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Research has shown that deep learning methods are able to obtain human level accuracy in image classification, 
detection, and  segmentation1. Motivated by these successes, AI practitioners have explored the effectiveness of 
these methods in biomedical domains. Deep learning has been used for a wide variety of healthcare applica-
tions such as classification and detection of tumors from medical images, making treatment plans by analyzing 
electronic health records, to name a few. An essential element for the success of deep learning techniques is the 
capability of neural networks to learn high level abstractions from input raw data through a general purpose 
learning  procedure2. Deep learning based clinical systems provide support for experts in the medical domain in 
performing time-consuming works, such as examining chest radiographs for the signs of pneumonia.

Pneumonia is a life threatening disease caused either by pathogens like bacteria, virus or fungi in the lungs. 
Pneumonia caused due to viruses is milder as compared to its bacterial counterpart and the symptoms occur 
gradually. In comparison, bacterial pneumonia is more severe and its symptoms can occur suddenly, especially 
among groups at high risk, such as  children3. Bacterial pneumonia affects a large part of the lung by attacking 
the lobes. A person needs to be hospitalized if the infection spreads to other lobes as  well4. Fungal pneumonia is 
a variant which occurs among people having weak immunity. This type of pneumonia can be dangerous as well, 
and requires time for the patient to regain health. Infants, people having other diseases, people with an impaired 
immune system, the elderly, people who have a history of hospitalization or are suffering from a chronic disease 
such as asthma or smokers are some of the groups who are at a high risk of pneumonia. Severe Acute Respiratory 
Syndrome Coronavirus 2 (SARS-CoV-2) is the pathogen responsible for the Coronavirus disease 2019 (COVID-
19) pandemic. The new COVID-19 induced pneumonia causes severe inflammation in lungs. It damages cells 
and tissues of air sacs in lungs. These sacs are where the oxygen is processed and delivered to the blood. A study 
conducted  by5 shows that the mortality rate of patients suffering from COVID-19 induced pneumonia is 56%, 
showing that severe COVID-19 pneumonia is associated with very high mortality.

There is an urgent need to develop new methods that aid in the effective identification of pneumonia in 
early stages to reduce patient  mortality6. In countries which lack medical resources, especially in the rural areas, 
there is a strong need for computer aided diagnosis systems. These artificial intelligence based systems can help 
radiologists detect pneumonia from chest X-ray images in early stages.
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Several medical tests are used for the detection of pneumonia, such as pulse oximetry, sputum test and chest 
X-rays. A primary method in the detection of pneumonia is using chest radiographs. In this paper, we propose a 
Learning by Teaching (LBT) framework to perform differential architecture search to discover the most effective 
neural architecture for detecting pneumonia from chest X-ray images. We also experiment with other methods 
for neural architecture search such as  DARTS7 and PC-DARTS8. The models are trained on a dataset consisting 
of 5215 chest X-ray images, containing 1341 images labeled as ‘Normal’, indicating the CXR images have no 
abnormalities, and 3874 images as ‘Pneumonia’, indicating bacterial or viral pneumonia. Experiments demon-
strate the efficacy of our method which achieves a pneumonia classification AUC of 97.6%. The novelties of our 
work are twofold. First, to our best knowledge, our work represents the one studying neural architecture search 
for pneumonia detection from chest X-rays. Second, we propose a three-level optimization framework which 
uses a student model to improve the search of teacher’s architecture, which is a novel method.

In this section, we introduce our proposed LBT method for searching optimal architectures to detect pneumonia. 
There are no human participants involved in this study.

Experiments are carried out using the method proposed 
by Liu et al.7 called DARTS (Differentiable ARchiTecture Search) which is effective in discovering high perfor-
mance convolutional architectures suitable for image classification. The algorithm searches for a computation 
cell which is considered as a building block of the final architecture. The searched cell can then be stacked to 
form a convolutional neural network capable of classifying images. The cell is a Directed Acyclic Graph (DAG) 
where each directed edge represents an operation such as convolution, pooling, etc. The method performs con-
tinuous relaxation of the search space by considering multiple operations on the edges and performing a softmax 
on them according to Eq. (1),

where O is a set of candidate operations (such as convolution, max pooling, etc.) applied to an intermediate rep-
resentation x(i) . α(i,j) is a vector that depicts the mixing of weights for a pair of nodes (i, j). The final architecture 
is induced by performing joint optimization of the network’s weights and architecture. Their method sets itself 
apart by searching over a continuous search space instead of a discrete search space, so that the architecture can 
be optimized by minimizing the loss on a validation set using gradient descent. The computational efficiency of 
gradient-based optimization, as opposed to inefficient black-box search, allows DARTS to achieve competitive 
performance comparable to the state of the art using orders of magnitude less computation.

Experiments 
are also carried out using PC-DARTS (Partially Connected DARTS)8. This technique has a considerably lower 
memory footprint and computational overheads, as compared to  DARTS7. The core idea behind PC-DARTS is 
that it randomly selects a subset of channels (determined by a hyperparameter) while bypassing the others. A 
benefit of this approach is that the search operation becomes more regularized and less prone to reaching a local 
optima. The algorithm in PC-DARTS applies a masking scheme to sample channels according to Eq. (2).

where Si,j is a channel sampling mask, which uses 1 to select channels and 0 to masked channels. Si,j ∗ xi and 
(1 − Si,j) ∗ xi denote the selected and masked channels, respectively. The proportion of selected channels is 
decided by a hyperparameter 1/K. The selection of partial channels reduces the memory overhead of comput-
ing f PCi,j

(
xi; Si,j

)
 by K times and allows larger batch sizes during the training process. Larger batch sizes ensure 

stability during the search process. PC-DARTS deal with instability of channel selection across different iterations 
based on edge normalization. This is achieved by introducing a parameter β that adds weights on each edge (i,j). 
Since βi,j is shared through the training process, the learned network architecture is insensitive to the sampled 
channels across iterations, making the architecture search more stable as compared to DARTS.

Inspired by human learning strategies, we propose a framework called LBT (Learn-
ing By Teaching) which improves the learning outcome of a model by encouraging it to teach other models 
to perform well. The LBT framework is used to perform NAS to determine the best architecture for detecting 
pneumonia from chest X-ray images.

In our framework, there is a teacher model and a student model. The eventual goal is to make the teacher 
achieve better learning outcomes. The way to achieve this goal is to let the teacher teach the student to perform 
well on the target task. The intuition behind LBT is that a teacher needs to learn a topic very well in order to teach 
this topic to a student clearly. Teaching is performed based on pseudo-labeling9: the teacher uses its model to 
generate a pseudo-labeled dataset; the student is trained on the pseudo-labeled dataset. The teacher has a learn-
able neural architecture A and a set of learnable network weights T. The student has a predefined architecture 
(by humans) and a set of learnable network weights S. The teacher has a training dataset D(tr)

t  and a validation 
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dataset D(val)
t  . The student has a training dataset D(tr)

s  and a validation dataset D(val)
s  . There is an unlabeled dataset 

Du where pseudo labeling is performed.
In our framework, both the teacher and student perform learning, which is organized into three stages. In 

the first stage, the teacher fixes its architecture and trains its network weights by minimizing the training loss 
defined on D(tr)

t :

The architecture A is needed to calculate the loss on training examples. However, it cannot be updated by mini-
mizing the training loss. Otherwise, a degenerated solution will be produced where A has very large capacity to 
overfit the training examples but will yield poor prediction outcomes on unseen examples. T∗(A) is a function 
of A: a different A will result in a different training loss L(A,T ,D

(tr)
t ) ; T trained by minimizing L(A,T ,D

(tr)
t ) will 

be different as well.
In the second stage, the teacher teaches a student via pseudo-labeling. Given an unlabeled dataset 

Du = {xi}
N
i=1 , the teacher uses its model T∗(A) trained in the first stage to make predictions on Du . Assuming 

the task is classification with K classes, the prediction f (xi;T∗(A)) on xi would be a K-dimensional vector, where 
the k-th element indicates the probability that xi belongs to the k-th class and the sum of elements in f (xi;T∗(A)) 
is one. Let Dpl(Du,T

∗(A)) = {(xi , f (xi;T
∗(A)))}Ni=1 denote the pseudo-labeled dataset. The network weights S 

of the student is trained on Dpl(Du,T
∗(A)) and a human-labeled training set D(tr)

s :

where L(·) denotes a cross-entropy loss and � is a tradeoff parameter. S∗(T∗(A)) is a function of T∗(A) : a different 
T∗(A) will result in a different pseudo-labeled dataset Dpl(Du,T

∗(A)) which will render the training loss to be 
different; a different training loss will result in a different S∗(T∗(A)).

In the third stage, the student’s model S∗(T∗(A)) trained in the second stage is validated on D(val)
s  . Besides, we 

also validate the teacher’s model T∗(A) trained in the first stage on D(val)
t  . The validation performances provide 

feedback on how good the teacher’s architecture A is. At this stage, A is optimized by minimizing the validation 
losses:

where γ is a tradeoff parameter.
Given the three learning stages, we propose a three-level optimization framework to stitch them together:

The three level optimization problem is solved using a gradient based algorithm.
For computational efficiency, we search A in a differentiable way as  DARTS7: given an overparameterized 

network, a subnetwork is carved out as the final architecture. The overparameterized network contains a large 
number of basic building blocks such as convolution operations, pooling operations, etc. The output of each 
building block is multiplied with a scalar. The search algorithm optimizes these scalars by minimizing validation 
losses. In the end, building blocks with the largest scalars form the final architecture.

We used the chest X-ray dataset provided  by10. There are 5,863 chest X-Ray images from two classes: Pneumonia 
and Normal. The pneumonia X-rays contain both bacterial pneumonia and viral pneumonia.  Following10, we 
combine these two types of pneumonia into a single Pneumonia class. The chest X-ray images were procured from 
pediatric patients aged 1 to 5 years from Guangzhou Women and Children’s Medical Center. The chest X-rays of 
the patients were performed as part of their routine clinical care. Initial screening of the chest radiographs was 
performed by removing low quality or unreadable scans. The radiographs were then marked as belonging to a 
pneumonia infected patient or a normal patient by two expert physicians. To make sure that the process was 
devoid of annotation errors, a third expert was also involved who checked the annotations. The chest X-rays are 
resized to 128 × 128 . Figure 1 shows some randomly sampled X-rays containing pneumonia. As can be seen, 
these images are large enough that the clinical manifestations of pneumonia can be clearly observed. We perform 
evaluation using fivefold cross validation. We randomly split the dataset into fivefold. We run the following 
experiments by taking turns on the fivefold: in each run, onefold is used as the test set and the other fourfold 
are used as the training set. Architecture search and model weights training are performed on the training set 
(which is split into D(tr)

t  and D(val)
t  with a ratio of 1:1). The searched architecture and trained model weights are 

evaluated on the test set. We report the mean and standard deviation of the five test performance numbers.

In the past few years, many researchers have proposed different deep learning based methods for lung nodule 
detection, pneumonia detection and localization, and have curated datasets for these tasks. Rajpurkar et al.11 pro-
posed CheXNeXt, a deep CNN consisting of 121 layers and capable of detecting 14 different diseases from chest 
X-rays, including pneumonia. Their method detects abnormalities in input X-ray images and uses an ensemble 
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t ).
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of neural networks to calculate mean predictions. Wang et al.12 curated a new dataset called ChestX-ray8 contain-
ing around 100,000 chest X-rays. They achieved a promising AUC score of 0.63 on detecting pneumonia from 
CXR images. Wozniak et al.13 developed probabilistic neural networks to detect small lung nodules from CXR 
images. Jung et al.14 used a 3D deep CNN with shortcuts and dense connections that tackle the vanishing gradi-
ent problem for the detection of lung nodules. Gu et al.15 proposed a 3D deep CNN and employed a multi-scale 
prediction strategy to detect nodules in lungs. They augment test data to detect small nodules. Li et al.16 have 
employed a CNN based approach combined with rib suppression and lung filled segmentation to detect lung 
nodules using chest radiographs. They trained three networks on images with different resolutions and applied 
feature fusion to merge information.

Ho et al.17 proposed a localization approach using pre-trained DenseNet-121 and a classification based 
approach that integrates local and deep features to establish state of the art classification results on 14 thoracic 
diseases on the ChestX-ray14 dataset. Gabruseva et al.18 proposed to localize lung opacity regions from X-ray 
images using  RetinaNet19 and SE-ResNext10120 pre-trained on  ImageNet21. Souza et al.22 investigated the problem 
of detecting dense abnormalities in chest X-Ray images while performing automatic lung segmentation using two 
deep CNNs. Their method achieved an accuracy of 96.79%. Xu et al.23 tackled the problem of anomaly detection 
in chest X-rays by designing a new hierarchical CNN structure called CXNet-m1, which is shorter, thinner but 
more powerful than conventional CNNs. They also developed a loss function which can learn discriminative 
information from misclassified and indistinguishable images. These methods achieve high F1 scores in anomaly 
detection. Ronneberger et al.24 used data augmentation techniques along with CNN to improve biomedical image 
segmentation. Jaiswal et al.25 used Mask R-CNN26 to detect pneumonia from chest radiographs accurately. The 
model leverages both local and global features and uses dropout and L2 regularization for pneumonia identifica-
tion. Liang et al.27 proposed a deep learning framework that combines residual connection and dilated convolu-
tion to diagnose pneumonia. They also proposed methodologies to solve the problem of low image resolution 
and partial occlusion in CXR images. Sirazitdinov et al.28 used an ensemble approach which integrates RetinaNet 
and Mask R-CNN for pneumonia localization. The network first recognizes regions affected by pneumonia and 
then non-maximum suppression is applied to the affected regions. Kermany et al.10 proposed a transfer learn-
ing framework where an Inception  V329 architecture was first pre-trained on the  ImageNet21 dataset and then 
its softmax layer was trained from scratch to distinguish images containing pneumonia from normal images. 
Stephen et al.30 employ image augmentation techniques to increase the size and quality of pneumonia X-ray 
data.  Siddiqui31 proposed a 18-layer deep sequential convolutional neural network consisting of 6 convolutional 
layers to detect pneumonia from chest X-rays. Gu et al.32 used a  VGG1633 model for pneumonia detection. Their 
model consists of two parts: a fully convolutional neural network for lung region identification and a deep CNN 
for classifying pneumonia.

Santosh and  Ghosh34 performed a systematic analysis of AI-based medical imaging methods for COVID-
19 detection from CT and X-rays in terms of dataset size and computational complexity. Santosh and  Antani35 
proposed to leverage lung region symmetry features for automated screening of pulmonary abnormalities from 
chest X-rays. Santosh et al.36 perform edge map analysis of chest X-rays to automatically screen pulmonary 
abnormality. Das et al.37 proposed a truncated inception net for COVID-19 outbreak screening from chest 
X-rays. Mukherjee et al.38 developed a unified deep neural network which leverages CT scans and chest X-rays 
simultaneously to detect COVID-19.

In a recent method called Meta Pseudo  Labels39, a teacher model is updated based on the performance of 
a student model. Our work differs  from39 in the following aspects. First, our method is based on a three-level 
optimization framework which searches for teacher’s architecture by minimizing student’s validation  loss39. 
is based on two-level optimization which has no architecture search. Second, our method trains the teacher’s 
network weights before using the teacher to generate pseudo-labels. In  contrast39, does not train the teacher 
before using it to perform pseudo-labeling. In the experiments, we compared our method  with39. Our method 
 outperforms39 significantly. Liu et al.40 studied unsupervised neural architecture without leveraging human labels. 
Our work differs  from40 in two aspects. First, in our method, a teacher network (with a searchable architecture) 
teaches a student network (with a fixed architecture) via pseudo-labeling. In  contrast40, has no pseudo-labeling. 

Figure 1.  Some randomly sampled X-rays (with a size of 128 × 128) containing pneumonia.
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It searches for an architecture using self-supervised learning, then evaluates this architecture by retraining its 
weight parameters. Second, our method searches for the teacher’s architecture and trains the student model 
jointly in an end-to-end framework  while40 performs architecture search and evaluation separately.

Input images were enhanced before performing architecture search and evaluation. 
We utilized a simple but effective image enhancement method called Dynamic Histogram Equalization (DHE)41 
to improve the quality of input images. Benefits of this method include: (1) it does not incur loss of details; (2) it 
does not introduce severe side effects such as washed-out appearance, checkerboard effects etc., or undesirable 
artifacts.

Each DARTS experiment consist of two steps, architecture search and architecture evaluation. The 
first step searches for the optimal cell using DARTS. A cell with the best validation performance is considered 
as the optimal cell. In the second step, the best cell obtained in the first step is used to construct a larger net-
work, which is trained from scratch and its performance is reported on the test set. The following operations are 
included in the candidate set O: 3 × 3 and 5 × 5 dilated separable convolutions, 3 × 3 and 5 × 5 separable con-
volutions, 3 × 3 average pooling, 3 × 3 max pooling, identity and zero. If applicable, all the operations involved 
have stride one. Spatial resolution is preserved by padding convolved feature maps. The ReLU-Conv-BN order 
is used for convolutional operations, and each separable convolution is always applied  twice42–44. The convo-
lutional cell has N = 7 nodes, among which the output node is defined as the depth wise concatenation of all 
the intermediate nodes (input nodes excluded). The rest of the setup  follows42–44 where a network is formed by 
stacking multiple cells together. The first and second nodes of cell k are set equal to the outputs of cell k − 2 and 
cell k − 1 , respectively, and 1 × 1 convolutions are inserted as necessary. The reduction cells are the ones that are 
located at one-third and two-thirds of the total depth of the network, in which all the operations adjacent to the 
input nodes are of stride two. The architecture encoding therefore is ( α-normal, α-reduce), where α-normal is 
shared by all normal cells and α-reduce is shared by all reduction cells. The search experiments are conducted by 
running the algorithm for 30 epochs with a batch size of 64. Network weights are optimized using SGD, with an 
initial learning rate of 0.025 (adjusted using a cosine decay scheduler), a momentum of 0.9, and a weight decay 
of 3e−4 . The loss function is Binary Cross Entropy. The initial number of channels is set to 36 and the network is 
trained for 600 epochs, with mini-batch size set to 64. These experiments are conducted on A100 GPUs.

Similar to  DARTS7, the PC-DARTS experiments are also performed in two stages: architecture 
search and architecture evaluation. The operation space O is the same as that in DARTS. An alternative and 
more efficient implementation is used for partial channel connections. For edge (i,j), channel sampling is not 
performed at each time of computing o(xi ), but instead choosing the first 1/K channels of xi for the operation 
mixture directly. To compensate, after xj is obtained, its channels are shuffled before being used for further com-
putations. This is the same as the implementation used in  ShuffleNet45, which is more GPU-friendly and thus 
runs faster. The search experiments are conducted by running the algorithm for 30 epochs with a batch size of 
128. Network weights are optimized using SGD, with an initial learning rate of 0.025 (adjusted using a cosine 
decay scheduler), a momentum of 0.9, and a weight decay of 3e − 4 . The initial number of channels were set to 
36 and the network was trained for 600 epochs, with mini-batch size set to 96.

In LBT, for the search space, we experimented with the search spaces defined in  DARTS7 and PC-
DARTS8. For the student’s architecture, ResNet-1846 is used. � and γ in Eq. (5) are both set to 1. During architec-
ture search, the teacher’s architecture is a stack of 8 cells, each consisting of 7 nodes. The initial channel number 
is set to 16. The algorithm runs for 50 epochs with a batch size of 32 for LBT-DARTS and 64 for LBT-PC-DARTS. 
Network weights are optimized using SGD, with an initial learning rate of 0.025 (adjusted using a cosine decay 
scheduler), a momentum of 0.9, and a weight decay of 3e − 4 . The experiments are conducted with different 
values of � . At � = 1, the highest accuracy is obtained. During architecture evaluation, 20 copies of the optimal 
cell searched in the search phrase are stacked into a large network, which is trained using the combined training 
and validation datasets. The loss function is Binary Cross Entropy. The initial channel number is set to 40. The 
network is trained for 600 epochs, with mini-batch size set to 32 for LBT-DARTS and 96 for LBT-PC-DARTS. 
The experiments are conducted on a Nvidia GeForce GTX 1080Ti GPU.

We use sensitivity, specificity, F1, area under ROC curve (AUC), accuracy to measure performance. The results 
are shown in Table 1. From these two tables, we make the following observations. First, among all methods in 
these two tables, our proposed LBT-PC-DARTS achieves the best performance on all evaluation metrics, with 
an AUC score of 97.6% and an F1 score of 97.1%. This shows that our method is highly effective in accurately 
detecting pneumonia from chest X-rays. We performed a two-sided paired Students’ t test between our method 
and each baseline. We used this test method because the following assumptions are satisfied: (1) the means of 
two populations (one for our method and the other for a baseline) of performance numbers being compared 
follow normal distribution; (2) the sample sizes in the two populations are equal (which is the number of fold 
in cross validation); (3) the data used to perform the test is fully paired: the two populations of performance 
numbers are evaluated on the same test set in each fold of the fivefold cross validation; (4) two-sided test is used 
because our method may perform either better or worse than a baseline. In these tests, the p-values are smaller 
than 0.001, which demonstrates that the improvements of our method over baselines are statistically significant. 
The reason that our method works better than baselines is as follows. In our method, the teacher model improves 
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its learning ability by teaching a student model to perform well on the classification task. The student is trained 
on the pseudo-labeled dataset created by the teacher. If the student does not perform well on the validation 
set, that means the pseudo labels are not correct, which indicates the teacher’s model is not accurate. To avoid 
such an outcome, the teacher enforces itself to learn better to generate correct pseudo labels. Second, while our 
LBT-PC-DARTS method achieves better performance than baselines, it has a smaller model size than baselines. 
A smaller model consumes less memory and facilitates faster computation. Third, when our LBT is applied to 
DARTS and PC-DARTS, both of them are improved. This shows that our method is broadly effective to improve 
different NAS methods. Fourth, LBT-PC-DARTS is more effective than LBT-DARTS. For example, the AUC of 
LBT-PC-DARTS is 2.7% (absolute) higher than LBT-DARTS. LBT-PC-DARTS randomly samples a proportion 
of channels for operation search. Consequently, it is more memory efficient and allows a larger batch size to be 
used for higher stability, as compared to LBT-DARTS. In LBT-PC-DARTS, an additional contribution to search 
stability is made by edge normalization, a light-weighted module that requires no extra computation. Fifth, our 
LBT-PC-DARTS method performs better than transfer learning methods which use pre-trained models, such as 
 InceptionV329, Densenet  12147,  VGG1633,  VGG1933,  Xception48,  GoogLeNet49 and  AlexNet50, with significantly 
smaller model size. All these models were pre-trained on large datasets such as  ImageNet21 and fine-tuning was 
carried out by freezing the initial layers and training the classification layers from scratch. Sixth, our LBT-PC-
DARTS method outperforms several state of the art  methods10,27,30,31 developed for pneumonia detection, with 
smaller model size. We further conclude that the architecture searched by our framework is lighter and more 
effective for pneumonia detection. Seventh, our LBT-PC-DARTS method has smaller training cost and inference 
time than baselines while our method achieves better classification performance.

We also performed a human evaluation where our methods are compared with three junior radiologists. From 
a teaching hospital in Beijing, China, we obtained 50 chest X-rays that have pneumonia and 50 chest X-rays 
which do not have pneumonia. These X-rays are randomly selected from the hospital’s database and their labels 
(whether having pneumonia or not) are given by senior radiologists who have more than 20 years of experience 
of interpreting chest X-rays. We compared our method with three licensed radiologists who have at least 5 years 
of experience of interpreting chest X-rays. For each of the 100 X-rays (which were randomly shuffled), each junior 
radiologist judged whether it contains pneumonia. Different radiologists made judgments independently. Table 2 
shows the accuracy (since the number of examples in the pneumonia class and normal class are balanced, we 
did not measure metrics for imbalanced classification, including sensitivity, specificity, F1, and AUC). As can be 
seen, the performance of our LBT-PC-DARTS method is on par with the three junior radiologists. Besides, our 
LBT-PC-DARTS method achieves better accuracy than the baselines.

In this section, we perform ablation studies to better understand the individual ingredients in our proposed 
method.

Table 1.  Comparison between our method and baselines. Model size is in MB. Training time is in GPU hours 
(h). Inference time is in milliseconds (ms). Significant values are in bold.

Model
Sensitivity 
(%)

Specificity 
(%) F1 (%) AUC (%) Accuracy (%) Model size

Training time 
(h)

Inference 
time (ms)

VGG1951 92.7 ± 0.68 92.4 ± 0.93 93.0 ± 0.59 93.9 ± 0.81 92.7 ± 0.84 731 2.3 69.2
InceptionV352 91.8 ± 0.49 92.2 ± 0.70 91.4 ± 0.76 92.8 ± 0.55 92.6 ± 0.92 502 2.1 38.6
DenseNet12152 93.8 ± 0.87 91.7 ± 0.92 92.4 ± 0.96 93.8 ± 0.53 93.1 ± 0.97 537 2.1 87.2
AlexNet52 92.5 ± 1.04 92.7 ± 0.85 92.1 ± 0.62 94.1 ± 0.62 92.7 ± 0.73 433 2.0 32.7
VGG1651 90.9 ± 0.75 94.1 ± 0.68 91.8 ± 1.15 94.3 ± 0.47 92.5 ± 0.61 737 2.2 55.3
Xception51 90.7 ± 0.59 92.3 ± 0.71 93.6 ± 0.74 93.4 ± 0.62 92.1 ± 0.73 241 1.8 146.9
GoogLeNet52 90.7 ± 1.03 92.5 ± 0.91 91.8 ± 0.72 95.4 ± 0.37 93.4 ± 0.85 87 1.5 38.1
LeNet553 84.6 ± 0.72 85.9 ± 0.55 85.4 ± 0.59 88.7 ± 0.36 89.1 ± 0.42 11.1 0.2 28.0
Kermany et al.10 92.8 ± 0.59 92.2 ± 0.57 92.5 ± 0.96 93.7 ± 0.69 93.0 ± 0.68 403 2.2 172.6
Stephen et al.30 92.4 ± 0.71 92.7 ± 0.38 92.4 ± 0.96 94.2 ± 0.71 93.7 ± 0.62 61 1.6 147.0
Siddiqi31 94.7 ± 0.42 93.1 ± 1.33 92.7 ± 0.61 93.9 ± 0.33 93.5 ± 0.74 274 1.7 210.6
Liang et al.27 89.5 ± 0.62 91.7 ± 0.73 89.9 ± 1.04 92.2 ± 0.68 92.3 ± 0.95 ≈ 215 1.9 187.3
Meta Pseudo 
 Label39 90.6 ± 0.74 92.3 ± 0.58 91.7 ± 0.94 93.2 ± 0.63 91.8 ± 0.71 69 1.7 162.5

Liu et al.40 92.0 ± 0.58 92.7 ± 0.84 92.4 ± 0.81 93.4 ± 0.45 92.4 ± 0.74 35 1.4 85.2
Kundu et al.54 92.4 ± 1.05 91.6 ± 0.69 91.8 ± 0.95 93.1 ± 0.52 91.9 ± 0.50 195 2.1 141.7
Cha et al.55 92.1 ± 0.62 91.3 ± 0.62 91.4 ± 0.77 93.2 ± 0.68 92.0 ± 0.59 131 1.7 196.3
DARTS7 88.9 ± 0.71 89.2 ± 0.95 90.1 ± 0.62 93.0 ± 0.85 89.8 ± 0.75 11.4 0.9 28.7
LBT-DARTS 
(ours) 93.0 ± 0.42 93.2 ± 0.86 92.8 ± 0.75 94.9 ± 0.82 93.3 ± 0.61 11.2 0.9 28.5

PC-DARTS8 93.2 ± 0.84 90.9 ± 0.95 91.8 ± 0.62 92.5 ± 0.60 91.4 ± 0.75 11.3 0.1 28.5
LBT-PC-
DARTS (ours) 95.9 ± 0.74 96.7 ± 0.92 97.1 ± 0.64 97.6 ± 0.58 97.0 ± 0.80 10.9 0.1 26.4
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In this setting, the teacher updates its architecture by minimizing the validation loss of 
the student only, without considering the validation loss of itself. The corresponding formulation is outlined in 
Eq. (6). In this study, � is set to 1. The student’s architecture is ResNet-18.

In this setting, in the second stage of LBT, only the pseudo labeled dataset is used to 
train the student. The training data of the student, labeled by humans, is not used. The corresponding formula-
tion is outlined in Eq. (7). In this study, γ is set to 1. The student’s architecture is ResNet-18.

� We investigate how the teacher’s test error changes with the tradeoff parameter � . In 
this study, the other tradeoff parameter γ is set to 1. Architecture search is performed on the training and vali-
dation sets. Architecture evaluation results are reported on the test set. The student’s architecture is ResNet-18.

γ We investigate how the teacher’s test error changes with the tradeoff parameter γ . 
The other tradeoff parameter � is set to 1. Similar to the ablation study on � , the error is reported on the test set. 
The student’s architecture is ResNet-18.

Table 3 shows the performance of LBT-PC-DARTS for ablation setting 1 and 2. Figure 2 shows how 
the accuracy of LBT-PC-DARTS changes with the tradeoff parameters � and γ.

In ablation setting 1, only the student’s validation loss is leveraged to update the architecture. It can be 
observed that there is a 2.7% (absolute) drop in accuracy as compared to the full LBT-PC-DARTS setting where 
both the student’s validation loss and the teacher’s validation loss are leveraged. The reason is that a student’s vali-
dation loss indirectly measures the quality of the teacher’s architecture. How well the student performs depends 
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Table 2.  Comparison between our method and three junior radiologists.

Accuracy (%)
VGG1951 89.7
InceptionV352 90.4
DenseNet12152 91.1
AlexNet52 89.2
VGG1651 90.5
Xception51 89.6
GoogLeNet52 88.4
LeNet553 82.0
Kermany et al.10 91.0
Stephen et al.30 90.9
Siddiqi31 91.3
Liang et al.27 88.7
Meta Pseudo  Label39 89.1
Liu et al.40 90.4
Kundu et al.54 91.2
Cha et al.55 90.7
DARTS7 88.5
LBT-DARTS (ours) 91.8
PC-DARTS8 89.2
LBT-PC-DARTS (ours) 94.2
Radiologist 1 94.5
Radiologist 2 94.7
Radiologist 3 94.4
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on not only how well the teacher teaches the student but also how strong the student itself is. If the student is a 
very strong learner, its validation loss may be largely determined by the student itself and less influenced by the 
teacher. In this case, student’s validation would be a relatively weak signal for guiding the learning of the teacher. 
In contrast, the validation loss of the teacher directly depends on its architecture and can serve as a direct (hence 
strong) signal to guide the teacher to learn. In the end, combining the direct signal (teacher’s validation loss) and 
indirect signal (student’s validation loss) together is more beneficial than using the indirect signal only.

Ablation setting 2 incurs a 1.9% decrease in accuracy compared with our full LBT-PC-DARTS method. In 
other words, using both the pseudo-labeled dataset and human-labeled dataset to train the student yields better 
performance than using the pseudo-labeled dataset only. The reason is that since the pseudo-labels are auto-
matically generated by a model, they are not entirely reliable. Trained on less reliable labels, the student’s model 
may have low quality and a poorly-performing student cannot drive the teacher to learn better. This risk can be 
reduced by incorporating human-provided labels which are more reliable. As a result, using human labels and 
pseudo-labels jointly yields better performance than solely using pseudo-labels.

In Fig. 2 (top row, left), how the classification accuracy of LBT-PC-DARTS changes with � is shown. We can 
make several observations from this figure. When we increase the value of � from 0.5 to 1, there is a 1.7% (abso-
lute) improvement in accuracy. This is because a larger � incurs a stronger effect of teaching, where the training of 
the student relies more on the pseudo-labeled dataset created by the teacher. When the teaching effect is strong, 

Table 3.  Ablation studies. Significant values are in bold.

Ablation studies Accuracy (%)
LBT-PC-DARTS (ours) 97.0
Ablation setting 1 94.3
Ablation setting 2 95.1

Figure 2.  Top row: accuracy of LBT-PC-DARTS under different values of the tradeoff parameter � and γ . 
Middle row: normal cell (left) and reduction cell (right) searched by LBT-DARTS. Bottom row: normal cell (left) 
and reduction cell (right) searched by LBT-PC-DARTS.
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the teacher can gain more feedback from the student’s performance, which helps the teacher to learn better. On 
the other hand, further increasing the value of � leads to a 3.6% (absolute) decrease in performance. The reason 
is that if � is too large, the teaching effect would be excessively strong. Under such circumstances, the student 
is mainly trained on the pseudo labels which are less reliable than human-provided labels and consequently 
its model may be of low quality. A mediocre student will not be very helpful in driving the teacher to improve.

In Fig. 2 (top row, right), how the classification accuracy of LBT-PC-DARTS changes with γ is shown. As 
we increase the value of γ from 0.1 to 1, there is a 3.3% (absolute) improvement in accuracy. This is because a 
larger γ encourages the teacher to pay more attention to the feedback obtained from the student. This feedback 
is valuable because the validation performance of the student reflects the correctness of the pseudo-labels gener-
ated by the teacher and the quality of pseudo-labels reflects the quality of the teacher’s architecture. Paying more 
attention to such feedback enables the teacher to identify its weakness and strive for improvement. On the other 
hand, further increasing the value of γ leads to a 2.8% (absolute) decrease in accuracy. The reason is that if γ is 
too large, the learning of the teacher’s architecture would be guided excessively by the student’s validation loss 
which is an indirect (hence weaker signal) but inadequately influenced the validation loss of the teacher itself 
which is a direct (hence stronger signal).

Figure 2 (middle row) and (bottom row) show the cells searched by LBT-DARTS and LBT-PC-DARTS, includ-
ing normal cells and reduction cells, which form the final architecture in the following way. 20 cells (including 
normal and reduction cells) are stacked to form the final network. Reduction cells are located at the 1/3 and 2/3 
of the total depth of the final network. The rest of the cells in the network are normal cells.

Figure 3 shows Grad-CAM56 visualization of saliency regions of our methods. As can be seen, for X-rays 
containing pneumonia, our method identifies correct pneumonia-related regions (highlighted using warm colors) 
instead of artifacts such as medical device related regions. For normal X-rays, the Grad-CAM visualizations of 
our method contain little warm colors, which indicates that our method “thinks” these images contain no saliency 

Figure 3.  Column (a) shows original CXR images. Column (b) shows Grad-CAM visualization of saliency 
maps of LBT-PCDARTS. Column (c) shows the overlay of saliency maps on original images.
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regions related to pneumonia, which is sensible. Figure 4 shows some correct and incorrect predictions made 
by LBT based PC-DARTS on the test set. Figure 5 shows the training and validation accuracies across epochs 
for LBT-PC-DARTS. It can be observed that both training accuracy and validation accuracy steadily improve.

In this article, the aim is to propose an effective NAS based approach to detect pneumonia from chest radio-
graphs. Experiments are carried out with DARTS, PC-DARTS and LBT based DARTS/PC-DARTS. LBT based 
PC-DARTS performs the best with an AUC of 97.6%. The proposed framework’s performance is tested against 
various ablation settings. The results suggest that LBT based NAS methods have great potential in assisting 
physicians for making accurate diagnosis of pneumonia.

Figure 4.  Correct and incorrect predictions made by LBT based PC-DARTS.

Figure 5.  Train and validation accuracy values across epochs during the training process of LBT based 
PC-DARTS.
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All experiments are carried out using the publicly available chest X-ray images (with pneumonia) dataset on 
 Kaggle10.

Received: 11 October 2021; Accepted: 22 June 2022

 1. Liu, N. et al. Exploiting convolutional neural networks with deeply local description for remote sensing image classification. IEEE 
Access 6, 11215–11228 (2018).

 2. Bakator, M. & Radosav, D. Deep learning and medical diagnosis: A review of literature. Multimodal Technol. Interact. 2, 47 (2018).
 3. Bouch, C. & Williams, G. Recently published papers: Pneumonia, hypothermia and the elderly. Crit. Care 10, 1–3 (2006).
 4. Scott, J. A. G. et al. Pneumonia research to reduce childhood mortality in the developing world. J. Clin. Investig. 118, 1291–1300 

(2008).
 5. Mahendra, M., Nuchin, A., Kumar, R., Shreedhar, S. & Mahesh, P. A. Predictors of mortality in patients with severe covid-19 

pneumonia—a retrospective study. Adv. Respir. Med. 89, 135–144. https:// doi. org/ 10. 5603/ ARM. a2021. 0036 (2021).
 6. Wunderink, R. G. & Waterer, G. Advances in the causes and management of community acquired pneumonia in adults. Bmj 358 

j2471 (2017).
 7. Liu, H., Simonyan, K. & Yang, Y. Darts: Differentiable architecture search (2019). arXiv: 1806. 09055.
 8. Xu, Y. et al. Pc-darts: Partial channel connections for memory-efficient architecture search (2020). arXiv: 1907. 05737.
 9. Hinton, G. E., Vinyals, O. & Dean, J. Distilling the knowledge in a neural network. CoRR (2015) arXiv: 1503. 02531.
 10. Kermany, D. S. et al. Identifying medical diagnoses and treatable diseases by image-based deep learning. Cell 172, 1122-1131.e9. 

https:// doi. org/ 10. 1016/j. cell. 2018. 02. 010 (2018).
 11. Rajpurkar, P. et al. Deep learning for chest radiograph diagnosis: A retrospective comparison of the chexnext algorithm to practic-

ing radiologists. PLoS Med. 15, e1002686 (2018).
 12. Wang, X. et al. Chestx-ray8: Hospital-scale chest x-ray database and benchmarks on weakly-supervised classification and localiza-

tion of common thorax diseases. 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR)https:// doi. org/ 10. 
1109/ cvpr. 2017. 369 (2017).

 13. Woźniak, M. et al. Small lung nodules detection based on local variance analysis and probabilistic neural network. Comput. Methods 
Prog. Biomed. 161, 173–180 (2018).

 14. Jung, H., Kim, B., Lee, I., Lee, J. & Kang, J. Classification of lung nodules in ct scans using three-dimensional deep convolutional 
neural networks with a checkpoint ensemble method. BMC Med. Imaging 18, 1–10 (2018).

 15. Gu, Y. et al. Automatic lung nodule detection using a 3d deep convolutional neural network combined with a multi-scale predic-
tion strategy in chest CTs. Comput. Biol. Med. 103, 220–231. https:// doi. org/ 10. 1016/j. compb iomed. 2018. 10. 011 (2018).

 16. Li, X. et al. Multi-resolution convolutional networks for chest x-ray radiograph based lung nodule detection. Artif. Intell. Med. 
103, 101744 https:// doi. org/ 10. 1016/j. artmed. 2019. 101744 (2020).

 17. Ho, T. K. K. & Gwak, J. Multiple feature integration for classification of thoracic disease in chest radiography. Appl. Sci.https:// doi. 
org/ 10. 3390/ app91 94130 (2019).

 18. Gabruseva, T., Poplavskiy, D. & Kalinin, A. Deep learning for automatic pneumonia detection. 2020 IEEE/CVF Conference on 
Computer Vision and Pattern Recognition Workshops (CVPRW)https:// doi. org/ 10. 1109/ cvprw 50498. 2020. 00183 (2020).

 19. Lin, T.-Y., Goyal, P., Girshick, R., He, K. & Dollár, P. Focal loss for dense object detection (2018). https:// opena ccess. thecvf. com/ 
conte nt_ iccv_ 2017/ html/ Lin_ Focal_ Loss_ for_ ICCV_ 2017_ paper. html, arXiv: 1708. 02002.

 20. Hu, J., Shen, L., Albanie, S., Sun, G. & Wu, E. Squeeze-and-excitation networks (2019). https:// opena ccess. thecvf. com/ conte nt_ 
cvpr_ 2018/ html/ Hu_ Squee ze- and- Excit ation_ Netwo rks_ CVPR_ 2018_ paper, arXiv: 1709. 01507.

 21. Deng, J. et al. Imagenet: A large-scale hierarchical image database. In 2009 IEEE Conference on Computer Vision and Pattern 
Recognition, 248–255, https:// doi. org/ 10. 1109/ CVPR. 2009. 52068 48 (2009).

 22. Souza, J. C. et al. An automatic method for lung segmentation and reconstruction in chest x-ray using deep neural networks. 
Comput. Methods Prog. Biomed. 177, 285–296. https:// doi. org/ 10. 1016/j. cmpb. 2019. 06. 005 (2019).

 23. Xu, S., Wu, H. & Bie, R. Cxnet-m1: Anomaly detection on chest x-rays with image-based deep learning. IEEE Access 7, 4466–4477 
(2019).

 24. Ronneberger, O., Fischer, P. & Brox, T. U-net: Convolutional networks for biomedical image segmentation (2015). https:// doi. org/ 
10. 1007/ 978-3- 319- 24574-4_ 28, arXiv: 1505. 04597.

 25. Jaiswal, A. K. et al. Identifying pneumonia in chest x-rays: A deep learning approach. Measurement 145, 511–518. https:// doi. org/ 
10. 1016/j. measu rement. 2019. 05. 076 (2019).

 26. He, K., Gkioxari, G., Dollár, P. & Girshick, R. Mask r-cnn (2018). https:// opena ccess. thecvf. com/ conte nt_ iccv_ 2017/ html/ He_ 
Mask_R- CNN_ ICCV_ 2017_ paper. html, arXiv: 1703. 06870.

 27. Liang, G. & Zheng, L. A transfer learning method with deep residual network for pediatric pneumonia diagnosis. Comput. Methods 
Prog. Biomed. 187, 104964 https:// doi. org/ 10. 1016/j. cmpb. 2019. 06. 023 (2020).

 28. Sirazitdinov, I. et al. Deep neural network ensemble for pneumonia localization from a large-scale chest x-ray database. Comput. 
Electr. Eng. 78, 388–399 (2019).

 29. Szegedy, C., Vanhoucke, V., Ioffe, S., Shlens, J. & Wojna, Z. Rethinking the Inception Architecture for Computer Vision, Vol. 1512, 
00567 (2015).

 30. Stephen, O., Sain, M., Maduh, U. & Jeong, D. An efficient deep learning approach to pneumonia classification in healthcare. J. 
Healthc. Eng. 1–7, 2019. https:// doi. org/ 10. 1155/ 2019/ 41809 49 (2019).

 31. Siddiqi, R. Automated pneumonia diagnosis using a customized sequential convolutional neural network. In ICDLT 2019 (2019). 
https:// doi. org/ 10. 1145/ 33429 99. 33430 01.

 32. Gu, X., Pan, L., Liang, H. & Yang, R. Classification of bacterial and viral childhood pneumonia using deep learning in chest radi-
ography. In Proceedings of the 3rd international conference on multimedia and image processing, 88–93, https:// doi. org/ 10. 1145/ 
31955 88. 31955 97 (2018).

 33. Simonyan, K. & Zisserman, A. Very deep convolutional networks for large-scale image recognition (2015). arXiv: 1409. 1556.
 34. Santosh, K. & Ghosh, S. Covid-19 imaging tools: How big data is big?. J. Med. Syst. 45, 1–8 (2021).
 35. Santosh, K. & Antani, S. Automated chest x-ray screening: Can lung region symmetry help detect pulmonary abnormalities?. IEEE 

Trans. Med. Imaging 37, 1168–1177 (2017).
 36. Santosh, K., Vajda, S., Antani, S. & Thoma, G. R. Edge map analysis in chest x-rays for automatic pulmonary abnormality screen-

ing. Int. J. Comput. Assist. Radiol. Surg. 11, 1637–1646 (2016).
 37. Das, D., Santosh, K. & Pal, U. Truncated inception net: Covid-19 outbreak screening using chest x-rays. Phys. Eng. Sci. Med. 43, 

915–925 (2020).
 38. Mukherjee, H. et al. Deep neural network to detect covid-19: One architecture for both CT scans and chest x-rays. Appl. Intell. 51, 

2777–2789 (2021).



Vol:.(1234567890)

 |        (2022) 12:11309  | 

www.nature.com/scientificreports/

 39. Pham, H., Dai, Z., Xie, Q. & Le, Q. V. Meta pseudo labels. In Proceedings of the IEEE/CVF Conference on Computer Vision and 
Pattern Recognition, 11557–11568 (2021).

 40. Liu, C. et al. Are labels necessary for neural architecture search? In European Conference on Computer Vision, 798–813 (Springer, 
2020).

 41. Abdullah-Al-Wadud, M., Kabir, M. H., Akber Dewan, M. A. & Chae, O. A dynamic histogram equalization for image contrast 
enhancement. IEEE Trans. Consumer Electron. 53, 593–600. https:// doi. org/ 10. 1109/ TCE. 2007. 381734 (2007).

 42. Zoph, B., Vasudevan, V., Shlens, J. & Le, Q. V. Learning transferable architectures for scalable image recognition (2018). https:// 
opena ccess. thecvf. com/ conte nt_ cvpr_ 2018/ html/ Zoph_ Learn ing_ Trans ferab le_ Archi tectu res_ CVPR_ 2018_ paper. html, arXiv: 
1707. 07012.

 43. Real, E., Aggarwal, A., Huang, Y. & Le, Q. V. Regularized evolution for image classifier architecture search (2019). https:// ojs. aaai. 
org/ index. php/ AAAI/ artic le/ view/ 4405, arXiv: 1802. 01548.

 44. Liu, C. et al. Progressive neural architecture search (2018). https:// opena ccess. thecvf. com/ conte nt_ ECCV_ 2018/ html/ Chenxi_ 
Liu_ Progr essive_ Neural_ Archi tectu re_ ECCV_ 2018_ paper. html, arXiv: 1712. 00559.

 45. Zhang, X., Zhou, X., Lin, M. & Sun, J. Shufflenet: An extremely efficient convolutional neural network for mobile devices (2017). 
https:// opena ccess. thecvf. com/ conte nt_ cvpr_ 2018/ html/ Zhang_ Shuffl eNet_ An_ Extre mely_ CVPR_ 2018_ paper. html, arXiv: 1707. 
01083.

 46. He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition (2015). https:// opena ccess. thecvf. com/ conte nt_ 
cvpr_ 2016/ html/ He_ Deep_ Resid ual_ Learn ing_ CVPR_ 2016_ paper. html.

 47. Huang, G., Liu, Z., van der Maaten, L. & Weinberger, K. Q. Densely Connected Convolutional Networks, Vol. 1608, 06993 (2018).
 48. Chollet, F. Xception: Deep learning with depthwise separable convolutions (2017). arXiv: 1610. 02357.
 49. Szegedy, C. et al. Going Deeper with Convolutions, Vol. 1409, 4842 (2014).
 50. Krizhevsky, A., Sutskever, I. & Hinton, G. E. Imagenet classification with deep convolutional neural networks. In Proceedings of 

the 25th International Conference on Neural Information Processing Systems - Volume 1, NIPS’12, 1097-1105 (Curran Associates 
Inc., Red Hook, NY, USA, 2012). https:// papers. nips. cc/ paper/ 2012/ hash/ c3998 62d3b 9d6b7 6c843 6e924 a68c4 5b- Abstr act. html.

 51. Ayan, E. & Ünver, H. Diagnosis of pneumonia from chest x-ray images using deep learning. 2019 Scientific Meeting on Electrical-
Electronics & Biomedical Engineering and Computer Science (EBBT) 1–5 (2019). https:// www. ncbi. nlm. nih. gov/ pmc/ artic les/ PMC84 
35166/.

 52. Chouhan, V. et al. A novel transfer learning based approach for pneumonia detection in chest x-ray images. Appl. Sci. 10, 559 
(2020).

 53. LeCun, Y., Bottou, L., Bengio, Y. & Haffner, P. Gradient-based learning applied to document recognition. Proc. IEEE 86, 2278–2324 
(1998).

 54. Kundu, R., Das, R., Geem, Z. W., Han, G.-T. & Sarkar, R. Pneumonia detection in chest x-ray images using an ensemble of deep 
learning models. PLoS ONE 16, e0256630 (2021).

 55. Cha, S.-M., Lee, S.-S. & Ko, B. Attention-based transfer learning for efficient pneumonia detection in chest x-ray images. Appl. Sci. 
11, 1242 (2021).

 56. Selvaraju, R. R. et al. Grad-cam: visual explanations from deep networks via gradient-based localization. In Proceedings of the IEEE 
International Conference on Computer Vision, 618–626 (2017).

The experiments were carried out on GPUs available on the Nautilus cluster. Nautilus is supported by the Pacific 
Research Platform (NSF #1541349), CHASE-CI (NSF #1730158), and Towards a National Research Platform 
(NSF #1826967). Additional funding has been supplied by the University of California Office of the President.

P.X. made contributions to the concept design of the article, the acquisition, analysis and interpretation of data for 
the article. A.G. carried out the experiments and drafted the article with valuable inputs from P.X. P.S. was respon-
sible for the implementation of the proposed framework . All the authors approved the version to be published.

 
The authors declare no competing interests.

Correspondence and requests for materials should be addressed to P.X.
Reprints and permissions information is available at www.nature.com/reprints.
Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and 
institutional affiliations.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International 
License, which permits use, sharing, adaptation, distribution and reproduction in any medium or 

format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the 
Creative Commons licence, and indicate if changes were made. The images or other third party material in this 
article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the 
material. If material is not included in the article’s Creative Commons licence and your intended use is not 
permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from 
the copyright holder. To view a copy of this licence, visit http:// creat iveco mmons. org/ licen ses/ by/4. 0/.

© The Author(s) 2022


