavior is a long-term, path (history) dependent phenomenon.

On the other hand, physical invariants and symmetries of mechanical quantities, hidden in the data, can be
harnessed to reduce the required amount of training data. For instance, Tang et al. [47,48] harnessed the coaxial
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characteristic of deviatoric strain and deviatoric stress to expand one-dimensional data sets to capture three-
dimensional plastic behaviors. Likewise, Yang et al. [49,50] constructed a unified functional form for the yield
condition, through an artificial neural network (ANN) trained by data from 22 loading paths, which they found
sufficient to fully describe cyclic plastic behavior. Thus, the methods and tools coupling data science with mechanics
principles, termed mechanistic data science, have very recently arisen, charting a new and promising methodology to
solve engineering problems [22]. Mechanistic data science can effectively reduce data dimensionality when learning
complex hidden relationships, by extracting mechanistic features from input data. Indeed to characterize the Masing
effect via a pure data-driven approach would be quite challenging in terms of the volume of stress—strain data
required for training, although this effect is a widely observed phenomenon in cyclic loading experiments [4,51-53].

In this paper, a mechanistic data-driven approach is therefore proposed to describe cyclic plasticity in mi-
crostructured solids, by leveraging existing constitutive model structures. This approach can accurately describe
the incomplete elastic relationship between stress and strain during unloading. Theoretically, the proposed approach
is possible to be applied to any existing constitutive model of cyclic plasticity. The subloading surface model [54]
will be herein selected for demonstration purposes. Key physical quantities (that is, data on the mechanical features
of the Masing effect) required by the subloading surface, such as the active stress and hardening function, cannot
be measured directly in physical experiments. They are instead extracted from the measured stress—strain data sets.
Then, this extracted data is used to train the ANN to obtain the desired yield function. Finally, the learned yield
function is integrated into finite element computations. Compared with traditional function-based material models,
the proposed data-driven approach avoids the calibration of material parameters involved and the construction of
mathematical forms of the yield function. In addition, the proposed approach does not require a large amount of
data, or a complex neural network structure, to obtain the yield function, as compared with the other pure data-driven
methods discussed above.

The structure of this paper is as follows. In Section 2, data generation, data processing and ANN training are
described. In Section 3, the effectiveness of the proposed approach is illustrated through finite element computations
on some representative structures subjected to cyclic loading/unloading. Some concluding remarks are presented in
Section 4. Note that all the tensors in this paper are recorded as vectors, using the Voigt notation.

2. Methodology

The mechanistic data-driven approach that we propose to describe cyclic plasticity in microstructured solids, can
be illustrated as shown in Fig. 2. The data-driven approach is essentially divided into three parts: data generation,
data processing (mechanistic feature extraction), and ANN training and learning. Data generation is herein treated
by numerical experiments (as surrogates of physical experiments). First, however, we identify the key physical
quantities that enable a successful characterization of cyclic plasticity, to define the mechanistic features to be
extracted by our data-driven approach. Next, an RVE that contains the representative microstructure is created, to
generate averaged stress—strain data. Then, the elastic material parameters of interest, such as Young’s modulus
and Poisson’s ratio, can be identified from the RVE stress—strain data. Furthermore, to describe the cyclic plastic
behavior, which includes the Masing and ratcheting effects, data for the subloading surface (active stress and
hardening function) needs also to be extracted from the same stress—strain data. As such, a new data set is
formed (extracted feature). Finally, a yield function expressed by ANN is obtained, as trained with the new data
set via machine learning. Solutions to BVPs can finally be driven by this learned yield function, along with a
loading/unloading criterion.

2.1. Mechanistic features of cyclic plasticity

To extract correct characteristic variables for cyclic plasticity, it is necessary to understand the important role of
internal variables in the constitutive modeling of cyclic plasticity. According to our investigation, most elastoplastic
material models in commercial software may fail in describing the Masing effect. Conversely, Hashiguchi’s
subloading surface model [54] succeeds, by proposing three hypersurfaces in stress space: a normal-yield surface,
a subloading surface, and an elastic-core surface (see Fig. 3). It will therefore be implemented and employed in our
study.
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Fig. 2. A summary of the proposed data-driven approach to solve the cyclic plasticity problem of microstructured materials.
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Fig. 3. Normal-yield, subloading and elastic-core surfaces of the subloading surface model.

The normal-yield surface is selected with isotropic and kinematic hardening, as adopted in many cyclic plasticity
models (e.g., in ABAQUS), which may be given as,
f@@)—F=0 (1)
where 6 = o —a. Here o is the Cauchy stress, and a is the back stress (kinematic hardening variable), first proposed
by Prager [15] to describe the anisotropy caused by plastic hardening. f(6) is a homogeneous function of stress

0. F(> 0) is a function of the accumulated plastic strain, introduced to describe isotropic hardening or softening,
i.e. the expansion or contraction of the yielding surface. F usually takes the following form [54],

F=Fy[l+h (1—e )] 2

where Fj is the initial value for isotropic hardening, and &, and h, are material constants. H = \/g f &P ||dt is

the accumulated plastic strain, in which &” is the plastic strain rate.
To capture the Masing effect, a subloading surface that lies within the normal-yield surface in stress-space is

introduced (see the blue circle in Fig. 3). This subloading surface is defined as,
fe)—RxF=0 3)

where ¢ = o —a is the active stress, and a is the geometric center of the subloading surface. R (0 < R < 1) defines
the ratio of the subloading surface size to the normal-yield surface size. R serves as a measure of the extent by
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which the subloading surface approaches the normal-yield surface. The symbol *x’ represents the scalar product,
emphasizing that R and F represent two physical quantities, respectively. It should be noted that the subloading
surface is always contained within the normal-yield surface, and maintains geometric similarity to it. The plastic
strain rate is then derived based on this subloading surface.

To help establish a connection between back stresses a and a, an elastic-core surface is further introduced, as
shown by the green circle in Fig. 3. The geometric relationships between the normal-yield surface (o), the subloading
surface (), and the elastic-core surface (¢), lead to the following expressions for the associated stresses,

{ 0 =6/R

¢c=c—a=(c—a)/R

“)

where ¢ designates any similarity-center that arises between the normal-yield surface and the subloading surface.
¢ has been physically interpreted as any stress-point where deformation is most elastic, and has thus been termed
the elastic-core, or the elastic-center. Correspondingly, an elastic-core surface that passes through each elastic-
core ¢, while maintaining a similar shape and orientation to the normal-yield surface with the evolution of the
kinematic-hardening variable a, may be defined as,

@ —RxF=0 5)

where N (0 < N < y) is the ratio of the size of the elastic-core surface to that of the normal-yield surface, and x
(< 1) is a material constant.

When the material experiences plastic loading, the plastic strain rate & is not equal to 0. The evolution equations
of R, a,c and a are as follows [55],

R = e In(R)|1€ |

2
d=Ca<iz—\/i a )ué"n
3r,F
Dis 2dF/dH
e=C(n-"h ||éP||+\ﬁ#euéPn
X 3 F

a=((—R)¢—cR+ Ra+aR

(6)

af/oa af/d¢

where 7 = 6'/||6'||, and &' is the deviatoric part of (o0 — ¢). it = Tiraer and it = paien are the normal tensors
of the subloading surface and elastic-core surface, respectively. 7y, r», C,, 14, C. are material constants. The ratio
of the size of the elastic-core surface to that of the normal-yield surface ) can be updated by Eq. (5). A practical
method to compute the plastic strain rate is detailed in Section 2.5.

Conversely, when the material experiences elastic loading, elastic unloading, or neutral loading, the plastic strain
rate &% is equal to 0. The isotropic hardening variable F, the back stress a and the geometric center of the subloading

surface @ remain unchanged. R, ¢ and i can be updated according to Egs. (3), (4), (5),

e J®
B F
c= “1__’;" ™
G — flc—a)
F

In summary, the subloading surface is key to describing the complex behavior of materials under cyclic loading.
Its expansion reflects plastic loading, and the flow of plastic deformation. It should be emphasized that the internal
variables, such as R, F and o, are very important to describe this complex behavior, though they are difficult to
measure directly in physical experiments.

2.2. Data generation

An RVE with microstructure (voids or particles) is adopted to generate the required stress—strain data by
numerical experiments. To account for the Masing effect by the data generated, the subloading surface model is
employed as the material law of the constituents of the microstructured RVE. As shown in Fig. 4, an RVE can
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(b)

(a)

Fig. 4. (a) A material point (XM yM_  zMy with microstructure in the deformable body (initial configuration). (b) The RVE with
microstructure (void or particle) for data generation.

be thought of as being attached to a macro-scale material point (XM, Y™, ZM) of a continuum. Here, and in the
following, superscripts “m” and “M” represent quantities at the meso-scale (RVE) and the macro-scale (parent
domain) respectively.

The RVE is herein taken as a cubic cell, which we associate with a Cartesian coordinate system and principal
axes x™, y™ and z". The base unit vectors are {e]', €3, €'} respectively, and the RVE lengths are LY, L;’,‘ and L7,
measured along the x™, y™ and z" axes respectively.

The boundary conditions on the RVE are given by

u' =0 onx™ =0
uy =0 on y" =0
uy =0 onz" =0
u' =y —DLY onx™ =LY
uy = (A — DLY on y" =LY

uy = (A3 — 1LY onz" =L7

®)

where u{’, u3' and uf5 are the components of the displacement vector #™ in the principal space, u™ = uf'e]" +
uy ey +uszesy. Ay, Ay and A3 are the principal stretches in the x™, y™ and z™ directions respectively, which are
chosen as the loading parameters.

As clarified in our previous work [50], the data along 22 loading paths is sufficient to train the yield surface in
stress space. The principal stretches on the RVE (the loading parameters) along the 22 loading paths are given by,

a B
(s A 2a)l M = 1 mPoe (@ =1, Nis p= 1., No) ©)
N

where « and B represent the loading path number and the loading step respectively; Ny and Ng (taken as 22 and
1000) designate the maximum values of o and B, respectively. n (taken as 10%) is a coefficient that defines the
range of strain for the given data set, and P, (as shown in Table 1) represents the directions of loading paths o
(described in principal stress space). Based on homogenization theory [17,18], the averaged principal strain of an
RVE can be obtained as

(el e} el = (1) — 1,0y — 1, 3 — 1)@ (10)
The corresponding homogenized (averaged) stress ™ can be expressed by,

M M ,m m M m m M, m m
0" =o0,e Qe +0, ) ey +05 €3 Qe 11
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Table 1
The loading directions P, used in data generation.
path ID(«) P, path ID(«) P, path ID(«) P,
1 {—1.00, 0.00, 0.00} 9 {—=0.75, —0.5, 0.43} 17 {—0.43, 0.50, 0.75}
2 {—0.87, —0.50, 0.00} 10 {—0.75, —0.43, 0.50} 18 {—0.25, 0.43, 0.87}
3 {—0.87, —0.43, —0.25} 11 {—0.75, 0.43, 0.50} 19 {0.00, 0.00, 1.00}
4 {—0.87, —0.43, 0.25} 12 {—0.50, —0.43, 0.75} 20 {0.00, 0.50, 0.75}
5 {—0.87, —0.25, 0.43} 13 {—0.50, 0.00, 0.87} 21 {0.25, 0.43, 0.87}
6 {—0.87, 0.00, 0.50} 14 {—0.50, 0.43, 0.75} 22 {0.43, 0.50, 0.75}
7 {—0.87, 0.25, 0.43} 15 {—0.43, —0.25, 0.87}
8 {—0.75, —0.50, —0.43} 16 {—0.43, 0.25, 0.87}
Table 2
The material parameters of the matrix.
E v F() h| h2 r rn Cu Tq Cc X
200.0 0.3 1.0 0.2 20.0 100.0 1.0 5.0 0.5 15.0 0.6

where ® is dyadic symbol for vectors. The principal components (o, o/ and 03M ) of the average stress o™ can
be computed from,

u 1 L;V L’Z"
o = t"dy"dz"
1 L,;LZ,/O /0 1 ay
u 1 Lm LE”
o) = dx"dz7™ 12
2 7 L /0 /0 2 ¢ (12)
1 L L
oyl = Tnln f / 15 dx"dy™,
x =y J0 0

which is based on the traction force acting on the outer boundary, where #", ), and #;' are the components of
the traction force ¢, written in principal space (the component form of the traction force can thus be expressed
as 1" =1t"e' +1y'ey +ti'es’). Based on this data generation method, the average principal stress and the average
principal strain for any RVE are obtained, at each loading step, and along all loading paths ( Table 1), using Egs. (10)
and (12). That is, data sets for average principal strain of the form {&}, &)/, £4}1*-F] and for average principal stress
of the form {0}, 03/, o"}1*Fl  are created for further processing.

Fig. 5 shows the stress—strain data generated along three loading paths (@ = 1, 6 or 18) as an example. In
this example, an RVE with a void at the center is illustrated. The void volume fraction in the RVE is 15.45%.
The matrix is assumed to be an isotropic elastoplastic material, as described by the subloading surface model with
material parameters as listed in Table 2. To investigate the effect of the void in the RVE, Fig. 5 compares the
stress—strain predictions for a homogeneous bulk matrix RVE (without void), under the same conditions. As can
be seen, the RVE without a void predicts very different results, especially under triaxial loading (Loading path
ID=18). This finding suggests that one cannot approximate the behavior of the RVE with a void directly from a
homogeneous RVE without void (described by the matrix material only).

From hereon, unless otherwise stated, all the data that concerns physical quantities is homogenized for ANN
training. As such, the superscript “M” of these physical quantities is omitted, to avoid cluttering notation. Note that
only the stress—strain data for the loading process is herein generated. This feature of our work compares favorably
with previous works, which require to generate stress—strain data along approximately 15,000 loading and unloading
paths (instead of our mere 22 loading paths), to train the material law for cyclic plasticity, e.g., [43].

2.3. Feature extraction for cyclic effects

Clearly, the generated principal stress—strain data sets, {1, &2, £3}/%#) and {01, 02, 03}*#], are not adequate to
properly train an elastoplastic constitutive model for cyclic plasticity, since the internal variables associated with
these data sets need to be also identified. Since the average elastoplastic behavior of the microstructured solid can
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Fig. 5. The visualization of data generation of average principal strain {s{w , sé” , sé"’ } and average principal stress {a]M ,02M ,03M } through

the RVE for (a) loading path ID 1; (b) loading path ID 6; (c) loading path ID 18 in Table 1. The material parameters of the matrix are
shown in Table 2. The response of the homogeneous bulk matrix RVE under the same conditions is plotted by solid lines.

also be fairly described by a certain material model, its associated internal variables can be extracted by mapping
to this model the available principal stress—strain data. Basically, this introduction of a specific material model for
macro-scale cyclic plasticity, into our data-driven approach, is an especially expedient feature. On one hand it helps
extract a set of internal variables (data for mechanistic features) required to characterize cyclic plasticity. On the
other hand, the amount of data required for subsequent ANN training (on long-term material behavior) is vastly
reduced, as noted earlier.

We will herein consider for the microstructured solid the same subloading surface model that we did for each
constituent, for its adequacy. Thus, the set {o, R, F} describes the evolution of the subloading surface for the
microstructure, which is important to describe its cyclic plastic behavior. Again, these variables are not directly
obtainable like the stress and the strain are. Hence, in the following sub-section, a two-step approach is proposed
to generate new data sets that are based on the available stress—strain data sets, with the help of the subloading
surface model. These new data sets will be used to train the ANN-based elastoplastic model for cyclic loading.
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2.3.1. Step I: Identifying macro-scale material parameters
The Young’s modulus and Poisson’s ratio are identified first. The elastic stress—strain relationship (Hooke’s law)
written in principal directions for an isotropic elastic material is,

6; =Dije; (i,j=1,2,3) (13)
where D;; is the elastic stiffness matrix:
E I—-v % v
Djj = ———— v 1—v v (14)

(14 v)(1 —2v)

where E and v are the Young’s modulus and Poisson’s ratio respectively, which can be obtained by a least squares
fit (to ensure the data is in the elastic stage, only the data of steps 8 = 1, 2 are taken),

mmzzz( el gletl)’ (15)

a=1 =1 i=1

For complex elastic behaviors, Young’s modulus E and Poisson’s ratio v can be calculated by adding a few steps
of measured data (that is, 8 > 2). Such as the nonlinear elastic problem, this has been carried out in our previous
works [49].

The strain increment Ae[ @f]
data from steps 8 — 1 and /3,

{Ag[aﬁ] [aﬂ] [aﬁll

: [o. B] :
and stress increment Ao, for any step B (8 > 2) can be computed using the

Ao leF) [a Bl [aﬁ 1] (16)

Combined with Hooke’s law, the plastic strain increment Ag!* fer£]

Ael*P = Agl* P — pt Aglte P! a7

can be expressed as

The accumulated plastic strain H'®#1 and its increment AzP!%#] can be computed by

3

2
3
2 I ¢
splaeBl — | 2 ple.fl _ ple, Bl
g = |2y (Asj Ly )
/=1 =l (18)
KBl — Z Agplail
i=1
We can define the data set X describing the elastic stage according to the accumulated plastic strain,
X := {[a, BIIH*P! < 0} (19)

According to Eq. (2), Fy and Fj + h; take on their values when the accumulated plastic strain H takes on its
minimum and maximum values within hardening function F, respectively. They can be obtained in the elastic stage
and when 8 = N;. Therefore, the values of Fy and /; can be obtained through an optimization process as,

Np 2
min (max cr["‘ Al Fo)

Fy — [, B1eX
" (20)
. 2
min (oe[“’Nf] — Fy— hl)
U a=l
2
where ol*! = \/ 3 P = 1( [Pl _ -3 LS cri[“‘ﬂ ]) is the equivalent stress, and maxxog[a’ﬁ I represents the
le.Ble

maximum value of o, under loading path « in the data set X.
As an important and welcome simplification, we note that all other material parameters, i.e., r1, 12, Cq, ¥4, Cc, ha
and y, in the subloading surface model, are not required for our method to be accurate. This claim is verified by our
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numerical examples shown in Appendix A. This observation implies that we may use the material parameters of the
matrix for our microstructured solid, so long as the microstructure’s behavior follows similar trends in evolution,
as expected for typical alloys.

2.3.2. Step II: Extracting macro-scale mechanical features
The initial values of internal variables are assumed to be,
Aerlell = 11,0,0]"
alet =l =11,0, 01
al*! = cloll = gl*1 = 10,0, 0" 1)
T
5l 1l [, 1] [ 1] _[e,1]
c U =l0"" 0", 05

R[a,l] — m[a,l] — 10716
All internal variables are functions of the plastic strain increment Ae?!®#1, It is also assumed that an associative
plastic flow rule is followed. Therefore, in combination with Egs. (2), (6), (18), the internal variables can be
computed by,
Hlepl — glep-11 4 Agpla.fl
Flefl = F, [1 +h [1 _ e—th[a,ﬂ]:“

FeBl — Foh hye 2"
flla’ﬂ] _ AgPla.Bl

Agpla.f]
le, Bl — lo,f—1] alo, Bl 2 gl*p-1l = pla. B
alvpl = gloB +Ca<na _\/;raFlDtvﬂJ Agple.p
el =l ¢, (lP) — —f““;’“ﬁ[“*ﬂ*”) AsPleBl 4 Agleof) 4 \/g B (clech=11 — glefl) Agples]

flepl — Aclep]
JRdev(AclAlydev( AcleA])

Rlepl — Lel@P—ale Pl

“ T oleBl—gle. Bl

Rl«H] — plap—11 _ rle[rzm[a,ﬂ](;,m.m:ﬁ)] In (1#-1) Agrle)

alefl — gle-p-11 (1 _ R[a,ﬂ]) Aclepfl _ cla.Bl ARlAT o Rla.fl AglaBl 1 gle.fl A Rle.B]
glehl — gla.pl _ glo.pl

(22)

T T
where AgPlefl — Aef[a’ﬂ], Aeé’[a‘ﬁ],Asfla’ﬂ]] , glwfl — a}”’ﬁ],az[“ﬂ],ag“'ﬂ]] , and dev(Ac*fl) is the

deviatoric part of Acl®#). In this manner, the new data sets {¢'*#1, RI*#l Fl*fl} are obtained, which are used
to train the subloading surface. It should be noted here that this data processing strategy is very similar to the
update procedures of stress and of the internal variables in a typical finite element computation. However, the
plastic strain increment at each time step is in our strategy known, unlike for typical incremental plasticity in finite
elements, which solves for the plastic increment at each time step by a nonlinear analysis. Thus, in our case it is
very straightforward and fast to obtain the new data sets using Eq. (22).

2.4. ANN training and learning

Since the subloading surface plays the key role in describing the Masing effect in cyclic loading, the
ANN is herein designed to describe it mathematically. The ANN is then trained by the processed data sets,
{6[0"ﬂ 1 Rlefl ple.fl }. With the trained subloading surface, the normal-yield surface and elastic-core surface can then
be described mathematically to completely replace the overall subloading surface model, and to drive subsequent
online finite element computations.

According to Eq. (3), the subloading surface can be rewritten as a function & of the following form,

G = f (6, o, J5) —Rx F (23)
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Fig. 6. The effect of the number of hidden layers on training performance of ANN. The variation of training and validation loss with four
and six hidden layers are plotted. The best validation performance of the ANN is also marked.

where o, J, and J3 are three invariants of ¢ defined as,

6m = 6kk/3
NG (24)
j3 = \3/ 6—5/k6k,j6—i/j

where 6{]- is a component of the deviatoric part of ¢. Practically, we only need data for which the accumulated
plastic strain is greater than zero (that is, F > Fy) when training the ANN. Therefore, a corresponding data set Y

in the plastic range may be defined as,
Y = {[a, BIIF' P! > Fy} (25)

The next step is to obtain a new function ¢ determined by the ANN, which can approximate ®. To compare the
impact of the hidden layers on ANN performance, the ANN training performance with four and six hidden layers
is investigated. 70%, 15%, and 15% of the data sets are randomly selected as training, validation, and test sets,
respectively. We take the loss function of the artificial neural network as the mean square error. The mean square
error for the ANN with four hidden layers and six hidden layers vs. their training epochs is shown in Fig. 6. After
3000 epochs, the mean square errors are approximately 1.55 x 10~® with four hidden layers and 6.41 x 10~8 with
six hidden layers. Therefore, as the number of hidden layers increases, the value of the loss function for the trained
ANN is smaller.

Therefore, we create an ANN that includes an input layer, three hidden layers, and an output layer, as shown
in Fig. 7. The input layer and the output layer have three neurons and a single neuron respectively. The number of
neurons in each hidden layer is six. The new function & with inputs (5,,, J>, J3), outputs (R x F), weights (w)
and biases (b) represented by ANN is expressed as follows,

where f4nn is the function to be trained and can be written:
fann = tanh(tanh(tanh([&,,, J», s1w? + b>)w® + b>H)w* + bHw’ + b° (27)

here, w' and ' (i = 2,3,4,5) are the weights and biases for the link between (i — 1)th layer and ith layer,
respectively. The hyperbolic tangent function tanh(-) is used as the activation function. The weights and biases of
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Fig. 7. The ANN used in the proposed approach. The inputs, output, weights and biases are all marked.

the ANN can be obtained by solving the following minimization problem,

7 7 2
min >~ [fANN (5”[1“”3], LA TP, b) — RleAl F[w,ﬂ]] o8
wb [er, B1€Y

where &1F1, J_Z[“’ﬁ I and J_3[°"ﬂ I"are the data set of the three invariants of stress generated from the corresponding
Pl as defined in Eq. (24). The training is carried out using MATLAB’s Neural Fitting Toolbox (nftool). When
the training is complete, the new yield function @ is obtained.

2.5. Macro-scale stress and internal variables update

The trained function @ can be used to determine whether the current state at each step of a material point in the
finite element computation is loaded or unloaded. When the current state is known, a stress update can be performed
using the classic return-mapping algorithm. It is assumed that the stress ¢”, strain &” and the other internal variables
are known for the previous time step n. The strain increment Ae at step n + 1 is also given. The trial stress and
the trial active stress are introduced as,

{ " =6"+D: Ae

o—.tr — o,lr _ (_ln (29)

where D is fourth-order elastic tensor, which is the generalized form of D;; in Eq. (14).

Loading/unloading criterion. Cyclic loading can render a conventional loading/unloading criterion unpractical. For
example, during the unloading process, the deformation of the material is not purely elastic, but also includes
plasticity. This is the reason for the observed Masing effect indicated in Fig. 1. Furthermore, under the subsequent
loading process, even when the equivalent stress is less in magnitude than the maximum stress incurred over the
deformation history, plastic deformation may nevertheless take place. As a result of these difficulties, the following
loading/unloading criterion, based on the subloading surface, can be instead used [55],

o )P
@ (G, Jy, I R, F"; w,b) <0 or agr A0 =0 — Aer =0

6tr ‘

Otherwise = Ae’ #0

(30)
Here, 6,7, J_z” and f3” are three invariants of the trial active stress ¢'", computed by Eq. (24), A¢” =" — " is

an increment of the trial active stress, and Ae? is an increment of the plastic strain (based on the plastic strain rate
&? outlined in the section on the subloading surface model).

Stress update. When the plastic strain increment Ae”, or plastic strain rate &7, is equal to 0, F and ¢ remain
unchanged (F"t' = F", ¢"*! = ¢"), and the stress at step n + 1 is set equal to the trial stress (¢! = ¢'"). R"*!,

12
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a"!, a"', W+ and ¢"*! can be then updated as follows,
&n+1 — cn+1 _ Rn+l(cn+1 _ an)
f(o.n-H _t—ln+1) — Rn+l X Fn+l

an+1 — cn+1 _ ((:"H _ —n+1)/Rn+1 (31)
f(cn-H _ an+l) — mn+l X Fn+l
gt = gntl — gntl

When the plastic strain increment Ae?, or plastic strain rate &7, is not equal to 0, the internal variables and the
trial stress must then be updated, to restore the function @ to zero. The stresses can be updated as follows,

30/3G" )

el 32
lo®/d6" || 02

a":a”—}—D:(Ae—A)\

where A is the flow factor, and Ae? = Ak%. We note that d $/da" can be expressed by the neural network
through a back-propagation algorithm [50]. We also note that all these internal variables are exclusively functions

of AA. As such, we can rewrite Eq. (26) by substituting Egs. (2), (6), (32),
O (AN) = fann (51 (AN), J37(AL), T3 (AL); w, b) — R (AX) x F'"(A)) (33)

where R (AMX) and F'"(AA) are trial values of R and F, respectively. Newton’s iteration method can be used to
solve the equation ®*(AXr) = 0, with AA updated during the iteration process by,
P*(AL)

3 P*(AA) /I AN
where AM' is the value at the i —th iteration of AX, with the initial value of AX set to zero. Once AX is obtained,
all the variables including the plastic strain increment Ae? can be updated by Egs. (18) and (22).

Fig. 8 summarizes the entire process of building the data-driven constitutive model for cyclic plasticity, starting
from original stress—strain data sets, to carrying out subsequent finite element simulations. For the implicit finite
element computation, the tangent modulus L is also required, which can be derived, as shown in Appendices B and

C. Our ANN trained material model was implemented as a user material subroutine in a commercial or in-house
finite element solver, i.e., UMAT in ABAQUS.

A)\.i-H — A)\l _ (34)

3. Numerical examples

In this section, we employ the proposed approach to predict the cyclic plastic behavior of engineering structures
composed of microstructured solids. The numerical examples show that our proposed approach can predict the
Masing effect of engineering structures accurately and effectively, saving orders of magnitude of computational
time, compared with DNS. In all our examples, a consistent unit of measurement is adopted. The unit of length is
mm; of force is N; of time is s; of stress, pressure, and the elastic modulus is MPa.

3.1. Cantilever beam with voids

In this example, a short beam containing 20 spherical voids of the same size is considered (volume faction is
15.45%), as shown in Fig. 9(a). The matrix material of the beam is assumed to be isotropic and elastoplastic, as
described by the subloading surface model, with material parameters as given in Table 2, and with f(o) = o.
While our previous work [50] has demonstrated the capability of ANNSs to learn complex yield functions (such as
the hyperbolic Drucker—Prager and Mohr—Coulomb models), our present work, however, focuses on how to describe
cyclic plasticity by means of ANNs, and does not explore complex yield functions or subloading surfaces. One end
of the beam is fixed while the other end is coupled to a 'reference point’. Cyclic loading, totaling seven cycles, as
shown in Fig. 9(b), is applied to this reference point. In each loading cycle, the forces in the x, y, and z directions
increase linearly from zero to 0.4, 0.5 and 0.6, respectively, and then decrease linearly back to zero.

This example is thus solved by two approaches. The first approach is direct numerical simulation (DNS), using
the finite element method (FEM) with three dimensional, six-node elements (C3D6). The second approach is our
proposed approach, where an RVE composed of a homogeneous matrix with a single void, as shown in Fig. 9(c),
is first established for data generation. The generated stress—strain data from the RVE is then processed for ANN
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Fig. 8. A detailed flow chart of data-driven constitutive law driving finite element simulation. The dotted box on the left is the process
of identifying material parameters and computing the internal variables from the original data through the subloading surface model. The
dotted box on the right is the update process of variables in finite element simulation.

train of the constitutive law for the homogenized material (microstructure at the macro-scale). The ANN consists of
three hidden layers, each with six neurons. The material parameters E, v, Fy and h; can be identified by Egs. (15)
and (20), while the other material parameters h,, ry, r2, Cy, 74, C. and x only need to be assumed, based on
the material parameters of the matrix used with DNS (see Appendix A). The material parameters for the trained
constitutive law are listed in Table 3. Our proposed approach can thus smear out the micro-voids across the beam
by homogenization, as shown in Fig. 9(d). The finite element mesh for the homogenized problem includes 3146
nodes and 2500 elements; much less than that of DNS, with 22,426 nodes and 113,895 elements. The element type
used for the homogenized finite element analysis is the three dimensional, eight-node element (C3DS8), permitted
by the simpler topology.
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Fig. 9. The finite element analysis on a cantilever beam with spherical voids. The number of nodes and elements used in finite element
analysis is listed. (a) The geometry and boundary conditions of the problem. The void volume faction of the beam is listed. (b) Cyclic
loading applied to the reference point. Red, green and blue represent the x, y and z directions, respectively. (c) The RVE used to generate
data. (d) The homogenized finite element model of the proposed approach.

Table 3
The material parameters of the trained constitutive law.
Parameter Identified Assumed
E v Fy hy hy r rn C, Ta Ce X
Value 153.68 0.28 0.87 0.23 15 90 0.8 6 0.6 12 0.8

Fig. 10(a) demonstrates the relationship obtained between the force and the reaction displacement in the x, y, and
z directions for the reference point, respectively. As can be seen, the results predicted by our proposed approach and
by DNS are both plotted, using solid lines and dotted lines respectively. The results of both approaches, in terms
of force and reaction displacement, are practically the same. As the cycles of loading increase, the stress—strain
hysteresis loop becomes wider. This may be due to the material’s cyclic softening [14], rendering more evident the
Masing effect. The engineering strain may be defined as U/L, where U can be the displacement of the reference
point in the x, y and z directions respectively, and L is the dimension of the beam in the corresponding direction.
The engineering strain vs. loading cycle is shown in Fig. 10(b). As can be seen, as the cycles increase the average
engineering strain gradually increases (at a constant rate). Similar trends were confirmed experimentally for low-
carbon steels when subjected to uniaxial cyclic loadings (Okorokov et al. [56]). Therefore, although our proposed
approach bypasses the need for, and complexity of, the direct modeling of voids, it successfully predicted the cyclic
elastoplastic behavior of a voided beam.

To analyze the effect of microstructure (particles or voids) on the response of bulk materials, the homogenized
cantilever beam is solved using the subloading surface model and our ANN model, respectively. The subloading
surface model adopts the material parameters of the matrix (listed in Table 2), since it is difficult to calibrate them
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Fig. 10. The results predicted by the proposed approach and DNS for the problem shown in Fig. 9. (a) The force versus the predicted
displacement of the reference point. The solid lines and dash dotted lines represent the results computed by the proposed approach and
DNS, respectively. (b) The average engineering strain U/L versus loading cycles. The lines and symbols represent the results computed by
the proposed approach and DNS, respectively. Red, green and blue lines/symbols represent quantities in the x, y and z directions.
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Fig. 11. The average engineering strain U/L of homogeneous beam versus loading cycles. The solid lines and dotted lines represent the
results of homogeneous beam described by the ANN trained model and subloading surface model, respectively.

to the case with microstructure without clear physical meaning and experiments. In contrast, the parameters of the
ANN model are obtained by training the data of RVE with a single void. Fig. 11 shows the average engineering strain
vs. the loading cycles of the homogeneous beam computed by the two models. It can be seen that the difference
between the two models is noticeable, which is again consistent with the conclusion in Fig. 5.

Fig. 12(a) plots the contours for equivalent stress, as predicted by the two approaches, for times r = 0.5, 1.0 and
1.5. Only the elements with x coordinates between 0 and 3 are shown in the figure, to help focus our comparison.
As can be seen, our approach (though homogenized) obtains a stress distribution quite similar to DNS. As shown in
Fig. 12(b), the difference between the equivalent stresses predicted by the two approaches is analyzed for Surf-Y1
(marked in Fig. 12(a)) at the same times. The maximum relative differences at the three moments (¢ = 0.5, 1.0 and
1.5) are less than 6.25%, which is deemed negligible.
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Fig. 12. The difference of equivalent stress between the results obtained by the proposed approach and DNS at time moment ¢ = 0.5,
1.0 and 1.5. (a) The contour plots of equivalent stress predicted by DNS (oeD ) and the proposed approach (oeA). The surface Surf-Y1 is
marked. (b) The relative difference 0" (=|aeD — aeAl / \JEDI) between the equivalent stress predicted by the proposed approach and DNS on
the surface Surf-Y1.

Likewise, the contour plots for the accumulated plastic strain are shown in Fig. 13(a), and the relative difference
of the accumulated plastic strain H for Surf-Y1 is shown in Fig. 13(b). As the loading cycles increase, the relative
difference grows a little larger. Nevertheless, overall the relative difference stays within a small range (almost all
less than 5%), again being deemed negligible. Therefore, it can be seen that our proposed approach can successfully
predict the distribution of both the equivalent stress and the accumulated plastic strain for the voided beam problem.

Finally, the computational time required to solve this voided beam problem was 283.15 min for DNS and
30.61 min for our data-driven approach. Counting the time cost for data generation (594.27 min), feature extraction
(0.87 min), and ANN training (2.03 min), the total computational time of the proposed approach will be more than
twice that of the DNS. However, these steps only need to be performed in the offline stage. Our proposed approach
thus exhibits much greater computational efficiency than DNS, obtained by drastically reducing the degrees of
freedom required for a convergent finite element analysis. In addition, for other loading modes such as torsion, the
proposed approach can also obtain almost the same results as DNS at the macroscopic level, and the results are
given in Appendix D.

3.2. Cantilever bending beam, with randomly distributed particles

In this example, a beam with randomly distributed particles is studied under cyclic bending, as shown in
Fig. 14(a). 74 particles (volume fraction is 13.80%), with diameters of 5 and 3, are randomly distributed across the
matrix. For DNS, both the matrix and the particles are assumed to be isotropic elastoplastic materials, as described
by the subloading surface model. The corresponding material parameters are shown in Table 2. As indicated in
Table 4, different subloading surface functions are employed to distinguish the matrix from the particles. Fig. 14(c)
shows the stress—strain response for the matrix and the particle materials when subjected to the uniaxial cyclic
loading shown in 14(b).
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Fig. 13. The difference of accumulated plastic strain H between the results obtained by the two approaches at time moment ¢ = 0.5, 1.0
and 1.5. (a) The contour plots of accumulated plastic strain predicted by DNS (H ) and the proposed approach (H#). The marked surface
Surf-Y1 is same as Fig. 12(a). (b) The relative difference H" (=|H b_ g A|/\H D|y between the accumulated plastic strain predicted by the
proposed approach and DNS on the surface Surf-Y1.

Table 4
The subloading surface functions of the matrix and particles.
Part Subloading surface
Matrix f(@)=o0.
Particles f(o) =0+ Ltoy, (£ =0.1)

One end of the beam is held fixed, while the other end (marked by force F, F, and F) is coupled to a reference
point. As shown in Fig. 14(d), a total of three loading cycles, with progressively decreasing amplitude, are applied
to the reference point. In the first loading cycle (r = 0 ~ 1), the forces in the x, y, and z directions increase
linearly from zero to 6, 5, and 4, respectively, and then decrease linearly to back zero. The forces of the second
cycle (t =1 ~ 2) and the third cycle (t = 2 ~ 3) vary similarly as the first cycle, but with amplitudes that are 80%
and 60% of the first cycle, respectively.

Similar to the voided beam problem, this example is solved by finite elements, using DNS with three dimensional,
six-node elements (C3D6), and using our approach with three dimensional, eight-node elements (C3D8). For
our proposed approach, as shown in Fig. 14(e), the RVE is established first according to the average particle
volume fraction of the beam. Then, the trained constitutive law is obtained, where the ANN for training consists
of three hidden layers, again with six neurons. The material parameters of the trained constitutive law are as
follows: E=202.52, v=0.302, Fy=1.0, h;=0.2, hy=15.0, r;=90.0, r,=0.8, C,=6.0, r,=0.6, C,=12.0, x=0.8. Finally,
the problem is solved using the trained ANN model, where the particles are smeared out. Compared with the finite
element mesh for DNS (16,285 nodes and 84,966 elements), our proposed approach drastically reduces the mesh
size to only 1908 nodes and 1335 elements.

The relationship between the force and the reaction displacement in the x, y, and z directions for the reference
point is shown in Fig. 15, where the solid lines and the dash dotted lines represent the results predicted by
our proposed approach and by DNS, respectively. Clearly, there is practically no difference between the results
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Fig. 14. The finite element analysis on a beam contained with 74 randomly distributed particles. The number of nodes and elements used
in finite element analysis is listed. (a) The geometry and boundary conditions of the problem. (b) Cyclic loadings and boundary conditions
of the matrix or particle materials under uniaxial conditions. (c) The stress—strain curves of the matrix and particle materials under uniaxial
cyclic loadings. (d) Cyclic loading applied to the reference point. Red, green and blue represent the x, y and z directions, respectively. (e)
The RVE used to generate data and the homogenized finite element model of the proposed approach.

predicted by the two approaches. It is worth noting that although the mechanical properties (material parameters and
subloading surface function) of the matrix and the particles are different, our proposed approach can still accurately
describe the cyclic elastoplastic behavior of the beam structure. In addition, although the amplitudes of the cyclic
loading in the second and third cycles are smaller than for the first cycle, the enhancement of plastic deformation is
nonetheless observed with increasing number of cycles. This finding is consistent with experimental observations,
e.g., [4,57]. The reason is revealed by investigating the subloading surface model [54,58]. In it, the occurrence of
plastic deformation only depends on whether the subloading surface expands. This subloading surface also expands
under stress levels that are lower than the maximum recorded over a given deformation history.

The contour plots of the accumulated plastic strain H, the ratio of the subloading surface to normal-yield surface
sizes R, and the equivalent (Cauchy) stress o, obtained by the two approaches at time t = 0.5 are summarized in
Fig. 16. As can be seen, the results of the two approaches differ locally (especially for a region close to the particles).
Nevertheless, the difference in terms of the overall field distribution (H, R or o,) is negligible. In fact, the region
of localized plastic deformation for the beam has also been identified by our proposed approach, in very good
agreement with that predicted by DNS.

The computational time for our proposed approach with this beam bending problem is 9.35 min; far less than
the 139.65 min required by DNS. We can conclude, therefore, from this example and the one before it, that when
describing the cyclic plastic behavior of materials with microstructure (particles or voids), our approach demonstrates
its advantages over DNS in terms of computational efficiency, having leveraged the accurate subloading surface
function.
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Fig. 15. The imposed force versus predicted displacement of DNS (by dash dotted lines) and the proposed data-driven approach (by solid

lines). Red, green and blue represent quantities in the x, y and z directions, respectively.

DNS

ANN

Fig. 16. The contour plots of accumulated plastic strain H, the ratio of subloading surface to normal-yield surface R and equivalent stress

o, obtained by DNS and the proposed approach at the time moment ¢ = 0.5.

3.3. Three-dimensional truss structure

In this example, as shown in Fig. 17(a), the cyclic behavior of a three-dimensional truss structure, widely used
in engineering, is studied. As in our first example, the truss structure is assumed to be isotropic and homogeneous
elastoplastic material, as described by the subloading surface model (the material parameters are the same as those
of DNS model in the first example) with f(6) = &,. The material parameters of the ANN trained model are:
E=199.31, v=0.298, Fy=1.0, h;=0.2, h»=15.0, r;=90.0, r,=0.8, C,=6.0, r,=0.6, C.=12.0, x=0.8. The bottom ends
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Fig. 17. The finite element analysis on a three-dimensional truss structure. (a) The geometry and boundary conditions of the problem.
(b) Cyclic loading applied to the reference point. The colors of line have the same meanings as those in Fig. 14(d). (c) The force vs.
displacement of the reference point predicted by the proposed data-driven approach (by lines) and DNS (by symbols). The colors of line or
symbol have the same meanings as those in Fig. 10(b).

of the truss are held fixed, while the top plane is coupled to a reference point. As in the second example, three
cycles of loading, as shown in Fig. 17(b), were applied to the reference point. The maximum loadings in the x,
v, and z directions for the first cycle (r = 0 ~ 1) are 1.7, 0.9 and 0.45, respectively. The maximum loads of the
second cycle (r = 1 ~ 2) and the third cycle (r = 2 ~ 3) are again 80% and 60% of the first cycle, respectively.

In this example, three dimensional, six-node elements (C3D6) are employed to mesh the truss structure, for finite
element analysis by both DNS, and our approach. The force vs. the reaction displacement curve at the reference
point, as predicted by DNS (markers) and our proposed approach (lines), is plotted in Fig. 17(c). It can again be
clearly seen that our approach applies well to the cyclic plastic behavior of the three-dimensional truss structure.

The contour plots for the equivalent active stress o,, as obtained by both approaches for the unloading phase in
the first cycle to the unloading phase in the second cycle (0.5 ~ 1.5), are shown in Fig. 18(a) and (b), respectively.
It is found that the stress distributions are nearly identical, although some negligible differences may be discerned.
Though there is no microstructure, these small differences result from the different internal variables obtained from
our data processing in comparison with those used by DNS.

Fig. 18(c) shows the evolution of some equivalent variables in a representative element from the mesh (element
number 5357) for the ANN trained model, where the value of the variable is the average value of all integration
points of the element. The equivalent (Cauchy) stress o, vs. the equivalent strain &, predicted by our proposed
approach is shown in Fig. 18(c-1). It can be seen that the unloading process of the first cycle can be divided into
a completely elastic part (f; ~ t;) and an elastoplastic part (f, ~ t3). However, from the perspective of equivalent
active stress o, shown in Fig. 18(c-2), the elastoplastic part (, ~ #3) is a reverse loading process. Also considering
the accumulated plastic strain H in Fig. 18(c-3), there is no plastic strain generated from ¢, to #,, being purely
elastic; but plastic strain is correctly generated from #, to #3. In other words, the Cauchy stress o should not be used
to assess cyclic plasticity; the active stress ¢ on the subloading surface should instead be used to judge its onset.
These results thus confirm that our trained ANN model correctly describes the evolution of the internal variables
(such as &), in alignment with the requirements of the subloading surface model.

4. Conclusions

In this study, a mechanistic data-driven approach is proposed to predict the complex elastoplastic behavior of
microstructured/homogenized solids subjected to cyclic loadings. Our proposed approach is capable of performing
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Fig. 18. The results predicted by the proposed data-driven approach and DNS at time 0.2~0.4. Contour plots of equivalent active stress &,
predicted by (a) the reference subloading surface model and (b) the ANN trained model at time moment #1, #3, f3, and t4. Here, t1, t3, and
t4 represent 0.5, 1.0, and 1.5, respectively, and 7, represents the time moment when plastic strain occurs at the unloading of first cycle. (c)
The evolution of equivalent stress o,, equivalent active stress ¢, and accumulated plastic strain H of the element marked in (b).

numerical simulations on elastoplastic materials, without explicitly knowing the mathematical functional form of
the yield function. The approach is illustrated through three examples that involve microstructured/homogenized
materials under complex cyclic loadings. Compared with the results obtained from the DNS for traditional cyclic
elastoplastic models (the subloading surface model in the present work), we found that our approach successfully
predicts the elastoplastic behavior of materials rather well, and can also predict the distribution (and localization) of
some key physical quantities, such as the equivalent stress, and the accumulated plastic strain, across an engineering
structure. Our proposed approach can thus significantly strengthen the capability of conventional mathematical
function-based plasticity models, for cyclic loading.

How to obtain a well-calibrated constitutive model for microstructured materials that are subjected complex
cyclic loadings, in a manner that is quick and efficient, is the issue alleviated by our proposed approach. The present
approach combines tools of data science with the existing material model built through the mechanics principle.
Specifically, by taking the subloading surface model, as an example, internal variables that characterize the Masing
and ratcheting effects as mechanistic features are extracted from raw stress—strain data, as they cannot be measured
directly during physical experiments (or their numerical surrogates), rendering a pure data-driven approach very
expensive to train. In our combined method, a subloading surface is represented in the trained ANN, by means of
these extracted internal variables, and requiring much less training data.

Our proposed approach has not yet considered the rotation of the principal stress axes to capture the effect of
anisotropy (often associated with microstructures), nor has it considered non-associative flow rules. On the other
hand, dealing with noisy data is considered in many applications of data science [22]. Therefore, the influence of
noise contained in experimental data should be taken into account along the line of the proposed approach. These
unexplored directions leave much room for further development of our proposed model.
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Table 5

Four cases with different material parameters to verify the robustness of the proposed approach.
Case hy 1 ) Cq Tq C, X
Reference subloading surface model 20 100 1 5 0.5 15 0.6
ANN trained model I 19.47 142.93 0.85 3.48 0.38 16.74 0.83
ANN trained model II 14.80 90.18 0.58 3.70 0.31 10.26 0.64
ANN trained model III 23.19 59.67 1.32 6.59 0.61 9.75 0.71
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Appendix A

In the data processing shown in Section 2.3, it has been shown that the material parameters hy, ry, r2, C,, 74,
C. and x have to be set in prior to extract the internal variables hidden in the data. Then the related issue is if
the different choice of these material parameters will affect the trained ANN model and its prediction. In order
to illustrate the insensitivity to the material parameters h,, ry, ry, C,, 74, C. and yx, three cases are designed, in
which the material parameters hj, ry, 12, C,, 14, C. and x are set as different values shown in Table 5. These
material parameters are also different from the reference subloading surface model for generating the data in the
numerical experiments, varying in a range (50% ~ 150% of those in the reference subloading surface model. x
is less than 1). Three ANN trained models are obtained by the proposed approach using the data generated by the
reference subloading surface model, where the ANN for training consists of three hidden layers with six neurons.
Other involved material parameters are set with the same value: E=200, v=0.3, Fy=1.0, h;=0.2.

The trained ANN model with different material parameters is then used to predict the stress—strain response under
the two loading paths (¢ = 2 and 15, refer to Table 1), the relative difference between the principal stress predicted
by the three ANN trained models and the reference subloading surface model at different loading step are shown
in Fig. 19. The relative difference is defined as 0" = |0/ — 0/|/|6/"|, where /! and o;* are the principal stress
predicted by the reference subloading surface model and ANN trained model, respectively. i (=1, 2 or 3) represents
the principal direction of stress. It can be seen from Fig. 19 that the relative differences of the three ANN trained
models in most cases are less than 3%, except for the loading path ID=15 where the relative difference is close to
6%. The results under other loading paths are not shown to save the space. It is also observed that the difference
between the results of the three ANN trained models and the reference subloading surface model is very small.

The principal stress of two loading paths (¢ = 2 and 15) vs. the step number for the reference subloading surface
model and the ANN trained model III are further plotted in Fig. 20. The symbols and lines represent the stresses
predicted by the reference subloading surface model and the ANN trained model III, respectively. It can be seen that
although the relative difference of the ANN training model III under the loading path (¢ = 15) shown in Fig. 19
is a little large, the actual difference of the principal stress is not obvious.

In summary, the proposed approach does not require the high accuracy of material parameters hy, ri, 12, Cq, 74,
C. and x. They can be chosen referring to the matrix material for microstructured solids with a little arbitrary. This
is the advantage of the proposed approach.
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Fig. 19. The relative difference (o;") of the principal stress between the reference subloading surface model and the ANN trained model. I,
II and III represent three ANN trained models listed in Table 5, respectively. The red, green and blue lines represent the relative difference
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Fig. 20. The difference of principal stress between the reference subloading surface model (by symbols) and the ANN trained model III
(by lines). Red, green and blue respectively represent the three principal stress o1, 02 and o3, respectively.

Appendix B

The tangent modulus required in the finite element computation is derived in this appendix. It is observed from

(35)

by means of Euler’s theorem applied to the homogeneous function f(a). Upon substitution with the consistency

Eq. (3) that,
3£(6
e =29 s _RrxF
Ll
condition,
3(G
m :do — RdF — FdR =0,
Bl

(36)

and then integrating the definition of the normal of the subloading surface n into Eq. (36) yields,

it:do — MP||de”| =0,
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where

- da o—a (dF dR

MP =n: — 4+ — . 38

" [||d€p||+”d€p”<F i R)} o

Then, by substituting

do =D :(de —n|de”|) 39)
into Eq. (37) we obtain,

n:D:de
lde’|| = ————. (40)
MP+n:D:n
As such, the relation between do and de is obtained by means of Egs. (39), (40),
D :n n:D
do = [D —_ M] - de. (41)
MP+n:D:n
Finally, the elastic—plastic tangent modulus L can be denoted as
D:n n:D
L=p_ L:WO@:D) 42)
MP+n:D:n
where the normal of the subloading surface n can be computed by,
af(o)/do
j= @07 “3)
lof(a)/da |l

and the quantity df(d)/d0 can be derived based on the trained ANN (that is, df(0)/06 = dfann(0)/00), as
shown in Appendix C.

Appendix C

For stress update in the finite element computation, the derivatives of the active stress invariants defined in
Eq. (24) with respect to active stress are required, which are derived as follows:

om _ lg..
3(_71'/' - 38”
_' =/
ah _ %
00;; - J_z (44)
0 _ 72 (5 51 _ 125
Gy J3 (aimajm - 3J23u)

25



D. Liu, H. Yang, K.I. Elkhodary et al. Computer Methods in Applied Mechanics and Engineering 393 (2022) 114766

b) 16 ‘ ‘ c) 16
( ) —— DNS —-- ANN ( )
: ] —— DNS
. i.L(/j'rﬁ/.j —-- ANN
LAWY
£0.38 ‘ d 4 ""!7 0.8 I\’/\
90 0.5 04 10

5
Loading cycles

Fig. 22. The results predicted by the two approaches. (a) The contour plots of equivalent stress predicted by DNS and the proposed approach
at the time moment t = 0.5, 1.0 and 1.5. (b) The torsion m, versus the predicted rotation angle 6, of the reference point. (c) The predicted
torsion angle 6, versus loading cycles. The green solid lines and blue dash dotted lines represent the results computed by DNS and the
proposed approach, respectively.

where §;; is the Kronecker symbol, and 6l.’j is the deviatoric part of 0;;. According to Eq. (26) and the chain rule,
the quantity of dfsyy/00;; can obtained:

Ofann _ Bfann 95w  dfann 82 dfann 3J3
86’,'1' 00, 86','1' 8,]_2 86’,'1' BJ-3 86'1']'

(45)

in which 3’;‘3’:’" N 3’;“}; Y and a’:;‘};’ Y can be computed by the back propagation algorithm [50].

Appendix D

Torsion is one of the typical load models on engineering structures. So, it is necessary to test the prediction
capability of our proposed ANN approach under cyclic torsional loads. The geometry and boundary conditions are
the same as those in Fig. 6(d) for our first example. The cyclic torsional load m, applied vs. time at a reference
point are shown in Fig. 21.

The stress contours and the twist angle 6, vs. load cycles as predicted by DNS and by our proposed ANN
approach are shown in Fig. 22. Due to the existence of voids, the local stress (equivalent stress o,) in DNS is
significantly higher than that for ANN. Nevertheless, the twist angle 6, at the reference point predicted by the two
approaches under cyclic torsional loads is essentially identical.
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