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ABSTRACT

Understanding bubble dynamics during boiling is challenging due to the drastic changes in system param-
eters, such as nucleation, bubble morphology, temperature, and pressure. In this study, principal compo-
nent analysis (PCA), an unsupervised dimensionality reduction algorithm, is used to extract new physical
descriptors of boiling heat transfer from pool boiling experimental images without labeling and train-
ing. The dominant frequency and amplitude of the time-series principal components (PCs) are analyzed,
where the first few dominant PCs are used to approximate the instantaneous bubble morphologies, dras-
tically reducing the data dimensions. The results show that the dominant frequency and amplitude can
be used as new physical descriptors to distinguish different boiling regimes. The dominant frequency of
the first PC is found to increase with heat flux in the discrete bubble regime until it reaches a peak and
then decreases with heat flux in the bubble interference and coalescence regime, where the former is
believed to be associated with the increase in bubble nucleation sites and the latter is associated with
the bubble coalescence during pool boiling. The dominant frequency and amplitude extracted from the
present unsupervised learning are qualitatively compared to the bubble count and size extracted from a
supervised deep-learning algorithm, and the approach appears highly robust over multiple datasets and
heater surfaces. To predict future boiling states for mitigating boiling crises, bidirectional long short-term
memory (BiLSTM) neural network is used to estimate the future variations of PCs and hence the bubble
dynamics, from time-series PCs. The PCA-BILSTM models predict reduced-order bubble images well and

show significantly higher prediction accuracy compared to the Convolutional-LSTM.

© 2021 Elsevier Ltd. All rights reserved.

1. Introduction

Boiling is an important heat transfer process in thermoelectric
power plants [1], water purification [2], refrigeration and air con-
ditioning [3], thermal management of high-performance electron-
ics [4,5], data centers [6], nuclear reactors [7], and other energy-
intensive industrial processes. Boiling is a stochastic process de-
pendent on parameters such as the heater surface superheat, wet-
tability and roughness, dissolved gas concentration, working fluid
subcooling, operating pressure, and heating patterns. The high heat
transfer rate in the nucleate boiling (NB) regime is bound by its
upper limit, the critical heat flux (CHF), where an insulating stable
vapor layer blankets the entire heater surface and restricts the heat
dissipation, leading to a rapid rise in the heater surface tempera-
ture above its design limit and causing catastrophic damage to the
system, known as the boiling crisis.
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Several mechanisms have been proposed to understand the
CHF, including the hydrodynamic instabilities [8,9] and the near-
surface phenomena [10], such as surface wettability [11-13] and
wickability [14-18], vapor recoil-induced contact angle change
[19,20], bubble growth time and departure frequency [21,22], con-
tact line density [23], and continuum percolation based on near-
wall stochasticity [24]. One of the biggest challenges facing boil-
ing heat transfer is the precursor mechanism that triggers the CHF,
which has remained elusive despite extensive research over the
past several decades [25-27]. Complex bubble dynamics and their
correlation to the heat flux are crucial for a better understanding
of boiling mechanisms, thus, to accurately predict CHF and its en-
hancement. Existing analytical and computational methods to pre-
dict the boiling process or estimate the heat flux are either com-
putationally expensive or lack accuracy due to the chaotic nature
of the boiling process [28-30]. Presently, boiling heat transfer still
requires experimental measurements and correlations to estimate
heat fluxes, especially the CHF [31]. However, the majority of the
correlations differ from each other and are often specific to the
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heater surfaces and operating conditions [32-35]. Thus, there is a
lack of a general model to predict CHF irrespective of working flu-
ids, operating conditions, and heater surfaces. Due to the highly
unpredictable nature of CHF [36], the common practice to avoid
the boiling crisis is to operate the system well below the CHF limit
[37,38]. Current sensor-based approaches can only identify boiling
crises a posteriori, leading to overheating and system failures. Ac-
curate real-time prediction of CHF enables reliable near-CHF op-
erations and hence increases the energy efficiency of boiling pro-
cesses.

Machine learning (ML) has been applied to boiling studies in
recent years, from detecting flow boiling regimes, the onset of
film boiling, CHF, and departure from nucleate boiling, to esti-
mating boiling heat flux, heat transfer coefficient, nucleation site
density, and bubble statistics [39-55]. The supervised learning ap-
proaches in the past have used artificial neural networks (ANN)
[42,44,48,49,51-55], support vector machines (SVM) [39], and con-
volutional neural networks (CNN) [40,41,43,45,46] to perform boil-
ing image classification based on boiling regimes. The use of un-
supervised learning approaches such as principal component anal-
ysis [39,41,45] has been limited to performing data-driven cluster-
ing of boiling images based on boiling regimes, however, the re-
sults showed a lack of interpretability. Suh et al. [43] used hybrid
deep learning models to replace image analysis to extract features,
such as bubble size and counts, and to correlate high-resolution
bubble dynamics with the associated boiling curves. Ravichandran
and Bucci quantified the bubble growth time, departure frequency,
and nucleation site density using a single layer, feed-forward ANN,
trained using high-speed infrared (IR) data from pool boiling ex-
periments of water on plain and nanostructured surfaces [42] and
demonstrated that boiling is a near-wall phenomenon where sur-
face wickability modifies bubble dynamics [44]. Sinha et al. used
the acoustic emission (AE) spectrograms to train a CNN model that
can predict the boiling regimes despite the variations in boiling
surfaces, working fluids, and heating strategies [46], where a shift
in the peak frequency occurs when the boiling regime transitions
from NB to CHF. Recently, we have used transfer learning (TL) to
increase the generality of the deep learning (DL) model [45] to suc-
cessfully predict boiling regimes on cross-domain datasets.

Data-driven DL approach has been heralded as an alternative
to the conventional physics-based approach, but so far, its success
has been mainly limited to diagnostic and prognostic purposes.
The possibility of using deep neural networks trained using exper-
imental and/or computational data to either extract, explain, or in-
fer (or all three together) some form of physical understanding of
the complex boiling heat transfer phenomena albeit very promis-
ing, the amount of progress in terms of applying DL to obtain in-
terpretable physical and mathematical insights has been limited.
Moreover, the use of DL beyond the task of classification has also
not been fully explored in past studies.

Principal component analysis (PCA) is an unsupervised dimen-
sionality reduction algorithm to describe correlations in high-
dimensional data [56] and can be used as a versatile tool to de-
termine low-dimensional representations of high-dimensional im-
ages while extracting dominant variations and patterns. PCA shows
promise in complex fluid systems, weather prediction, turbulence
modeling, and computer vision applications [57-62]. Recently, PCA
has been used to extract vortex shedding frequency and domi-
nant modes using correlations between purely visualization-based
images and particle image velocimetry (PIV) measurements [63].
In the present study, PCA is used to extract dominant low-
dimensional features from in-house pool boiling experimental im-
ages to obtain physically interpretable descriptors of bubble dy-
namics versus heat flux in boiling heat transfer processes.

Fig. 1 shows the schematic of recently reported supervised
[43] (top row) and current unsupervised (bottom row) ML ap-
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proaches of determining physically interpretable descriptors gov-
erning the bubble dynamics. The supervised approach is an image
segmentation-based ML (e. g., Mask R-CNN [43]) which extracts
bubble statistics (e.g., bubble size and count) based on manual tag-
ging of bubble size and count, where each image is labeled with its
associated heat flux value. The manual tagging involved with the
supervised ML of the training datasets leads to potential human
errors especially for boiling images with vigorous bubble inter-
ference and coalescence events occurring at higher heat flux val-
ues. Our unsupervised, PCA-based ML approach works by separat-
ing the significant features from the insignificant parts such as the
heater and stationary bubbles in each image, thereby enabling di-
rect quantification of bubble dynamics related descriptors such as
dominant frequency and amplitude of principal components (PCs)
versus heat flux, independent of the vigorous bubble interference
and coalescence events. Additionally, the results obtained from PCA
can be interpreted easily and qualitatively explained based on the
bubble morphologies and show higher accuracy when compared
with the state-of-the-art image segmentation-based ML, such as
Mask R-CNN, thereby providing a robust unsupervised ML tool for
analyzing two-phase heat transfer processes.

Early detection of boiling crises is crucial for safety protocols
such as heater shut-off and coolant pump activation in thermal
power systems such as high-pressure boilers and nuclear reac-
tors, where the total duration of prediction is important to activate
boiling crisis mitigation strategies. Image-based recurrent neural
networks, such as Convolutional-Long Short-Term Memory (Conv-
LSTM), that are trained on recognizing time-dependent patterns in
data have been proposed in the past to predict future events, al-
beit with limited success due to such methods being inadequate
to filter significant features from insignificant ones that contribute
to prediction errors. Due to the prediction errors, Conv-LSTM has
been successful only in predicting a few future image frames [64].
In general, convolution-based models tend to focus on spatial ap-
pearances and are weak in predicting long-term temporal depen-
dency [65,66]. To enable fast and accurate real-time prediction of
future bubble dynamics, a bidirectional long short-term memory
(BiLSTM) model is trained in this study using reduced-order repre-
sentations of the bubble morphology. As shown in Fig. 2, the first
few PCs versus time data are used to train the BiLSTM DL model
and the predicted future PC variations are used to reconstruct the
reduced-order bubble images. The BiLSTM network, with the abil-
ity to recognize patterns in sequential data which are then used
to predict the future instances [67-71], has been implemented to
reconstruct unsteady [70] and turbulent flows [68,69], as well as
fast prediction of accidents in nuclear power plants, based on sim-
ulated data [72].

In this study, PCA is used to extract new physical descriptors
from reduced-order representations of the pool boiling images. The
1st PC versus time data is analyzed using fast-Fourier transform
(FFT) to extract dominant frequencies and amplitude versus heat
flux values. The frequency and amplitude results obtained from the
unsupervised PCA approach are then qualitatively compared to the
bubble count and size results obtained from the supervised im-
age segmentation ML algorithm, Mask R-CNN. Next, an effort is
made to physically interpret the unsupervised ML results for dif-
ferent boiling regimes by analyzing the trends seen in dominant
frequency and amplitude versus heat flux data. The robustness of
the PCA approach is verified on datasets obtained from multiple
domains (pool boiling images from in-house experiments and pub-
licly available YouTube videos) where the dominant frequency and
amplitude trends are used to distinguish the CHF regime from the
NB regime. Separately, the time-dependent PCs are used as inputs
for the BiLSTM ML network to predict future PC versus time data
which are then reconstructed into reduced-order bubble images
and the PCA-BiLSTM performance is compared with Conv-LSTM
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Fig. 1. Comparison of a supervised ML approach to extract bubble statistics and the current unsupervised ML approach to extract physically interpretable descriptors from
reduced-order bubble dynamics, at different heat loads. Here, q”, PC1, FFT, f, Dy, A, and D, are heat flux, 1st principal component, fast Fourier transform, frequency, dominant

frequency, amplitude, and dominant amplitude, respectively.
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Fig. 2. Schematics of PCA-BiLSTM framework for predicting future reduced-order bubble images. The bubble morphologies for a range of heat fluxes are analyzed using PCA
to reduce the dimensionality. The time-series of PCs from reduced-order modeling is fed to the BiLSTM DL network to predict the future time-series of PCs which are then
used to reconstruct bubble morphologies. The flowchart of the top panel illustrates the PCA-BiLSTM approach: PCA reduces the order of boiling images for t <t,, BiLSTM
takes the output from PCA to learn and predict the reduced-order PCs for t >t,, and the predicted reduced-order PCs are used for future prediction of bubble morphologies.

which uses full-resolution images. Finally, we show that the cur-
rent PCA-BIiLSTM approach can successfully predict future reduced-
order bubble images with as few as 10 PCs in comparison to the
Conv-LSTM which requires full-resolution images containing mil-
lions of pixels, thereby enabling future developments into fast and
real-time DL prediction tools.

2. Methods and procedures
2.1. Pool boiling experiments
The in-house pool boiling experiments were performed on a

plain square copper heater with a surface area of 100 mm?, and
water was used as the working fluid. The heater surface was pol-

ished with 320-grit sandpaper followed by 600-grit sandpaper
prior to experiments. The boiling images were captured using a
high-speed camera (Phantom VEO-710) at 1000 fps with a reso-
lution of 1280 x 800 for a range of steady-state heat fluxes from
2.9 W/cm? to 109.9 W/cm? and at CHF. All experiments were per-
formed at steady-state conditions under an ambient pressure of 1
atm. T-type thermocouples were used for temperature measure-
ments, which leads to heat flux calculations. A pool boiling ex-
periment was also performed using a transient heat load where
the heat flux was increased from 22.1 W/cm?2 to 53.1 W/cm? over
a period of 50 s and the corresponding bubble images were cap-
tured at 500 fps with a resolution of 600 x 832. A total of 25,000
frames corresponding to 50 s data was captured for the study.
Apart from the plain copper surface, in-house pool boiling experi-
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ments were also performed on copper foam surface fabricated via
cathodic electrodeposition with a deposition time of 360 s. Addi-
tionally, publicly available pool boiling videos [73] were also used
to verify the robustness of the current ML method. Pool boiling
videos from YouTube contain bubble visualizations for a range of
heat fluxes, from 0.5 W/cm? to 100 W/cm?, and CHF. The YouTube
videos also contain bubble visualizations for different heater sur-
faces, such as microporous coated copper heater and plain copper
heater. The square heaters had a surface area of 100 mm?, and
water was used as the working fluid. The resolution of the video
frames was 512 x 480 with a frame rate of 2000 fps [74].

2.2. PCA of pool boiling images

PCA is a widely used [57-62] statistical dimensionality reduc-
tion technique [75]. The essence of PCA is to transform the data
to new orthogonal coordinate systems, where the first new co-
ordinate axis represents the largest variance in the original data,
the second axis represents the second largest variance, and so on.
For original data, consisting of p variables and n observations, p
new coordinate axes can be constructed. The first few coordinate
axes encode the most significant variances or features of the origi-
nal data, whereas the latter ones correspond to noises/insignificant
variances. In short, PCA transforms a set of correlated variables into
a small set of uncorrelated variables, named principal components
(PCs). Consider a dataset X of size p x n, consisting of p variables
and n observations. For a sequence of images captured during a
pool boiling experiment, p is the total number of pixels of each im-
age and n is the total number of images. For example, for a frame
rate of 1000 frames per second (fps), images acquired over 5 s lead
to n = 5000. The mean value of each row in X is calculated as,

n =
=1 > Xij, where i = 1, 2, 3, ..., p. The mean matrix X = XQ,
j=1

where & has a size of p x 1 with elements X; and Q is 1 x nwith
all elements of 1. The mean-subtracted matrix B=X — X and its
transpose A = BT of size n x p can be decomposed as A=UY VT
using the singular value decomposition (SVD) technique [76]. Here,
U and V are unitary matrices (UTU = UUT =T and VTV = VvVT =1)
of size nxn and p x p, respectively. The columns of V are the
eigenvectors of the covariance matrix, C = ATA, and > is the rect-
angular diagonal matrix of size n x p, containing eigenvalues of C
in descending order. The PCs, T, are the projection of A onto the
eigenvectors, V, such that T = AV. The entire dataset consists of
p number of PCs, but the high-dimensional dataset can be repre-
sented using the first ¢ PCs where q << p. Then, the first ¢ number
of PCs are calculated using, T, = AVy, where Ty, A, and V; are ma-
trices of size n x q, n x p, and p x q. For example, when q = 5, T;
is a matrix of size n x 5 consisting of the first 5 PCs. The original
data, X, can then be approximated in a reduced-order form, X,
using the first q PCs, Ty, as Xg= A£+X, where AR=TqVqT since Vg
is a unitary matrix. Each column within the original data and its
reduced-order representation correspond to an image at a given
time t, and hence the time-series of the reduced-order data can be
expressed as Xg(t)=Ag’ (t)+X.

In this study, PCA was performed on pool boiling images. In-
dividual frames were extracted from the videos captured during
the in-house pool boiling experiments and using MATLAB code via
the VideoReader and imwrite functions for the publicly available
YouTube videos [73]. Duplicate frames during the extraction pro-
cess from the YouTube videos were removed by calculating the rel-
ative difference using the Structural Similarity Index (SSIM), where
consecutive images with a relative difference of less than 0.03%
were removed. Time-series PCs were calculated from the sequen-
tial images. Fig. 3a shows a boiling image taken from an in-house
pool boiling experiment at CHF with a resolution of 1280 x 800,
or 1024,000 components, as well as the reconstructed images us-
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ing the first 1, 5, 10, 50, and 100 PCs. The images reconstructed
from the first ten and more PCs can capture well the bubble shape
and position, key information for extracting the bubble dynamics.
Fig. 3b shows the percentage of explained variance with respect to
the rank of the PCs, where 20% of variances are captured by the
1st PC, 16% of variances are captured by the 2nd PC, and so on.
Higher rank PCs capture only a small number of variances; for ex-
ample, PC 10 and higher ones only capture variances. The variables
to represent bubble morphologies can be reduced from 1024,000
to 10, which is advantageous when dealing with a large number of
time-series data or for high-speed dynamical systems. To encode
the dynamic nature of bubble morphologies, time-series PCs were
calculated using boiling images captured at 1000 fps. The first 10
PCs were found to contain 70.7% of cumulative explained variance
pertaining to the bubble shape and position, and were hence cal-
culated for the time-series data. Fig. 3c shows the variation of PC1
(black), PC3 (blue), and PC5 (red) versus time.

2.3. PCA-BiLSTM for future prediction

Long Short-Term Memory (LSTM), a type of Recurrent Neural
Network (RNN) [77] specialized to process sequential data, is ca-
pable of learning long-term temporal dependencies [78-81]. The
major advantage of LSTM is its ability to handle gradient explosion
or disappearance issues [82]. Fig. 4a shows a representative LSTM
unit with four interacting neural network layers, 3 sigmoid and 1
hyperbolic tangent (tanh) dense layer. The current timestep takes
the input data and information from the previous timestep and cal-
culates the output and information for the next timestep. LSTM has
the unique ability to remove or add information to the cell state,
C, through the well-structured forget and input gates, which con-
sist of interacting neural network layers. As shown in Fig. 4a, o is
the sigmoid layer, where the output varies between 0 and 1, which
acts as a memory to forget or remember, respectively. The forget
gate of the LSTM unit takes the hidden state from the previous
timestep, h;_1, and the input data for the current timestep, x;, and
outputs a value between 0 and 1. The output from the forget gate
is multiplied with the cell state from the previous timestep, C;_1,
to remove less relevant information. The input gate decides which
information to be stored in the cell state. The multiplication of the
outputs from the sigmoid and tanh layers is added to the cell state.
The cell state, C, undergoes removal and addition of information
and thus holds the long-term dependencies and solves the gradi-
ent explosion or disappearance issue. Here, G;_; is the cell state
from the previous timestep and C; is the updated cell state from
the current timestep. The output gate takes the tanh of cell state,
G, and multiplies it with the output from the sigmoid layer to get
the output of the current timestep, h;, which acts as the hidden
state for the next timestep. As shown in Fig. 4b, Bidirectional LSTM
(BiLSTM) [83,84] has two LSTM networks. One is forward and the
other is backward direction, as compared to the traditional LSTM
where the flow of information is only forward. Bidirectional LSTM
has shown improved accuracy for language processing and other
related applications [85-88]. In the current study, both LSTM and
BiLSTM have been tested and BiLSTM was found to reduce the er-
ror in future prediction by 15% over the traditional LSTM, as shown
in Appendix A.

A Bidirectional LSTM (BiLSTM) model was trained in this study
to predict bubble morphologies for pool boiling using the first
10 PCs of the time-series data, extracted using PCA. Out of the
total 4,040 ms PC versus time data, the initial 70% data (0 ms
to 2,828 ms) was used for training and the remaining 30% data
(2,829 ms to 4,040 ms) was used for testing. The entire training
dataset consists of several clusters, where each cluster has 300 ms
of sequential data points (200 ms input and 100 ms output). The
number of time-series clusters was determined from the 2,828 ms
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tively. (b) Percentage of explained variances captured by the principal components. (c) Time-series principal components (1st, 3rd, and 5th PCs), shown for first 0.5 s.
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calculated between true and prediction from the testing dataset.

Table 1

Hyperparameters used in the BiLSTM model.
Parameter Type/Value
Optimizer Adam
Learning rate 0.001
Activation Sigmoid
Regularization Dropout

Loss function Mean square error

Batch size 1
Validation split 0.05
Epoch 100

of training data, depending on the shifting gap. The first cluster
used the PC1 data from O ms to 200 ms as input and predicted
the PC1 data from 201 ms to 300 ms as output. For a shifting gap
of 5 ms, the second cluster used the PC1 data from 6 ms to 205 ms
as input and predicted the PC1 data from 206 ms to 305 ms, con-
sequently, a total of 506 clusters were used to train the BiLSTM
model. The gap size, LSTM units, and epoch of 5, 70, and 100 were
selected for the current DL model training from a parameter space
of gap size (1, 5, 10, 15, and 30), LSTM units (10, 30, 50, 70, and
100), and epoch (50, 100, 200, 300, and 500) based on the mini-
mum root mean square error (RMSE) value over 10 trials, between
true and predicted PC versus time from the testing data, as shown
in Fig. 5. Table 1 shows the hyperparameters used in the BiLSTM
model training and Table 2 summarizes the BiLSTM model archi-
tecture, where the total number of learnable parameters is 78,960.
The padding was activated with 1 stride and Sigmoid was selected
for activation function. A total of 4 LSTM layers were used, where
each layer had 70 units. Each LSTM layer had recurrent activation
function followed by a dropout layer with a recurrent dropout of
0.2. The dropout layer turns off 20% of the neurons and is crucial
for model generalization. To quantify the stochasticity associated
with the DL models, a total of 10 models were trained for each
time-series PC data and the best model was selected after calcu-

Table 2

Model summary of the BiLSTM model.
Type of layer Output shape Parameters
BiLSTM_1 (None, 200, 70) 40,320
Dropout_1 (None, 200, 70) 0
BiLSTM_2 (None, 200, 70) 78,960
Dropout_2 (None, 200, 70) 0
BiLSTM_3 (None, 200, 70) 78,960
Dropout_3 (None, 200, 70) 0
BiLSTM_4 (None, 70) 78,960
Dropout_4 (None, 70) 0
Dense (None, 100) 7100

lating the RMSE value between true and prediction PC values from
the testing dataset. The trained BiLSTM DL model framework is
shown in Fig. 6, where 2827 ms to 3027 ms of PC1 data was used
as input to predict 3027 ms to 3127 ms of future PC1 data. The
predicted PC1 was compared to the true PC1, as shown in Fig. 6,
where blue and red symbols correspond to true and predicted PC1,
respectively. The results show good agreement between true and
predicted PC1.

3. Results and discussion

In this section, PCA and PCA-BiLSTM are examined for extract-
ing new physical descriptors of boiling regimes and future bub-
ble dynamics predictions, respectively. Section 3.1 presents newly
identified physical descriptors of boiling regimes obtained using
PCA, compared against the conventional descriptors, bubble size
and count, obtained using Mark R-CNN, a supervised learning ap-
proach. The robustness of the PCA method is demonstrated by ana-
lyzing boiling images from both in-house pool boiling experiments
and publicly available datasets. Sections 3.2 and 3.3 examine PCA-



A. Rokoni, L. Zhang, T. Soori et al.

Input 200 ms: Time-series PCs

Trained BILSTM Model

International Journal of Heat and Mass Transfer 186 (2022) 122501

Predict PCs: 100 ms

100 " Output 100 T -
——True i —o— True —— Predicted
&R 141
P
2 Of
=501}
-100 . . -100
2827 3027 3027 . 3127
t [ms] t [ms]
Fig. 6. The framework of the trained BiLSTM model for predicting the PC1.
(a) Nucleate Boiling
- " 2 " 2/\" 2 " PN
q"=29 W/em® ¢"=6.5W/ecm* ¢"=43.6 Wem® ¢"=90.9 W/cm CHF
<« =
(b) c
150 © 50 . . - 20
——2.9 W/em? Q’ o CHF
100+ 1 s 40F —6.5Wem? { 2
“ 2| 2 o
) —43.6 W/em~ g 15}
= 01 = 20T —— 909 Wem?] & ° °
Q i & )
0 12,20t g
g s 10t
< g
-50 H 10+ g o oo o o
10 / : & °
. % 0.5 0O 10 30 40 50 "0 25 50 73 100 125

Frequency, f[Hz]

q" [W/em?]

Fig. 7. (a) Representative bubble images for a range of heat fluxes during pool boiling, where discrete bubbles are observed for heat flux < 6.5 W/cm? and vigorous bubble
coalescence for heat flux > 6.5 W/cm? within the nucleate boiling regime (b) Time-series 1st principal component, PC1 and (c) Fast Fourier Transform (FFT) of PC1 for five
different heat fluxes, 2.9, 6.5, 43.6, 90.9 W/cm?, and CHF for pool boiling on a plain Cu heater. (d) The dominant frequency of PC1, Dy, for a range of heat fluxes, 2.9 W/cm?

to CHF.

BiLSTM for the prediction of future boiling frames with a predic-
tion window of 100 ms for steady-state boiling and 60 ms for tran-
sient boiling, respectively. Additionally, the results of transient boil-
ing from PCA-BiLSTM are compared against Conv-LSTM, a widely
used next-frame prediction algorithm.

3.1. Extraction of new physical descriptors of bubble dynamics using
PCA

The PCs of a representative boiling image sequence are ana-
lyzed here to extract new physical descriptors of bubble dynam-
ics. Fig. 7a shows representative bubble images for heat flux val-
ues of 2.9, 6.5, 43.6, 90.9 W/cm?, and CHF, respectively. Discrete
bubbles (DB) for heat flux < 6.5 W/cm?, and bubble coalescence
and interference (BIC) for heat flux > 6.5 W/cm?2, were observed
within the nucleate boiling regime. Fig. 7b shows PC1 versus time
and Fig. 7c shows the Fast Fourier Transform (FFT) of PC1 versus
frequency for heat flux values of 2.9, 6.5, 43.6, 90.9 W/cm?2, and
CHF, respectively. The amplitude of PC1 varies with frequency at
all heat fluxes considered, as shown in Fig. 7c, and the dominant
frequency of PC1, marked with colored circles, is dependent on the
heat flux. The dominant frequency, Dy, varies from 6 to 16 Hz for

the heat flux values of 2.9, 6.5, 43.6, 90.9 W/cm?, and CHF, respec-
tively. Fig. 7d shows the dominant frequency, Dy, for a range of
heat fluxes, 2.9 W/cm? to CHF, where the dependence of D¢ on
heat flux is obvious.

To examine the capability of PCA for extracting new physical
descriptors from time-series bubble images, Fig. 8 compares the re-
sults of PCA against those of Mask R-CNN, a supervised model that
was trained to extract the bubble count and size from boiling im-
ages of various heat flux values. Mask R-CNN is an image segmen-
tation model [89] and has been used in the past to extract bubble
statistics during pool boiling [43] and to locate and measure more
than 95% of the bubbles in complex two-phase flows [90]. As a su-
pervised ML model, Mask R-CNN requires manual labeling of data,
such as defining the bubble boundaries and numbers, which was
done using in-house MATLAB code in the present study. A total of
95 images, taken from a heat flux range of 2.9 W/cm?2 to CHF, are
used during the training process. Image augmentation technique of
flipping, resizing, rotating and Gaussian white noises addition was
applied to 50% of the images that are randomly chosen from the
dataset to avoid overfitting. The model was trained with a learning
rate of 0.001, and up to 600 epochs.
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Fig. 8. A qualitative comparison of the results obtained from the supervised Mask R-CNN and the unsupervised PCA approach, for the in-house boiling dataset. (a-b, D-e)
Bubble count and size calculated using Mask R-CNN with increasing heat flux where (a, d) correspond to in-house plain copper heater surface and (b, e) correspond to
copper foam heater surface, respectively. (a-b) show the average bubble count increases in DB regime and decreases in the BIC regime. (d-e) show the average bubble size
increases steadily with heat flux. The open and closed symbols in (a-b, p-e) correspond to the training and testing data, respectively. The red symbols correspond to the CHF
regime. (c, f) New physical descriptors from the PCA method where (c) the dominant frequency, Dy, increases in the DB regime and then decreases in the BIC regime and
(f) the amplitude of dominant frequency, D,, increases steadily with heat flux. The circle and triangle symbols in (c, f) correspond to plain copper and copper foam surfaces,

respectively. The error bars represent the standard deviation.

Figs. 8a and 8b show the bubble count measured using the su-
pervised Mask R-CNN model for in-house boiling experiments per-
formed on plain Cu and Cu foam surfaces, respectively. Figs. 8d and
8e show the bubble size measured using the same Mask R-CNN
model for the same in-house experiments. The bubble count shows
an increasing trend within the DB regime until reaching a peak
and then steadily decreases when the bubbles start to interfere
and coalesce with each other. However, the bubble size shows a
steadily increasing trend, where bubble images at higher heat flux
result in large standard deviations due to difficulties in the Mask
R-CNN’s manual bubble tagging task. The difficulty in manual tag-
ging arises due to vigorous bubble coalescence events and inability
to accurately segment each individual bubble. The observed trends
are consistent with studies that used the Mask R-CNN method to
extract bubble count and size [43]. It is noted that the differences
between the bubble count/size of CHF and pre-CHF regimes are
within the error bars of the analyzed quantities. As such, the bub-
ble count and size are not sufficient to be used as an indicator of
the CHF regime and a more robust indicator is in need for reliable
boiling crisis detection.

Figs. 8c and 8f show the new physical descriptors, viz.: the
dominant frequency, Dy, and amplitude, D,, extracted using the
PCA method, with circle and triangle symbols corresponding to
plain Cu and Cu foam surfaces, respectively. The standard devia-
tions in Dy and Dq at each heat flux are calculated using 10 sub-
sets, each containing 0.5 s images at 1000 fps, from a total of 5000
images. The dominant frequency increases within the DB regime
until reaching a peak and then decreases steadily as the heat flux
is increased within the BIC regime. Surprisingly, the CHF dataset
shows a significantly higher dominant frequency, Dy, compared to
the near CHF datasets. The red symbols in Fig. 8 correspond to CHF
regime. In contrast, the CHF dataset showed a significantly lower

amplitude, Dq, compared to the near CHF datasets. Differences in
bubble dynamics were observed at heat flux values below the CHF
point and at the CHF (see SI [91] for videos): (i) the time taken
for the bubble to grow and depart from the heater surface is much
reduced for CHF compared to pre-CHF, resulting in a dominant fre-
quency increase at CHF than pre-CHF (Fig. 8c), (ii) the bubble size
at CHF is smaller than pre-CHF, demonstrated by a clear decrease
in amplitude of the dominant frequency (Fig. 8f). The same behav-
ior cannot be distinctly observed in Mask R-CNN'’s average bubble
size results due to its challenge at capturing bubble statistics when
the bubble morphology is complex and chaotic. Based on the ob-
vious changes in Dy and D, values for bubble images before CHF
and at CHF, these two new physical descriptors can be utilized as
excellent indicators of the boiling crisis.

A qualitative comparison of the results obtained from the super-
vised Mask R-CNN and the unsupervised PCA approach reveals sev-
eral similarities, viz., (a) the increasing trend of the bubble count
and Dy within the DB regime and their steady decrease within the
BIC regime and (b) the increasing trend of the bubble size and D,
within the DB and BIC regimes. The above similarities suggest that
(i) the bubble count and the dominant frequency and (ii) the bub-
ble size and the amplitude could be related to each other. Based
on the above observations, it is reasonable to interpret that the
PCA results encode the bubble count and size information found
in the boiling images. Even though the bubble count and size ex-
tracted from Mask R-CNN versus heat flux trends show measurable
differences in the DB and BIC regime, their values are unreliable
when the task is to distinguish the BIC and CHF regimes. The PCA
approach does not need any human supervision (no data labeling,
bubble tagging, etc.) and shows clear dominant frequency trends
at DB, BIC, and CHF regimes, and the new physical descriptors at
different heat flux values can then be used to determine the boil-



A. Rokoni, L. Zhang, T. Soori et al.

Mask R-CNN: Bubble count and bubble size

International Journal of Heat and Mass Transfer 186 (2022) 122501

PCA: New physical descriptors

( A
UTD, Plain Cu UTD, Microporous coated Cu
@ 2 - WOk , 2 | 9 :
| & Training I | [J Training | } —&—UTD, Plain Cu
T @ Testing || T | B Testing || 50 ¢ -3- UTD, Microporous coated Cu| 1
Lst L JEOST i L d
] d! Red symbols: CHF { 2 ’ Red symbols: CHF | 10 Red symbols: CHF |
g | | 8 l “ | ]
210} 210 Q30
: : @% , o
g 51 @ 5 A * SR a
< ‘ %0 < | @ i é 10} 0
ol I S T N o T O e ]
50 100 150 200 0 50 100 150 200 0 50 100 150 200
q" (W/cm?) q" (W/cm?) q" (W/cm?)
; 60 | —
@900 ®
a0 50 |
£ 150} t
S 1()()3: i3
o m
"_E i)(]; =)
E oW
I
|| S I S (S S| 5.} | I s wressae ot [ I | i I T S RN I R SR |
0 50 100 150 200 0 50 100 150 200 150 200
q" (W /cm?) q" (W/cm?) q¢" (W/em?)

Fig. 9. A qualitative comparison of the results obtained from the supervised Mask R-CNN and the unsupervised PCA approach, for publicly available dataset [73]. (a-b, D-e)
Bubble count and size calculated using Mask R-CNN with increasing heat flux where (a, d) correspond to plain copper heater surface and (b, e) correspond to microporous
coated copper heater surface, respectively. (a-b) show the average bubble count increases in DB regime and decreases in the BIC regime. (d-e) show the average bubble size
increases steadily with heat flux. The open and closed symbols in (a-b, p-e) correspond to the training and testing data, respectively. The red symbols correspond to the CHF
regime. (c, f) New physical descriptors from PCA method where (c) the dominant frequency, Dy, increases in the DB regime and then decreases in the BIC regime and (f) the
amplitude of dominant frequency, Dg, increases steadily with heat flux. The diamond and square symbols in (c, f) correspond to plain copper and microporous coated copper
surfaces, respectively. The error bars in (a-b, D-e) represent the standard deviation, however, standard deviations are not shown in PCA results (c, f) due to a limited number

of images available in public dataset [73].

ing regimes of the bubble images with much higher accuracy com-
pared to the bubble count and size.

To examine the robustness of the PCA approach on datasets
from various domains, we applied the PCA approach on a publicly
available dataset [73] to verify the new physical descriptors en-
coded by PCA, and obtained consistent results. Fig. 9 compares the
bubble count and size of publicly available boiling datasets [73],
with Figs. 9a and 9d for a plain Cu heater surface and Figs. 9b
and 9e for a microporous coated Cu heater surface, respectively.
Fig. 9¢ shows the dominant frequency, Dy, and its associated am-
plitude, Dy, is in Fig. 9f. Figs. 9a-b and 9d-e show the average bub-
ble count and average bubble size at different heat fluxes, respec-
tively. The average bubble count and dominant frequency exhibit
an increasing-decreasing trend, while average bubble size and am-
plitude show an increasing trend as heat flux increases. The re-
sults also show that the behaviors of Dy and D, when the heat
flux reaches the CHF point are consistent with the ones shown in
Figs. 8c and 8f, respectively. The red symbols in Fig. 9 correspond
to the CHF regime. Based on the above findings, the results from
the PCA approach show that the unsupervised ML method can
encode the bubble morphologies directly from the images, such
that the PCA results can be successfully interpreted. The results
from the PCA approach can also be used to detect the transition
from DB to BIC and BIC to CHF, with minimal human supervi-
sion, using the trends of dominant frequency and its associated
amplitude.

3.2. Future boiling image prediction using PCA-BiLSTM: Steady-State
boiling

The time-series PC data extracted from the bubble images at
CHF were used to train the BiLSTM model and the training de-

tails are explained in Section 2.3. Fig. 10a shows the RMSE value
for the first 10 PCs, where the average and standard deviations
were calculated from 10 trials for each PC. The average value of
RMSE gradually decreases for higher rank PCs since they encode
less information compared to the first few PCs. Out of the 10 trials,
the model with the least RMSE value was selected to predict fu-
ture PC versus time data. Figs. 10b and 10c show the performance
of the best trained BiLSTM model in predicting the 1st and 10th
PC, respectively, over the next 100 ms (3027 to 3,127 ms) based
on 200 ms (2827 to 3,027 ms) of input data, where blue and red
symbols correspond to the input and predicted PC values, respec-
tively. The comparison of predicted and input PCs (Figs. 10b and
10c) shows good accuracy of DL model to learn time-series vari-
ations of PCs and the predicted PCs can be used to represent the
bubble dynamics during pool boiling using the reduced-order rep-
resentation of bubble images.

The performance of the DL model is evaluated by compar-
ing the predicted and true reduced-order bubble images. Fig. 11
shows a comparison between the true full resolution future image,
U(x) (first panel), the true reduced-order future image, u(x) (sec-
ond panel), the predicted reduced-order future image, u(x) (third

lu@)-uE)|
max(|u(x)-u (x)])
(fourth panel), respectively, for an image from the CHF dataset.
Here, the denominator, max(|u(x) — u(x)|), is calculated based on
the entire time-series prediction from 3027 to 3,127 ms (100 ms).
The modified point-wise absolute error for the prediction is calcu-
lated by rescaling the point-wise absolute error between 0 and 1
over the entire time-series prediction. The error analysis presented
above only compares the pixel-by-pixel intensity value and does
not account for the structural similarity between the true and pre-

panel), and the modified point-wise absolute error
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Fig. 10. (a) The RMSE value for the first 10 PCs, where there are 10 trials for each PC BiLSTM training. (b) The comparison of the input and predicted PC1, where the red
and blue symbols correspond to output and input PC. Here, 200 frames, corresponding to 0.2 s (2827 to 3,027 ms) are used as input to the BiLSTM model, results in output
of 0.1 s (3027 to 3,127 ms). (c) Comparison of input and predicted PC10.
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Fig. 11. The true image captured during boiling, the reduced-order form of the image, and the reduced-order form of the predicted image are shown. The point-wise absolute
error is calculated between reduced-order true and predicted image. The SSIM value calculated using reduced-order true future image and the reduced-order predicted future
image was 0.994.
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Fig. 12. Comparison of bubble dynamics between reduced-order true and predicted using BiLSTM with the modified point-wise absolute error for CHF (109.9 W/cm?). The
average SSIM value calculated using reduced-order true future images and the reduced-order predicted future images was 0.995 with a standard deviation of 0.003.

Fig. 12 shows a comparison between the true reduced-order
future image, the predicted reduced-order future image, and the
modified point-wise absolute error, respectively, for bubble images
at 3027, 3047, 3067, 3087, 3107, and 3127 ms, taken within the pre-
diction timeframe of 3027 to 3127 ms for CHF. SSIM was calculated
over the entire prediction duration (3027 to 3127 ms), where the
average and standard deviation were 0.995 and 0.003, respectively.

dicted reduced-order future images. The maximum value of mod-
ified point-wise absolute error (Fig. 11, fourth panel) was 0.71. To
quantify the structural similarity, structural similarity index mea-
sure (SSIM) is calculated for all the images. For the reduced-order
true future image u(x), and reduced order predicted future image
u(x), the SSIM value was 0.994, suggesting that both the true and
predicted reduced-order images have significant similarities with
respect to the bubble morphologies.

10
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Fig. 13. (a) True images of bubble dynamics during the transient heat ramp-up. (b) Transient heat flux during the 50 s time, where Case 1 (first 10 s) and Case 2 (last 10 s)
are considered for performance evaluation. (¢) Comparison of BiLSTM predicted and True PC for Case 1 of prediction time of 20 ms shows slope, a = 0.934. Here, slope is
calculated from the best fitted line, black line. (d) The slope, a vs. predicted time shows higher accuracy for shorter prediction.

3.3. Future boiling image prediction using PCA-BiLSTM: Transient
boiling

The PCA-BILSTM is also tested on a transient boiling dataset to
demonstrate the capability of the DL model in predicting transient
bubble dynamics. The goal here is to train a BiLSTM DL model
that can predict the reduced-order images which can be correlated
with a heat flux value. Since the heat flux of the true future im-
age is known, the predicted future image can then be associated
with a predicted heat flux value, thereby enabling the detection of
a boiling crisis. Fig. 13a shows the true images of bubble dynam-
ics during the transient boiling experiment where the heat flux
varies from 22.1 W/cm? to 53.1 W/cm?2. As seen from the image
panels in Fig. 13a, vigorous bubble coalescence was observed as
the heat flux increases. Fig. 13b shows the heat flux versus time,
measured using the thermocouples during the 50 s heat flux ramp
up. Instead of focusing on the entire 50 s data, where the vari-
ations of the bubble dynamics are significantly large for BiLSTM
training, we focused on more simplified cases of 10 s data to esti-
mate the trained model performance. Two different cases are con-
sidered for performance evaluation of BiLSTM, Case 1 using first
10 s data and Case 2 using last 10 s data, as shown in Fig. 13b.
For each case, 10 s of data, where 70% (7 s) of the data are re-
served for the BiLSTM training and the remaining 30% (3 s) data
are used for the testing. To test the trained BiLSTM model’s ac-
curacy on predicting the future of the reduced-order images, the
model was set up to predict 20, 40, 60, 80, and 100 ms future
reduced-order images. For all the cases, input time to the model
was fixed at 200 ms. Fig. 13c compares the BiLSTM predicted PC1
with the true PC1 for Case 1 with 20 ms of prediction duration
using the 3 s of testing data. A best fitted line (black line) passing
through the origin was plotted to obtain the slope, a, as shown in
Fig. 13c. The slope, a is 0.934, where a slope,a — 1 corresponds
to perfect prediction and a — 0 corresponds to poor prediction.
Fig. 13d shows the variation of slope, a with respect to predic-
tion duration. The decrease of slope demonstrates that the predic-
tion accuracy decreases with the increase in prediction duration.
Fig. 13d also demonstrates the potential universality of the trained
BiLSTM model for different heat flux ramping rates. In Case 1 of
Fig. 13b, the heat flux increases from 22.55 to 32.67 W/cm? in 10 s,

1

which corresponds to a ramping rate of 1.011 W/cm?2 per second.
For Case 2, the heat flux increases from 52.33 to 56.14 W/cm? in
10 s, corresponding to a ramping rate of 0.381 W/cm? per second,
38% of that in Case 1. The red and blue symbols in Fig. 13d show
the performance of the trained BiLSTM model for both cases in fu-
ture prediction. The trained BiLSTM models show similar predic-
tion accuracies for both cases, demonstrating the potential univer-
sality of the trained BiLSTM models. It is noted that the current
BiLSTM model predicts the imminent frame based on similar heat
flux values. To predict the imminent frame corresponding to an in-
creased heat flux, the BiLSTM model needs to be trained and eval-
uated by sampling the PC versus time value at a higher temporal
interval. To further investigate the prediction of bubble dynamics,
in the present study, the case of 60 ms prediction was used on the
Case 1 dataset.

Fig. 14a shows the RMSE value calculated using the testing
dataset (2.8 s) for the first 10 PCs for Case 1. The average and er-
ror bar were calculated from 10 trials for each PC. Similar to the
steady-state case, the best model with minimum RMSE value was
selected for the future prediction. Fig. 14b shows the performance
of the BiLSTM model in predicting the 1st PC for the next 60 ms
based on 200 ms of input data. Here, red, and blue symbols corre-
sponding to predicted and true PC. Fig. 14c shows the comparison
of predicted and true 1st PC for the entire testing dataset of 3 s du-
ration, with a prediction window of 60 ms, thereby demonstrating
the ability of the trained model to continuously predict the next
60 ms based on previous 200 ms data. Fig. 15 shows the modified
point-wise absolute error between the reduced-order true and pre-
dicted images from PCA-BiLSTM at 7202, 7220, 7240, and 7,260 ms,
taken within the prediction time frame of 60 ms (7,200 ms to
7,260 ms). Similar to the model performance on steady-state data
(Fig. 12), the modified point-wise absolute error increases with the
prediction duration. The average SSIM value was 0.983 and the
standard deviation of SSIM was 0.007.

It is noted that the PCA-BIiLSTM approach is a two-step process,
where the first step is to calculate the PCs from the boiling im-
ages and the second step is to predict future PCs using the BiL-
STM model. The PC calculation time from 60 ms of boiling images
at full pixel resolution of 600 x 832 is ~1,097 ms using a single
Nvidia Tesla V100 GPU. PC calculation time decreases when the
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Fig. 14. (a) RMSE value calculated between the predicted and the true PCs over the testing dataset (2.8 s). (b) Comparison of true and predicted 1st PC, where red and blue
corresponding to predicted and true PC. Here, 200 ms (7,000 ms to 7,200 ms) are used as input to the BiLSTM model, results in output of 60 ms (7,200 ms to 7,260 ms). (c)
Comparison of true and BiLSTM predicted PC1 for the entire testing dataset, 2.8 s (7,200 ms to 10,000 ms), having the prediction window of 60 ms.
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Fig. 15. Reduced-order true bubble dynamics for the transient dataset (Case 1) us-
ing first 10 PCs (top row), predicted reduced-order bubble dynamics, constructed
using BiLSTM predicted PCs (middle row), and the modified point-wise absolute
error, calculated between reduced-order true and predicted images (bottom row).
The average SSIM value calculated using reduced-order true future images and
the reduced-order predicted future images was 0.983 with a standard deviation of
0.007.

image resolution is reduced, and the PC extraction time reduces
to ~16.72 ms when 10% of the original image resolution is used.
Once the PCs are calculated, future PC predictions depend on the
trained BiLSTM model and in the present study, it takes ~12.67 ms
to predict the next 60 ms of the first 10 PCs. Hence, the total PC
calculation and predict time is ~29.39 ms for the next 60 ms pre-
diction, based on 10% of the original image resolution, demonstrat-
ing the ability of the present PCA-BiLSTM method in real-time CHF
monitoring and prediction. In addition, PC calculation and predic-
tion time can be further reduced using multiple GPUs to speed up
the process.

To demonstrate that the current PCA-BiLSTM method per-
forms significantly better at predicting future bubble dynamics
compared to the conventional Convolutional-LSTM (Conv-LSTM)
method, both methods were used on the transient boiling dataset
(Case 1) shown in Fig. 13a. Conv-LSTM uses the convolution op-

12

eration by applying equal significance to all the pixels for future
prediction, and the prediction results are influenced by the sta-
tionary bubbles, heater surface, as well as the image background.
In contrast to the Conv-LSTM approach, the present PCA-BiLSTM
approach focuses only on the dynamic part of time-series images
for future predictions, i.e., the bubble dynamics. Moreover, PCA-
BiLSTM uses the first 10 dominant components for future predic-
tion, whereas Conv-LSTM uses full resolution for each image. PCA-
BiLSTM and Conv-LSTM are based on different approaches, where
the former is data-driven, and the latter is image-based, respec-
tively. The transient bubble images were used to train and test the
performance of Conv-LSTM. Both Conv-LSTM and PCA-LSTM mod-
els used 3500 images out of 5000 images for training. For Conv-
LSTM model, four 2D Convolutional-LSTM layers with 40 filters
of size 3 by 3 were used and the last layer was a 3D convolu-
tion layer with 1 filter of size 3 by 3 by 3 with sigmoid activa-
tion function. To be consistent with the PCA-BiLSTM, the Conv-
LSTM model was trained to predict the next 60 ms, corresponding
to 30 frames (500 fps). Fig. 16a shows the original future images
in the top row and predicted future images using Conv-LSTM in
the middle row at 7202, 7220, 7240, and 7,260 ms, taken within
the prediction window of 60 ms (7200 to 7,260 ms). The modi-
fied point-wise absolute error increases as the prediction duration
increased, where the denominator is the maximum value taken
within 60 ms and was kept constant. Fig. 16b shows the compar-
ison of average absolute error, avg.|u(x) — u(x)|, within the pre-
diction time frame of 60 ms (7200 to 7,260 ms) for PCA-BiLSTM
(black circles) and Conv-LSTM (blue circles), respectively. Compari-
son of time-series average absolute errors in Fig. 16b demonstrates
that the PCA-BiLSTM approach outperforms Conv-LSTM in predict-
ing future bubble dynamics. The average absolute error for PCA-
BiLSTM is smaller than the Conv-LSTM and the propagation of er-
ror with prediction time is much higher for Conv-LSTM. The struc-
tural similarity of the images (SSIM) predicted using PCA-BiLSTM
and Conv-LSTM are shown in Fig. 16¢ [92]. As seen from Fig. 16¢c,
the SSIM values of PCA-BIiLSTM predictions are significantly higher
than that of Conv-LSTM predictions, suggesting that the true and
predicted future images from PCA-LSTM had more comparable fea-
tures and the ones from Conv-LSTM had significant deviations.

The DL model training time was also compared between
PCA-BILSTM and Conv-LSTM. The model training times were
1,497 s/epoch and 59,710 s/epoch for PCA-BIiLSTM and Conv-LSTM,
respectively, using an Nvidia P4000 GPU. The training time was
also checked using an advanced GPU, Nvidia Tesla V100, where the
model training times were 362 s/fepoch and 512 s/epoch for PCA-
BiLSTM and Conv-LSTM, respectively. For both cases, a single GPU
was used. The reason for such differences may be due to advanced
GPUs’ ability to handle a large number of images.
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Fig. 16. (a) Comparison of bubble dynamics between the original images (top row) and the predicted image using Conv-LSTM (middle row), with the modified point-
wise absolute error (bottom row) for the transient dataset of pool boiling on plain Cu. (b) Comparison of average absolute error within the prediction time frame of 60 ms
(7200 ms to 7260 ms), where the black and blue symbols are for PCA-BiLSTM and Conv-LSTM for CHF dataset. Here, Average absolute error, avg. |u(x) — u(x)|, was calculated
from original images (u(x)) and the predicted images from Conv-LSTM (u(x)) for Conv-LSTM and using reduced-order true (u(x)) and predicted from BiLSTM (u(x)) for PCA-
BIiLSTM. (c) Comparison of structural similarity index (SSIM) [92] between PCA-BiLSTM and Conv-LSTM.

4. Conclusion

A Principal Component Analysis (PCA) based unsupervised ma-
chine learning method was applied on boiling images obtained
from in-house pool boiling experiments as well as publicly avail-
able videos. The PCA was used to create reduced-order representa-
tions of full-resolution images and differentiate significant features
from insignificant stationary image regions and noise. Images cap-
tured over the duration of bubble generation and departure were
represented with as low as 10 principal components (PCs) and
the variation of the first PC versus time was analyzed using Fast
Fourier Transform (FFT) to extract the new physical descriptors;
dominant frequency and amplitude. The results show that:

e The dominant frequency versus heat flux encoded the physi-
cal information related to the bubble count observed during the
steady-state boiling and the amplitude versus heat flux encoded
the physical information related to the bubble size. Within the
NB regime, these new physical descriptors showed trends sim-
ilar to the bubble count and bubble size, however, at CHF, the
frequency and amplitude values showed a sudden increase and
a sudden decrease, respectively, and can hence be used to dis-
tinguish CHF regime from the NB regime during pool boiling
experiments.

o The PCA approach was tested on 10 different in-house datasets
as well as two publicly available datasets and showed high ro-
bustness over multiple domains. Moreover, when the boiling
heat flux increased and the bubbles started to interfere and co-
alesce, the dominant frequency and amplitude versus heat flux
trends from PCA showed higher accuracy compared to bubble
count and bubble size versus heat flux trends from Mask R-
CNN, a supervised learning approach.
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o The PC versus time data were then used to train a BiLSTM deep
learning model to predict the future states of the PCs. The first
10 PCs were used as input to BiLSTM, and the predicted future
PCs were then used to reconstruct the reduced-order images.
The error between the predicted and true reduced-order images
was found to increase with the prediction duration. The cur-
rent reduced-order PCA-BiLSTM approach showed significantly
higher accuracy compared to Convolutional-LSTM approach in
predicting future bubble morphologies, thereby providing a ro-
bust pathway for real-time predictions of transient boiling pro-
cesses.

The present study sheds light on using label-free PCA for
reduced-order representations of bubble images to extract new
physical descriptors related to the pool boiling phenomena. The
PCA-BiLSTM approach is demonstrated to predict future reduced-
order bubble images with as few as 10 PCs in comparison
to Convolutional-LSTM which relies on high-resolution images
containing millions of pixels. The unsupervised PCA combined
with the BiLSTM approach presented herein, if integrated with
classification-based algorithms [93], has the potential for fast
(reduced-order) and domain-independent (robust) detection of the
boiling crisis.
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Appendix A. Training and validation loss of the BiLSTM model

The time-series PC data extracted from the bubble images at
CHF were used to train the BiLSTM model. To avoid model over-
fitting and underfitting issues, 5% of the training dataset was used
for validation during the model training. Fig. A1 shows the training
and validation loss as a function of the number of epochs, where
black and blue symbols correspond to the training and validation
datasets. The decreasing trend and good agreement between the
training and validation losses indicate a good fit DL model.

0.10 T T T )
o Train
0.08 R o Validation
R
» 0.0618 1
8
= 0.04} ¥
0.02 +
0.00
0 20 40 60 80 100
Epoch

Fig. Al. Training and validation loss of the BiLSTM model training.
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Appendix B. Comparison between LSTM and BiLSTM

The prediction performance of BiLSTM was compared with
LSTM using the transient boiling dataset, as mentioned in
Section 3.3. Figure Bla shows the calculated heat flux during the
50 s transient ramp up. Two different cases were considered for
performance evaluation of BiLSTM with traditional LSTM, Case 1
using the first 10 s data and Case 2 using the last 10 s data,
as shown in Fig. Bla. For each case, 10 s of data correspond to
5000 images, where 70% (3500) of the data were reserved for
LSTM/BILSTM training and the remaining 30% (1500) were used for
testing. For each case, five different numbers of prediction frames,
10, 20, 30, 40 and 50 frames were considered while keeping the
same input frames of 100 during training and testing, correspond-
ing to 20, 40, 60, 80, and 100 ms of future prediction using 200 ms
of input data. Figures B1b and B1c show the root mean square er-
ror (RMSE) value for Case 1 and Case 2, calculated using the true
and prediction, where the red symbol is for tradition LSTM and
the blue symbol is for BiLSTM. The Figs. B1 (b-c) show that BiLSTM
performed better than the traditional LSTM for both cases. The per-
centage of reduction in RMSE value for future prediction using BiL-
STM varies from 5.4% to 15.9% for case 1 and 7.2% to 29.7% for case
2. The average percentage reduction in RMSE value considering all
the cases is 15% due to using BiLSTM architecture over traditional
LSTM.

(a) (b) ¢
. 60 ! 25 T T ©) 25 :
3" Casel Case2
§ 50 / 20+ 20+
o o 15} B 15;
S AQ fm— - >
é Casel Case2 x 10t e 10t
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20 : : 0 ; : ” : : ' . 3 . L
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Fig. B1. (a) 50 s transient heat flux ramp-up test, where Case 1 (first 10 s) and Case 2 (last 10 s) are considered for performance evaluation. RMSE value with respect to
future prediction durations using both LSTM and BiLSTM for (b) Case 1 and (c) Case 2.
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