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A B S T R A C T   

Raman spectroscopy is an emerging technique for the rapid detection of oil qualities. But the spectral analysis is 
time-consuming and low-throughput, which has limited the broad adoption. To address this issue, nine super
vised machine learning (ML) algorithms were integrated into a Raman spectroscopy protocol for achieving the 
rapid analysis. Raman spectra were obtained for ten commercial edible oils from a variety of brands and the 
resulting spectral dataset was analyzed with supervised ML algorithms and compared against a principal 
component analysis (PCA) model. A ML-derived model obtained an accuracy of 96.7% in detecting oil type and 
an adulteration prediction of 0.984 (R2). Several ML algorithms also were superior than PCA in classifying edible 
oils based on fatty acid compositions by gas chromatography, with a faster readout and 100% accuracy. This 
study provided an exemplar for combining conventional Raman spectroscopy or gas chromatography with ML for 
the rapid food analysis.   

1. Introduction 

Edible oils are an indispensable source of nutrition and, accordingly, 
are widely present in food. Oil adulteration has been a chronic issue for 
many years (Zhang et al., 2012) because of the large differences between 
oil prices. Simply, higher priced quality oils are mixed with lower 
quality oils to enhance profits and deceive the consumer. Currently, the 
authentication of edible oils mainly depends on the analysis of fatty acid 
composition via gas chromatography (GC) that requires pretreatment to 
achieve methyl esterification. Methyl esterification is a time-consuming 
chemical reaction that produces toxic solvent waste and is impractical 
for high throughput measurements. A relatively fast, one-hour detection 
approach has been recently developed to authenticate extra virgin olive 
oils based on the direct analysis of triacylglycerols (TAGs) using ultra- 
high-performance liquid chromatography (UHPLC) coupled with 
charged aerosol detection (CAD) (Green et al., 2020). This UHPLC-CAD 
method required minimal sample preparation, which took an important 
step forward to achieving a rapid high-throughput screen for the olive 
oil industry. However, for undertaking large amount of sample 

determination workload, chromatography is still a low throughput 
measurement (~0.5 to 1 h per sample) that needs organic solvents as 
mobile phase. Therefore, alternative technologies that are organic 
solvent-free and high throughput are urgently needed to enable rapid oil 
quality determination, especially for on-site measurements. 

Raman spectroscopy does not require any chemical reagents for 
sample pretreatment. Notably, Raman spectroscopy has been used to 
characterize the chemical composition of bulk lipids, to determine the 
free fatty acid content and the degree of unsaturation of oils, and to 
discriminate between and authenticate different edible oils and fats 
(Baeten et al., 2005; Jiménez-Sanchidrián & Ruiz, 2016; Yang, Iru
dayaraj, & Paradkar, 2005). However, the difference in Raman spectra 
between oils is subtle; therefore, it is necessary to apply statistical 
analysis to accurately and efficiently identify these unique spectral dif
ferences. Currently, the interpretation of Raman spectra requires 
manual or semi-manual data processing and technical expertise to 
compare an unknown spectrum with known spectra in database, and in 
many cases, elaborative comparison of specific Raman bands is needed. 
The Raman spectrum does not provide a simple direct readout that 
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outputs chemical or compound names or concentrations. Instead, a 
statistical analysis is needed. One recent example was the application of 
an unsupervised principal component analysis (PCA)-assisted surface- 
enhanced Raman spectroscopy (SERS) for the discrimination of edible 
oils (Du et al., 2019). Although the PCA method could differentiate 
between the six types of edible oils, the approach still required manual 
intervention to match each data cluster with the oil types instead of 
providing a direct readout. Although SERS significantly increased the 
sensitivity of detection, the use of organic solvents and gold nano
particles for sample pretreatment greatly increased the cost and analysis 
time. Accordingly, a rapid and reliable spectral data processing method 
may enhance the efficiency and wide-acceptance of Raman spectroscopy 
for the characterization of edible oils. 

Machine learning algorithms have facilitated numerous break
throughs in the processing of complicated data sets, such as medical 
images (Ardila et al., 2019). Recently, they have been coupled with 
Raman spectroscopy or surface-enhanced Raman spectroscopy for the 
rapid analysis of a diversity of samples that have included medicines and 
microbes (Lussier, Thibault, Charron, Wallace, & Masson, 2020). Unlike 
unsupervised PCA, a trained machine learning algorithm can rapidly 
classify a new analyte from a data set of raw Raman spectra and provide 
a direct readout. Nevertheless, machine learning algorithms has seen 
limited applications in solving food science related problems, coupled 
with advanced food analysis equipment. To the best of our knowledge, 
the rapid validation of a variety of edible oil quality by coupling Raman 
spectroscopy with machine learning has not been previously 
demonstrated. 

Nine supervised machine learning algorithms were integrated into a 
Raman spectroscopy protocol for achieving the rapid classification of oil 
type and the quick detection of adulterated edible oils. Raman spectra 
were obtained for ten commercial edible oils from a variety of brands 
and the resulting spectral data set was analyzed with supervised ma
chine learning algorithms. The results were compared against a PCA 
model. The fatty acid composition of the edible oils were also analyzed 
using the same data processing protocol. The correlation between fatty 
acid composition and the Raman spectra of various edible oils was also 
examined. Our study provides an exemplar for the application of ma
chine learning for the rapid analysis of Raman spectra in the field of food 
science. 

2. Materials and methods 

2.1. Chemicals and supplies 

Heptane, an alkane standard solution (C8 to C20), glyceryl tri
heptadecanoate, and Supelco 37 component fatty acid methyl esters 
(FAME) mixed in dichloromethane were purchased from Sigma-Aldrich 
(St. Louis, USA). Hexane was bought from Fisher Chemical (Fair Lawn, 
USA). The four inch gold (99.99%) coated silicon wafer was purchased 
from Sigma-Aldrich (St. Louis, USA). The gold coated silicon wafer was 
sliced into 10 mm × 6 mm pieces by a diamond cutter and attached to 
the center of regular glass microscopy slides (25 mm × 75 mm × 1 mm) 
by adhesive tapes for further use. 

2.2. Edible oils 

Forty-seven edible oils from forty-six different brands and 
comprising twelve different oil types from at least seventeen countries of 
origin were purchased from local markets in Lincoln, Nebraska, USA, 
between 2019 and 2020 (S. Table 1). The oil types include avocado, 
canola, coconut, liquid coconut, corn, grapeseed, olive, peanut, soybean, 
sunflower, algae, hemp, and safflower oils. To minimize deteriorations 
and changes in fatty acid composition before analysis, 10 mL of each oil 
was transferred into a 30 mL GC headspace bottle with a tight silicon cap 
and stored in a dark refrigerator at 4 ◦C. All samples were analyzed 
within a week of collection. 

2.3. Preparation of oil samples for adulteration study 

Two adulteration models, avocado oils adulterated by canola oils and 
olive oils adulterated by soybean oils, were prepared for this study. 
Specifically, two randomly selected avocado oils (# 3 and # 43) from S. 
Table 1 were blended with two randomly selected canola oils (#8 and 
#5) for the training data set for the adulterated avocado oils. Two other 
avocado oils (#1 and #42) were blended with two other canola oils (#6 
and #7) for the testing data set for the adulterated avocado oils. Simi
larly, two randomly selected olive oils (#26 and #27) were blended with 
two soybean oils (#34 and #35) for the training data set for the adul
terated olive oils. Two other olive oils (#25 and #28) were blended with 
two other soybean oils (#33 and #36) for the testing data set for the 
adulterated olive oils. The inexpensive oil (canola or soybean oil) was 
mixed with the target oil (avocado or olive oil) in glass vials. The 
adulterated mixtures were prepared with a range of inexpensive oil 
compositions (mass/mass) consisting of: 0%, 1%, 5%, 10%, 20%, 30%, 
40%, 50%, 60%, 70%, 80%, and 100% of inexpensive oil in a total of 5 g 
of oil. Overall, in each of the two adulterated models (avocado oil canola 
oil mixtures, olive oil and soybean oil mixtures), the adulterated mix
tures consisted of 4 different oil blends, 12 different percent composi
tions per oil blend, and 4 replicates per mixture group for a total of 48 oil 
samples. 

2.4. Determination of fatty acid composition by GC-FID 

The fatty acid composition of the 47 edible oil samples was deter
mined with a Hewlett Packard 6890 series GC equipped with a 30 m ×
250 μm × 0.25 μm DB-WAX bonded-phase fused-silica capillary column 
(J & W Scientific, Folsom, CA) and a flame ionization detector (FID). 
Methyl esterification of each oil sample followed a previously published 
protocol (Monfreda, Gobbi, & Grippa, 2012). Triplicates of each samples 
were injected into the GC with the following experimental parameters: 
injection volume of 1.0 μL, a split injection with 30:1 at 280 ◦C, a con
stant helium flow rate of 30 mL min−1, and a detector temperature of 
280 ◦C. The oven temperature was initially set to 50 ◦C for 1 min and 
then ramped to 200 ◦C with a gradient of 25 ◦C min−1. The oven tem
perature was held for 1 min at 200 ◦C and then ramped to 230 ◦C with a 
gradient of 2 ◦C min−1. The oven temperature was then held for 5 mins 
at 230 ◦C for a total run time of 28 mins. The fatty acid composition of 
each oil was identified using alkane standards (C8 to C20) and 37 fatty 
acid methyl esters (FAMEs). The fatty acid composition for each of the 
four biological replicates from each of the 47 oil types listed in S. Table 1 
was determined in triplicate for a total of 564 GC spectra. The compo
sition of each fatty acid was expressed as a percentage of the total fatty 
acid composition by the peak area ratio derived from the GC spectrum. 

2.5. Raman spectra of edible oils 

Raman spectra were acquired on an XploRA ONE™ Raman spec
trometer system (HORIBA, Ltd., Kyoto, Japan) with a 785 nm near- 
infrared diode laser. The Raman spectra of the edible oil samples were 
collected as previously described (Du et al., 2019; Zhao, Shen, Wu, 
Zhang, & Xu, 2020) with the following modifications. Specifically, a tiny 
portion (~0.1 µL) of a single edible oil or oil mixture was placed on a 
pre-prepared gold film silicon (10 mm × 6 mm) wafer. The 50X lens was 
used to focus and then observe the edible oil samples. Each Raman 
spectrum was collected within 5 min over a wavenumber range of 670 
cm−1 to 3435 cm−1 with a resolution of approximately 3.4 cm−1. A 
Raman spectrum was acquired for five different spots for each edible oil 
sample. The Raman spectra were collected in triplicate for a total of 15 
spectra per edible oil sample. MATLAB® R2020a software (Math
Works®, Natick, USA) software was used for baseline correction, 
normalization, and Raman shift alignment. The –CH-(CH3) asymmetric 
stretch at an average wavenumber of 1437.95 ± 1.87 cm−1 was used to 
align and normalize the set of Raman spectra to correct for any 

H. Zhao et al.                                                                                                                                                                                                                                    



Food Chemistry 373 (2022) 131471

3

displacement along the x-axis and intensity differences at y-axis. To 
refine the spectral alignment because of sampling location difference of 
each data points, Raman spectra with a 1 cm−1 resolution between 670 
cm−1 and 3435 cm−1 were generated by a linear interpolation to a 
standardized reference spectrum by using the MATLAB® software. 
Detail information and schematic diagrams of Raman signal processing 
can be found in S. Figs. 1-3 of Supplementary materials. 

2.6. Data processing and machine learning algorithms 

Hierarchical cluster analysis of fatty acid composition was applied by 
using the MATLAB® R2020a software (MathWorks®, Natick, USA). PCA 
models were produced using R version 3.5.2. The heatmap and hierar
chical clustering of pairwise Pearson correlation coefficients (r) to 
correlate fatty acids with Raman bands were also generated with the R 
software. Machine learning algorithms were implemented in the Python 
3.5.7 programming environment. 

To create an equally distributed training and test data set for each 
edible oil type, four brands from each of the ten oil types listed in S. 
Table 1 (only #1 to #40) were used for the machine learning and deep 
learning study. For each edible oil type, there were four biological 
replicates. The first two oil brands were randomly assigned and selected 
as training data sets. The remaining two brands were used as a test data 
set. In this regard, the data was equally and independently partitioned 
between technical data and biological samples. Overall, there were 60 (3 
replicates × 2 brands × 10 oil types) GC fatty acid compositions (FACs) 
in the training data set and 60 FACs in the testing data set, respectively. 
Similarly, there were 300 (15 replicates × 2 brands × 10 oil types) 
Raman spectra in the training data set and 300 Raman spectra (15 
replicates × 2 brands × 10 oil types) in testing data set, respectively. For 
the oil adulteration study, the training and test datasets were derived 
from different set of edible oil samples as described above. For each of 
the avocado-canola and olive-soybean mixture systems, 144 Raman 
spectra (6 replicates × 2 independent oil mixtures × 12 oil at different 
percent compositions) were used in the training data set and 144 Raman 
spectra (6 replicates × 2 independent oil mixture × 12 oil at different 
percent compositions) were used in the testing data set, respectively. 

Supervised machine learning algorithms included PCA for dimension 
reduction with multinomial logistic regression (MLR), MLR with L1 
penalty, MLR with L2 penalty, MLR with elastic net penalty, PCA with 
RF, RF, PCA with boosting, boosting, and one-dimensional convolu
tional neural network (1D-CNN), which were used for classification of 
the GC fatty acids and edible oils spectral data sets. PCA with linear 
regression (LNR), LNR with L1 penalty, LNR with L2 penalty, LNR with 
elastic net penalty, partial least squares (PLS) regression, PCA with RF, 
RF, PCA with boosting, and boosting were applied for regression anal
ysis of the adulterated oil data sets. Prediction accuracy and coefficient 
of determination (R2) were used to evaluate the performances of each 
machine learning model in regard to edible oil type classification and 
detection of adulterated oils. The predictive models were implemented 
in the Python 3.5.7 programming environment. The RF model provided 
variable importance in addition to oil classification. All the machine 
learning and 1D-CNN models were computed on a Windows 10 x64 
system with an Intel® CoreTM i5-6300HQ 2.30 GHz*2 CPU and 16 GB 
DDR3 ram. 

3. Results and discussion 

3.1. Fatty acid composition and classification of edible oils by PCA 

GC techniques are routinely employed to obtain fatty acid compo
sitions (FACs) of oils to authenticate vegetable oils (Aparicio & Aparicio- 
Ruíz, 2000; Lim, Pan, Yu, & Xiao, 2020). Therefore, GC was used to 
obtain the FACs for the 47 edible oil samples in S. Table 1 to establish a 
standard reference data set in order to evaluate the performance of the 
machine learning or deep learning models. As can be seen from the 

heatmap and hierarchical cluster analysis in Fig. 1, different types of 
edible oils have different FAC profiles while the same type of oils has a 
similar profile. 

PCA is an unsupervised learning method that visualizes data by 
dimensional reduction and cluster analysis (Çam, Hişil, & Durmaz, 
2009; Liu, Liu, Hu, Yang, & Zheng, 2016). PCA was used for the clas
sification and comparison of the FAC profiles for the edible oils. A biplot 
of the resulting PCA model is shown in S. Figure 5. The PCA biplot 
distributed the edible oils into separate clusters in PC-space, which 
enabled a different approach to visualize relative similarities in the FAC 
profiles. Importantly, the key fatty acid classes that contribute to group 
separation are readily apparent from the biplot. For instance, the C8:0 
(caprylic acid/octanoic acid), C10:0, C12:0 and C14:0 vectors point to 
coconut oils, which indicates the coconut oils contain more medium- 
chain fatty acids (Kinsella, Maher, & Clegg, 2017) relative to the other 
oils. This is further evident by the heatmap and hierarchical cluster 
analysis in Fig. 1. In general, different brands of the same type of oil, 
especially staple commodities such as canola, soybean, and olive, clus
tered together in the PCA biplot (S. Figure 5). A PCA biplot has previ
ously been shown to be an effective approach to differentiate between 
six types of edible oils by cluster analysis (Green et al., 2020). However, 
as revealed by our PCA model, the edible oils cannot be fully differen
tiated based on only the first two principal components because the PC1 
and PC2 explained 36.9 % and 17.2 % of variance respectively, which 
can be regarded as low explanation variance by the first two principal 
components (PC), and indicates more PCs, such as PC3 and PC4 should 
be added for differentiating oil types and to increase the explained 
variance. The FAC of the avocado oils was found to be similar to the 
olive oils and, as a result, clustered together in the PCA biplot. A similar 
outcome was obtained when comparing peanut oil to olive oil, or when 
comparing hemp oil, grapeseed oil, and corn oil. Incorporating addi
tional principal components into the PCA model may increase the ability 
of the PCA biplot to differentiate between the edible oils; nevertheless, it 
is important to understand that principal component analysis (PCA) is 
generally applied to feasibly observe an original multidimension dataset 
on reduced dimensions (Townes, Hicks, Aryee, & Irizarry, 2019), 
thereby to increase data interpretability. For example, hemp oil over
lapped with the corn and grapeseed oils in the PC1 vs. PC2 plot (S. 
Figure 5A), but were well separated in the PC2 vs. PC3 plot (S. 
Figure 5B); however, using multiple PCs is time-consuming and not an 
effective way to classify the multidimension data of fatty acid compo
sition of edible oils. 

3.2. Fatty acid composition and classification of edible oils with machine 
learning algorithms 

Nine supervised machine learning algorithms were employed to 
classify the edible oils based on FAC (Table 1A) and to compare to the 
PCA model. The predictive models based on MLR with L1 penalty, MLR 
with L2 penalty, or MLR with elastic net penalty obtained a 100% testing 
accuracy, which indicated that these algorithms were very effective in 
the classification of edible oils. The PCA-RF model is an attractive 
alternative since training was completed in 0.085 s while achieving a 
testing accuracy of 95.0%. MLRs with L1 Penalty, L2 Penalty and Elastic 
net Penalty all achieved 100% test accuracy; however, the training times 
were 5.458 s, 13.524 s and 4.848 s respectively, which were about 2 to 3 
order of magnitudes longer than PCA-RF. The remaining algorithms 
failed to provide an accurate classification, which included the 1D-CNN 
deep learning method. The failure of 1D-CNN was not surprising 
considering the limited-size of the dataset. It is important to note, a deep 
learning neural network model was previously successful in classifying 
19,583 oil samples collected over 5 years (Lim et al., 2020). 

Overall, we demonstrated that at least three different machine 
learning algorithms were highly effective in accurately classifying edible 
oils based on fatty acid compositions. Importantly, the machine learning 
algorithms provided a significant improvement over PCA in the 
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classification of edible oil types. Machine learning was faster, more ac
curate, and provided a direct readout of each oil’s classification. 

3.3. Classification of edible oils by combining Raman spectroscopy with 
PCA 

The Raman spectra of 47 edible oils were collected and 10 major 
peaks with relative intensities from ~0.2 to ~1 were detected in the 
range of 500 to1800 cm−1 and 2700 to 3010 cm−1 (Fig. 2A). The major 
peaks in the Raman spectrum depicted in Fig. 2B were annotated with 
chemical functional groups. As expected, different types of oils have 
unique Raman spectra. For example, the ratio of peak intensities (I1266/ 

1300) comparing fatty acid unsaturation (1266 cm−1, =CH-H deforma
tion (def)) to saturation (1300 cm−1, –CH3) ranged from 0 to 1.5 for the 
edible oils in this study. Specifically, saturated coconut oil had a I1266/ 

1300 of 0.30 ± 0.01, unsaturated olive oil a value of 0.60 ± 0.02, un
saturated canola oil a value of 0.84 ± 0.02, and unsaturated soybean oil 
a value of 1.0 ± 0.1. The increase in I1266/1300 may reflect the high 
content of C18:3 n3 (linolenic acid), where it was 18.15% in the poly
unsaturated hemp oil samples based on the GC analysis results. This is 
consistent with a previous report by Jiménez-Sanchidrián and Ruiz 
(Jiménez-Sanchidrián & Ruiz, 2016), which identified a I1266/1300 value 
of 1.8 as being characteristic of a polyunsaturated linseed oil. However, 
it was difficult to differentiate all the oils based solely on the I1266/1300 
ratio since algae, avocado, grapeseed, olive, and soybean oil had nearly 
identical ratios. Compared to the fatty acid profiles showed in Fig. 1, the 
observed differences in the Raman spectra of edible oils (Fig. 2) were 
modest, at best, and difficult to visually identify. Accordingly, a PCA was 
conducted to better differentiation oil types based on their Raman 
spectrum. 

Fig. 1. Hierarchical cluster analysis of fatty acid composition of 47 edible oils with different types and brands. LiquidCoconut, Coconut, Hemp, 
GrapeSeed, Soybean, Corn, , Canola, Peanut, Avocado, Olive, Safflower, Sunflower, Algae. The dendrogram (hierarchical cluster) on 
the top of columns indicates the similarity of fatty acid composition of oils, whereas the dendrogram on left side of rows indicates the similarity of the distribution of 
specific fatty acids (biomarkers) among oils. 

Table 1A 
Classification of 10 types of edible oils with different brands by machine learning algorithms based on the fatty acid composition.  

Methods PCA + MLR MLR with L1 
Penalty 

MLR with L2 
Penalty 

MLR with Elastic net 
Penalty 

PCA +
RF 

RF PCA +
Boosting 

Boosting 1D-CNN 

Machine 
learning        

Deep 
learning 

Training time 
(s) 

0.004  5.458  13.524  4.848  0.085  0.085  0.591  0.652  15.912 

Training 
accuracy 

0.450  1.000  1.000  1.000  1.000  1.000  1.000  1.000  0.600 

Testing 
accuracy 

0.450  1.000  1.000  1.000  0.950  0.817  0.650  0.700  0.600 

Note: PCA (principal component analysis), MLR (multinomial logistic regression), RF (random forest), 1D-CNN (one-dimensional convolutional neural network). 10 
types of oils included avocado, canola, coconut, liquid coconut, corn, grapeseed, olive, peanut, soybean, and sunflower oils. Accuracy, 1 = 100%. 
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The PCA scores plot generated from the Raman spectral data set is 
shown in S. Figure 6. The PC1 and PC2 of Raman spectra explained 17.0 
% and 9.8 % of variance, respectively, which were lower than the ex
planations of the top two PCs (PC1 = 36.9%, PC2 = 17.2%) on FACs data 
(S. Figure 5). The same types of oils were clustered together in the scores 
plot regardless of brand. This was true for coconut, liquid coconut, 
canola, olive, soybean, and hemp oils. In general, different oil types 
formed distinct clusters in the PCA scores plot. However, some oil types 
were not completely separated from each other and were not differen
tiated by the PCA model. Specifically, grapeseed, soybean, and corn oil 
clustered together, while avocado, olive, sunflower, and peanut oil 
formed a second large cluster. Overall, the PCA model generated from 
the Raman spectral data set was less effective in classifying edible oil 
types than the PCA model produced from the fatty acid composition data 
set. Thus, an advanced classification method was employed to improve 
the utility of Raman spectral analysis in differentiating various edible 
oils. 

3.4. Classification of edible oils by combining Raman spectroscopy with 
machine learning 

Similar to the fatty acid composition analysis, nine supervised ma
chine learning algorithms were employed to classify edible oils based on 
Raman spectra (Table 1B). The testing accuracies from these machine 
learning models ranged from 57% (1D-CNN) to 84.7% (RF) and were 
generally lower than the accuracies obtained with the fatty acid 
composition models (Table 1A). However, the 84.7% classification ac
curacy by RF may qualify as a rapid and reliable test. The machine 
learning algorithms commonly misassigned avocado oil as either olive 

oil or peanut oil. Similarly, grapeseed oil was misassigned as either 
soybean oil or corn oil in the confusion matrix (data not shown). These 
incorrect assignments were a primary cause of the reduced testing ac
curacies. Simply, the oils exhibited comparable fatty acid compositions 
(Fig. 1) and similar Raman spectra (Fig. 2). 

A higher testing accuracy was obtained by excluding avocado oil and 
grapeseed oil from the data set (Table 1C). In this regard, the testing 
accuracies of PCA with RF, RF, MLR with L1 penalty, MLR with L2 
penalty increased to 96.7%, 92.9%, 90.0%, and 89.2%, respectively, 
although some specific oils had relatively high classification errors. For 
instance, 46.67 % of olive oils were categorized as the sunflower oils in 
Fig. 3B due to the similarity of fatty acid composition as can be seen from 
the clusters 10 olive oils and 12 sunflower oils in Fig. 1; however, the 
machine learning models classified most of the individual oils at high 
test accuracy > 90%. The major vegetable oils that are internationally 
traded include coconut, cotton, olive, palm, peanut, rapeseed (canola), 
soybean, and sunflower oils (Sharma, Gupta, & Mondal, 2012). Notably, 
most of these edible oils were included in our investigation. Also, the 
biological replicates for each oil type were randomly selected from local 
markets and used as both training and testing samples. Thus, the high 
overall testing accuracies strongly validated the effectiveness of 
combining machine learning with Raman spectroscopy to authenticate 
the major classes of internationally traded vegetable oils. 

The classification confusion matrices for the best-performing ma
chine learning models are shown in Fig. 3. As an illustration, the top ten 
Raman bands from the RF model that were used for the classification of 
edible oils are shown in Fig. 3E. The Raman bands at 1262 cm−1 

(––CH–H def) and 1654 cm−1 (–C––C cis-stretching, cis-str) were the top 
important variables in the RF model. Accordingly, the RF classification 

Fig. 2. Raman spectra (heat map) of 47 edible oils with different types and brands (A) and representative Raman spectra of #33. soybean oil with marked functional 
groups (B), purple dots represent 15 replicates of spectra and center black line represent the average. Note: numbers of sample codes refer to S.Table 1. (For 
interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 

Table 1B 
Classification of 10 types of edible oils with different brands by machine learning algorithms based on the Raman spectra.  

Methods PCA + MLR MLR with L1 
Penalty 

MLR with L2 
Penalty 

MLR with Elastic net 
Penalty 

PCA +
RF 

RF PCA +
Boosting 

Boosting 1D-CNN 

Machine 
learning        

Deep 
learning 

Training time 
(s) 

0.022  1350.886  122.772  1171.726  2.357  3.176  2.070  64.326  849.498 

Training 
accuracy 

0.847  0.997  1.000  1.000  1.000  1.000  1.000  1.000  0.600 

Testing 
accuracy 

0.713  0.747  0.803  0.780  0.817  0.847  0.680  0.663  0.570 

Note: PCA (principal component analysis), MLR (multinomial logistic regression), RF (random forest), 1D-CNN (one-dimensional convolutional neural networks). 10 
types of oils included avocado, canola, coconut, liquid coconut, corn, grapeseed, olive, peanut, soybean, and sunflower oils. Accuracy, 1 = 100%. 
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identified these spectral features as a potential chemical fingerprint of 
edible oil types. It should be noted that our study did not use the SERS 
technique, which may provide a higher sensitivity and further improve 
the predictive model. Liquid interfacial SERS with gold nanoparticles 
has been previously reported to discriminate between edible oil types, 
oxidation state, and adulteration using a PCA model (Du et al., 2019). 
Another SERS study was able to quickly differentiae six types of edible 
oils (Vander Ende et al., 2019). However, the preparation and mainte
nance of surface-enhanced nanoparticles significantly reduced the 
throughput and increased the cost of the Raman analysis. Although the 
PCA model showed a difference in how oil types clustered in the 
resulting scores plots, no biological replicates were used for validating 
the accuracy of the developed models. 

Overall, our findings demonstrated the general utility of combining 
Raman spectroscopy with machine learning for the classification of 
edible oils. The machine learning models performed better than PCA in 
the classification of edible oil types by being faster, more accurate, and 
by providing a direct readout of group membership. Our Raman- 
machine learning method exhibited a comparable accuracy with the 
previously reported SERS-PCA model and with the machine learning 
model of fatty acid compositions described herein. Importantly, the 
Raman-machine learning method is faster and cheaper, and could be 
used to develop a rapid on-line or off-line analysis platform. 

3.5. Predicting adulterated edible oils by combining Raman spectroscopy 
with machine learning 

The high classification accuracies which were achieved by 
combining Raman spectroscopy with machine learning suggested the 
same approach would be amenable to detecting adulterated oils. Two 
adulteration models were selected to evaluate the utility of the Raman- 
machine learning approach to detect adulterated oils. Specifically, av
ocado oil was adulterated with canola oil; and olive oil was adulterated 
with soybean oil. The results of the machine learning models are sum
marized in Table 2A, which indicates that the LNR with L2 penalty was 
the best performing model for predicting avocado oil adulterated with 
canola oil with an R2 of 0.910. LNR with L2 penalty was the best model 
for predicting olive oil adulterated with soybean oil with an R2 of 0.984 
(Table 2B). Interestingly, the testing accuracies were higher for all 
models when predicting olive oil adulterated by soybean oil compared 
to the models predicting avocado oil adulterated with canola oil. 
Overall, the LNR with L2 penalty was identified as the best-performing 
machine learning algorithm for predicting the adulteration of edible oils 
based on Raman spectra. The regression for true values versus predicted 
values for the LNR with L2 penalty model is shown in S. Figure 7. 
Simply, a better convergence or smaller variance in the data was 
apparent when predicting olive oil adulterated by soybean oil. 
Furthermore, the mean squared prediction errors (MSPE) as shown in 
Tables 2A and B suggests the LNR with L2 penalty model converged 
better for the olive oil adulterated by soybean oil (i.e., 14.851) compared 
to the avocado oil adulterated by canola oil (i.e., 83.029). The 

incremental improvement in performance was likely attributed to a 
larger difference in the Raman spectra of the edible oils. For example, 
the difference (e.g., ΔI1260 ≈ 0.28) between the olive oil (I1260 ≈ 0.40) 
and soybean oil (I1260 ≈ 0.68) spectra was almost twice the difference (e. 
g., ΔI1260 ≈ 0.15) observed between the avocado oil (I1260 ≈ 0.40) and 
canola oil (I1260 ≈ 0.55) spectra. 

Recently, the identification of rainbow trout meat adulterated with 
Atlantic salmon meat was accomplished by combining Raman spec
troscopy with machine learning techniques (Chen, Wu, Xiang, Xu, & 
Tian, 2019). The mean squared prediction errors (MSPE) of the test 
dataset was 107.95 and the prediction accuracy (R2) was 0.87. These 
metrics are comparable to the outcomes from our predictive models, but 
we observed a higher prediction accuracy (R2 = 0.984) and lower MSPE 
(14.851). Also, the identification of oil adulterations has been achieved 
by a deep-learning coupling with GC-FID technique based on a 2-, 3- and 
4-way oil mixture model (Lim et al., 2020). For 3-way adulterated 
mixtures of groundnut oil, the authors observed a median absolute error 
between 1.2 and 0.95% for predicting both the major groundnut oil and 
the minor adulterant oil. The GC-FIDs were collected with an approxi
mate 50 min protocol, but in our approach both the Raman spectra and 
the predictions from the machine learning models are obtained within 
seconds (Tables 2A and B). Thus, our Raman-machine learning approach 
may greatly reduce the time and cost of an analysis of adulterated oils. 

3.6. Correlation between fatty acid composition and the Raman spectra of 
edible oils 

A correlation between fatty acid composition and the Raman spectra 
of various edible oils was also examined. The intensity of Raman spectral 
bands corresponding to specific fatty acid functional groups should be 
consistent with the fatty acid composition observed for each edible oil. 
Simply, as the fatty acid composition changes between the different oil 
types, a proportional change in the intensity of the corresponding 
Raman band should occur. The fatty acid composition of each oil type 
was accurately determined using GC-FID, thus, it should be feasible to 
correlate the known variation in fatty acid composition with the corre
sponding Raman spectrum. Pearson correlation coefficients (r) were 
calculated between each detected fatty acid and observed Raman band 
and then plotted as a heatmap with hierarchical clustering (Fig. 4). In 
this regard, highly variable fatty acids would be expected to correlate 
with highly variable Raman band intensities. 

As shown in Fig. 4, Raman bands associated with carbon double 
bonds (C––C) at 920, 965, 1260, 1653, and 3010 cm−1 were found to be 
positively correlated with unsaturated fatty acids such as C18:1 (r ≈

0.3), C18:2 (r ≈ 0.8), and C18:3 (r ≈ 0.5). Conversely, the C––C bond 
vibrations at 920, 965, 1260, 1653, and 3010 cm−1 were negatively 
correlated (r ≈ −0.5) with saturated fatty acids (C6:0 to C18:0). Pre
sumably, an increase in the proportion of saturated fatty acids led to a 
corresponding decrease in unsaturated fatty acids (C18:2 and C18:3), 
which, in turn, resulted in a reduction in the total amount of C––C bonds 
in the oils and a decrease in the intensity of the corresponding Raman 

Table 1C 
Classification of 8 types of edible oils with different brands by machine learning algorithms based on the Raman spectra.  

Methods PCA + MLR MLR with L1 
Penalty 

MLR with L2 
Penalty 

MLR with Elastic net 
Penalty 

PCA +
RF 

RF PCA +
Boosting 

Boosting 1D-CNN 

Machine 
learning        

Deep 
learning 

Training time 
(s) 

0.016  972.72  73.24  917.64  0.68  2.340  0.660  40.87  548.60 

Training 
accuracy 

0.904  0.996  1.000  0.954  1.000  1.000  1.000  1.000  0.625 

Testing 
accuracy 

0.829  0.900  0.892  0.863  0.967  0.929  0.858  0.758  0.621 

Note: 8 types of oils included canola, coconut, liquid coconut, corn, olive, peanut, soybean, and sunflower oils, but excluded avocado and grapeseed oils. Accuracy, 1 =
100%. 
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bands. Similarly, ester bands, including -C–O- at 1080 cm−1 (r ≈ 0.8) 
and -C––O at 1745 cm−1 (r ≈ 0.8), were mainly correlated with short to 
medium chain fatty acids in coconut oils, such as C8:0, C10:0, and 
C11:0. Presumably, the ester bands were more pronounced in the short 
to medium chain fatty acids because of the lower molecular mass, which 
simply led to a relative increment in the ester vibrations. The observed 
and expected correlation between Raman bands and functional groups 
within fatty acid molecules provided further evidence that a Raman 
spectrum can explain differences in fatty acid composition between 
edible oils. To the best of our knowledge, this is the first reported cor
relation between fatty acid composition and Raman spectra for a variety 

of edible oils. 

4. Conclusion 

We described a protocol that combined machine learning algorithms 
with Raman spectroscopy or fatty acid composition to characterize 
edible oils. Our method yielded a high accuracy in classifying edible oil 
types and, accordingly, is an effective means of detecting adulterated 
oils. Our approach is faster, more accurate, and provides a clear oil 
classification compared to standard PCA methods. The PCA with RF 
model was found to be the best performing machine learning algorithm 

Fig. 3. Classification confusion matrix of Raman spectra of 8 types of edible oils by machine learning models: (A) MLR with L1 penalty, (B) MLR with L2 penalty, (C) 
PCA + random forest (RF), (D) RF, and (E) representative top 10 variable (Raman shift cm−1) importance from RF. 
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Table 2A 
Machine learning for regression of avocado oil adulterated by canola oil.  

Methods PCA +
LNR 

LNR with L1 
Penalty 

LNR with L2 
Penalty 

LNR with Elastic net 
Penalty 

PLS 
Regression 

PCA + RF RF PCA +
Boosting 

Boosting 

Training time 
(s)  

0.005  4.775  0.022  4.145  4.854  0.831  0.252  0.097  4.762 

R2  0.993  0.997  0.997  0.990  1.000  0.988  0.986  1.000  1.000 
MSE  6.961  3.113  3.105  9.428  0.001  11.353  13.083  0.059  0.001 
Predicted R2  0.862  0.873  0.910  0.903  0.827  0.858  0.814  0.879  0.827 
MSPE  127.55  117.677  83.029  89.480  159.654  131.649  171.917  111.707  159.570 

Note: LNR (linear regression), PLS (partial least square), RF (random forest), MSE (mean squared error), MSPE (mean squared prediction error), R2 (coefficient of 
determination). 

Table 2B 
Machine learning for regression of olive oil adulterated by soybean oil.  

Methods PCA +
LNR 

LNR with L1 
Penalty 

LNR with L2 
Penalty 

LNR with Elastic net 
Penalty 

PLS 
Regression 

PCA +
RF 

RF PCA +
Boosting 

Boosting 

Training time 
(s)  

0.002  3.394  0.022  1.972  2.943  0.476  1.298  0.060  2.987 

R2  0.997  0.997  0.999  0.995  1.000  0.997  0.996  1.000  1.000 
MSE  2.357  2.448  0.883  4.474  0.001  3.147  3.393  0.056  0.001 
Predicted R2  0.984  0.975  0.984  0.974  0.954  0.963  0.959  0.966  0.954 
MSPE  15.089  22.722  14.851  24.237  42.986  34.535  38.021  31.535  42.666 

Note: LNR (linear regression), PLS (partial least square), RF (random forest), MSE (mean squared error), R2 (coefficient of determination). 

Fig. 4. Heatmap of pairwise Pearson correlation coefficients (r) between the proportion of fatty acid compositions and Raman spectra of edible oils.  
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for the classification of edible oils based on Raman spectra. Alterna
tively, the LNR with L2 penalty model was determined to be the best 
performing machine learning algorithm for predicting adulterated 
edible oils. Our approach may be used to establish rapid on-line or off- 
line platforms for the analysis of edible oils or other food contami
nants. Overall, our study demonstrated the potential and value of ma
chine learning assisted Raman spectra analysis for the rapid 
authentication and detection of contaminants in food products, or 
identification of origin of agricultural products based on their chemical 
compositions. 
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