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Raman spectroscopy is an emerging technique for the rapid detection of oil qualities. But the spectral analysis is
time-consuming and low-throughput, which has limited the broad adoption. To address this issue, nine super-
vised machine learning (ML) algorithms were integrated into a Raman spectroscopy protocol for achieving the
rapid analysis. Raman spectra were obtained for ten commercial edible oils from a variety of brands and the

resulting spectral dataset was analyzed with supervised ML algorithms and compared against a principal
component analysis (PCA) model. A ML-derived model obtained an accuracy of 96.7% in detecting oil type and
an adulteration prediction of 0.984 (R?). Several ML algorithms also were superior than PCA in classifying edible
oils based on fatty acid compositions by gas chromatography, with a faster readout and 100% accuracy. This
study provided an exemplar for combining conventional Raman spectroscopy or gas chromatography with ML for

the rapid food analysis.

1. Introduction

Edible oils are an indispensable source of nutrition and, accordingly,
are widely present in food. Oil adulteration has been a chronic issue for
many years (Zhang et al., 2012) because of the large differences between
oil prices. Simply, higher priced quality oils are mixed with lower
quality oils to enhance profits and deceive the consumer. Currently, the
authentication of edible oils mainly depends on the analysis of fatty acid
composition via gas chromatography (GC) that requires pretreatment to
achieve methyl esterification. Methyl esterification is a time-consuming
chemical reaction that produces toxic solvent waste and is impractical
for high throughput measurements. A relatively fast, one-hour detection
approach has been recently developed to authenticate extra virgin olive
oils based on the direct analysis of triacylglycerols (TAGs) using ultra-
high-performance liquid chromatography (UHPLC) coupled with
charged aerosol detection (CAD) (Green et al., 2020). This UHPLC-CAD
method required minimal sample preparation, which took an important
step forward to achieving a rapid high-throughput screen for the olive
oil industry. However, for undertaking large amount of sample
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determination workload, chromatography is still a low throughput
measurement (~0.5 to 1 h per sample) that needs organic solvents as
mobile phase. Therefore, alternative technologies that are organic
solvent-free and high throughput are urgently needed to enable rapid oil
quality determination, especially for on-site measurements.

Raman spectroscopy does not require any chemical reagents for
sample pretreatment. Notably, Raman spectroscopy has been used to
characterize the chemical composition of bulk lipids, to determine the
free fatty acid content and the degree of unsaturation of oils, and to
discriminate between and authenticate different edible oils and fats
(Baeten et al., 2005; Jiménez-Sanchidrian & Ruiz, 2016; Yang, Iru-
dayaraj, & Paradkar, 2005). However, the difference in Raman spectra
between oils is subtle; therefore, it is necessary to apply statistical
analysis to accurately and efficiently identify these unique spectral dif-
ferences. Currently, the interpretation of Raman spectra requires
manual or semi-manual data processing and technical expertise to
compare an unknown spectrum with known spectra in database, and in
many cases, elaborative comparison of specific Raman bands is needed.
The Raman spectrum does not provide a simple direct readout that
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outputs chemical or compound names or concentrations. Instead, a
statistical analysis is needed. One recent example was the application of
an unsupervised principal component analysis (PCA)-assisted surface-
enhanced Raman spectroscopy (SERS) for the discrimination of edible
oils (Du et al., 2019). Although the PCA method could differentiate
between the six types of edible oils, the approach still required manual
intervention to match each data cluster with the oil types instead of
providing a direct readout. Although SERS significantly increased the
sensitivity of detection, the use of organic solvents and gold nano-
particles for sample pretreatment greatly increased the cost and analysis
time. Accordingly, a rapid and reliable spectral data processing method
may enhance the efficiency and wide-acceptance of Raman spectroscopy
for the characterization of edible oils.

Machine learning algorithms have facilitated numerous break-
throughs in the processing of complicated data sets, such as medical
images (Ardila et al., 2019). Recently, they have been coupled with
Raman spectroscopy or surface-enhanced Raman spectroscopy for the
rapid analysis of a diversity of samples that have included medicines and
microbes (Lussier, Thibault, Charron, Wallace, & Masson, 2020). Unlike
unsupervised PCA, a trained machine learning algorithm can rapidly
classify a new analyte from a data set of raw Raman spectra and provide
a direct readout. Nevertheless, machine learning algorithms has seen
limited applications in solving food science related problems, coupled
with advanced food analysis equipment. To the best of our knowledge,
the rapid validation of a variety of edible oil quality by coupling Raman
spectroscopy with machine learning has not been previously
demonstrated.

Nine supervised machine learning algorithms were integrated into a
Raman spectroscopy protocol for achieving the rapid classification of oil
type and the quick detection of adulterated edible oils. Raman spectra
were obtained for ten commercial edible oils from a variety of brands
and the resulting spectral data set was analyzed with supervised ma-
chine learning algorithms. The results were compared against a PCA
model. The fatty acid composition of the edible oils were also analyzed
using the same data processing protocol. The correlation between fatty
acid composition and the Raman spectra of various edible oils was also
examined. Our study provides an exemplar for the application of ma-
chine learning for the rapid analysis of Raman spectra in the field of food
science.

2. Materials and methods
2.1. Chemicals and supplies

Heptane, an alkane standard solution (C8 to C20), glyceryl tri-
heptadecanoate, and Supelco 37 component fatty acid methyl esters
(FAME) mixed in dichloromethane were purchased from Sigma-Aldrich
(St. Louis, USA). Hexane was bought from Fisher Chemical (Fair Lawn,
USA). The four inch gold (99.99%) coated silicon wafer was purchased
from Sigma-Aldrich (St. Louis, USA). The gold coated silicon wafer was
sliced into 10 mm x 6 mm pieces by a diamond cutter and attached to
the center of regular glass microscopy slides (25 mm x 75 mm x 1 mm)
by adhesive tapes for further use.

2.2. Edible oils

Forty-seven edible oils from forty-six different brands and
comprising twelve different oil types from at least seventeen countries of
origin were purchased from local markets in Lincoln, Nebraska, USA,
between 2019 and 2020 (S. Table 1). The oil types include avocado,
canola, coconut, liquid coconut, corn, grapeseed, olive, peanut, soybean,
sunflower, algae, hemp, and safflower oils. To minimize deteriorations
and changes in fatty acid composition before analysis, 10 mL of each oil
was transferred into a 30 mL GC headspace bottle with a tight silicon cap
and stored in a dark refrigerator at 4 °C. All samples were analyzed
within a week of collection.

Food Chemistry 373 (2022) 131471
2.3. Preparation of oil samples for adulteration study

Two adulteration models, avocado oils adulterated by canola oils and
olive oils adulterated by soybean oils, were prepared for this study.
Specifically, two randomly selected avocado oils (# 3 and # 43) from S.
Table 1 were blended with two randomly selected canola oils (#8 and
#5) for the training data set for the adulterated avocado oils. Two other
avocado oils (#1 and #42) were blended with two other canola oils (#6
and #7) for the testing data set for the adulterated avocado oils. Simi-
larly, two randomly selected olive oils (#26 and #27) were blended with
two soybean oils (#34 and #35) for the training data set for the adul-
terated olive oils. Two other olive oils (#25 and #28) were blended with
two other soybean oils (#33 and #36) for the testing data set for the
adulterated olive oils. The inexpensive oil (canola or soybean oil) was
mixed with the target oil (avocado or olive oil) in glass vials. The
adulterated mixtures were prepared with a range of inexpensive oil
compositions (mass/mass) consisting of: 0%, 1%, 5%, 10%, 20%, 30%,
40%, 50%, 60%, 70%, 80%, and 100% of inexpensive oil in a total of 5 g
of oil. Overall, in each of the two adulterated models (avocado oil canola
oil mixtures, olive oil and soybean oil mixtures), the adulterated mix-
tures consisted of 4 different oil blends, 12 different percent composi-
tions per oil blend, and 4 replicates per mixture group for a total of 48 oil
samples.

2.4. Determination of fatty acid composition by GC-FID

The fatty acid composition of the 47 edible oil samples was deter-
mined with a Hewlett Packard 6890 series GC equipped with a 30 m x
250 pm x 0.25 pm DB-WAX bonded-phase fused-silica capillary column
(J & W Scientific, Folsom, CA) and a flame ionization detector (FID).
Methyl esterification of each oil sample followed a previously published
protocol (Monfreda, Gobbi, & Grippa, 2012). Triplicates of each samples
were injected into the GC with the following experimental parameters:
injection volume of 1.0 pL, a split injection with 30:1 at 280 °C, a con-
stant helium flow rate of 30 mL min~?, and a detector temperature of
280 °C. The oven temperature was initially set to 50 °C for 1 min and
then ramped to 200 °C with a gradient of 25 °C min~!. The oven tem-
perature was held for 1 min at 200 °C and then ramped to 230 °C with a
gradient of 2 °C min . The oven temperature was then held for 5 mins
at 230 °C for a total run time of 28 mins. The fatty acid composition of
each oil was identified using alkane standards (C8 to C20) and 37 fatty
acid methyl esters (FAMEs). The fatty acid composition for each of the
four biological replicates from each of the 47 oil types listed in S. Table 1
was determined in triplicate for a total of 564 GC spectra. The compo-
sition of each fatty acid was expressed as a percentage of the total fatty
acid composition by the peak area ratio derived from the GC spectrum.

2.5. Raman spectra of edible oils

Raman spectra were acquired on an XploRA ONE™ Raman spec-
trometer system (HORIBA, Ltd., Kyoto, Japan) with a 785 nm near-
infrared diode laser. The Raman spectra of the edible oil samples were
collected as previously described (Du et al., 2019; Zhao, Shen, Wu,
Zhang, & Xu, 2020) with the following modifications. Specifically, a tiny
portion (~0.1 pL) of a single edible oil or oil mixture was placed on a
pre-prepared gold film silicon (10 mm x 6 mm) wafer. The 50X lens was
used to focus and then observe the edible oil samples. Each Raman
spectrum was collected within 5 min over a wavenumber range of 670
em™! to 3435 em ™! with a resolution of approximately 3.4 cm™l. A
Raman spectrum was acquired for five different spots for each edible oil
sample. The Raman spectra were collected in triplicate for a total of 15
spectra per edible oil sample. MATLAB® R2020a software (Math-
Works®, Natick, USA) software was used for baseline correction,
normalization, and Raman shift alignment. The ~CH-(CH3) asymmetric
stretch at an average wavenumber of 1437.95 + 1.87 cm ™! was used to
align and normalize the set of Raman spectra to correct for any
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displacement along the x-axis and intensity differences at y-axis. To
refine the spectral alignment because of sampling location difference of
each data points, Raman spectra with a 1 cm ™! resolution between 670
em™! and 3435 cm™! were generated by a linear interpolation to a
standardized reference spectrum by using the MATLAB® software.
Detail information and schematic diagrams of Raman signal processing
can be found in S. Figs. 1-3 of Supplementary materials.

2.6. Data processing and machine learning algorithms

Hierarchical cluster analysis of fatty acid composition was applied by
using the MATLAB® R2020a software (MathWorks®, Natick, USA). PCA
models were produced using R version 3.5.2. The heatmap and hierar-
chical clustering of pairwise Pearson correlation coefficients (r) to
correlate fatty acids with Raman bands were also generated with the R
software. Machine learning algorithms were implemented in the Python
3.5.7 programming environment.

To create an equally distributed training and test data set for each
edible oil type, four brands from each of the ten oil types listed in S.
Table 1 (only #1 to #40) were used for the machine learning and deep
learning study. For each edible oil type, there were four biological
replicates. The first two oil brands were randomly assigned and selected
as training data sets. The remaining two brands were used as a test data
set. In this regard, the data was equally and independently partitioned
between technical data and biological samples. Overall, there were 60 (3
replicates x 2 brands x 10 oil types) GC fatty acid compositions (FACs)
in the training data set and 60 FACs in the testing data set, respectively.
Similarly, there were 300 (15 replicates x 2 brands x 10 oil types)
Raman spectra in the training data set and 300 Raman spectra (15
replicates x 2 brands x 10 oil types) in testing data set, respectively. For
the oil adulteration study, the training and test datasets were derived
from different set of edible oil samples as described above. For each of
the avocado-canola and olive-soybean mixture systems, 144 Raman
spectra (6 replicates x 2 independent oil mixtures x 12 oil at different
percent compositions) were used in the training data set and 144 Raman
spectra (6 replicates x 2 independent oil mixture x 12 oil at different
percent compositions) were used in the testing data set, respectively.

Supervised machine learning algorithms included PCA for dimension
reduction with multinomial logistic regression (MLR), MLR with L1
penalty, MLR with L2 penalty, MLR with elastic net penalty, PCA with
RF, RF, PCA with boosting, boosting, and one-dimensional convolu-
tional neural network (1D-CNN), which were used for classification of
the GC fatty acids and edible oils spectral data sets. PCA with linear
regression (LNR), LNR with L1 penalty, LNR with L2 penalty, LNR with
elastic net penalty, partial least squares (PLS) regression, PCA with RF,
RF, PCA with boosting, and boosting were applied for regression anal-
ysis of the adulterated oil data sets. Prediction accuracy and coefficient
of determination (R%) were used to evaluate the performances of each
machine learning model in regard to edible oil type classification and
detection of adulterated oils. The predictive models were implemented
in the Python 3.5.7 programming environment. The RF model provided
variable importance in addition to oil classification. All the machine
learning and 1D-CNN models were computed on a Windows 10 x64
system with an Intel® Core™ i5-6300HQ 2.30 GHz*2 CPU and 16 GB
DDR3 ram.

3. Results and discussion
3.1. Fatty acid composition and classification of edible oils by PCA

GC techniques are routinely employed to obtain fatty acid compo-
sitions (FACs) of oils to authenticate vegetable oils (Aparicio & Aparicio-
Ruiz, 2000; Lim, Pan, Yu, & Xiao, 2020). Therefore, GC was used to
obtain the FACs for the 47 edible oil samples in S. Table 1 to establish a
standard reference data set in order to evaluate the performance of the
machine learning or deep learning models. As can be seen from the
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heatmap and hierarchical cluster analysis in Fig. 1, different types of
edible oils have different FAC profiles while the same type of oils has a
similar profile.

PCA is an unsupervised learning method that visualizes data by
dimensional reduction and cluster analysis (Cam, Hisil, & Durmaz,
2009; Liu, Liu, Hu, Yang, & Zheng, 2016). PCA was used for the clas-
sification and comparison of the FAC profiles for the edible oils. A biplot
of the resulting PCA model is shown in S. Figure 5. The PCA biplot
distributed the edible oils into separate clusters in PC-space, which
enabled a different approach to visualize relative similarities in the FAC
profiles. Importantly, the key fatty acid classes that contribute to group
separation are readily apparent from the biplot. For instance, the C8:0
(caprylic acid/octanoic acid), C10:0, C12:0 and C14:0 vectors point to
coconut oils, which indicates the coconut oils contain more medium-
chain fatty acids (Kinsella, Maher, & Clegg, 2017) relative to the other
oils. This is further evident by the heatmap and hierarchical cluster
analysis in Fig. 1. In general, different brands of the same type of oil,
especially staple commodities such as canola, soybean, and olive, clus-
tered together in the PCA biplot (S. Figure 5). A PCA biplot has previ-
ously been shown to be an effective approach to differentiate between
six types of edible oils by cluster analysis (Green et al., 2020). However,
as revealed by our PCA model, the edible oils cannot be fully differen-
tiated based on only the first two principal components because the PC1
and PC2 explained 36.9 % and 17.2 % of variance respectively, which
can be regarded as low explanation variance by the first two principal
components (PC), and indicates more PCs, such as PC3 and PC4 should
be added for differentiating oil types and to increase the explained
variance. The FAC of the avocado oils was found to be similar to the
olive oils and, as a result, clustered together in the PCA biplot. A similar
outcome was obtained when comparing peanut oil to olive oil, or when
comparing hemp oil, grapeseed oil, and corn oil. Incorporating addi-
tional principal components into the PCA model may increase the ability
of the PCA biplot to differentiate between the edible oils; nevertheless, it
is important to understand that principal component analysis (PCA) is
generally applied to feasibly observe an original multidimension dataset
on reduced dimensions (Townes, Hicks, Aryee, & Irizarry, 2019),
thereby to increase data interpretability. For example, hemp oil over-
lapped with the corn and grapeseed oils in the PC1 vs. PC2 plot (S.
Figure 5A), but were well separated in the PC2 vs. PC3 plot (S.
Figure 5B); however, using multiple PCs is time-consuming and not an
effective way to classify the multidimension data of fatty acid compo-
sition of edible oils.

3.2. Fatty acid composition and classification of edible oils with machine
learning algorithms

Nine supervised machine learning algorithms were employed to
classify the edible oils based on FAC (Table 1A) and to compare to the
PCA model. The predictive models based on MLR with L1 penalty, MLR
with L2 penalty, or MLR with elastic net penalty obtained a 100% testing
accuracy, which indicated that these algorithms were very effective in
the classification of edible oils. The PCA-RF model is an attractive
alternative since training was completed in 0.085 s while achieving a
testing accuracy of 95.0%. MLRs with L1 Penalty, L2 Penalty and Elastic
net Penalty all achieved 100% test accuracy; however, the training times
were 5.458 s, 13.524 s and 4.848 s respectively, which were about 2 to 3
order of magnitudes longer than PCA-RF. The remaining algorithms
failed to provide an accurate classification, which included the 1D-CNN
deep learning method. The failure of 1D-CNN was not surprising
considering the limited-size of the dataset. It is important to note, a deep
learning neural network model was previously successful in classifying
19,583 oil samples collected over 5 years (Lim et al., 2020).

Overall, we demonstrated that at least three different machine
learning algorithms were highly effective in accurately classifying edible
oils based on fatty acid compositions. Importantly, the machine learning
algorithms provided a significant improvement over PCA in the
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Fig. 1. Hierarchical cluster analysis of fatty acid composition of 47 edible oils with different types and brands. mm LiquidCoconut, ®8 Coconut, #8 Hemp, &=
GrapeSeed, #® Soybean, "¢ Corn, mm, Canola, #8 Peanut, @88 Avocado, &8 Olive, mm Safflower, 8 Sunflower, mm Algae. The dendrogram (hierarchical cluster) on
the top of columns indicates the similarity of fatty acid composition of oils, whereas the dendrogram on left side of rows indicates the similarity of the distribution of

specific fatty acids (biomarkers) among oils.

Table 1A
Classification of 10 types of edible oils with different brands by machine learning algorithms based on the fatty acid composition.
Methods PCA + MLR MLR with L1 MLR with L2 MLR with Elastic net PCA + RF PCA + Boosting  1D-CNN
Penalty Penalty Penalty RF Boosting
Machine Deep
learning learning
Training time 0.004 5.458 13.524 4.848 0.085 0.085  0.591 0.652 15.912
(s)
Training 0.450 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.600
accuracy
Testing 0.450 1.000 1.000 1.000 0.950 0.817  0.650 0.700 0.600
accuracy

Note: PCA (principal component analysis), MLR (multinomial logistic regression), RF (random forest), 1D-CNN (one-dimensional convolutional neural network). 10
types of oils included avocado, canola, coconut, liquid coconut, corn, grapeseed, olive, peanut, soybean, and sunflower oils. Accuracy, 1 = 100%.

classification of edible oil types. Machine learning was faster, more ac-
curate, and provided a direct readout of each oil’s classification.

3.3. Classification of edible oils by combining Raman spectroscopy with
PCA

The Raman spectra of 47 edible oils were collected and 10 major
peaks with relative intensities from ~0.2 to ~1 were detected in the
range of 500 t01800 cm ™~ and 2700 to 3010 cm™! (Fig. 2A). The major
peaks in the Raman spectrum depicted in Fig. 2B were annotated with
chemical functional groups. As expected, different types of oils have
unique Raman spectra. For example, the ratio of peak intensities (I2¢6,
1300) comparing fatty acid unsaturation (1266 cm_l, =CH-H deforma-
tion (def)) to saturation (1300 crn’l, —CHj3) ranged from 0 to 1.5 for the
edible oils in this study. Specifically, saturated coconut oil had a I; 266,

1300 of 0.30 & 0.01, unsaturated olive oil a value of 0.60 + 0.02, un-
saturated canola oil a value of 0.84 + 0.02, and unsaturated soybean oil
a value of 1.0 £+ 0.1. The increase in Iy266,1300 may reflect the high
content of C18:3 n3 (linolenic acid), where it was 18.15% in the poly-
unsaturated hemp oil samples based on the GC analysis results. This is
consistent with a previous report by Jiménez-Sanchidrian and Ruiz
(Jiménez-Sanchidrian & Ruiz, 2016), which identified a I1266,1300 value
of 1.8 as being characteristic of a polyunsaturated linseed oil. However,
it was difficult to differentiate all the oils based solely on the I1266,1300
ratio since algae, avocado, grapeseed, olive, and soybean oil had nearly
identical ratios. Compared to the fatty acid profiles showed in Fig. 1, the
observed differences in the Raman spectra of edible oils (Fig. 2) were
modest, at best, and difficult to visually identify. Accordingly, a PCA was
conducted to better differentiation oil types based on their Raman
spectrum.
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The PCA scores plot generated from the Raman spectral data set is
shown in S. Figure 6. The PC1 and PC2 of Raman spectra explained 17.0
% and 9.8 % of variance, respectively, which were lower than the ex-
planations of the top two PCs (PC1 = 36.9%, PC2 = 17.2%) on FACs data
(S. Figure 5). The same types of oils were clustered together in the scores
plot regardless of brand. This was true for coconut, liquid coconut,
canola, olive, soybean, and hemp oils. In general, different oil types
formed distinct clusters in the PCA scores plot. However, some oil types
were not completely separated from each other and were not differen-
tiated by the PCA model. Specifically, grapeseed, soybean, and corn oil
clustered together, while avocado, olive, sunflower, and peanut oil
formed a second large cluster. Overall, the PCA model generated from
the Raman spectral data set was less effective in classifying edible oil
types than the PCA model produced from the fatty acid composition data
set. Thus, an advanced classification method was employed to improve
the utility of Raman spectral analysis in differentiating various edible
oils.

3.4. Classification of edible oils by combining Raman spectroscopy with
machine learning

Similar to the fatty acid composition analysis, nine supervised ma-
chine learning algorithms were employed to classify edible oils based on
Raman spectra (Table 1B). The testing accuracies from these machine
learning models ranged from 57% (1D-CNN) to 84.7% (RF) and were
generally lower than the accuracies obtained with the fatty acid
composition models (Table 1A). However, the 84.7% classification ac-
curacy by RF may qualify as a rapid and reliable test. The machine
learning algorithms commonly misassigned avocado oil as either olive

oil or peanut oil. Similarly, grapeseed oil was misassigned as either
soybean oil or corn oil in the confusion matrix (data not shown). These
incorrect assignments were a primary cause of the reduced testing ac-
curacies. Simply, the oils exhibited comparable fatty acid compositions
(Fig. 1) and similar Raman spectra (Fig. 2).

A higher testing accuracy was obtained by excluding avocado oil and
grapeseed oil from the data set (Table 1C). In this regard, the testing
accuracies of PCA with RF, RF, MLR with L1 penalty, MLR with L2
penalty increased to 96.7%, 92.9%, 90.0%, and 89.2%, respectively,
although some specific oils had relatively high classification errors. For
instance, 46.67 % of olive oils were categorized as the sunflower oils in
Fig. 3B due to the similarity of fatty acid composition as can be seen from
the clusters 10 olive oils and 12 sunflower oils in Fig. 1; however, the
machine learning models classified most of the individual oils at high
test accuracy > 90%. The major vegetable oils that are internationally
traded include coconut, cotton, olive, palm, peanut, rapeseed (canola),
soybean, and sunflower oils (Sharma, Gupta, & Mondal, 2012). Notably,
most of these edible oils were included in our investigation. Also, the
biological replicates for each oil type were randomly selected from local
markets and used as both training and testing samples. Thus, the high
overall testing accuracies strongly validated the effectiveness of
combining machine learning with Raman spectroscopy to authenticate
the major classes of internationally traded vegetable oils.

The classification confusion matrices for the best-performing ma-
chine learning models are shown in Fig. 3. As an illustration, the top ten
Raman bands from the RF model that were used for the classification of
edible oils are shown in Fig. 3E. The Raman bands at 1262 em™!
(=CH-H def) and 1654 cm ! (-C=C cis-stretching, cis-str) were the top
important variables in the RF model. Accordingly, the RF classification

Table 1B
Classification of 10 types of edible oils with different brands by machine learning algorithms based on the Raman spectra.
Methods PCA + MLR MLR with L1 MLR with L2 MLR with Elastic net PCA + RF PCA + Boosting ~ 1D-CNN
Penalty Penalty Penalty RF Boosting
Machine Deep
learning learning
Training time 0.022 1350.886 122.772 1171.726 2.357 3.176 2.070 64.326 849.498
s
Training 0.847 0.997 1.000 1.000 1.000 1.000 1.000 1.000 0.600
accuracy
Testing 0.713 0.747 0.803 0.780 0.817 0.847 0.680 0.663 0.570
accuracy

Note: PCA (principal component analysis), MLR (multinomial logistic regression), RF (random forest), 1D-CNN (one-dimensional convolutional neural networks). 10
types of oils included avocado, canola, coconut, liquid coconut, corn, grapeseed, olive, peanut, soybean, and sunflower oils. Accuracy, 1 = 100%.
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Table 1C
Classification of 8 types of edible oils with different brands by machine learning algorithms based on the Raman spectra.
Methods PCA + MLR MLR with L1 MLR with L2 MLR with Elastic net PCA + RF PCA + Boosting ~ 1D-CNN
Penalty Penalty Penalty RF Boosting
Machine Deep
learning learning
Training time 0.016 972.72 73.24 917.64 0.68 2.340 0.660 40.87 548.60
(s)
Training 0.904 0.996 1.000 0.954 1.000 1.000 1.000 1.000 0.625
accuracy
Testing 0.829 0.900 0.892 0.863 0.967 0.929 0.858 0.758 0.621
accuracy

Note: 8 types of oils included canola, coconut, liquid coconut, corn, olive, peanut, soybean, and sunflower oils, but excluded avocado and grapeseed oils. Accuracy, 1 =

100%.

identified these spectral features as a potential chemical fingerprint of
edible oil types. It should be noted that our study did not use the SERS
technique, which may provide a higher sensitivity and further improve
the predictive model. Liquid interfacial SERS with gold nanoparticles
has been previously reported to discriminate between edible oil types,
oxidation state, and adulteration using a PCA model (Du et al., 2019).
Another SERS study was able to quickly differentiae six types of edible
oils (Vander Ende et al., 2019). However, the preparation and mainte-
nance of surface-enhanced nanoparticles significantly reduced the
throughput and increased the cost of the Raman analysis. Although the
PCA model showed a difference in how oil types clustered in the
resulting scores plots, no biological replicates were used for validating
the accuracy of the developed models.

Overall, our findings demonstrated the general utility of combining
Raman spectroscopy with machine learning for the classification of
edible oils. The machine learning models performed better than PCA in
the classification of edible oil types by being faster, more accurate, and
by providing a direct readout of group membership. Our Raman-
machine learning method exhibited a comparable accuracy with the
previously reported SERS-PCA model and with the machine learning
model of fatty acid compositions described herein. Importantly, the
Raman-machine learning method is faster and cheaper, and could be
used to develop a rapid on-line or off-line analysis platform.

3.5. Predicting adulterated edible oils by combining Raman spectroscopy
with machine learning

The high classification accuracies which were achieved by
combining Raman spectroscopy with machine learning suggested the
same approach would be amenable to detecting adulterated oils. Two
adulteration models were selected to evaluate the utility of the Raman-
machine learning approach to detect adulterated oils. Specifically, av-
ocado oil was adulterated with canola oil; and olive oil was adulterated
with soybean oil. The results of the machine learning models are sum-
marized in Table 2A, which indicates that the LNR with L2 penalty was
the best performing model for predicting avocado oil adulterated with
canola oil with an R? of 0.910. LNR with L2 penalty was the best model
for predicting olive oil adulterated with soybean oil with an R? of 0.984
(Table 2B). Interestingly, the testing accuracies were higher for all
models when predicting olive oil adulterated by soybean oil compared
to the models predicting avocado oil adulterated with canola oil.
Overall, the LNR with L2 penalty was identified as the best-performing
machine learning algorithm for predicting the adulteration of edible oils
based on Raman spectra. The regression for true values versus predicted
values for the LNR with L2 penalty model is shown in S. Figure 7.
Simply, a better convergence or smaller variance in the data was
apparent when predicting olive oil adulterated by soybean oil.
Furthermore, the mean squared prediction errors (MSPE) as shown in
Tables 2A and B suggests the LNR with L2 penalty model converged
better for the olive oil adulterated by soybean oil (i.e., 14.851) compared
to the avocado oil adulterated by canola oil (i.e., 83.029). The

incremental improvement in performance was likely attributed to a
larger difference in the Raman spectra of the edible oils. For example,
the difference (e.g., Al1260 = 0.28) between the olive oil (I1260 ~ 0.40)
and soybean oil (I1260 ~ 0.68) spectra was almost twice the difference (e.
g, Aljag0 =~ 0.15) observed between the avocado oil (I3269 ~ 0.40) and
canola oil (I;269 &~ 0.55) spectra.

Recently, the identification of rainbow trout meat adulterated with
Atlantic salmon meat was accomplished by combining Raman spec-
troscopy with machine learning techniques (Chen, Wu, Xiang, Xu, &
Tian, 2019). The mean squared prediction errors (MSPE) of the test
dataset was 107.95 and the prediction accuracy (R?) was 0.87. These
metrics are comparable to the outcomes from our predictive models, but
we observed a higher prediction accuracy (R = 0.984) and lower MSPE
(14.851). Also, the identification of oil adulterations has been achieved
by a deep-learning coupling with GC-FID technique based on a 2-, 3- and
4-way oil mixture model (Lim et al., 2020). For 3-way adulterated
mixtures of groundnut oil, the authors observed a median absolute error
between 1.2 and 0.95% for predicting both the major groundnut oil and
the minor adulterant oil. The GC-FIDs were collected with an approxi-
mate 50 min protocol, but in our approach both the Raman spectra and
the predictions from the machine learning models are obtained within
seconds (Tables 2A and B). Thus, our Raman-machine learning approach
may greatly reduce the time and cost of an analysis of adulterated oils.

3.6. Correlation between fatty acid composition and the Raman spectra of
edible oils

A correlation between fatty acid composition and the Raman spectra
of various edible oils was also examined. The intensity of Raman spectral
bands corresponding to specific fatty acid functional groups should be
consistent with the fatty acid composition observed for each edible oil.
Simply, as the fatty acid composition changes between the different oil
types, a proportional change in the intensity of the corresponding
Raman band should occur. The fatty acid composition of each oil type
was accurately determined using GC-FID, thus, it should be feasible to
correlate the known variation in fatty acid composition with the corre-
sponding Raman spectrum. Pearson correlation coefficients (r) were
calculated between each detected fatty acid and observed Raman band
and then plotted as a heatmap with hierarchical clustering (Fig. 4). In
this regard, highly variable fatty acids would be expected to correlate
with highly variable Raman band intensities.

As shown in Fig. 4, Raman bands associated with carbon double
bonds (C=C) at 920, 965, 1260, 1653, and 3010 cm ™" were found to be
positively correlated with unsaturated fatty acids such as C18:1 (r ~
0.3), C18:2 (r = 0.8), and C18:3 (r ~ 0.5). Conversely, the C=C bond
vibrations at 920, 965, 1260, 1653, and 3010 cm™! were negatively
correlated (r ~ —0.5) with saturated fatty acids (C6:0 to C18:0). Pre-
sumably, an increase in the proportion of saturated fatty acids led to a
corresponding decrease in unsaturated fatty acids (C18:2 and C18:3),
which, in turn, resulted in a reduction in the total amount of C=C bonds
in the oils and a decrease in the intensity of the corresponding Raman
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bands. Similarly, ester bands, including -C—O- at 1080 cm ! (r~0.8)
and -C=0 at 1745 cm ™! (r ~ 0.8), were mainly correlated with short to
medium chain fatty acids in coconut oils, such as C8:0, C10:0, and
C11:0. Presumably, the ester bands were more pronounced in the short
to medium chain fatty acids because of the lower molecular mass, which
simply led to a relative increment in the ester vibrations. The observed
and expected correlation between Raman bands and functional groups
within fatty acid molecules provided further evidence that a Raman
spectrum can explain differences in fatty acid composition between
edible oils. To the best of our knowledge, this is the first reported cor-
relation between fatty acid composition and Raman spectra for a variety

of edible oils.
4. Conclusion

We described a protocol that combined machine learning algorithms
with Raman spectroscopy or fatty acid composition to characterize
edible oils. Our method yielded a high accuracy in classifying edible oil
types and, accordingly, is an effective means of detecting adulterated
oils. Our approach is faster, more accurate, and provides a clear oil
classification compared to standard PCA methods. The PCA with RF
model was found to be the best performing machine learning algorithm
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Table 2A

Machine learning for regression of avocado oil adulterated by canola oil.
Methods PCA + LNR with L1 LNR with L2 LNR with Elastic net PLS PCA + RF RF PCA + Boosting

LNR Penalty Penalty Penalty Regression Boosting
Training time 0.005 4.775 0.022 4.145 4.854 0.831 0.252 0.097 4.762
)

R? 0.993 0.997 0.997 0.990 1.000 0.988 0.986 1.000 1.000
MSE 6.961 3.113 3.105 9.428 0.001 11.353 13.083 0.059 0.001
Predicted R? 0.862 0.873 0.910 0.903 0.827 0.858 0.814 0.879 0.827
MSPE 127.55 117.677 83.029 89.480 159.654 131.649 171.917 111.707 159.570

Note: LNR (linear regression), PLS (partial least square), RF (random forest), MSE (mean squared error), MSPE (mean squared prediction error), R? (coefficient of
determination).

Table 2B

Machine learning for regression of olive oil adulterated by soybean oil.
Methods PCA + LNR with L1 LNR with L2 LNR with Elastic net PLS PCA + RF PCA + Boosting

LNR Penalty Penalty Penalty Regression RF Boosting
Training time 0.002 3.394 0.022 1.972 2.943 0.476 1.298 0.060 2.987
(s)

R? 0.997 0.997 0.999 0.995 1.000 0.997 0.996 1.000 1.000
MSE 2.357 2.448 0.883 4.474 0.001 3.147 3.393 0.056 0.001
Predicted R? 0.984 0.975 0.984 0.974 0.954 0.963 0.959 0.966 0.954
MSPE 15.089 22.722 14.851 24.237 42.986 34.535 38.021 31.535 42.666

Note: LNR (linear regression), PLS (partial least square), RF (random forest), MSE (mean squared error), R? (coefficient of determination).
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Fig. 4. Heatmap of pairwise Pearson correlation coefficients (r) between the proportion of fatty acid compositions and Raman spectra of edible oils.
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for the classification of edible oils based on Raman spectra. Alterna-
tively, the LNR with L2 penalty model was determined to be the best
performing machine learning algorithm for predicting adulterated
edible oils. Our approach may be used to establish rapid on-line or off-
line platforms for the analysis of edible oils or other food contami-
nants. Overall, our study demonstrated the potential and value of ma-
chine learning assisted Raman spectra analysis for the rapid
authentication and detection of contaminants in food products, or
identification of origin of agricultural products based on their chemical
compositions.
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