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Abstract

We study an example of a hit-and-run random walk on the symmetric group Sn. Our
starting point is the well-understood top-to-random shuffle. In the hit-and-run version, at
each single step, after picking the point of insertion j uniformly at random in {1, . . . , n},
the top card is inserted in the jth position k times in a row, where k is uniform in
{0, 1, . . . , j − 1}. The question is, does this accelerate mixing significantly or not? We
show that, in L2 and sup-norm, this accelerates mixing at most by a constant factor (inde-
pendent of n). Analyzing this problem in total variation is an interesting open question.
We show that, in general, hit-and-run random walks on finite groups have non-negative
spectrum.
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1. Introduction

Given a finite group and a generating k-tuple, consider the simple random walk on G associ-
ated with this k-tuple. At each integer time, this random walk moves from the current position
Xn to Xng, where g is picked uniformly at random among the k generators, independently of
all previous steps. To define the hit-and-run walk based on the same generating k-tuple, for
any group element g, call mg the order (i.e. exponent) of g. At each step, pick one of the k
generators uniformly at random, call it g, pick � uniformly in {0, . . . , mg − 1}, and move to
Xng�.

This defines a natural variation on simple random walks which allows for long jumps when
the orders of some of the generators are relatively large. As often in the study of random walks
on finite groups, it is easier to think about the problem for a family of random walks on a
sequence of finite groups whose sizes increase to infinity.

Two of the most basic questions one can ask concerning a family of ergodic random walks
on some finite groups whose sizes increase to infinity are: How long does the walk take
to be approximately uniformly distributed? Does the cut-off phenomenon occur? That is, is
there a rapid transition from being far from equilibrium to reaching approximate equilibrium?
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2 S. BOARDMAN ET AL.

See [1], [5], and [6] for introductions to these problems. In the context of hit-and-run random
walks, the following additional question emerges: Does the hit-and-run version converge faster
than the simple random walk version? That is, does the extra randomization help, and if so,
how much?

We study these problems in the case of the hit-and-run walk associated with one of the clas-
sic random walks on the symmetric group, top-to-random. See Example 1.2 below. We show
that if convergence is measured in L2, the hit-and-run walk and the original top-to-random
walk both take order n log n to converge. What exactly happens to the hit-and-run walk in total
variation is left as an open question, but it seems plausible that, again, it takes order n log n to
converge, as top-to-random does [1, 5]. We give an analysis of the Markov chain consisting in
following a fixed single card. While studying this example and based on some numerical evi-
dence, the first and last authors conjectured that the hit-and-run top-to-random walk had only
non-negative eigenvalues. The second author provided a proof of this fact, and more, based on
earlier works on hit-and-run algorithms [11]: for any generating tuple on any finite group, the
associated hit-and-run walk has non-negative spectrum. See Theorem 1.1 and Section 4.

1.1. Random walks based on generating k-tuples

Let G be a finite group with identity element e. For any generating k-tuple S = (g1, . . . , gk),
let μS be the probability measure

μS = 1

k

k∑
i=1

δgi , δg(h) =
{

1 if h = g,

0 otherwise.

The random walk on the group G driven by the measure μS above or any probability
measure μ, for that matter, is the Markov chain with state space G and Markov kernel

M(x, y) = μ(x−1y).

The uniform measure u = uG on G is always invariant for such a Markov chain and it is useful
to consider the (convolution) operator

f �→ Mf (x) =
∑

y

M(x, y)f (y)

acting on L2 = L2(G, u). At any (discrete) time t, the iterated kernel Mt(x, y) is given by the
t-fold convolution μ(t) of μ by itself in the form Mt(x, y) = μ(t)(x−1y). The adjoint M∗ of M
satisfies M = M∗ if and only if μ is symmetric in the sense that μ̌(x) = μ(x−1) = μ(x).

Example 1.1. The following examples on the symmetric group Sn will be of particular interest
to us. See [1], [2], [3], [5], [7], [8], [9], and [13].

• (Top-to-random.) S = (σi)n
1, where σi takes the top card of the deck and places it in

position i. In cycle notation, σi = (i, i − 1, . . . , 2, 1). The probability measure μS in this
example is not symmetric.

• (Random-to-random or random insertions.) S = (σij)1≤i,j≤n (ordered lexicographically),
where σij is ‘take the card in position i and insert it in position j’. In cycle notation,
when i < j, σij = ( j, j − 1, . . . , i). Note also that σij = σ−1

ji and σii = e. The correspond-

ing measure μS gives probability 1/n to the identity element e and probability 1/n2 to
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Hit-and-run for top-to-random 3

each σij, i �= j with the caveat that when |j − i| = 1, σij = σji, so that the corresponding
transposition τ = σij = σji actually has probability 2/n2.

• (Random transposition.) Take S = (τij)1≤i≤j≤n, where τij transposes the cards in positions
i and j (i.e. τij = (i, j)). This tuple S contains each true transposition (i, j), 1 ≤ i < j ≤ n,
twice, and also includes n copies of the identity (i, i), 1 ≤ i ≤ n. Equivalently, we can
think of (i, j) being picked uniformly independently at random from {1, . . . , n} so that
the probability measure μS gives probability 1/n to the identity and probability 2/n2 to
any transposition.

All these examples are ergodic in the sense that the distribution at time t of the associated
Markov chain converges to the uniform distribution u on Sn.

1.2. Hit-and-run walks based on generating tuples

We now consider the following modification of the measure μS associated with a fixed
generating tuple S = (s1, . . . , sk), which we call qS. For each si ∈ S, let mi be its order in G (the
smallest m such that sm

i = e). Define

qS = 1

k

k∑
i=1

1

mi

mi−1∑
j=0

δ
sj
i
. (1.1)

To describe qS in words, qS is the distribution of a random element in G chosen as follows:
pick i uniformly in {1, . . . , k}, pick m uniformly in {0, . . . , mi − 1}, output sm

i ∈ G. This is
reminiscent of the so-called hit-and-run algorithms, hence the name.

The question we want to address is whether or not the random walk driven by qS mixes
faster than the random walk driven by μS. Does taking a uniform step in the direction of the
generator si, i.e. along the one parameter subgroup {sm

i : 0 ≤ m ≤ mi − 1} instead of just a single
si-step, speed up convergence or not?

Example 1.2. (Our main example: hit-and-run for top-to-random.) Top-to-random on Sn is
obtained by considering the generating n-tuple

S = {(k, k − 1, . . . , 2, 1) : k = 1, . . . , n} = {σk : k = 1, . . . , n}
where σk := (k, k − 1, . . . , 2, 1). The associated simple random walk measure is (as men-
tioned earlier, it is not symmetric)

μS(σ ) =
⎧⎨⎩

1

n
if σ ∈ S,

0 otherwise.

The associated hit-and-run measure is given by

q(σ ) = qS(σ ) = 1

n

n∑
i=1

1

i

i−1∑
j=0

δ
σ

j
i
(σ ). (1.2)

This probability measure is symmetric and gives positive probability to order n2 distinct
permutations.

Let us now describe our findings (informally), and related open questions regarding the
hit-and-run for top-to-random shuffle.
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4 S. BOARDMAN ET AL.

• (Facts.) In L2, the mixing time for hit-and-run for top-to-random with n cards is of order
n log n, the same order as the top-to-random shuffle. See Section 3. There is a cut-off in
L2 but the cut-off time is not known. See Theorem 1.2 below. In L1 (i.e. total variation),
the mixing time is at least of order n and no more than order n log n.

• (Open questions.) What is the cut-off time in L2 for the hit-and-run version of top to
random? How does it compare precisely with n log n, the cut-off time for the top-to-
random shuffle?

• (Open questions.) Is there a cut-off in L1 (i.e. total variation)? What is the order of
magnitude of the L1-mixing time? Describe a simple statistic that provides a good lower
bound for the mixing time in L1.

• (Conjecture.) There is a cut-off in L1 and the rough order of the L1 cut-off time is n log n.

Regarding general hit-and-run walks, we prove the following result.

Theorem 1.1. Let G be a finite group and let S = (s1, . . . , sk) be a generating tuple. The eigen-
values −1 ≤ β|G|−1 ≤ · · · ≤ β1 ≤ β0 = 1 of the hit-and-run walk on G based on S driven by the
symmetric measure qS at (1.1) are all non-negative, i.e. 0 ≤ β|G|−1 ≤ · · · ≤ β1 ≤ β0 = 1.

The proof of this theorem is in Section 4. Section 2 provides exact computations concerning
the Markov chains obtained by following a single card. We explore the time to equilibrium for
this Markov chain as a function of the starting position of the card that is followed, both in
total variation and in L2. Section 3 studies the convergence of the hit-and-run top-to-random
walk on the symmetric group Sn in the L2-norm ‖ · ‖2, that is, we estimate

d2
(
q(t),

)= ‖(q(t)/u
)− 1‖2.

We prove the following result, which shows that the L2-mixing time is of order n log n.

Theorem 1.2. For any n, t, we have

d2
(
q(t), u

)≥ √
n − 1

(
1 − 1

n

)t

.

The second largest eigenvalue β1 of q satisfies β1 ∈ [1 − 1/n, 1 − 1/(8n)] and, for any n large
enough and t(n, c) ≥ 9n log n + 12nc, c > 0,

d2
(
q(t(n,c)), u

)≤ (2 + o(1)) e−c ≤ √
5 e−c.

The convergence of q(t) to u in the L2 sense occurs with a cut-off.

Remark 1.1. The well-known definition of cut-off can be found in the next section. The exis-
tence of this L2-cut-off follows from the other assertions in the theorem and [4, Theorem 3.3].
Indeed, we know that the spectral gap λ = 1 − β1 for q is at least 1/(8n) and the time to sta-
tionarity in L2, T , is at least 1

2 n log n so that the product λT tends to infinity with n. Referring
to the vocabulary and definitions from [4], the L2-cut-off stated in the theorem occurs at about
n log n and has a window of order n. We do not know the more precise behavior of the cut-off
time. The upper bound on d2(q(t), u) is stated ‘for n large enough’. This comes from the proof
of Theorem 1 in [2] and whatever ‘large enough’ means in the proof of [2, Theorem 1] works
here as well. It seems that n ≥ 6 is enough. We do not expect the constants in the definition of
t(n, c) to be sharp.
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1.3. Notions of convergence

We will discuss convergence to the uniform distribution using two different distances
between probability measures (or between their densities with respect to the uniform mea-
sure u). Let ν be a probability measure on a finite group G and let u be the uniform distribution
on G.

Total variation (or 1
2 -L1(G, u)-norm) is defined by

‖ν − u‖TV = max
A⊆G

{ν(A) − u(A)}
= max

A⊆G
{|ν(A) − u(A)|}

= 1

2
‖(ν/u) − 1‖1

= 1

2

∑
g∈G

|ν(g) − u(g)|.

We also set d1(ν, u) = ‖(ν/u) − 1‖1 = 2‖ν − u‖TV. Convergence in L2(G, u) is measured using
the distance

d2(ν, u)2 = ‖(ν/u) − 1‖2
2

=
∑
g∈G

|(ν(g)/u(g)) − 1|2u(g)

= |G|
∑
g∈G

|ν(g) − u(g)|2.

Let (Gn)∞1 be a sequence of finite groups such that |Gn| tends to infinity with n. Let un

be the uniform probability on Gn. We say that a sequence of probability measures μn on Gn,
n = 1, 2, . . . , has a cut-off at time tn in Lp, p = 1, 2, if tn → ∞ and, for any ε > 0,

lim
n→∞ dp

(
μ((1+ε)tn)

n , un
)= 0 and dp

(
μ((1−ε)tn)

n , un
)= l∞(p),

where l∞(1) = 1 and l∞(2) = +∞.
Whenever the probability measure μ is symmetric, i.e. μ̌ = μ, the associated convolution

operator f �→ Mf is diagonalizable with real eigenvalues −1 ≤ β|G|−1 ≤ · · · ≤ β1 ≤ β0 = 1 and

d2
(
μ(t), u

)2 =
|G|−1∑

1

β2t
i , t = 1, 2, . . . .

This follows from the usual spectral decomposition. See e.g. [13, Theorem 5.2]. Moreover,

d∞
(
μ(2t), u

)= max
G

{∣∣∣∣μν − 1

∣∣∣∣}= |G|μ(2t)(e) − 1 = d2
(
μ(t), u

)2.

The second equality (no absolute value) uses

μ(2t)(e) =
∑

y

μ(t)(y)μ(t)(y−1) =
∑

y

|μ(t)(y)|2.

The Cauchy–Schwarz inequality easily gives d∞
(
μ(2t), u

)≤ d2
(
μ(t), u

)2 and it follows that
this inequality must be an equality. Let us illustrate these definitions using the classical
examples described above.
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• (Top-to-random.) Convergence in total variation occurs at time n log n in the sense that
if we set t(n, c) = n log n + cn,

lim
n→∞

∥∥μ(t(n,c)) − u
∥∥

TV =
{

1 if c < 0,

0 if c > 0.

See [5] and [9]. With a little work, the results in [9] easily imply

lim
n→∞ d2

(
μ(t(n,c)), u

)=
{

∞ if c < 0,

0 if c > 0.

• (Random-to-random.) Convergence in total variation (and in L2) occurs with a cut-off at
time (3n/4) log n. See [2].

• (Random transposition.) Convergence in total variation (and in L2) occurs with a cut-off
at time (n/2) log n. See [5], [8], and [14].

2. Single-card Markov chain

To investigate the complex behavior of the hit-and-run top-to-random chain, it behooves us
to explore the dynamics of just a single card. We do so by defining a Markov chain (Xt)∞t=0
with state space {1, 2, . . . , n} that represents the position of an arbitrarily chosen card after t
shuffle iterations. This is a classical example of a function of a Markov chain that produces a
Markov chain.

2.1. Abstract projection

Before proceeding with the example, we review some general aspects of this situation.
Abstractly, we start with a Markov kernel Q on a state space X (in our case Q(x, y) = qS(x−1y)
on Sn) and a lumping (or projection) map p : X → X which is surjective and has the property
that ∑

y∈X : p(y)=y

Q(x, y) = Q(x, y)

depends only on p(x) = x. This defines a Markov kernel on X. If Q has stationary measure π

then its push-forward π (x) = π (p−1(x)) is stationary for Q. Moreover,

‖Qt(x, ·) − π‖TV ≥ ‖Qt(x, ·) − π‖TV.

This simple comparison does not work well for the L2 and L∞ convergence measured using d2
and d∞ because normalization becomes an issue.

Let β and φ be an eigenvalue and associated eigenfunction for the chain Q. Then it is
plain that the function φ(x) = φ ◦ p(x) is an eigenfunction for Q with eigenvalue β. Also, two

orthogonal eigenfunctions φ
1
, φ

2
for Q on L2(π ) give orthogonal φ1, φ2 in L2(π ) (we will not

use this second fact).

2.2. Single-card chain in L2

Let q be the measure for the hit-and-run version of top-to-random defined in (1.2). We
consider the projection of Q(x, y) = q(x−1y) on {1, . . . , n} corresponding to following the posi-
tion of a single card. To simplify notation, we set Q = K and notice that the stationary (and
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reversible) measure for K is the uniform measure on {1, . . . , n}. The transition probabilities
K(i, j), i, j ∈ {1, . . . , n} are given by

K(i, j) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1

n

n∑
k≥j

1

k
+ i − 1

n
if i = j,

1

n

n∑
k≥i

1

k
if j < i,

1

n

n∑
k≥j

1

k
if j > i.

The following lemma gives the eigenvalues and eigenvectors of K. The form of the eigenvec-
tors was guessed by extrapolation from the cases n ≤ 4.

Lemma 2.1. The eigenvalues and associated eigenvectors of the stochastic matrix
(K(i, j))1≤i,j≤n are β0 = 1, �0 = (1, . . . , 1) and

βi = 1 − i

n
, � i =

( −1

n − i
, . . . ,

−1

n − i
, 1, 0, . . . , 0

)
, i = 1, . . . , n − 1,

where, in � i, the value −1/(n − i) is repeated n − i times.

Proof. It suffices to verify the guessed formula. For βn−j and �n−j, j ∈ {1, . . . , n − 1}, and
k < j + 1, we have

(K�n−j)k

= 1

n

[
1

k
+ 1

k + 1
+ · · · + 1

n

]
[k − 1]

(−1)

j

+
[

1

n

[
1

k
+ 1

k + 1
+ · · · + 1

n

]
+ k − 1

n

]
(−1)

j

+ 1

n

[
1

k + 1
+ 1

k + 2
+ · · · + 1

n

]
(−1)

j
+ · · · + 1

n

[
1

j
+ 1

j + 1
+ · · · + 1

n

]
(−1)

j

+ 1

n

[
1

j + 1
+ 1

j + 2
+ · · · + 1

n

]
· 1 + 0 + · · · + 0

= 1

n

[
(−1)

j

(
j

n
+ j

n − 1
+ · · · + j

j + 1

)
+ (−1)

j
[j − k] · 1 + (−1)

j
k + 1

j
− 1

j

+ 1

j + 1
+ 1

j + 2
+ · · · + 1

n

]
= −1

n
.
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For k = j + 1, we obtain

(K�n−j)k = 1

n

(
1

j + 1
+ 1

j + 2
+ · · · + 1

n

)
j
(−1)

j

+ 1

n

(
1

j + 1
+ 1

j + 2
+ · · · + 1

n

)
+ j

n
= j

n
.

Likewise, for k > j + 1, we find

(K�n−j)k = 1

n

(
1

j + 1
+ 1

j + 2
+ · · · + 1

n

)
j
(−1)

j

+ 1

n

(
1

j + 1
+ 1

j + 2
+ · · · + 1

n

)
= 0. �

These eigenvectors are not normalized and

‖� i‖2
2 = 1

n(n − i)
+ 1

n
= n − i + 1

n(n − i)
, i = 1, . . . , n − 1. (2.1)

In the next lemma we use this knowledge (including (2.1)) to compute

d2(Kt(i, ·), u)2 = n
n∑

j=1

∣∣∣∣Kt(i, j) − 1

n

∣∣∣∣2 =
n−1∑
k=1

β2t
k

�k(i)2

‖�k‖2
2

.

For the last equality, see e.g. [13, equation (5.2)] or [12, Lemma 1.3.3].

Lemma 2.2. The quantity d2(Kt(i, ·), u)2 equals⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

n−2∑
k=1

(
1 − k

n

)2t n

(n − k)(n − k + 1)
+
(

1

n

)2t n

2
if i = 1,

n−i∑
k=1

(
1 − k

n

)2t n

(n − k)(n − k + 1)
+
(

i − 1

n

)2t n(i − 1)

i
if 1 < i < n,

(
1 − 1

n

)2t

(n − 1) if i = n.

Proof. This follows from Lemma 2.1, equation (2.1), and inspection. �

We need to understand what these formulas mean. The term

n−i∑
k=1

(
1 − k

n

)2t n

(n − k)(n − k + 1)

can be bounded above by

1

n

n−i∑
k=1

(
1 − k

n

)2t−2
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and bounded below by one-half of this quantity. Set

B(n, t, i)

(
1 − 1

n

)2t−1

= 1

n

n−i∑
k=1

(
1 − k

n

)2t−2

.

Lemma 2.3. For n ≥ 4, t ≥ 1, the quantity B(n, t) is bounded as follows.

• If 2 ≤ i ≤ an, a ≤ 1/2,(
1

n − 1
+ 1

4(2t − 1)

)
≤ B(n, t, i) ≤

(
1

n − 1
+ 1

2t − 1

)
.

• If i ≤ an, a < 1, and n ≥ 2/(1 − a), then there exists ca > 0 such that(
1

n − 1
+ ca

2t − 1

)
≤ B(n, t, i) ≤

(
1

n − 1
+ 1

2t − 1

)
.

• If n − i0 ≤ i ≤ n − 2,
1

n − 1
≤ B(n, t, i) ≤ i0

n − 1
.

Proof. Observe that

B(n, t, i) = 1

n

(
1 − 1

n

)−1 n−i∑
k=1

(
1 − k/n

1 − 1/n

)2t−2

= 1

n − 1
+ 1

n − 1

n−i∑
k=2

(
1 − k − 1

n − 1

)2t−2

.

The stated results easily follow, for example, by comparing Riemann sums with integrals in
the first and second cases. �

Proposition 2.1.

(a) For each fixed i = 1, 2, . . . , set ti(n, c) = (2n/i)(log n + c). Then

lim
n→∞ d2

(
Kti(n,c)(n − i, ·), u

)=
{

+∞ if c < 0,

0 if c > 0.

That is, the position of the card starting in position n − i becomes random in the L2

sense with a cut-off at time (2n/i) log n.

(b) For each fixed i = 1, 2, . . . and any tn tending to infinity,

lim
n→∞ d2(Ktn(i, ·), u) = 0.

Moreover, there exists a constant ci > 0 such that, for any ε ∈ (2/n, 1),

d2(Kt(i, ·), u) = ε ⇒ t(n) ∈ (ci/ε
2, 10/ε2).

(c) For each fixed a ∈ (0, 1), set

ta(n, c) = 1

2 log(1/a)
(log n + c).
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FIGURE 1. 21 cards. (a) The eigenvalue distribution for the two-card chains. (b) The eigenvalue
distribution for the three-card chains. Note that all eigenvalues are positive.

Then

lim
n→∞ d2

(
Kta(n,c)([an], ·), u

)=
{

+∞ if c < 0,

0 if c > 0.

That is, the position of the card starting in position [an] becomes random in the L2 sense
with a cut-off at time log n/(2 log(1/a)).

Remark 2.1. The first and second statements are for fixed i, that is, they cannot be applied
with i depending on n. Because of this, statement (a) is about starting somewhere near the
bottom and statement (b) about starting somewhere near the top. Similarly, in (c), the real
a ∈ (0, 1) is fixed, which means this statement is about starting from somewhere in the middle.
In statements (a) and (c), where exactly one starts is important as it appears in the definition of
the cut-off time.

Proof. Avoiding the two special cases of the first and last starting positions (which are easily
treated), for a starting position j ∈ {2, . . . , n − 1}, we have

1

2

(
1 − 1

n

)2t−1

B(n, j, t) +
(

j − 1

n

)2t n( j − 1)

i

≤ d2(Kt( j, ·), u)2

≤
(

1 − 1

n

)2t−1

B(n, j, t) +
(

j − 1

n

)2t n( j − 1)

j
.

The stated results follow from Lemma 2.3 and careful inspection. �

We end this section with two eigenvalue data plots, shown in Figure 1, which concern
different projections, namely, those corresponding to following a given pair or a triplet of
cards instead of just one. These chains become more complex and we have not computed
all their eigenvalues and eigenfunctions. Instead, these plots are based on computer-assisted
computations of the eigenvalues of these chains. The first plot is for the two-card chain on 21
cards and the second is for the three-card chains on 21 cards.
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2.3. Single-card chain in L1

The relatively simple form of the eigenvalues and eigenvectors of the single-card chain K
also allows us to determine the L1-distance of Kt(i, ·) from its stationary measure u. Namely,
the diagonalization of K shows that the ith row of Kt, Kt(i, ·), 1 ≤ i ≤ n − 1, consists of the
repeated entry

1

nt

(−(i − 1)t

i
+ it−1

i + 1
+ · · · + (n − 1)t−1

n

)
+ 1

n

in columns j = 1 through i − 1,

1

nt

(
(i − 1)t+1

i
+ it−1

i + 1
+ · · · + (n − 1)t−1

n

)
+ 1

n

in column i,
1

nt

(−(i + k − 1)t

i + k
+ (i + k)t−1

i + k + 1
+ · · · + (n − 1)t−1

n

)
+ 1

n

in column j = i + k, i + 1 ≤ i + k < n, and

1

nt

(−(n − 1)t

n

)
+ 1

n

in column n. The last row, i = n, consists of the entries

1

nt

(−(n − 1)t

n

)
+ 1

n

in columns 1 through n − 1 and

1

nt

(
(n − 1)t+1

n

)
+ 1

n

in column n.
In the case i = n (single card starting at the bottom of the deck), we find that

‖Kt(n, ·) − u‖TV =
(

1 − 1

n

)t+1

(indeed, by definition of our shuffling, this card position becomes uniform as soon as it is
touched). For 1 ≤ i ≤ n − 1,

2‖Kt(i, ·) − u‖TV = 1

nt

∣∣∣∣− (n − 1)t

n

∣∣∣∣+ i − 1

nt

∣∣∣∣∣−(i − 1)t

i
+

n−1∑
�=i

�t−1

� + 1

∣∣∣∣∣
+ 1

nt

(
(i − 1)t+1

i
+

n−1∑
�=i

�t−1

� + 1

)

+ 1

nt

n−i−1∑
k=1

∣∣∣∣∣−(i + k − 1)t

i + k
+

n−(i+k)∑
�=1

(i + k + � − 1)t−1

i + k + �

∣∣∣∣∣
= J1 + J2 + J3 + J4. (2.2)
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Looking at J2 and J4 for large t, i.e. t ≥ (n − 1) log n + (n − 1)/(n − 2), we have

−(i − 1)t

i
+

n−1∑
�=i

�t−1

� + 1
≥ 0

and

−(i + k − 1)t

i + k
+

n−(i+k)∑
�=1

(i + k + � − 1)t−1

i + k + �
≥ 0 for k ∈ {1, . . . , n − i − 1}.

Because the sum of all the same terms in J1 + J2 + J3 + J4 but without any absolute value is

n∑
�=1

(Kt(i, �) − u(�)) = 0,

it follows that for t ≥ (n − 1) log n + (n − 1)/(n − 2), we have 2‖Kt(i, ·) − u‖TV = 2|J1|,
that is,

‖Kt(i, ·) − u‖TV = 1

n

(
1 − 1

n

)t

, i ∈ {1, . . . , n − 1}.

This, of course, occurs only after much approximate convergence has taken place. It only
describes the long-term asymptotic behavior of ‖Kt(i, ·) − u‖TV, i < n. To describe the shorter-
term behavior, we consider three cases: bottom starting positions of the type n − i for fixed
i = 1, 2, . . . , top starting positions of the type i = 1, 2, . . . , and middle of the pack start-
ing positions of the type [an], a ∈ (0, 1) (see Remark 2.1 above). The key difficulty in these
estimates is to identify which of the terms J1, J2, J3, J4 plays the key role. In what follows,
we omit the details regarding upper bounds. The details given for the lower bounds indi-
cate, in each case, which term is dominant and hence what the target should be for upper
bounds. Verifying that all terms are upper-bounded appropriately follows from simple careful
arguments including basic Riemann sum estimates.

For starting position n − i, i fixed, we get a reasonable lower bound by focusing on the first
and third terms in (2.2). Write

2‖Kt(n − i, ·) − u‖TV ≥ 1

n

(
1 − 1

n

)t

+ 1

nt

(
(n − i − 1)t+1

n − i
+

n∑
�=n−i+1

(� − 1)t−1

�

)

≥ 1

n

(
1 − 1

n

)t

+
(

1 − i + 1

n

)t+1

.

An upper bound of the type

‖Kt(n − i, ·) − u‖TV ≤ Ci

(
1

n

(
1 − 1

n

)t

+
(

1 − i + 1

n

)t)
holds as well. This proves convergence in time of order n/(i + 1) with no cut-off for the bottom
cards.
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For starting position i, i fixed (starting position towards the top), we have

2‖Kt(i, ·) − u‖TV ≥
(

1

n
+ ci

t

)(
1 − 1

n

)t

.

The term (ci/t)(1 − 1/n)t is contributed by the last summand, J4, in (2.2). In this last summand,
namely

1

nt

n−i−1∑
k=1

∣∣∣∣∣−(i + k − 1)t

i + k
+

n−(i+k)∑
�=1

(i + k + � − 1)t−1

i + k + �

∣∣∣∣∣,
restrict the first summation to those k less than, say, n/4. In this range of k values, the positive
term in the absolute value dominates the negative term and we obtain a lower bound of the type
(we assume t ≥ 4)

ci

nt

n/4∑
k=1

n−1∑
�=n/2

�t−2 ≥ c′
i

(
1 − 1

n

)t−1
(

1

n − 1

n−1∑
n/2

(
�

n − 1

)t−2
)

≥ c′′
i

t

(
1 − 1

n

)t

,

where we used an integral to lower-bound the Riemann sum in parentheses. A matching upper
bound

‖Kt(i, ·) − u‖TV ≤ Ci

(
1

n
+ 1

t

)(
1 − 1

n

)t

is easily obtained for all four terms in (2.2). The key rate of convergence is thus in 1/t for the
top starting positions.

For a starting position in the middle of the pack, i = [an], a ∈ (0, 1) fixed, a similar analysis
shows that ‖Kt([an], ·) − u‖TV is also of order(

1

n
+ 1

t

)(
1 − 1

n

)t

.

This time, for the lower bound, we use the second term

i − 1

nt

∣∣∣∣∣−(i − 1)t

i
+

n−1∑
�=i

�t−1

� + 1

∣∣∣∣∣.
It provides a lower bound of the type ca(1 − 1/n)t/t. Indeed, for i = [an] and n large enough,

n−1∑
�=i

�t−1

� + 1
≥ (n − 1)t−1

2

n−1∑
�=[an]

(
�

n − 1

)t−2 1

n − 1

≥ (n − 1)t−1

2

∫ 1

(a+1)/2
xt−2 dx

≥ ca
(n − 1)t−1

t − 1
.
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For t ≥ ta, this is larger than twice (i − 1)t−1, i = [an]. It follows that

i − 1

nt

∣∣∣∣∣−(i − 1)t

i
+

n−1∑
�=i

�t−1

� + 1

∣∣∣∣∣≥ ca

2

an

nt

(n − 1)t−1

t − 1
≥ c′

a

t

(
1 − 1

n

)t

.

Again, using similar techniques, all terms in (2.2) can be seen to be bounded above
appropriately.

3. Hit-and-run for top-to-random in L2

In this section we prove Theorem 1.2, which concerns the convergence to stationarity mea-
sured in the L2 sense, that is, using d2(q(t), u) for the hit-and-run version of top-to-random
driven by the measure q in (1.2).

Proof of the lower bound in Theorem 1.2. In the section concerning following a single card,
we learned that (1 − 1/n) is an eigenvalue of that chain and consequently also an eigenvalue
of convolution by q on Sn. Now, on Sn, each eigenvalue has multiplicity at least equal to the
dimension of any irreducible representation at which it occurs. The group Sn has two rep-
resentations of dimension 1: the trivial representation and the sign representation. All other
irreducible representations have dimension at least n − 1. So it suffices to verify that (1 − 1/n)
does not occur only at the sign representation. This can be seen from the form of the associated
eigenvector we have constructed. Alternatively, one easily computes the eigenvalue for the sign
representation to be 1/2 if n is even and (n + 1)/2n if n is odd ((n + 1)/2 is the number of odd
integers in {1, . . . , n}). In any case, this gives the lower bound d2(q(t), u) ≥ √

n − 1(1 − 1/n)t

as stated. �

To prove the stated upper bound for d2(q(t), u), we use the comparison technique from
[7]. Anticipating the next section, we use the fact that hit-and-run walks have non-negative
spectrum. It turns out that the most efficient comparison is with the random-to-random walk of
Example 1.1 driven by the measure

μ(σ ) =

⎧⎪⎨⎪⎩
1/n if σ = id,

2/n2 if σ = σi(i+1) = σ(i+1)i,

1/n2 if σ = σij, 1 ≤ i �= j ≤ n, |j − i| > 1,

where σij = ( j, j − 1, . . . , i), σji = σ−1
ij , 1 ≤ i < j ≤ n. Recall that the Dirichlet form associated

with a symmetric probability measure ν on a finite group G is

Eν(v, w) = 1

2|G|
∑

x,y∈G

(v(xy) − v(x))(w(xy) − w(x))ν(y), v, w ∈ L2(G).

Lemma 3.1. The Dirichlet form Eμ associated with the random-to-random measure μ and the
Dirichlet form Eq associated with hit-and-run version of top-to-random satisfy

Eμ(v, v) ≤ 8Eq(v, v) for all v ∈ L2(G).

Proof. Recall that σk = σ1k = (k, k − 1, . . . , 1). For each σij, 1 ≤ i �= j ≤ n, we find a product
of σ�

k , 1 ≤ � < k ≤ n, which equals σij. There are many ways to do this, but the following is

efficient. Observe that for i < j, σij = σ i
j σ

j−i
j−1. That is, to move the card in position i down to
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position j, insert the first i cards at position j, then insert the first j − i cards now on top at
position j − 1. After the first move, the card originally in position j is at position j − i, so the
second move places it in position j − 1. The other i − 1 cards moved down to position j − 1
are returned to their original spot in the second move (barring the card originally in position i)
by sliding past them all the cards they originally slid past, which were on the top after the first
move. For i > j,

σij = σ−1
ji = σ

−(i−j)
i−1 σ

−j
i = σ

j−1
i−1 σ

i−j
i .

Now we use [7, Theorem 1] with Ẽ = Eμ, E = Eq, which gives

Eμ ≤ AEq, A = max
σ : q(σ )>0

{
1

q(σ )

∑
1≤i �=j≤n

|σij|N(σ, σij)μ(σij)

}
.

In the formula giving A, |σij| is the length of the product expressing σij, which, in our case,
is always equal to 2; N(σ, σij) is the number of times σ appears in the product for σij. So, if
σ = σ�

k for some 2 ≤ k ≤ n and 1 ≤ � ≤ k − 1, 1 ≤ i < j ≤ n,

N(σ, σij) =
{

0 if (k, �) �∈ {( j, i), ( j − 1, j − i)},
1 if (k, �) ∈ {( j, i), ( j − 1, j − i)}.

When 1 ≤ j < i ≤ n, we similarly have

N(σ, σij) =
{

0 if (k, �) �∈ {(i − 1, j − 1), (i, i − j)},
1 if (k, �) ∈ {(i − 1, j − 1), (i, i − j)}.

For 1 ≤ � < k < n, this gives{
1

q(σ�
k )

∑
1≤i �=j≤n

|σij|N(σ, σij)μ(σij)

}
= 8k/n,

whereas for (k, �) = (n, �) the result is 4. See Figure 2 for a comparison of the spectral
distributions. �

Proof of the upper bound in Theorem 1.2. Given the comparison inequality Eμ ≤ 8Eq

between quadratic forms, Lemma 6 of [7] (see also [13, Theorem 10.2]) provides a comparison
inequality. Here we used the same idea in a slightly tighter way. Let 0 ≤ α|G|−1 ≤ · · · ≤ α1 <

α0 = 1 be the eigenvalues for random-to-random. By [7, Lemma 4], the inequality Eμ ≤ 8Eq

gives

1 − βi ≥ 1

8
(1 − αi).

This is enough because there are no negative eigenvalues (to see what happens when there
are negative eigenvalues, see [7]; the absence of negative eigenvalues is only a small sim-
plification). Split the sum (the inequality here uses the fact that the βi are all non-negative)

d2
(
q(t), u

)2 =
|G|−1∑

i=1

β2t
i ≤

|G|−1∑
i=1

e−2t(1−βi)
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FIGURE 2. Comparison of the spectrum of random-to-random (a) and hit-and-run for top-to-random (b).
The key difference is the higher multiplicity of very small eigenvalues in the random-to-random shuffle
(most of those are actually equal to 0). Note the different scales on the y-axes of the two graphics. This is

for a deck of seven cards so there are 7! eigenvalues.

into two sums: the sum over those indices i such that αi ≤ 1/2 and the sum over the indices for
which αi > 1/2. For the first sum, write∑

i : αi≤1/2

e−2t(1−βi) ≤ (n!) e−t/8.

For the second sum, note that e−3(1−x)/2 ≤ x when x ∈ [.5, 1], and write∑
i : αi>1/2

e−2t(1−βi) ≤
∑

i : αi>1/2

e−t(1−αi)/4 ≤
∑

i : αi>1/2

α
t/6
i ≤ d2

(
μ([t/12]), u

)2.

This gives
d2
(
q(t), u

)2 ≤ (n!) e−t/8 + d2
(
μ([t/12]), u

)2. (3.1)

In [2, equation (25)], it is proved that the spectral gap for μ is asymptotically equal to 1/n (see
the beginning of Section 3 in [2]; the exact value is (n + 2/n2 and it occurs with multiplicity at
least (n − 1)) and that

d2
(
μ(s), u

)2 ≤ 4 e−2c for any s ≥ 3

4
n log n + cn, c > 0,

as long as n is sufficiently large (let us note that this is a rather difficult result). Using this in
(3.1) yields the upper bound stated in Theorem 1.2. �

4. Positivity of the spectrum

In this final section we prove Theorem 1.1. Given a general hit-and-run random walk driven
by the measure qS at (1.1) on a finite group G, we set

Q(x, y) = qS(x−1y) = 1

k

k∑
i=1

1

mi

mi−1∑
j=0

δ
sj
i
(x−1y), x, y ∈ G.

This defines a self-adjoint operator f �→ Qf =∑
y Q(·, y)f (y) acting on the space H = L2(G, u)

equipped with the inner product

〈f1, f2〉 = 1

|G|
∑
x∈G

f1(x)f2(x).
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Let
β|G|−1 ≤ · · · ≤ β1 ≤ β0 = 1

be the |G| eigenvalues of this operator. Because Q is Markov, these eigenvalues are contained
in the interval [−1, 1]. The theorem we want to prove, Theorem 1.1, asserts that they are in fact
in the interval [0, 1], that is, Q is non-negative in the sense that 〈Qf , f 〉 ≥ 0. The proof follows
the main idea of [11], which consists in writing Q in the product form

Q = P∗RP

using auxiliary operators P, R, P∗, where R = R2 is self-adjoint acting on the extended Hilbert
space Haux, the space of functions on G × {1, . . . , k} equipped with its natural inner product
〈·, ·〉aux. Because R = R2, R∗ = R, and P∗ is the formal adjoint of P, such a decomposition
establishes that

〈Qf , f 〉 = 〈P∗RPf , f 〉 = 〈RPf , RPf 〉aux ≥ 0.

To use such a decomposition is a key insight from [11], but it also appears in [15, Remark 4.4]
and [10, Lemma 3.1].

Define the auxiliary Hilbert space Haux =R
G×{1,...,k} equipped with inner product

〈g1, g2〉aux := 1

k|G|
∑
x∈G

k∑
i=1

g1(x, i)g2(x, i),

where g1, g2 ∈ Haux. Let P : H → Haux denote the bounded linear operator given by

Pf (x, i) = f (x), (x, i) ∈ G × {1, . . . , k}.
Note that the adjoint operator, P∗ : Haux → H of P is given by

P∗g(x) = 1

k

k∑
i=1

g(x, i).

That P∗ is the adjoint of P means here that 〈P∗g, f 〉 = 〈g, Pf 〉aux for any f ∈ H and g ∈
Haux, which can be verified by a simple calculation. The matrices (or kernels) of these
operators are

P((x, i), y) = δx(y),

P∗(x, (y, i)) = δx(y)

k
,

for any x, y ∈ G and i ∈ {1, . . . , k}. For any pair (x, i) ∈ G × {1, . . . , k}, call

Z(x, i) := {
x0, . . . , xmi−1 | xi := xsj

i, j = 0, . . . , mi − 1
}

the orbit of x in G under the cyclic subgroup 〈si〉 = {
sj

i : j = 0, . . . , mi − 1
}

generated by si in
G. Define a Markov transition kernel

R(·, ·) on (G × {1, . . . , k})2

by setting

R((x, i1), (y, i2)) := δi1 (i2)
δZ(x,i1)(y)

mi1
.
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It induces a Markov operator, R : Haux → Haux, given by

Rg(x, i) = 1

mi

∑
z∈Z(x,i)

g(z, i), g ∈ Haux.

Because
x ∈Z(y, i) if and only if y ∈Z(x, i)

the operator R is symmetric, that is,

R((x, i1), (y, i2)) = δi1 (i2)
δZ(x,i1)(y)

mi1
= δi2 (i1)

δZ(y,i2)(x)

mi2
= R((y, i2), (x, i1)).

Thus the corresponding operator R : Haux → Haux is self-adjoint.

Lemma 4.1. The operator R satisfies R2 = R and Q = P∗RP.

Proof of R2 = R. For arbitrary g ∈ Haux, we have

R2g(x, i) = 1

mi

∑
y∈Z(x,i)

Rg(y, i) = 1

mi

∑
y∈Z(x,i)

∑
z∈Z(y,i)

g(z, i)

mi
= Rg(x, i).

Here we used the facts that for y ∈Z(x, i) we have Z(x, i) =Z(y, i) and |Z(x, i)| = mi. �

Proof of Q = P∗RP. For any x, y ∈ G we have

P∗RP(x, y) = 1

k

k∑
i=1

RP((x, i), y)

= 1

k

k∑
i=1

∑
z∈Z(x,i)

P((z, i), y)

mi

= 1

k

k∑
i=1

1

mi

∑
z∈Z(x,i)

δy(z)

= 1

k

k∑
i=1

1

mi

mi−1∑
j=0

δy
(
xsj

i

)
= Q(x, y).

Here we used the definition of Z(x, i) and, in the last equality, that y = xsj
i if and only if sj

i =
x−1y. �

5. Final remarks

Example 5.1. (Example where hit-and-run is faster.) Assume that G = (Z/nZ)d and S =
(0, e1, −e1, . . . , ed, −ed), where ej = (0, . . . , 0, 1, 0, . . . , 0) with the 1 in position j, 1 ≤ j ≤
d. In L2 and L1, the walk driven by μS mixes in time

d log d

2(1 − cos 2π/n)
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(as d (and possibly) n tends to infinity). The measure qS is given by

qS(0) = n + 2d

n(1 + 2d)
∼ 1

2d
+ 1

n

and, for m ∈ {1, . . . , n − 1} and j ∈ {1, . . . , d},

qS(mej) = 2

(1 + 2d)n
∼ 1

dn
.

This is very close to the walk that simply takes a random step in a random coordinate and
thus behaves similarly. The mixing times for qS are different in L1 and in L2. In L1 (or total
variation), the mixing time is d log d (based on the coupon collector problem). In L2, the mixing
time is d log(dn). In both cases there is a gain over μS of order n2. See [13, page 323] and [7,
page 2154].

Example 5.2. (Example when hit-and-run is a little slower.) Let us consider briefly the exam-
ple of random-transposition on Sn. Because all generators have order 2, the measure qS gives
probability

1

n
+ n − 1

2n
= 1

2

(
1 + 1

n

)
to the identity and probability 1/n2 to any transposition. It follows that the hit-and-run random
walk based on random transposition has a cut-off in total variation and L2 at time n log n, a
slow-down by a factor of 1/2 compared to its simple random walk counterpart.

Remarks regarding hit-and-run for top-to-random. Because the hit-and-run shuffle based
on top-to-random is the focus of this paper, it is worth pointing out that it can be described
naturally without reference to the general hit-and-run construction. Namely, the measure q
at (1.2) can be alternatively obtained as follows. Pick a position i uniformly at random in
{1, . . . , n} and then pick a packet size j uniformly at random in {1, . . . , i}. Pick up the packet
of the top j cards and place it below the card originally at position i. This is clearly different
from the top-m-to-random shuffles studied in [9]. There are two shuffle mechanisms described
in [7] which bear some close similarities to the hit-and-run top-to-random shuffle described
above. They are as follows.

• The crude overhand shuffle [7, page 2148]. The top, middle, and bottom packets are
identified using two random positions 1 ≤ a ≤ b ≤ n, and the order of the packets is
changed as follows: top goes to the bottom, middle remains in the middle, bottom goes
to the top. The pair of positions a ≤ b is chosen by picking a uniformly in {1, . . . , n}
and b uniformly in {a, . . . , n}. Note that this gives weight 1/n to the identity which is
obtained for a = b = n. An L2 mixing time upper bound of order n log n is proved in [7]
and an L1 mixing time lower bound based on a coupon collector argument is also stated
in [7]. However, although the coupon collector argument described in [7] makes heuristic
sense, it seems that its detailed implementation is unclear because the probability that a
pair of adjacent cards is broken up depends on the position of the cards. This is worth
mentioning here because the exact same difficulty appears for the hit-and-run version of
top-to-random, which is the focus of the present article.

• The Borel shuffle [7, page 2150] (which is taken from a book on the game of Bridge
by Borel and Chéron from 1940). In this shuffle, a middle packet is removed from the
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deck and placed on top. If (a, b), 1 ≤ a ≤ b ≤ n, describes the position of the top and
bottom card of the packet removed, (a, b) is picked with probability 1/

(n+1
2

)
, and this

gives probability 2/(n + 1) to the identity which is obtained for any of the choices (1, b),
1 ≤ b ≤ n. An L2 mixing time upper bound of order n log n is proved in [7] as well as an
L1 mixing time lower bound based on a coupon collector argument (for this shuffle the
coupon collector argument works fine).
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