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a b s t r a c t 

Understanding bubble dynamics during boiling is challenging due to the drastic changes in system param- 

eters, such as nucleation, bubble morphology, temperature, and pressure. In this study, principal compo- 

nent analysis (PCA), an unsupervised dimensionality reduction algorithm, is used to extract new physical 

descriptors of boiling heat transfer from pool boiling experimental images without labeling and train- 

ing. The dominant frequency and amplitude of the time-series principal components (PCs) are analyzed, 

where the first few dominant PCs are used to approximate the instantaneous bubble morphologies, dras- 

tically reducing the data dimensions. The results show that the dominant frequency and amplitude can 

be used as new physical descriptors to distinguish different boiling regimes. The dominant frequency of 

the first PC is found to increase with heat flux in the discrete bubble regime until it reaches a peak and 

then decreases with heat flux in the bubble interference and coalescence regime, where the former is 

believed to be associated with the increase in bubble nucleation sites and the latter is associated with 

the bubble coalescence during pool boiling. The dominant frequency and amplitude extracted from the 

present unsupervised learning are qualitatively compared to the bubble count and size extracted from a 

supervised deep-learning algorithm, and the approach appears highly robust over multiple datasets and 

heater surfaces. To predict future boiling states for mitigating boiling crises, bidirectional long short-term 

memory (BiLSTM) neural network is used to estimate the future variations of PCs and hence the bubble 

dynamics, from time-series PCs. The PCA-BiLSTM models predict reduced-order bubble images well and 

show significantly higher prediction accuracy compared to the Convolutional-LSTM. 

© 2021 Elsevier Ltd. All rights reserved. 
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. Introduction 

Boiling is an important heat transfer process in thermoelectric 

ower plants [1] , water purification [2] , refrigeration and air con- 

itioning [3] , thermal management of high-performance electron- 

cs [ 4 , 5 ], data centers [6] , nuclear reactors [7] , and other energy-

ntensive industrial processes. Boiling is a stochastic process de- 

endent on parameters such as the heater surface superheat, wet- 

ability and roughness, dissolved gas concentration, working fluid 

ubcooling, operating pressure, and heating patterns. The high heat 

ransfer rate in the nucleate boiling (NB) regime is bound by its 

pper limit, the critical heat flux (CHF), where an insulating stable 

apor layer blankets the entire heater surface and restricts the heat 

issipation, leading to a rapid rise in the heater surface tempera- 

ure above its design limit and causing catastrophic damage to the 

ystem, known as the boiling crisis. 
∗ Corresponding author. 

E-mail address: ys347@drexel.edu (Y. Sun). 
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Several mechanisms have been proposed to understand the 

HF, including the hydrodynamic instabilities [ 8 , 9 ] and the near- 

urface phenomena [10] , such as surface wettability [11–13] and 

ickability [14–18] , vapor recoil-induced contact angle change 

 19 , 20 ], bubble growth time and departure frequency [ 21 , 22 ], con-

act line density [23] , and continuum percolation based on near- 

all stochasticity [24] . One of the biggest challenges facing boil- 

ng heat transfer is the precursor mechanism that triggers the CHF, 

hich has remained elusive despite extensive research over the 

ast several decades [25–27] . Complex bubble dynamics and their 

orrelation to the heat flux are crucial for a better understanding 

f boiling mechanisms, thus, to accurately predict CHF and its en- 

ancement. Existing analytical and computational methods to pre- 

ict the boiling process or estimate the heat flux are either com- 

utationally expensive or lack accuracy due to the chaotic nature 

f the boiling process [28–30] . Presently, boiling heat transfer still 

equires experimental measurements and correlations to estimate 

eat fluxes, especially the CHF [31] . However, the majority of the 

orrelations differ from each other and are often specific to the 

https://doi.org/10.1016/j.ijheatmasstransfer.2021.122501
http://www.ScienceDirect.com
http://www.elsevier.com/locate/hmt
http://crossmark.crossref.org/dialog/?doi=10.1016/j.ijheatmasstransfer.2021.122501&domain=pdf
mailto:ys347@drexel.edu
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eater surfaces and operating conditions [32–35] . Thus, there is a 

ack of a general model to predict CHF irrespective of working flu- 

ds, operating conditions, and heater surfaces. Due to the highly 

npredictable nature of CHF [36] , the common practice to avoid 

he boiling crisis is to operate the system well below the CHF limit 

 37 , 38 ]. Current sensor-based approaches can only identify boiling 

rises a posteriori, leading to overheating and system failures. Ac- 

urate real-time prediction of CHF enables reliable near-CHF op- 

rations and hence increases the energy efficiency of boiling pro- 

esses. 

Machine learning (ML) has been applied to boiling studies in 

ecent years, from detecting flow boiling regimes, the onset of 

lm boiling, CHF, and departure from nucleate boiling, to esti- 

ating boiling heat flux, heat transfer coefficient, nucleation site 

ensity, and bubble statistics [39–55] . The supervised learning ap- 

roaches in the past have used artificial neural networks (ANN) 

 42 , 44 , 4 8 , 4 9 , 51-55 ], support vector machines (SVM) [39] , and con-

olutional neural networks (CNN) [ 40 , 41 , 43 , 45 , 46 ] to perform boil-

ng image classification based on boiling regimes. The use of un- 

upervised learning approaches such as principal component anal- 

sis [ 39 , 41 , 45 ] has been limited to performing data-driven cluster-

ng of boiling images based on boiling regimes, however, the re- 

ults showed a lack of interpretability. Suh et al. [43] used hybrid 

eep learning models to replace image analysis to extract features, 

uch as bubble size and counts, and to correlate high-resolution 

ubble dynamics with the associated boiling curves. Ravichandran 

nd Bucci quantified the bubble growth time, departure frequency, 

nd nucleation site density using a single layer, feed-forward ANN, 

rained using high-speed infrared (IR) data from pool boiling ex- 

eriments of water on plain and nanostructured surfaces [42] and 

emonstrated that boiling is a near-wall phenomenon where sur- 

ace wickability modifies bubble dynamics [44] . Sinha et al. used 

he acoustic emission (AE) spectrograms to train a CNN model that 

an predict the boiling regimes despite the variations in boiling 

urfaces, working fluids, and heating strategies [46] , where a shift 

n the peak frequency occurs when the boiling regime transitions 

rom NB to CHF. Recently, we have used transfer learning (TL) to 

ncrease the generality of the deep learning (DL) model [45] to suc- 

essfully predict boiling regimes on cross-domain datasets. 

Data-driven DL approach has been heralded as an alternative 

o the conventional physics-based approach, but so far, its success 

as been mainly limited to diagnostic and prognostic purposes. 

he possibility of using deep neural networks trained using exper- 

mental and/or computational data to either extract, explain, or in- 

er (or all three together) some form of physical understanding of 

he complex boiling heat transfer phenomena albeit very promis- 

ng, the amount of progress in terms of applying DL to obtain in- 

erpretable physical and mathematical insights has been limited. 

oreover, the use of DL beyond the task of classification has also 

ot been fully explored in past studies. 

Principal component analysis (PCA) is an unsupervised dimen- 

ionality reduction algorithm to describe correlations in high- 

imensional data [56] and can be used as a versatile tool to de- 

ermine low-dimensional representations of high-dimensional im- 

ges while extracting dominant variations and patterns. PCA shows 

romise in complex fluid systems, weather prediction, turbulence 

odeling, and computer vision applications [57–62] . Recently, PCA 

as been used to extract vortex shedding frequency and domi- 

ant modes using correlations between purely visualization-based 

mages and particle image velocimetry (PIV) measurements [63] . 

n the present study, PCA is used to extract dominant low- 

imensional features from in-house pool boiling experimental im- 

ges to obtain physically interpretable descriptors of bubble dy- 

amics versus heat flux in boiling heat transfer processes. 

Fig. 1 shows the schematic of recently reported supervised 

43] (top row) and current unsupervised (bottom row) ML ap- 
2 
roaches of determining physically interpretable descriptors gov- 

rning the bubble dynamics. The supervised approach is an image 

egmentation-based ML (e. g., Mask R-CNN [43] ) which extracts 

ubble statistics (e.g., bubble size and count) based on manual tag- 

ing of bubble size and count, where each image is labeled with its 

ssociated heat flux value. The manual tagging involved with the 

upervised ML of the training datasets leads to potential human 

rrors especially for boiling images with vigorous bubble inter- 

erence and coalescence events occurring at higher heat flux val- 

es. Our unsupervised, PCA-based ML approach works by separat- 

ng the significant features from the insignificant parts such as the 

eater and stationary bubbles in each image, thereby enabling di- 

ect quantification of bubble dynamics related descriptors such as 

ominant frequency and amplitude of principal components (PCs) 

ersus heat flux, independent of the vigorous bubble interference 

nd coalescence events. Additionally, the results obtained from PCA 

an be interpreted easily and qualitatively explained based on the 

ubble morphologies and show higher accuracy when compared 

ith the state-of-the-art image segmentation-based ML, such as 

ask R-CNN, thereby providing a robust unsupervised ML tool for 

nalyzing two-phase heat transfer processes. 

Early detection of boiling crises is crucial for safety protocols 

uch as heater shut-off and coolant pump activation in thermal 

ower systems such as high-pressure boilers and nuclear reac- 

ors, where the total duration of prediction is important to activate 

oiling crisis mitigation strategies. Image-based recurrent neural 

etworks, such as Convolutional-Long Short-Term Memory (Conv- 

STM), that are trained on recognizing time-dependent patterns in 

ata have been proposed in the past to predict future events, al- 

eit with limited success due to such methods being inadequate 

o filter significant features from insignificant ones that contribute 

o prediction errors. Due to the prediction errors, Conv-LSTM has 

een successful only in predicting a few future image frames [64] . 

n general, convolution-based models tend to focus on spatial ap- 

earances and are weak in predicting long-term temporal depen- 

ency [ 65 , 66 ]. To enable fast and accurate real-time prediction of 

uture bubble dynamics, a bidirectional long short-term memory 

BiLSTM) model is trained in this study using reduced-order repre- 

entations of the bubble morphology. As shown in Fig. 2 , the first 

ew PCs versus time data are used to train the BiLSTM DL model 

nd the predicted future PC variations are used to reconstruct the 

educed-order bubble images. The BiLSTM network, with the abil- 

ty to recognize patterns in sequential data which are then used 

o predict the future instances [67–71] , has been implemented to 

econstruct unsteady [70] and turbulent flows [ 68 , 69 ], as well as

ast prediction of accidents in nuclear power plants, based on sim- 

lated data [72] . 

In this study, PCA is used to extract new physical descriptors 

rom reduced-order representations of the pool boiling images. The 

st PC versus time data is analyzed using fast-Fourier transform 

FFT) to extract dominant frequencies and amplitude versus heat 

ux values. The frequency and amplitude results obtained from the 

nsupervised PCA approach are then qualitatively compared to the 

ubble count and size results obtained from the supervised im- 

ge segmentation ML algorithm, Mask R-CNN. Next, an effort is 

ade to physically interpret the unsupervised ML results for dif- 

erent boiling regimes by analyzing the trends seen in dominant 

requency and amplitude versus heat flux data. The robustness of 

he PCA approach is verified on datasets obtained from multiple 

omains (pool boiling images from in-house experiments and pub- 

icly available YouTube videos) where the dominant frequency and 

mplitude trends are used to distinguish the CHF regime from the 

B regime. Separately, the time-dependent PCs are used as inputs 

or the BiLSTM ML network to predict future PC versus time data 

hich are then reconstructed into reduced-order bubble images 

nd the PCA-BiLSTM performance is compared with Conv-LSTM 
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Fig. 1. Comparison of a supervised ML approach to extract bubble statistics and the current unsupervised ML approach to extract physically interpretable descriptors from 

reduced-order bubble dynamics, at different heat loads. Here, q ′′ , PC1, FFT, f , D f , A , and D a are heat flux, 1st principal component, fast Fourier transform, frequency, dominant 

frequency, amplitude, and dominant amplitude, respectively. 

Fig. 2. Schematics of PCA-BiLSTM framework for predicting future reduced-order bubble images. The bubble morphologies for a range of heat fluxes are analyzed using PCA 

to reduce the dimensionality. The time-series of PCs from reduced-order modeling is fed to the BiLSTM DL network to predict the future time-series of PCs which are then 

used to reconstruct bubble morphologies. The flowchart of the top panel illustrates the PCA-BiLSTM approach: PCA reduces the order of boiling images for t < t o , BiLSTM 

takes the output from PCA to learn and predict the reduced-order PCs for t > t o , and the predicted reduced-order PCs are used for future prediction of bubble morphologies. 
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hich uses full-resolution images. Finally, we show that the cur- 

ent PCA-BiLSTM approach can successfully predict future reduced- 

rder bubble images with as few as 10 PCs in comparison to the 

onv-LSTM which requires full-resolution images containing mil- 

ions of pixels, thereby enabling future developments into fast and 

eal-time DL prediction tools. 

. Methods and procedures 

.1. Pool boiling experiments 

The in-house pool boiling experiments were performed on a 

lain square copper heater with a surface area of 100 mm 
2 , and 

ater was used as the working fluid. The heater surface was pol- 
3 
shed with 320-grit sandpaper followed by 600-grit sandpaper 

rior to experiments. The boiling images were captured using a 

igh-speed camera (Phantom VEO-710) at 10 0 0 fps with a reso- 

ution of 1280 × 800 for a range of steady-state heat fluxes from 

.9 W/cm 
2 to 109.9 W/cm 

2 and at CHF. All experiments were per- 

ormed at steady-state conditions under an ambient pressure of 1 

tm. T-type thermocouples were used for temperature measure- 

ents, which leads to heat flux calculations. A pool boiling ex- 

eriment was also performed using a transient heat load where 

he heat flux was increased from 22.1 W/cm 
2 to 53.1 W/cm 

2 over 

 period of 50 s and the corresponding bubble images were cap- 

ured at 500 fps with a resolution of 600 × 832. A total of 25,0 0 0

rames corresponding to 50 s data was captured for the study. 

part from the plain copper surface, in-house pool boiling experi- 
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ents were also performed on copper foam surface fabricated via 

athodic electrodeposition with a deposition time of 360 s. Addi- 

ionally, publicly available pool boiling videos [73] were also used 

o verify the robustness of the current ML method. Pool boiling 

ideos from YouTube contain bubble visualizations for a range of 

eat fluxes, from 0.5 W/cm 
2 to 100 W/cm 

2 , and CHF. The YouTube 

ideos also contain bubble visualizations for different heater sur- 

aces, such as microporous coated copper heater and plain copper 

eater. The square heaters had a surface area of 100 mm 
2 , and 

ater was used as the working fluid. The resolution of the video 

rames was 512 × 480 with a frame rate of 20 0 0 fps [74] . 

.2. PCA of pool boiling images 

PCA is a widely used [57–62] statistical dimensionality reduc- 

ion technique [75] . The essence of PCA is to transform the data 

o new orthogonal coordinate systems, where the first new co- 

rdinate axis represents the largest variance in the original data, 

he second axis represents the second largest variance, and so on. 

or original data, consisting of p variables and n observations, p 

ew coordinate axes can be constructed. The first few coordinate 

xes encode the most significant variances or features of the origi- 

al data, whereas the latter ones correspond to noises/insignificant 

ariances. In short, PCA transforms a set of correlated variables into 

 small set of uncorrelated variables, named principal components 

PCs). Consider a dataset X of size p × n , consisting of p variables

nd n observations. For a sequence of images captured during a 

ool boiling experiment, p is the total number of pixels of each im- 

ge and n is the total number of images. For example, for a frame

ate of 10 0 0 frames per second (fps), images acquired over 5 s lead

o n = 50 0 0. The mean value of each row in X is calculated as,

¯ i = 
1 
n 

n ∑ 

j=1 

X i j , where i = 1, 2, 3, …, p . The mean matrix X̄ = x̄ Q ,

here x̄ has a size of p × 1 with elements x̄ i and Q is 1 × n with

ll elements of 1. The mean-subtracted matrix B = X − X̄ and its 

ranspose A = B T of size n × p can be decomposed as A = U 

∑ 

V T 

sing the singular value decomposition (SVD) technique [76] . Here, 

 and V are unitary matrices ( U 
T U = U U 

T = I and V T V = V V T = I)

f size n × n and p × p, respectively. The columns of V are the 

igenvectors of the covariance matrix, C = A 
T A , and 

∑ 

is the rect- 

ngular diagonal matrix of size n × p, containing eigenvalues of C 

n descending order. The PCs, T , are the projection of A onto the 

igenvectors, V , such that T = AV . The entire dataset consists of 

 number of PCs, but the high-dimensional dataset can be repre- 

ented using the first q PCs where q << p. Then, the first q number

f PCs are calculated using, T q = A V q , where T q , A , and V q are ma-

rices of size n × q , n × p, and p × q . For example, when q = 5, T 5 
s a matrix of size n × 5 consisting of the first 5 PCs. The original

ata, X , can then be approximated in a reduced-order form, X R , 

sing the first q PCs, T q , as X R = A 
T 
R + ̄X , where A R = T q V 

T 
q since V q 

s a unitary matrix. Each column within the original data and its 

educed-order representation correspond to an image at a given 

ime t , and hence the time-series of the reduced-order data can be 

xpressed as X R (t) = A R 
T (t) + ̄X . 

In this study, PCA was performed on pool boiling images. In- 

ividual frames were extracted from the videos captured during 

he in-house pool boiling experiments and using MATLAB code via 

he VideoReader and imwrite functions for the publicly available 

ouTube videos [73] . Duplicate frames during the extraction pro- 

ess from the YouTube videos were removed by calculating the rel- 

tive difference using the Structural Similarity Index (SSIM), where 

onsecutive images with a relative difference of less than 0.03% 

ere removed. Time-series PCs were calculated from the sequen- 

ial images. Fig. 3 a shows a boiling image taken from an in-house 

ool boiling experiment at CHF with a resolution of 1280 × 800, 

r 1024,0 0 0 components, as well as the reconstructed images us- 
4 
ng the first 1, 5, 10, 50, and 100 PCs. The images reconstructed 

rom the first ten and more PCs can capture well the bubble shape 

nd position, key information for extracting the bubble dynamics. 

ig. 3 b shows the percentage of explained variance with respect to 

he rank of the PCs, where 20% of variances are captured by the 

st PC, 16% of variances are captured by the 2nd PC, and so on. 

igher rank PCs capture only a small number of variances; for ex- 

mple, PC 10 and higher ones only capture variances. The variables 

o represent bubble morphologies can be reduced from 1024,0 0 0 

o 10, which is advantageous when dealing with a large number of 

ime-series data or for high-speed dynamical systems. To encode 

he dynamic nature of bubble morphologies, time-series PCs were 

alculated using boiling images captured at 10 0 0 fps. The first 10 

Cs were found to contain 70.7% of cumulative explained variance 

ertaining to the bubble shape and position, and were hence cal- 

ulated for the time-series data. Fig. 3 c shows the variation of PC1 

black), PC3 (blue), and PC5 (red) versus time. 

.3. PCA-BiLSTM for future prediction 

Long Short-Term Memory (LSTM), a type of Recurrent Neural 

etwork (RNN) [77] specialized to process sequential data, is ca- 

able of learning long-term temporal dependencies [78–81] . The 

ajor advantage of LSTM is its ability to handle gradient explosion 

r disappearance issues [82] . Fig. 4 a shows a representative LSTM 

nit with four interacting neural network layers, 3 sigmoid and 1 

yperbolic tangent (tanh) dense layer. The current timestep takes 

he input data and information from the previous timestep and cal- 

ulates the output and information for the next timestep. LSTM has 

he unique ability to remove or add information to the cell state, 

, through the well-structured forget and input gates, which con- 

ist of interacting neural network layers. As shown in Fig. 4 a, σ is 

he sigmoid layer, where the output varies between 0 and 1, which 

cts as a memory to forget or remember, respectively. The forget 

ate of the LSTM unit takes the hidden state from the previous 

imestep, h t−1 , and the input data for the current timestep, x t , and 

utputs a value between 0 and 1. The output from the forget gate 

s multiplied with the cell state from the previous timestep, C t−1 , 

o remove less relevant information. The input gate decides which 

nformation to be stored in the cell state. The multiplication of the 

utputs from the sigmoid and tanh layers is added to the cell state. 

he cell state, C, undergoes removal and addition of information 

nd thus holds the long-term dependencies and solves the gradi- 

nt explosion or disappearance issue. Here, C t−1 is the cell state 

rom the previous timestep and C t is the updated cell state from 

he current timestep. The output gate takes the tanh of cell state, 

 t , and multiplies it with the output from the sigmoid layer to get 

he output of the current timestep, h t , which acts as the hidden 

tate for the next timestep. As shown in Fig. 4 b, Bidirectional LSTM 

BiL STM) [ 83 , 84 ] has two L STM networks. One is forward and the

ther is backward direction, as compared to the traditional LSTM 

here the flow of information is only forward. Bidirectional LSTM 

as shown improved accuracy for language processing and other 

elated applications [85–88] . In the current study, both LSTM and 

iLSTM have been tested and BiLSTM was found to reduce the er- 

or in future prediction by 15% over the traditional LSTM, as shown 

n Appendix A . 

A Bidirectional LSTM (BiLSTM) model was trained in this study 

o predict bubble morphologies for pool boiling using the first 

0 PCs of the time-series data, extracted using PCA. Out of the 

otal 4,040 ms PC versus time data, the initial 70% data (0 ms 

o 2,828 ms) was used for training and the remaining 30% data 

2,829 ms to 4,040 ms) was used for testing. The entire training 

ataset consists of several clusters, where each cluster has 300 ms 

f sequential data points (200 ms input and 100 ms output). The 

umber of time-series clusters was determined from the 2,828 ms 
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Fig. 3. (a) Original image with a resolution of 1280 × 80 0 (1024,0 0 0 components) and reconstructed images using first 1, 5, 10, 50, and 100 principal components, respec- 

tively. (b) Percentage of explained variances captured by the principal components. (c) Time-series principal components (1st, 3rd, and 5th PCs), shown for first 0.5 s. 

Fig. 4. (a) LSTM architecture with forget, input, and output gates marked with red, blue, and purple colors, where the current timestep takes the input data ( x t ) and 

information from previous timestep ( C t−1 , h t−1 ) and calculates the output ( h t ) and information for the next timestep ( C t , h t ). (b) LSTM and Bidirectional LSTM architectures. 

5 
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Fig. 5. RMSE value with respect to (a) Gap size (70 LSTM units and 100 epochs) (b) LSTM units (5 gap size and 100 epochs) (c) Epoch, (5 gap size and 70 LSTM units) 

calculated between true and prediction from the testing dataset. 

Table 1 

Hyperparameters used in the BiLSTM model. 

Parameter Type/Value 

Optimizer Adam 

Learning rate 0.001 

Activation Sigmoid 

Regularization Dropout 

Loss function Mean square error 

Batch size 1 

Validation split 0.05 

Epoch 100 
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Table 2 

Model summary of the BiLSTM model. 

Type of layer Output shape Parameters 

BiLSTM_1 (None, 200, 70) 40,320 

Dropout_1 (None, 200, 70) 0 

BiLSTM_2 (None, 200, 70) 78,960 

Dropout_2 (None, 200, 70) 0 

BiLSTM_3 (None, 200, 70) 78,960 

Dropout_3 (None, 200, 70) 0 

BiLSTM_4 (None, 70) 78,960 

Dropout_4 (None, 70) 0 

Dense (None, 100) 7100 

l

t

s  

a
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w

r

p

3

i
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i

P
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l

a

f training data, depending on the shifting gap. The first cluster 

sed the PC1 data from 0 ms to 200 ms as input and predicted

he PC1 data from 201 ms to 300 ms as output. For a shifting gap

f 5 ms, the second cluster used the PC1 data from 6 ms to 205 ms

s input and predicted the PC1 data from 206 ms to 305 ms, con- 

equently, a total of 506 clusters were used to train the BiLSTM 

odel. The gap size, LSTM units, and epoch of 5, 70, and 100 were

elected for the current DL model training from a parameter space 

f gap size (1, 5, 10, 15, and 30), LSTM units (10, 30, 50, 70, and

00), and epoch (50, 10 0, 20 0, 30 0, and 50 0) based on the mini-

um root mean square error (RMSE) value over 10 trials, between 

rue and predicted PC versus time from the testing data, as shown 

n Fig. 5 . Table 1 shows the hyperparameters used in the BiLSTM 

odel training and Table 2 summarizes the BiLSTM model archi- 

ecture, where the total number of learnable parameters is 78,960. 

he padding was activated with 1 stride and Sigmoid was selected 

or activation function. A total of 4 LSTM layers were used, where 

ach layer had 70 units. Each LSTM layer had recurrent activation 

unction followed by a dropout layer with a recurrent dropout of 

.2. The dropout layer turns off 20% of the neurons and is crucial 

or model generalization. To quantify the stochasticity associated 

ith the DL models, a total of 10 models were trained for each 

ime-series PC data and the best model was selected after calcu- 
6 
ating the RMSE value between true and prediction PC values from 

he testing dataset. The trained BiLSTM DL model framework is 

hown in Fig. 6 , where 2827 ms to 3027 ms of PC1 data was used

s input to predict 3027 ms to 3127 ms of future PC1 data. The 

redicted PC1 was compared to the true PC1, as shown in Fig. 6 ,

here blue and red symbols correspond to true and predicted PC1, 

espectively. The results show good agreement between true and 

redicted PC1. 

. Results and discussion 

In this section, PCA and PCA-BiLSTM are examined for extract- 

ng new physical descriptors of boiling regimes and future bub- 

le dynamics predictions, respectively. Section 3.1 presents newly 

dentified physical descriptors of boiling regimes obtained using 

CA, compared against the conventional descriptors, bubble size 

nd count, obtained using Mark R-CNN, a supervised learning ap- 

roach. The robustness of the PCA method is demonstrated by ana- 

yzing boiling images from both in-house pool boiling experiments 

nd publicly available datasets. Sections 3.2 and 3.3 examine PCA- 
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Fig. 6. The framework of the trained BiLSTM model for predicting the PC1. 

Fig. 7. (a) Representative bubble images for a range of heat fluxes during pool boiling, where discrete bubbles are observed for heat flux ≤ 6.5 W/cm 
2 and vigorous bubble 

coalescence for heat flux > 6.5 W/cm 
2 within the nucleate boiling regime (b) Time-series 1st principal component, PC1 and (c) Fast Fourier Transform (FFT) of PC1 for five 

different heat fluxes, 2.9, 6.5, 43.6, 90.9 W/cm 
2 , and CHF for pool boiling on a plain Cu heater. (d) The dominant frequency of PC1, D f , for a range of heat fluxes, 2.9 W/cm 

2 

to CHF. 
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iLSTM for the prediction of future boiling frames with a predic- 

ion window of 100 ms for steady-state boiling and 60 ms for tran- 

ient boiling, respectively. Additionally, the results of transient boil- 

ng from PCA-BiLSTM are compared against Conv-LSTM, a widely 

sed next-frame prediction algorithm. 

.1. Extraction of new physical descriptors of bubble dynamics using 

CA 

The PCs of a representative boiling image sequence are ana- 

yzed here to extract new physical descriptors of bubble dynam- 

cs. Fig. 7 a shows representative bubble images for heat flux val- 

es of 2.9, 6.5, 43.6, 90.9 W/cm 
2 , and CHF, respectively. Discrete 

ubbles (DB) for heat flux ≤ 6.5 W/cm 
2 , and bubble coalescence 

nd interference (BIC) for heat flux > 6.5 W/cm 
2 , were observed 

ithin the nucleate boiling regime. Fig. 7 b shows PC1 versus time 

nd Fig. 7 c shows the Fast Fourier Transform (FFT) of PC1 versus 

requency for heat flux values of 2.9, 6.5, 43.6, 90.9 W/cm 
2 , and 

HF, respectively. The amplitude of PC1 varies with frequency at 

ll heat fluxes considered, as shown in Fig. 7 c, and the dominant 

requency of PC1, marked with colored circles, is dependent on the 

eat flux. The dominant frequency, D f , varies from 6 to 16 Hz for 
7 
he heat flux values of 2.9, 6.5, 43.6, 90.9 W/cm 
2 , and CHF, respec-

ively. Fig. 7 d shows the dominant frequency, D f , for a range of 

eat fluxes, 2.9 W/cm 
2 to CHF, where the dependence of D f on 

eat flux is obvious. 

To examine the capability of PCA for extracting new physical 

escriptors from time-series bubble images, Fig. 8 compares the re- 

ults of PCA against those of Mask R-CNN, a supervised model that 

as trained to extract the bubble count and size from boiling im- 

ges of various heat flux values. Mask R-CNN is an image segmen- 

ation model [89] and has been used in the past to extract bubble 

tatistics during pool boiling [43] and to locate and measure more 

han 95% of the bubbles in complex two-phase flows [90] . As a su-

ervised ML model, Mask R-CNN requires manual labeling of data, 

uch as defining the bubble boundaries and numbers, which was 

one using in-house MATLAB code in the present study. A total of 

5 images, taken from a heat flux range of 2.9 W/cm 
2 to CHF, are

sed during the training process. Image augmentation technique of 

ipping, resizing, rotating and Gaussian white noises addition was 

pplied to 50% of the images that are randomly chosen from the 

ataset to avoid overfitting. The model was trained with a learning 

ate of 0.001, and up to 600 epochs. 
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Fig. 8. A qualitative comparison of the results obtained from the supervised Mask R-CNN and the unsupervised PCA approach, for the in-house boiling dataset. (a-b, d -e) 

Bubble count and size calculated using Mask R-CNN with increasing heat flux where (a, d) correspond to in-house plain copper heater surface and (b, e) correspond to 

copper foam heater surface, respectively. (a-b) show the average bubble count increases in DB regime and decreases in the BIC regime. (d-e) show the average bubble size 

increases steadily with heat flux. The open and closed symbols in (a-b, d -e) correspond to the training and testing data, respectively. The red symbols correspond to the CHF 

regime. (c, f) New physical descriptors from the PCA method where (c) the dominant frequency, D f , increases in the DB regime and then decreases in the BIC regime and 

(f) the amplitude of dominant frequency, D a , increases steadily with heat flux. The circle and triangle symbols in (c, f) correspond to plain copper and copper foam surfaces, 

respectively. The error bars represent the standard deviation. 
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Figs. 8 a and 8 b show the bubble count measured using the su-

ervised Mask R-CNN model for in-house boiling experiments per- 

ormed on plain Cu and Cu foam surfaces, respectively. Figs. 8 d and 

 e show the bubble size measured using the same Mask R-CNN 

odel for the same in-house experiments. The bubble count shows 

n increasing trend within the DB regime until reaching a peak 

nd then steadily decreases when the bubbles start to interfere 

nd coalesce with each other. However, the bubble size shows a 

teadily increasing trend, where bubble images at higher heat flux 

esult in large standard deviations due to difficulties in the Mask 

-CNN’s manual bubble tagging task. The difficulty in manual tag- 

ing arises due to vigorous bubble coalescence events and inability 

o accurately segment each individual bubble. The observed trends 

re consistent with studies that used the Mask R-CNN method to 

xtract bubble count and size [43] . It is noted that the differences 

etween the bubble count/size of CHF and pre-CHF regimes are 

ithin the error bars of the analyzed quantities. As such, the bub- 

le count and size are not sufficient to be used as an indicator of 

he CHF regime and a more robust indicator is in need for reliable 

oiling crisis detection. 

Figs. 8 c and 8 f show the new physical descriptors, viz.: the 

ominant frequency, D f , and amplitude, D a , extracted using the 

CA method, with circle and triangle symbols corresponding to 

lain Cu and Cu foam surfaces, respectively. The standard devia- 

ions in D f and D a at each heat flux are calculated using 10 sub- 

ets, each containing 0.5 s images at 10 0 0 fps, from a total of 50 0 0

mages. The dominant frequency increases within the DB regime 

ntil reaching a peak and then decreases steadily as the heat flux 

s increased within the BIC regime. Surprisingly, the CHF dataset 

hows a significantly higher dominant frequency, D f , compared to 

he near CHF datasets. The red symbols in Fig. 8 correspond to CHF 

egime. In contrast, the CHF dataset showed a significantly lower 
8 
mplitude, D a , compared to the near CHF datasets. Differences in 

ubble dynamics were observed at heat flux values below the CHF 

oint and at the CHF (see SI [91] for videos): (i) the time taken 

or the bubble to grow and depart from the heater surface is much 

educed for CHF compared to pre-CHF, resulting in a dominant fre- 

uency increase at CHF than pre-CHF ( Fig. 8 c), (ii) the bubble size

t CHF is smaller than pre-CHF, demonstrated by a clear decrease 

n amplitude of the dominant frequency ( Fig. 8 f). The same behav- 

or cannot be distinctly observed in Mask R-CNN’s average bubble 

ize results due to its challenge at capturing bubble statistics when 

he bubble morphology is complex and chaotic. Based on the ob- 

ious changes in D f and D a values for bubble images before CHF 

nd at CHF, these two new physical descriptors can be utilized as 

xcellent indicators of the boiling crisis. 

A qualitative comparison of the results obtained from the super- 

ised Mask R-CNN and the unsupervised PCA approach reveals sev- 

ral similarities, viz., (a) the increasing trend of the bubble count 

nd D f within the DB regime and their steady decrease within the 

IC regime and (b) the increasing trend of the bubble size and D a 

ithin the DB and BIC regimes. The above similarities suggest that 

i) the bubble count and the dominant frequency and (ii) the bub- 

le size and the amplitude could be related to each other. Based 

n the above observations, it is reasonable to interpret that the 

CA results encode the bubble count and size information found 

n the boiling images. Even though the bubble count and size ex- 

racted from Mask R-CNN versus heat flux trends show measurable 

ifferences in the DB and BIC regime, their values are unreliable 

hen the task is to distinguish the BIC and CHF regimes. The PCA 

pproach does not need any human supervision (no data labeling, 

ubble tagging, etc.) and shows clear dominant frequency trends 

t DB, BIC, and CHF regimes, and the new physical descriptors at 

ifferent heat flux values can then be used to determine the boil- 
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Fig. 9. A qualitative comparison of the results obtained from the supervised Mask R-CNN and the unsupervised PCA approach, for publicly available dataset [73] . (a-b, d -e) 

Bubble count and size calculated using Mask R-CNN with increasing heat flux where (a, d) correspond to plain copper heater surface and (b, e) correspond to microporous 

coated copper heater surface, respectively. (a-b) show the average bubble count increases in DB regime and decreases in the BIC regime. (d-e) show the average bubble size 

increases steadily with heat flux. The open and closed symbols in (a-b, d -e) correspond to the training and testing data, respectively. The red symbols correspond to the CHF 

regime. (c, f) New physical descriptors from PCA method where (c) the dominant frequency, D f , increases in the DB regime and then decreases in the BIC regime and (f) the 

amplitude of dominant frequency, D a , increases steadily with heat flux. The diamond and square symbols in (c, f) correspond to plain copper and microporous coated copper 

surfaces, respectively. The error bars in (a-b, d -e) represent the standard deviation, however, standard deviations are not shown in PCA results (c, f) due to a limited number 

of images available in public dataset [73] . 
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ng regimes of the bubble images with much higher accuracy com- 

ared to the bubble count and size. 

To examine the robustness of the PCA approach on datasets 

rom various domains, we applied the PCA approach on a publicly 

vailable dataset [73] to verify the new physical descriptors en- 

oded by PCA, and obtained consistent results. Fig. 9 compares the 

ubble count and size of publicly available boiling datasets [73] , 

ith Figs. 9 a and 9 d for a plain Cu heater surface and Figs. 9 b

nd 9 e for a microporous coated Cu heater surface, respectively. 

ig. 9 c shows the dominant frequency, D f , and its associated am- 

litude, D a , is in Fig. 9 f. Figs. 9 a-b and 9d-e show the average bub-

le count and average bubble size at different heat fluxes, respec- 

ively. The average bubble count and dominant frequency exhibit 

n increasing-decreasing trend, while average bubble size and am- 

litude show an increasing trend as heat flux increases. The re- 

ults also show that the behaviors of D f and D a when the heat 

ux reaches the CHF point are consistent with the ones shown in 

igs. 8 c and 8 f, respectively. The red symbols in Fig. 9 correspond

o the CHF regime. Based on the above findings, the results from 

he PCA approach show that the unsupervised ML method can 

ncode the bubble morphologies directly from the images, such 

hat the PCA results can be successfully interpreted. The results 

rom the PCA approach can also be used to detect the transition 

rom DB to BIC and BIC to CHF, with minimal human supervi- 

ion, using the trends of dominant frequency and its associated 

mplitude. 

.2. Future boiling image prediction using PCA-BiLSTM: Steady-State 

oiling 

The time-series PC data extracted from the bubble images at 

HF were used to train the BiLSTM model and the training de- 
9 
ails are explained in Section 2.3 . Fig. 10 a shows the RMSE value

or the first 10 PCs, where the average and standard deviations 

ere calculated from 10 trials for each PC. The average value of 

MSE gradually decreases for higher rank PCs since they encode 

ess information compared to the first few PCs. Out of the 10 trials, 

he model with the least RMSE value was selected to predict fu- 

ure PC versus time data. Figs. 10 b and 10 c show the performance

f the best trained BiLSTM model in predicting the 1st and 10th 

C, respectively, over the next 100 ms (3027 to 3,127 ms) based 

n 200 ms (2827 to 3,027 ms) of input data, where blue and red 

ymbols correspond to the input and predicted PC values, respec- 

ively. The comparison of predicted and input PCs ( Figs. 10 b and 

0 c) shows good accuracy of DL model to learn time-series vari- 

tions of PCs and the predicted PCs can be used to represent the 

ubble dynamics during pool boiling using the reduced-order rep- 

esentation of bubble images. 

The performance of the DL model is evaluated by compar- 

ng the predicted and true reduced-order bubble images. Fig. 11 

hows a comparison between the true full resolution future image, 

(x ) (first panel), the true reduced-order future image, u (x ) (sec- 

nd panel), the predicted reduced-order future image, 
� 

u (x ) (third 

anel), and the modified point-wise absolute error | u (x ) −� 

u (x ) | 
max ( | u (x ) −� 

u (x ) | ) 
fourth panel), respectively, for an image from the CHF dataset. 

ere, the denominator, max ( | u (x ) − � 

u (x ) | ) , is calculated based on 
he entire time-series prediction from 3027 to 3,127 ms (100 ms). 

he modified point-wise absolute error for the prediction is calcu- 

ated by rescaling the point-wise absolute error between 0 and 1 

ver the entire time-series prediction. The error analysis presented 

bove only compares the pixel-by-pixel intensity value and does 

ot account for the structural similarity between the true and pre- 
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Fig. 10. (a) The RMSE value for the first 10 PCs, where there are 10 trials for each PC BiLSTM training. (b) The comparison of the input and predicted PC1, where the red 

and blue symbols correspond to output and input PC. Here, 200 frames, corresponding to 0.2 s (2827 to 3,027 ms) are used as input to the BiLSTM model, results in output 

of 0.1 s (3027 to 3,127 ms). (c) Comparison of input and predicted PC10. 

Fig. 11. The true image captured during boiling, the reduced-order form of the image, and the reduced-order form of the predicted image are shown. The point-wise absolute 

error is calculated between reduced-order true and predicted image. The SSIM value calculated using reduced-order true future image and the reduced-order predicted future 

image was 0.994. 

Fig. 12. Comparison of bubble dynamics between reduced-order true and predicted using BiLSTM with the modified point-wise absolute error for CHF (109.9 W/cm 
2 ). The 

average SSIM value calculated using reduced-order true future images and the reduced-order predicted future images was 0.995 with a standard deviation of 0.003. 
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icted reduced-order future images. The maximum value of mod- 

fied point-wise absolute error ( Fig. 11 , fourth panel) was 0.71. To 

uantify the structural similarity, structural similarity index mea- 

ure (SSIM) is calculated for all the images. For the reduced-order 

rue future image u (x ) , and reduced order predicted future image 
 

 (x ) , the SSIM value was 0.994, suggesting that both the true and

redicted reduced-order images have significant similarities with 

espect to the bubble morphologies. 
10 
Fig. 12 shows a comparison between the true reduced-order 

uture image, the predicted reduced-order future image, and the 

odified point-wise absolute error, respectively, for bubble images 

t 3027, 3047, 3067, 3087, 3107, and 3127 ms, taken within the pre- 

iction timeframe of 3027 to 3127 ms for CHF. SSIM was calculated 

ver the entire prediction duration (3027 to 3127 ms), where the 

verage and standard deviation were 0.995 and 0.003, respectively. 
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Fig. 13. (a) True images of bubble dynamics during the transient heat ramp-up. (b) Transient heat flux during the 50 s time, where Case 1 (first 10 s) and Case 2 (last 10 s) 

are considered for performance evaluation. (c) Comparison of BiLSTM predicted and True PC for Case 1 of prediction time of 20 ms shows slope, a = 0.934. Here, slope is 

calculated from the best fitted line, black line. (d) The slope, a vs. predicted time shows higher accuracy for shorter prediction. 
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.3. Future boiling image prediction using PCA-BiLSTM: Transient 

oiling 

The PCA-BiLSTM is also tested on a transient boiling dataset to 

emonstrate the capability of the DL model in predicting transient 

ubble dynamics. The goal here is to train a BiLSTM DL model 

hat can predict the reduced-order images which can be correlated 

ith a heat flux value. Since the heat flux of the true future im- 

ge is known, the predicted future image can then be associated 

ith a predicted heat flux value, thereby enabling the detection of 

 boiling crisis. Fig. 13 a shows the true images of bubble dynam- 

cs during the transient boiling experiment where the heat flux 

aries from 22.1 W/cm 
2 to 53.1 W/cm 

2 . As seen from the image 

anels in Fig. 13 a, vigorous bubble coalescence was observed as 

he heat flux increases. Fig. 13 b shows the heat flux versus time, 

easured using the thermocouples during the 50 s heat flux ramp 

p. Instead of focusing on the entire 50 s data, where the vari- 

tions of the bubble dynamics are significantly large for BiLSTM 

raining, we focused on more simplified cases of 10 s data to esti- 

ate the trained model performance. Two different cases are con- 

idered for performance evaluation of BiLSTM, Case 1 using first 

0 s data and Case 2 using last 10 s data, as shown in Fig. 13 b.

or each case, 10 s of data, where 70% (7 s) of the data are re-

erved for the BiLSTM training and the remaining 30% (3 s) data 

re used for the testing. To test the trained BiLSTM model’s ac- 

uracy on predicting the future of the reduced-order images, the 

odel was set up to predict 20, 40, 60, 80, and 100 ms future 

educed-order images. For all the cases, input time to the model 

as fixed at 200 ms. Fig. 13 c compares the BiLSTM predicted PC1 

ith the true PC1 for Case 1 with 20 ms of prediction duration 

sing the 3 s of testing data. A best fitted line (black line) passing

hrough the origin was plotted to obtain the slope, a , as shown in

ig. 13 c. The slope, a is 0.934, where a slope, a → 1 corresponds

o perfect prediction and a → 0 corresponds to poor prediction. 

ig. 13 d shows the variation of slope, a with respect to predic- 

ion duration. The decrease of slope demonstrates that the predic- 

ion accuracy decreases with the increase in prediction duration. 

ig. 13 d also demonstrates the potential universality of the trained 

iLSTM model for different heat flux ramping rates. In Case 1 of 

ig. 13 b, the heat flux increases from 22.55 to 32.67 W/cm 
2 in 10 s,
11 
hich corresponds to a ramping rate of 1.011 W/cm 
2 per second. 

or Case 2, the heat flux increases from 52.33 to 56.14 W/cm 
2 in 

0 s, corresponding to a ramping rate of 0.381 W/cm 
2 per second, 

8% of that in Case 1. The red and blue symbols in Fig. 13 d show

he performance of the trained BiLSTM model for both cases in fu- 

ure prediction. The trained BiLSTM models show similar predic- 

ion accuracies for both cases, demonstrating the potential univer- 

ality of the trained BiLSTM models. It is noted that the current 

iLSTM model predicts the imminent frame based on similar heat 

ux values. To predict the imminent frame corresponding to an in- 

reased heat flux, the BiLSTM model needs to be trained and eval- 

ated by sampling the PC versus time value at a higher temporal 

nterval. To further investigate the prediction of bubble dynamics, 

n the present study, the case of 60 ms prediction was used on the 

ase 1 dataset. 

Fig. 14 a shows the RMSE value calculated using the testing 

ataset (2.8 s) for the first 10 PCs for Case 1. The average and er-

or bar were calculated from 10 trials for each PC. Similar to the 

teady-state case, the best model with minimum RMSE value was 

elected for the future prediction. Fig. 14 b shows the performance 

f the BiLSTM model in predicting the 1st PC for the next 60 ms 

ased on 200 ms of input data. Here, red, and blue symbols corre- 

ponding to predicted and true PC. Fig. 14 c shows the comparison 

f predicted and true 1st PC for the entire testing dataset of 3 s du-

ation, with a prediction window of 60 ms, thereby demonstrating 

he ability of the trained model to continuously predict the next 

0 ms based on previous 200 ms data. Fig. 15 shows the modified 

oint-wise absolute error between the reduced-order true and pre- 

icted images from PCA-BiLSTM at 7202, 7220, 7240, and 7,260 ms, 

aken within the prediction time frame of 60 ms (7,200 ms to 

,260 ms). Similar to the model performance on steady-state data 

 Fig. 12 ), the modified point-wise absolute error increases with the 

rediction duration. The average SSIM value was 0.983 and the 

tandard deviation of SSIM was 0.007. 

It is noted that the PCA-BiLSTM approach is a two-step process, 

here the first step is to calculate the PCs from the boiling im- 

ges and the second step is to predict future PCs using the BiL- 

TM model. The PC calculation time from 60 ms of boiling images 

t full pixel resolution of 600 × 832 is ≈1,097 ms using a single 

vidia Tesla V100 GPU. PC calculation time decreases when the 
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Fig. 14. (a) RMSE value calculated between the predicted and the true PCs over the testing dataset (2.8 s). (b) Comparison of true and predicted 1st PC, where red and blue 

corresponding to predicted and true PC. Here, 200 ms (7,0 0 0 ms to 7,200 ms) are used as input to the BiLSTM model, results in output of 60 ms (7,200 ms to 7,260 ms). (c) 

Comparison of true and BiLSTM predicted PC1 for the entire testing dataset, 2.8 s (7,200 ms to 10,0 0 0 ms), having the prediction window of 60 ms. 

Fig. 15. Reduced-order true bubble dynamics for the transient dataset (Case 1) us- 

ing first 10 PCs (top row), predicted reduced-order bubble dynamics, constructed 

using BiLSTM predicted PCs (middle row), and the modified point-wise absolute 

error, calculated between reduced-order true and predicted images (bottom row). 

The average SSIM value calculated using reduced-order true future images and 

the reduced-order predicted future images was 0.983 with a standard deviation of 

0.007. 
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mage resolution is reduced, and the PC extraction time reduces 

o ≈16.72 ms when 10% of the original image resolution is used. 

nce the PCs are calculated, future PC predictions depend on the 

rained BiLSTM model and in the present study, it takes ≈12.67 ms 

o predict the next 60 ms of the first 10 PCs. Hence, the total PC

alculation and predict time is ≈29.39 ms for the next 60 ms pre- 

iction, based on 10% of the original image resolution, demonstrat- 

ng the ability of the present PCA-BiLSTM method in real-time CHF 

onitoring and prediction. In addition, PC calculation and predic- 

ion time can be further reduced using multiple GPUs to speed up 

he process. 

To demonstrate that the current PCA-BiLSTM method per- 

orms significantly better at predicting future bubble dynamics 

ompared to the conventional Convolutional-L STM (Conv-L STM) 

ethod, both methods were used on the transient boiling dataset 

Case 1) shown in Fig. 13 a. Conv-LSTM uses the convolution op- 
12 
ration by applying equal significance to all the pixels for future 

rediction, and the prediction results are influenced by the sta- 

ionary bubbles, heater surface, as well as the image background. 

n contrast to the Conv-LSTM approach, the present PCA-BiLSTM 

pproach focuses only on the dynamic part of time-series images 

or future predictions, i.e., the bubble dynamics. Moreover, PCA- 

iLSTM uses the first 10 dominant components for future predic- 

ion, whereas Conv-LSTM uses full resolution for each image. PCA- 

iL STM and Conv-L STM are based on different approaches, where 

he former is data-driven, and the latter is image-based, respec- 

ively. The transient bubble images were used to train and test the 

erformance of Conv-LSTM. Both Conv-LSTM and PCA-LSTM mod- 

ls used 3500 images out of 5000 images for training. For Conv- 

STM model, four 2D Convolutional-LSTM layers with 40 filters 

f size 3 by 3 were used and the last layer was a 3D convolu-

ion layer with 1 filter of size 3 by 3 by 3 with sigmoid activa-

ion function. To be consistent with the PCA-BiLSTM, the Conv- 

STM model was trained to predict the next 60 ms, corresponding 

o 30 frames (500 fps). Fig. 16 a shows the original future images 

n the top row and predicted future images using Conv-LSTM in 

he middle row at 7202, 7220, 7240, and 7,260 ms, taken within 

he prediction window of 60 ms (7200 to 7,260 ms). The modi- 

ed point-wise absolute error increases as the prediction duration 

ncreased, where the denominator is the maximum value taken 

ithin 60 ms and was kept constant. Fig. 16 b shows the compar- 

son of average absolute error, avg. | u (x ) − � 

u (x ) | , within the pr e- 

iction time frame of 60 ms (7200 to 7,260 ms) for PCA-BiLSTM 

black circles) and Conv-LSTM (blue circles), respectively. Compari- 

on of time-series average absolute errors in Fig. 16 b demonstrates 

hat the PCA-BiLSTM approach outperforms Conv-LSTM in predict- 

ng future bubble dynamics. The average absolute error for PCA- 

iLSTM is smaller than the Conv-LSTM and the propagation of er- 

or with prediction time is much higher for Conv-LSTM. The struc- 

ural similarity of the images (SSIM) predicted using PCA-BiLSTM 

nd Conv-LSTM are shown in Fig. 16 c [92] . As seen from Fig. 16 c,

he SSIM values of PCA-BiLSTM predictions are significantly higher 

han that of Conv-LSTM predictions, suggesting that the true and 

redicted future images from PCA-LSTM had more comparable fea- 

ures and the ones from Conv-LSTM had significant deviations. 

The DL model training time was also compared between 

CA-BiL STM and Conv-L STM. The model training times were 

,497 s/epoch and 59,710 s/epoch for PCA-BiLSTM and Conv-LSTM, 

espectively, using an Nvidia P40 0 0 GPU. The training time was 

lso checked using an advanced GPU, Nvidia Tesla V100, where the 

odel training times were 362 s/epoch and 512 s/epoch for PCA- 

iL STM and Conv-L STM, respectively. For both cases, a single GPU 

as used. The reason for such differences may be due to advanced 

PUs’ ability to handle a large number of images. 
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Fig. 16. (a) Comparison of bubble dynamics between the original images (top row) and the predicted image using Conv-LSTM (middle row), with the modified point- 

wise absolute error (bottom row) for the transient dataset of pool boiling on plain Cu. (b) Comparison of average absolute error within the prediction time frame of 60 ms 

(7200 ms to 7260 ms), where the black and blue symbols are for PCA-BiLSTM and Conv-LSTM for CHF dataset. Here, Average absolute error, avg. | u (x ) − � 

u (x ) | , w as calculated 

from original images ( u (x ) ) and the predicted images from Conv-LSTM ( 
� 

u (x ) ) for Conv-LSTM and using reduced-order true ( u (x ) ) and predicted from BiLSTM ( 
� 

u (x ) ) for PCA- 

BiLSTM. (c) Comparison of structural similarity index (SSIM) [92] between PCA-BiLSTM and Conv-LSTM. 
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. Conclusion 

A Principal Component Analysis (PCA) based unsupervised ma- 

hine learning method was applied on boiling images obtained 

rom in-house pool boiling experiments as well as publicly avail- 

ble videos. The PCA was used to create reduced-order representa- 

ions of full-resolution images and differentiate significant features 

rom insignificant stationary image regions and noise. Images cap- 

ured over the duration of bubble generation and departure were 

epresented with as low as 10 principal components (PCs) and 

he variation of the first PC versus time was analyzed using Fast 

ourier Transform (FFT) to extract the new physical descriptors; 

ominant frequency and amplitude. The results show that: 

• The dominant frequency versus heat flux encoded the physi- 

cal information related to the bubble count observed during the 

steady-state boiling and the amplitude versus heat flux encoded 

the physical information related to the bubble size. Within the 

NB regime, these new physical descriptors showed trends sim- 

ilar to the bubble count and bubble size, however, at CHF, the 

frequency and amplitude values showed a sudden increase and 

a sudden decrease, respectively, and can hence be used to dis- 

tinguish CHF regime from the NB regime during pool boiling 

experiments. 
• The PCA approach was tested on 10 different in-house datasets 

as well as two publicly available datasets and showed high ro- 

bustness over multiple domains. Moreover, when the boiling 

heat flux increased and the bubbles started to interfere and co- 

alesce, the dominant frequency and amplitude versus heat flux 

trends from PCA showed higher accuracy compared to bubble 

count and bubble size versus heat flux trends from Mask R- 

CNN, a supervised learning approach. 
13 
• The PC versus time data were then used to train a BiLSTM deep 

learning model to predict the future states of the PCs. The first 

10 PCs were used as input to BiLSTM, and the predicted future 

PCs were then used to reconstruct the reduced-order images. 

The error between the predicted and true reduced-order images 

was found to increase with the prediction duration. The cur- 

rent reduced-order PCA-BiLSTM approach showed significantly 

higher accuracy compared to Convolutional-LSTM approach in 

predicting future bubble morphologies, thereby providing a ro- 

bust pathway for real-time predictions of transient boiling pro- 

cesses. 

The present study sheds light on using label-free PCA for 

educed-order representations of bubble images to extract new 

hysical descriptors related to the pool boiling phenomena. The 

CA-BiLSTM approach is demonstrated to predict future reduced- 

rder bubble images with as few as 10 PCs in comparison 

o Convolutional-LSTM which relies on high-resolution images 

ontaining millions of pixels. The unsupervised PCA combined 

ith the BiLSTM approach presented herein, if integrated with 

lassification-based algorithms [93] , has the potential for fast 

reduced-order) and domain-independent (robust) detection of the 

oiling crisis. 
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ppendix A. Training and validation loss of the BiLSTM model 

The time-series PC data extracted from the bubble images at 

HF were used to train the BiLSTM model. To avoid model over- 

tting and underfitting issues, 5% of the training dataset was used 

or validation during the model training. Fig. A1 shows the training 

nd validation loss as a function of the number of epochs, where 

lack and blue symbols correspond to the training and validation 

atasets. The decreasing trend and good agreement between the 

raining and validation losses indicate a good fit DL model. 

Fig. A1. Training and validation loss of the BiLSTM model training. 
ig. B1. (a) 50 s transient heat flux ramp-up test, where Case 1 (first 10 s) and Case 2 

uture prediction durations using both L STM and BiL STM for (b) Case 1 and (c) Case 2. 

14 
ppendix B. Comparison between LSTM and BiLSTM 

The prediction performance of BiLSTM was compared with 

STM using the transient boiling dataset, as mentioned in 

ection 3.3 . Figure B1a shows the calculated heat flux during the 

0 s transient ramp up. Two different cases were considered for 

erformance evaluation of BiLSTM with traditional LSTM, Case 1 

sing the first 10 s data and Case 2 using the last 10 s data,

s shown in Fig. B1 a. For each case, 10 s of data correspond to

0 0 0 images, where 70% (3500) of the data were reserved for 

 STM/BiL STM training and the remaining 30% (1500) were used for 

esting. For each case, five different numbers of prediction frames, 

0, 20, 30, 40 and 50 frames were considered while keeping the 

ame input frames of 100 during training and testing, correspond- 

ng to 20, 40, 60, 80, and 100 ms of future prediction using 200 ms

f input data. Figures B1b and B1c show the root mean square er- 

or (RMSE) value for Case 1 and Case 2, calculated using the true 

nd prediction, where the red symbol is for tradition LSTM and 

he blue symbol is for BiLSTM. The Figs. B1 (b-c) show that BiLSTM 

erformed better than the traditional LSTM for both cases. The per- 

entage of reduction in RMSE value for future prediction using BiL- 

TM varies from 5.4% to 15.9% for case 1 and 7.2% to 29.7% for case

. The average percentage reduction in RMSE value considering all 

he cases is 15% due to using BiLSTM architecture over traditional 

STM. 
(last 10 s) are considered for performance evaluation. RMSE value with respect to 

https://doi.org/10.1016/j.ijheatmasstransfer.2021.122501
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