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ABSTRACT

NVIDIA has been making steady progress in increasing the compute
performance of its GPUs, resulting in order of magnitude compute
throughput improvements over the years. With several models of
GPUs coexisting in many deployments, the traditional accounting
method of treating all GPUs as being equal is not reflecting compute
output anymore. Moreover, for applications that require significant
CPU-based compute to complement the GPU-based compute, it is
becoming harder and harder to make full use of the newer GPUs,
requiring sharing of those GPUs between multiple applications
in order to maximize the achievable science output. This further
reduces the value of whole-GPU accounting, especially when the
sharing is done at the infrastructure level. We thus argue that
GPU accounting for throughput-oriented infrastructures should be
expressed in GPU core hours, much like it is normally done for the
CPUs. While GPU core compute throughput does change between
GPU generations, the variability is similar to what we expect to
see among CPU cores. To validate our position, we present an
extensive set of run time measurements of two IceCube photon
propagation workflows on 14 GPU models, using both on-prem
and Cloud resources. The measurements also outline the influence
of GPU sharing at both HTCondor and Kubernetes infrastructure
level.

CCS CONCEPTS

« General and reference — Cross-computing tools and tech-
niques; Metrics; « Computer systems organization — Architec-
tures; Parallel architectures; Multicore architectures; « Computer
systems organization — Architectures; Parallel architectures;
Single instruction, multiple data.

KEYWORDS

GPU computing, compute resource accounting, GPU sharing,
benchmarking, Kubernetes, HTCondor, IceCube

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

PEARC °22, July 10-14, 2022, Boston, MA, USA

© 2022 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-9161-0/22/07...$15.00
https://doi.org/10.1145/3491418.3535125

David Schultz
University of Wisconsin-Madison,
Madison, W1, USA
david.schultz@icecube.wisc.edu

Frank Wiirthwein
University of California San Diego, La
Jolla, CA, USA
fkw@ucsd.edu

Dmitry Y. Mishin
University of California San Diego, La
Jolla, CA, USA
dmishin@ucsd.edu

ACM Reference Format:

Igor Sfiligoi, David Schultz, Frank Wiirthwein, Benedikt Riedel, and Dmitry
Y. Mishin. 2022. The anachronism of whole-GPU accounting. In Practice
and Experience in Advanced Research Computing (PEARC °22), July 10-14,
2022, Boston, MA, USA. ACM, New York, NY, USA, 5 pages. https://doi.org/
10.1145/3491418.3535125

1 INTRODUCTION

General purpose Graphics Processor Unit (GPU) accelerated com-
puting has moved from being a niche use case to being considered
mainstream in many domains, including Machine Learning (ML)
and High Performance Computing (HPC) simulation environments.
The IceCube Neutrino Observatory [1] detector simulation work-
flows have been one of the early adopters of GPU accelerated com-
pute and remain the leading consumer of GPU resources inside the
Open Science Grid (OSG) [2] environment. The amount of simula-
tion output, aka throughput, IceCube is able to get in a day from
a single GPU has been steadily increasing with each new genera-
tion of NVIDIA GPUs, but older GPU models remain an important
contributor to the total science output. There is thus a growing
desire to proportionally account the contributed compute resources
based on the GPU model, and not just use “GPU hours” as the main
metric.

IceCube’s internal accounting system has been dealing with GPU
heterogeneity by running dedicated benchmarks every time a new
GPU model was encountered, and thus scaling the contribution
based on that [3]. While very reliable for their use case, a more
generic accounting solution is needed for general purpose GPU-
providing infrastructure providers, like the OSG and the Pacific
Research Platform (PRP) [4]. Cloud providers may benefit from it,
too, although cost-based accounting there provides a viable alter-
native already.

The accounting situation is further complicated by the need for
GPU sharing, especially at the infrastructure level. As GPU models
become faster and faster, it is becoming increasingly hard for an
application to keep the GPU fully utilized, since most applications
drive the GPU compute from a set of CPU cores. Mapping multiple
compute jobs on the same GPU can thus result in a significant boost
in total throughput. Each job will however take longer to complete,
so it is desirable to properly account for such sharing.

In this paper we explore the option of using “GPU core hours” as
a fair metric for GPU accounting for throughput-oriented infrastruc-
tures, much like “CPU core hours” has been the main metric used by
CPU-focused accounting systems. To validate our assumptions, we
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measured the runtimes for two IceCube workflows, representing
the two extremes of GPU-to-CPU compute ratio, on 14 different
GPU models spanning both on-prem and Cloud setups. In the pro-
cess we also show the importance of GPU sharing to maximize the
achievable throughput.

Section 2 provides an introduction to both the two IceCube
workflows and the infrastructure setups used for the measurement,
alongside the summary of measured runtimes and how they would
have been accounted using the standard “GPU hours” metric. In
Section 3 we analyze those results and showcase the benefits of GPU
sharing. Finally, in Section 4 we correlate the observed throughput
with the hardware characteristics of the used GPUs, i.e. the GPU
core counts, establishing that the “GPU core hours” is indeed a
reasonable accounting metric for GPU resources.

2 TEST SETUP AND RAW RESULTS

The IceCube detector is located at the geographical south pole
and is embedded into the naturally occurring ice there. In order
to properly characterize the optical properties of that ice, IceCube
has to perform extensive simulation. The problem is too complex
for a parametrized approach, so brute-force photon propagation,
aka ray-tracing is used. The massive, pleasantly parallel nature of
the problem fits perfectly the GPU compute model [5] so all such
compute has long been performed exclusively on GPU resources.
Nevertheless, the initial properties of the tracked photon are pro-
vided from CPU-driven code, which is only minimally parallelizable
and cannot effectively use more than two CPU cores, and that can
become a bottleneck as GPU compute returns results faster and
faster. Not all problems need the same amount of detail, so IceCube
users can choose to speed up their compute by, roughly speaking,
increasing the size of the target for the photons by some factor,
with oversize=1 being the most precise and oversize=4 being the
fastest.

The collected runtimes belong to two production IceCube work-
flows, one using oversize=1 and one using oversize=4, filtering out
any jobs that did not run on the resources under our direct control.
For the purpose of this paper, we limited ourselves to the GPU
resources managed by the PRP Kubernetes on-prem cluster and a
dedicated Google Kubernetes Engine (GKE) Cloud-based cluster.
Since IceCube uses HTCondor for job scheduling, a HTCondor
pilot [6] was first scheduled on the Kubernetes-managed resources,
and HTCondor would then launch the appropriate IceCube job.
Each IceCube workflow is composed of thousands of independent
simulation jobs and each job operates on slightly different inputs,
so runtimes will vary stochastically even on the same identical
hardware. We thus group the data by workflow and GPU type, and
provide the mean and standard deviation values as the representa-
tive measurements.

A fraction of the provisioned GPUs were shared between mul-
tiple applications, either at infrastructure or pilot level, since the
jobs used less than 5GB of GPU memory each. At the infrastructure
level, we tested hardware GPU sharing for the A100 GPUs on both
PRP and GKE, using the NVIDIA Multi-Instance GPU (MIG) capa-
bility [7], as well as temporally multiplexed GPU sharing on GKE.
Inside the HTCondor-based pilots, the GPU sharing was achieved
by configuring multiple execution slots that all pointed to the same
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GPU, which is conceptually comparable to the GKE approach. Note
that the infrastructure and pilot level sharing can be combined, and
we did run a fraction of the jobs in such a setup.

The measured runtime results for the two workflows are avail-
able in Table 1. Before analyzing the results, we would like to stress
that while some of the GPU models in this list are indeed old, they
are not obsolete. For example, for throughput-oriented workloads
the Tesla K80 GPU is still one of the most cost-effective GPUs that
one can rent in the Google Cloud [8], at just $0.91/day vs 17.76/day
for a V100-SXM2, in spot mode.

When looking at the measured runtimes, one can make two
straightforward observations:

1. The number of jobs per unit of time varies by a factor 10x
between GPU models, for both workloads. It is thus obvi-
ous that accounting only in “GPU hours” will not provide
a reasonable estimate of the delivered value, i.e. completed
science jobs, in shared heterogeneous deployments.

2. The minimum number of applications that must share a GPU
to maximize its throughput varies by a factor 7x between
GPU models, and it depends both on the workload and sup-
porting environment; for example, the A100 GPUs in PRP
are paired with high-frequency low-core-count CPUs, re-
ported as “AMD EPYC 7252 8-Core Processor”, while the
A100 GPUs in GKE are paired with low-frequency high-core-
count CPUs, reported as “Intel(R) Xeon(R) CPU @ 2.20GHz”
model 85 stepping 7, resulting in a very different optimal
sharing factor for the two. That said, not all applications may
be willing, or capable, to share at the maximum ratio, either
due to GPU memory sizes or maximum acceptable runtimes.
The optimal GPU sharing strategy will thus likely be deter-
mined by a mix of infrastructure and user needs, and is likely
to change with time. Naively summing the consumed “GPU
hours” for each completed job for GPU accounting purposes
will thus provide a highly inaccurate picture of the delivered
value.

3 THE BENEFITS OF GPU SHARING

As seen in Table 1, many workloads cannot directly make effec-
tive use of recent GPU models and sharing a GPU between mul-
tiple applications becomes necessary to maximize the achievable
throughput. In IceCube case, oversize=4 workflow reaches that
point already with the low-power Tesla T4, but even the oversize=1
workload will benefit from sharing of the high-end A100 GPU,
when paired with a high-core-count but low-frequency CPU. The
benefits of GPU sharing of course change with GPU model and
application type, as summarized in Figure 1, but we do observe a
4.5x speedup in the best case, i.e. the oversize=4 workflow running
on GKE A100 GPUs.

Choosing the right layer for GPU sharing is mostly a policy issue.
The observed runtimes between the three options are roughly com-
parable in all the scenarios we ran in. The hardware partitioning
provides the best isolation properties and would likely be the pre-
ferred option in multi-tenant deployments, but it is quite rigid [7]
and only supported on the A100 GPU. Direct infrastructure level
GPU sharing, either using Kubernetes as we did, or HTCondor in
batch-managed deployments, is much more flexible but provides
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Table 1: Measured values for IceCube jobs grouped by resource provider, GPU model and sharing setup. Job runtime is the mean
value of the measured runtimes, in kseconds, and Jobs per unit is the mean of the seconds_in_unit/runtime transformation.

Infrastructure GPU model MIG Par- Kubernetes HTCondor Job Jobs per day  Job runtime Jobs per
titions Sharing sharing runtime oversize=1  oversize=4 hour
oversize=1 oversize=4
GKE Tesla K80 None None None 1.82+0.15 2.0£0.2
GKE Tesla T4 None None None 11.5+0.2 7.5+0.1 0.87+0.08 4.2+0.4
GKE Tesla T4 None 2x None 22.5+0.9 7.1£0.3 1.18+0.19 6.2+1.1
GKE Tesla T4 None None 2x 1.15+0.15 6.4 +0.8
GKE V100-SXM2 None None None 7.8+0.3 11.0+£0.3 0.88+0.08 4.1+0.4
GKE V100-SXM2 None 2x None 14.2+0.2 12.1+£0.2 1.06+0.13 6.9+0.9
GKE V100-SXM2 None 3x None 1.43+0.15 7.7+£0.9
GKE V100-SXM2 None None 3x 1.34+0.14 8.2+0.9
GKE A100-SXM4 None None None 7.3£0.1 11.8+0.2 0.83+0.10 4.3+0.4
GKE A100-SXM4 2x None None 9.0+£0.1 19.3+0.1 0.91+0.08 8.0+0.7
GKE A100-SXM4 None 2xX None 8.4+0.1 20.7+0.2 0.86+0.08 8.4+0.7
GKE A100-SXM4 None None 2x 0.78+0.06 9.2+0.7
GKE A100-SXM4 2x None 3x 1.49+0.07 14.6 £0.7
GKE A100-SXM4 7x None None 26.1+£0.2 23.2+0.1 1.39+0.12 18.2+1.5
GKE A100-SXM4 None 7x None 26.8+0.1 22.6+0.1 1.32+0.12 19.3+1.7
GKE A100-SXM4 None None 7x 1.34+0.12 19.0+1.8
PRP Quadro M8000 None None None 43.7+0.3 2.0+0.0 1.95+0.16 1.9+0.2
PRP GTX 1070 None None None 16.4+0.2 5.2+0.1 1.04+0.09 3.5+0.3
PRP GTX 1080 None None None 12.4+0.4 7.0+£0.2 0.76+0.19 4.84+0.5
PRP GTX 1080 Ti None None None 9.0+0.5 9.7+0.4 0.76+0.09 4.9+1.0
PRP RTX 2080 Ti None None None 6.4+0.4 13.7£0.8 0.74+0.09 4.9+0.6
PRP RTX 2080 Ti None None 2x 1.23+0.19 6.0+0.9
PRP Titan RTX None None None 5.9+0.5 14.7+1.1 0.66+0.17 5.7+1.1
PRP V100-SXM2 None None None 6.2+0.1 13.9+0.1 0.61+0.05 5.9+0.5
PRP V100-SXM2 None None 3x 1.23+0.18 9.0+1.4
PRP A100-PCIE None None None 4.5+0.1 19.3+0.6 0.58+0.05 6.2+0.6
PRP A100-PCIE 2x None None 9.4+0.1 18.4+0.1 0.66+0.05 11.1+£0.9
PRP A100-PCIE 3x None None 0.84+0.07 12.9+1.0
PRP A100-PCIE 3x None 2x 1.35+0.14 16.2 £1.8
PRP A40 None None None 4.24+0.2 20.9+1.3 0.55+0.06 6.6+0.6
PRP A40 None None 4x 0.85+0.09 17.1£1.9
PRP RTX 3090 None None None 3.9+0.4 22.4+1.8 0.65+0.05 5.6+£0.5
PRP RTX 3090 None None 4x 0.85+0.09 17.1+£2.0
Tesla T4  p—— moversize=1
moversize=4
V100  m—
AdD  ———
RTX 3090  p——
AT 00 | ————

1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0

Figure 1: Ratio of observed jobs per unit of time, between best-option shared GPU and full GPU setups.
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Table 2: Measured values correlated with GPU core counts.

GPU model Compute Units  Cores GPU Jobs per GPU  Jobs per kcores ~ Jobs Per GPU  Jobs per kcores
(CUs) per CU cores oversize=1 oversize=1 oversize=4 oversize=4
Quadro M8000 13 128 1664 2.0£0.0 1.2+0.0 1.9+0.2 1.14+0.12
Tesla K80 13 192 2496 2.0£0.2 0.80+0.08
GTX 1070 15 128 1920 5.2+0.1 2.7£0.1 3.5+0.3 1.82+0.16
GTX 1080 20 128 2560 7.0£0.2 2.7£0.1 4.8+0.5 1.88+0.20
GTX 1080 Ti 28 128 3584 9.7+£0.4 2.7£0.1 4.9+1.0 1.37+0.28
RTX 2080 Ti 68 64 4352 13.7+0.8 3.2+0.2 6.0+0.9 1.38+0.21
Titan RTX 72 64 4608 14.7+1.1 3.2+1.2 5.7+1.1 1.24+0.24
Tesla T4 40 64 2560 7.5+0.1 2.9+0.0 6.2+1.1 2.42+0.43
V100-SXM2 80 64 5120 13.9+0.1 2.7£0.0 9.0+1.4 1.76+0.27
RTX 3090 82 128 10496 22.4+1.8 2.1£0.2 17.1£2.0 1.63+0.19
A40 84 128 10752 20.9+1.3 1.9+0.1 17.1+1.9 1.59+0.18
A100-PCIE 108 64 6912 19.3+£0.6 2.8+0.1 16.2 £1.8 2.34+0.26
A100-SXM4 108 64 6912 23.2+0.1 3.4+0.0 19.3£1.7 2.79+0.25
A100 MIG 1g.5gb 14 64 896 3.3+0.0 3.7+0.0 2.6+0.2 2.90+0.24
A100 MIG 2g.10gb 28 64 1792 6.5+0.0 3.6+0.0 5.4+0.6 3.00+0.33

very limited isolation guarantees. Pilot level sharing using HTCon-
dor is conceptually similar to infrastructure sharing, but comes
with increased draining waste [9] due to the larger job slot count.
For completeness, it should be noted that not all user communities
rely on a pilot scheduling layer.

4 USING GPU CORE HOURS AS A GPU
ACCOUNTING METRIC

Having noted that “GPU hour” accounting does not provide a reli-
able picture of delivered value, we propose an alternative metric,
i.e. the simple but reliable “GPU core hours” metric, similarly to
how “CPU core hours” is one of the most popular CPU accounting
metrics. Domain-specific metrics would likely be the more precise,
but general-purpose infrastructures typically demand application-
agnostic accounting metrics. We would also like to emphasize that,
to the best of our knowledge, there is no other single standardized
GPU-based metric that everyone agrees on.

The number of GPU cores can easily be determined at runtime
using the appropriate vendor API. Most GPU-aware resource man-
agement systems will have this capability, and we used HTCondor’s
condor_gpu_discover tool to collect the GPU core counts presented
in Table 2. The same table also contains the full-utilization through-
put measured, from Table 1, alongside the throughput to GPU core
count ratio.

The correlation between application throughput and GPU cores
is of course not perfect. Different generations of GPUs, and even dif-
ferent target markets, will result in a different balance of resources
inside each GPU core, and thus different application throughput.
Nevertheless, the spread between highest and lowest throughput
per core is only about 3x, significantly lower than the 10x spread we
saw when looking at whole-GPU throughput. It is also consistent
with what one typically sees when comparing throughput per CPU
core.

Furthermore, when using hardware GPU partitioning, the ap-
plication is aware of how many GPU cores are available to it and

can properly record that information. The accounting can then
be done by simply summing the attributes in the job history. In
the case of GPU sharing, the situation is a little more complicated
but, again, similar to what happens when a CPU is shared; most
of the time an application will only get a subset of the available
cores and will be accounted for accordingly. Unfortunately, at the
time of writing we are not aware of any standard way to convey
that information to the application, e.g. there is no GPU equivalent
of OMP_NUM_THREADS, so agreeing on a standard mechanism
will require some additional work. Note that similar considerations
apply to allocated GPU memory accounting, too.

5 SUMMARY AND CONCLUSIONS

One of the main aims of any accounting system is to provide a mea-
sure of delivered value over time, which for most batch-oriented
science workloads translates to the number of completed jobs per
unit of time. This paper shows that the traditional whole-GPU
accounting, i.e. using “GPU hours” as the main metric, does not cur-
rently meet that goal, due to both dramatic performance differences
between GPU models and the emerging trend of GPU sharing. We
back our claim by providing an extensive set of IceCube benchmark
results on 14 GPU models, in both on-prem and Cloud deployments.

We propose the use of “GPU core hours” as a much fairer ac-
counting metric, instead. While not perfect, we show that GPU-core
counts correlate significantly better to actual application through-
put than whole-GPU counts. The proposed metric also works much
nicer with hardware GPU partitioning, e.g. NVIDIA A100 MIG,
removing any partitioning artifacts from the accounting data.

Properly accounting for GPU sharing is, however, currently
somewhat harder, due to a lack of standard sharing information
propagation. Nevertheless, the problem is very similar to the one en-
countered by CPU-only accounting systems since most CPU chips
are shared between multiple applications in throughput-oriented
infrastructures. It is thus our belief that the problem is solvable, but
it will require some standardization effort.
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Given the increased reliance on GPU compute in throughput-
oriented infrastructures, it is becoming imperative for the GPU
accounting systems to match the accuracy of CPU-only accounting
counterparts. We argue that this can be achieved by switching from
a whole-GPU to a GPU-core-based accounting metric.
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