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• Daily PM2.5 and O3 exposures are associ-
ated with increased mortality risk as inde-
pendent effects.

• Mortality risks due to ozone exposures are
considerably increased during extreme
heat events.

• Combined effects observed between air
pollutants and extreme heat events with
mortality.

• Mostly null associations between air pol-
lutants and hospital admissions.
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Background: Increasing number of studies have linked air pollution exposure with renal function decline and disease.
However, there is a lack of data on its impact among end-stage kidney disease (ESKD) patients and its potential mod-
ifying effect from extreme heat events (EHE).
Methods: Fresenius Kidney Care records from 28 selected northeastern US counties were used to pool daily all-cause
mortality (ACM) and all-cause hospital admissions (ACHA) counts. County-level daily ambient PM2.5 and ozone
(O3) were estimated using a high-resolution spatiotemporal coupled climate-air quality model and matched to ESKD
patients based on ZIP codes of treatment sites. We used time-stratified case-crossover analyses to characterize acute
exposures using individual and cumulative lag exposures for up to 3 days (Lag 0–3) by using a distributed lag nonlinear
model framework. We used a nested model comparison hypothesis test to evaluate for interaction effects between air
pollutants and EHE and stratification analyses to estimate effect measures modified by EHE days.
Results: From 2001 to 2016, the sample population consisted of 43,338 ESKD patients. We recorded 5217 deaths and
78,433 hospital admissions. A 10-unit increase in PM2.5 concentration was associated with a 5% increase in ACM (rate
ratio [RRLag0–3]: 1.05, 95% CI: 1.00–1.10) and same-day O3 (RRLag0: 1.02, 95% CI: 1.01–1.03) after adjusting for ex-
treme heat exposures. Mortality models suggest evidence of interaction and effect measure modification, though not
always simultaneously. ACM risk increased up to 8% when daily ozone concentrations exceeded National Ambient
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Air Quality Standards established by the United States, but the increases in risk were considerably higher during EHE
days across lag periods.
Conclusion: Our findings suggest interdependent effects of EHE and air pollution among ESKD patients for all-cause
mortality risks. National level assessments are needed to consider the ESKD population as a sensitive population and
inform treatment protocols during extreme heat and degraded pollution episodes.
Interaction
Effect modification
1. Introduction

The prevalence of chronic kidney disease (CKD) and end-stage renal dis-
ease (ESKD),which represents themost advanced stage of CKD, are increas-
ing across the globe (Bikbov et al., 2020; United States Renal Data System,
2020). The ESKD population is considered to be particularly vulnerable to
environmental risk factors (Chan et al., 2014; Remigio et al., 2019; Xi
et al., 2020).While previous studies have shown that exposure to air pollut-
ants such as PM2.5 (particulatematter with less than 2.5 μm in aerodynamic
diameter) and ground-level ozone (O3) can increase the risk of all-cause
mortality, hospital admissions, and emergency room visits within the
general population (Heft-Neal et al., 2018; Peng et al., 2013; Shang et al.,
2013; Wellenius et al., 2006), its impact on ESKD patients remains largely
under-studied. Physiologically, exposure to PM2.5 is associated with
vascular changes that can lead to vasoconstriction and increased blood
pressure (Bowe et al., 2018; Chuang et al., 2005; Jeong et al., 2020). This
response can decrease renal blood flow and, ultimately, reduce estimated
glomerular flow (eGFR) and increase urinary albumin-creatine ratios (Wu
et al., 2020). Inflammatory mediators induced by airborne particulate mat-
ter and other contaminants in the lungs can impact the circulatory system,
resulting in systemic inflammation, oxidative stress, and damage to distal
organs that include the kidneys. (Bowe et al., 2019; Huang et al., 2020;
Mills et al., 2011; Nemmar et al., 2016; Pope et al., 2016). These responses
can ultimately result in adverse vascular injuries that can compromise renal
function (e.g., eGFR or fluid imbalance), contribute to renal tubular ne-
crosis, and, consequently, acute kidney injuries (Nemmar et al., 2010;
Wang et al., 2020a). Such mechanisms, in addition to preexisting co-
morbidities and lifestyle risk factors, are linked to the development of
chronic kidney disease (CKD) and end-stage renal disease (ESKD)- the
most severe stage of CKD (Wong et al., 2017). The United States Renal
Data System (USRDS) has reported that the national prevalence of
CKD risk factors and ESKD is rising (United States Renal Data System,
2020).

An increasing number of studies have linked exposure to air pollution
with elevated CKD incidence and CKD progression to ESKD (Blum et al.,
2020; Bowe et al., 2017; Bowe et al., 2018; Chan et al., 2018; Wu et al.,
2020). In the US, the association between air pollution and renal-related
mortality was first observedwithin amining population in the Appalachian
region (Hendryx, 2009). Among US veterans (Bowe et al., 2017; Mehta
et al., 2016), increases in particulate matter, nitrogen dioxide, and carbon
monoxide, as individual exposures, were associated with eGFR decline- a
precursor to developing CKD and ESKD progression. Another study from
Taiwan reported a 6% increased risk of developing chronic kidney disease
per 10 μg/m3 increase in PM2.5 (Chan et al., 2018).

There is a lack of data regarding how specific air pollutants can impact
patients living with ESKD, with the only study investigating the association
between wildfire-related PM2.5 levels and all-cause mortality among ESKD
patients (Xi et al., 2020). Likewise, very few studies have investigated how
temperature (Remigio et al., 2022) and extreme heat events (Remigio et al.,
2019) could increase the risk of hospitalization and mortality among ESKD
patients. There is a lack of data regarding the combined effects of acute air
pollution and extreme heat among ESKD patients. Addressing this knowl-
edge gap is important for two reasons – i) frequency, duration, and intensity
of extreme heat events are increasing and will continue to do so due to a
warming climate (Crimmins et al., 2016; US Global Change Research
Program, 2016), ii) extreme heat events can increase tropospheric ozone
production (Hou andWu, 2016), and contribute to more frequent wildfires
that can degrade regional air quality (Peng et al., 2013; Peterson et al.,
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2014; Reid et al., 2019; Tao et al., 2020). To address this, we investigated
the combined role of short-term air pollution (PM2.5 and O3) exposure
and extreme heat on all-cause mortality risks (ACM) and all-cause hospital
admissions (ACHA) among ESKD patients undergoing hemodialysis at FKC
facilities located within the Northeast United States.

2. Methods

2.1. Study population and outcome measures

We created a cohort of ESKD patients undergoing hemodialysis treat-
ments at FKC clinics in selected northeastern US counties between 2001
and 2016 (N = 48,338). These patients were treated at 104 clinics
scattered across 28 counties between Maine and the District of Columbia
(Fig. 1). ZIP codes from the FKC clinics served as a proxy for linking re-
corded outcomes with county-specific air pollution and EHE exposures.
Counties were identified and enumerated using Federal Information Pro-
cess Standards (FIPS) codes. Patients with less than 20 recorded treatments
were excluded from the study. We subset ACM and ACHA events during
warmer months (May to September: MJJAS) as two unique outcomes for
our analyses.

2.2. Exposure assessment

The main exposures of interest are county-level daily average PM2.5

concentration, daily 8-h average O3 concentrations, and extreme heat
events (EHE). We obtained air quality data using model outputs from
coupled Climate-Weather Research and Foresting and Community
Multiscale Air Quality (CWRF-CMAQ) simulations (He et al., 2020; Tao
et al., 2020). Briefly, local weather-air quality conditions were simulated
through the state-of-the art regional climate dynamic downscaling and at-
mospheric chemical transport modeling. Detailed information on the
modeling system can be found elsewhere (He et al., 2020, Tao et al.,
2020). The CWRF-CMAQ model simulated hourly concentrations of O3

and PM2.5 at a 30 × 30 km grid over the Contiguous United States
(CONUS). We calculated daily mean PM2.5 and daily maximum 8-hour
average (MDA8) O3 concentrations for the selected counties with FKC
clinics using all the grids contained within each county boundary.
County-specific and regional summary statistics for studied air pollutants
are shown in supplementary materials (Tables S1-S3). Averaging times
for modeled PM2.5 and O3 estimates are based on USEPA National Ambient
Air Quality Standards (NAAQS) (United States Environmental Protection
Agency, 2020). Additionally, we dichotomized continuous air pollution
measures using NAAQS as thresholds (1 = NAAQS exceedance, 0 = no
exceedance): 70 parts per billion by volume [ppbv] for MDA8 O3 and
35 μg/m3 for daily PM2.5 (United States Environmental Protection Agency,
2020).

To identify EHEs, we used calendar day-specific 95th percentile temper-
ature thresholds derived using 30 years of baseline temperature data
(1960–1989) as previously described (Remigio et al., 2019; Romeo
Upperman et al., 2015) within Philadelphia. The daily maximum tempera-
ture for each day during the study periodwere compared to their respective
calendar day-specific thresholds and then categorized as an ‘extreme heat
event’ if the value exceeded the upper 95th percentile threshold during
baseline. County-level EHE data were matched to ESKD patient's clinic
ZIP code. EHE is a useful marker for extreme heat events driven by climate
change and compatible with event-based health data. Metric development
andmethodology are described elsewhere (Romeo Upperman et al., 2015).
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Fig. 1.Map of focused counties within Northeastern study catchment area.
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2.3. Statistical analysis

We applied a time-stratified case-crossover design to evaluate the short-
term effects of intermittent environmental exposures (PM2.5, O3, and EHE)
on event-based daily health endpoints (ACM and ACHA) (Fisher et al.,
2017; Lu and Zeger, 2007; Madrigano et al., 2015; Remigio et al., 2019;
Soneja et al., 2016; Zhou et al., 2017). Because this study design entails
using each case as his/her own control, the methodology has added advan-
tages of eliminating measured and unmeasured time-invariant individual-
level confounders, such as age, race, sex, and socioeconomic status
(Greenland, 1996; Jaakkola, 2003; Janes et al., 2005) and temporal con-
founding, such as seasonality and long-term trends, by design (Bateson
and Schwartz, 1999; Janes et al., 2005).

We used the conditional Poisson model (CPM) to estimate regional-
level air pollutant effects for crude and EHE-adjusted models. The regres-
sion model accounts for varying population changes during a study period
and accounts for over-dispersion (Armstrong et al., 2014). As part of the
self-matching mechanism, strata indicators were included to match the
day of the week, month, year, and county. Air pollution exposures occur-
ring on the day of outcome events (Lag 0) and exposures occurring in
days prior to outcomes (Lag1, Lag 2, and Lag3)were examined in additional
models to capture the delayed effects of acute exposures. Overall
3

cumulative lag effects were estimated for 0–3 lag days for continuous and
NAAQS-based predictors. We also incorporated delay effects for EHE up
to three days to match temporal consistency with air pollutant exposures.
For adjusted models, we matched lag structures from air pollutant parame-
ters to EHE. Natural cubic spline functions were applied to O3 and PM2.5

terms.
All analyses were restricted to MJJAS months to emphasize air quality

at higher temperatures and adjusted for EHE. Measures of associations
were reported as rate ratios (RRs) using 95% confidence intervals (95%
CI). The rate ratios for PM2.5 and O3 as continuous variables were expressed
as per 10-μg/m3 and 10-ppbv incremental increases. All analyses were con-
ducted using R statistical software version 3.6.1 (R Core Team, 2019).
Statistical software for CPR and DLNM is available as R packages through
CRAN. The gnm and dlnm packages are peer-reviewed and frequently up-
dated (Gasparrini, 2011; Turner and Firth, 2020).

2.4. Interaction hypothesis testing and stratification analysis

This study tested for the interaction and effect modification between ex-
treme heat events and air pollution on all-cause hospital admission and all-
cause mortality for up to three days after exposure. As an initial analysis to
evaluate interaction effects between cumulative lag air pollutants and EHE,



Table 2
Summary for health outcomes and air pollution from 2001 to 2016 stratified by ex-
treme heat events during May to September (MJJAS) months. Significant mean dif-
ferences between EHE and non-EHE strata are denoted by p < 0.05.

EHE Stratification

All EHE Non-EHE p-value

Mortality, n (%) 5217 (10.8) 344 (0.7) 4873 (10.1) 0.198
Hospital admissions, n 78,443 5058 73,375 0.121
Hospital admission rate,
#/person, mean (SD)

2.89 (3.1) 1.2 (0.5) 3.2 (3.3) <0.001

Air pollution exposures
CMAQ PM2.5 [μg/m3], mean
(SD)

8.6 (5.7) 13.1 (5.9) 8.4 (5.5) <0.001

CMAQ PM2.5 NAAQS
Exceedance

218 (0.3) 14 (0.02) 204 (0.2) 0.863

CMAQ O3 [ppbv], mean (SD) 63.4 (16.4) 75.4 (19.8) 62.6 (15.8) <0.001
CMAQ O3 NAAQS Exceedance 17,694 (23.8) 2094 (2.8) 15,600 (21.0) <0.001
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we compared distributed nonlinear lag model (DLNM) models without in-
teraction terms (reduced) and with interaction terms (full) using
goodness-of-fit tests in non-stratified models. Nested models were com-
pared using F-tests. The addition of interaction terms between cross basis
terms representing cumulative air pollution exposures over lags of
0–3 days and cumulative EHE exposures over lags of 0–3 days was used
mainly to determine model improvement and serve as an indirect model
specification test for interaction effects (Li et al., 2015; Ren et al., 2006).

As the second step, we conducted an EHE-stratified analysis using the
same health endpoints and cumulative lagged effect to estimate air
pollution-related risks due to EHE modification. Prior research on acute
air pollution effects has successfully used subgroup analysis (e.g., EHE vs.
non-EHE) for effect modification analyses using a DLNM framework
(Breitner et al., 2014; Iranpour et al., 2020; Li et al., 2015). This approach
can estimate a cumulative net effect along defined lag periods in addition
to individual lags (Gasparrini and Armstrong, 2013; Gasparrini et al.,
2010). In this work, we adapted the case-crossover analysis and applied
DLNM to estimate cumulative lag effects in EHE-stratified models. Similar
to adjusted EHE models, lag structure periods for air pollutant exposures
were also applied to the EHE variable. For example, for calculating esti-
mates based on cumulative Lag 0–2 exposure for PM2.5, individual Lag 0,
Lag 1, and Lag 2 EHEs were used for stratification. We specified natural
cubic splines and natural B-spline with 2 degrees of freedom per year for
air pollutant and lag model fits, respectively. Results from the stratification
analysis present variation in air pollution-related effect measures across
EHE-strata. Statistical significance for effect modification was conducted
using methods described in similarly designed work (Remigio et al.,
2019; Zanobetti et al., 2014).

3. Results

Among 48,338 eligible FKC patients in 28 selected counties within the
northeastern US region (Fig. 1), there were 5217 deaths and 78,433 hospi-
tal visits from 2001 to 2016 during MJJASmonths. Sixty percent of the pa-
tients reported having diabetes (Table 1). There were near equal
proportions of non-Hispanic Black (43.4%) and non-Hispanic White
(42.2%). Daily PM2.5 and O3 concentrations were both significantly higher
during EHE days compared to non EHE days (PM2.5

EHE mean (SD) = 13.08
(5.91) μg/m3 vs PM2.5

non-EHE = 8.35 (5.53) μg/m3; and O3
EHE = 75.38

(19.75) ppbv vs O3
non-EHE = 62.63 (15.84) ppbv (Table 2). There was a

total of 218 and 17,694 NAAQS exceedance days for CMAQ-based PM2.5

and O3 estimates during the 15-year period. County-level daily PM2.5 and
O3 estimates are shown in Tables S4-1 and S4-2. Overall, the Pearson
correlation coefficients (r) between CWRF-CMAQ derived PM2.5 and O3

concentrations varied across counties and ranged from 0.40 to 0.63
(Fig. S4-1). The regional correlation was moderate (r = 0.54, p < 2.2e-
16) after aggregation (Fig. S4-2). During the study period, there were 9.7
Table 1
Summary statistics for the study population and exposures from
2001 to 2016 from May to September (MJJAS) months.

Characteristics

Counties, n 28
Clinics, n 104
Patients, n 48,338

Race/Ethnicity, n (%)
Hispanic 3834 (7.9)
non-Hispanic Black 20,974 (43.4)
non-Hispanic White 20,398 (42.2)
Asian 756 (1.6)
Other/Not Reported 538 (1.1)

Diabetes
Yes, n (%) 28,772 (59.9)

Sex
Men, n (%) 27,782 (57.5)

4

EHEs/year/county with a standard deviation (SD) of 6.5 and a regional
mean daily maximum temperature of 25.6 °C (SD = 5.3) during the
warmer months.

3.1. Main effect analysis

Associations between short-term PM2.5 andO3exposure and risk of ACM
and ACHA are presented in Tables 3 and 4, respectively, first as a 10-unit
increase in exposure (Models 1 & 2), then as ambient air standard
exceedances for PM2.5 or O3 (Models 3& 4). Models 2& 4 display adjusted
main effect estimates for air pollutants and EHE. A 10 μg/m3 increase in
PM2.5 exposures (Lag 0–3) was associated with a 5% increase in mortality
among ESKD patients after adjusting for cumulative EHE exposures
(RRLag0–3:1.05, 95% CI: 1.00–1.10). PM2.5 NAAQS exceedance was associ-
ated with increased ACM risk. However, the risk increases were not statis-
tically significant (p < 0.05), irrespective of the lag structure (Table 3). A
10 ppbv increase in ozone exposure was associated with a 2% increase in
mortality (RRLag0:1.02, 95% CI: 1.01–1.03). Likewise, same-day NAAQS
ozone exceedances were associated with an 8% increase in mortality
(RRLag0:1.08, 95% CI: 1.04–1.13). EHE appeared not to confound the asso-
ciation between ozone and mortality since the effect estimates for EHE-
adjusted models were virtually identical (Table 3). Overall, ACM rates
from both pollutants dampened as lag periods increased. In ACHA models
(Table 4), we mainly observed null estimates across all model fits for each
pollutant except for significant negative associations for cumulative Lag
0–3 in NAAQS-based PM2.5 (RRLag0-3: 0.73, 95% CI: 0.57–0.93).

3.2. Interaction hypothesis testing and stratification analysis

Model comparison test results (F-statistic, degrees of freedom (df), and
p-value) examining the inclusion of cumulative EHE across respective lags
as an interactive term are shown in Tables 5-6. Overall, we observed
some instances of significant interaction between extreme heat events
and continuous measures of air pollutants for ACM (Lag 0–3 PM2.5 &
EHE: F = 2.655 p = 0.031; and Lag 0–3 O3 & EHE: F = 3.915, p =
0.004). Similar interactive effects between O3 & EHE were also observed
for Lag 0–2 and Lag 0–1 exposures (Table 5). Such interactive effects
were not observed for ACHA (Supplemental Table 4).

We stratified our analysis by EHE to investigate if the associations be-
tween air pollution and ACM are different between EHE and non-EHE
days. We observed some evidence of effect modification by EHE for
ozone exposure. A 10 ppbv increase in ozone exposure across 4-days (Lag
0–3) resulted in 23% increases in risk during EHE days (RRLag0–3:1.23,
95% CI: 1.01–1.50) when compared to non-EHE days (RRLag0–3:0.99,
95% CI: 0.97–1.00). The results for PM exposure were reversed where we
observed decreased risk during EHE days (RRLag0:0.70, 95% CI:
0.55–0.89) and increased risk observed during non-EHE days



Table 3
Rate ratios and 95% confidence intervals for associations between air pollution and all-cause mortality (ACM) across individual lags and cumulative 4-day lag (Lag 0–3).
Models 1& 2 represent continuous exposure (10-unit increment). Models 3&4 represent categorical exposure (NAAQS exceedance: Daily maximum 8-h average of 70 ppbv
for Ozone and Daily average of 35 μg/m3 for PM2.5).

Mortality

Model 1
Unadjusted, continuous

Model 2
Adjusted, continuous

Model 3
Unadjusted, NAAQS

Model 4
Adjusted, NAAQS

Pollutant type Lag Air Pollutant Air Pollutant EHE Air Pollutant Air Pollutant EHE

PM2.5 Lag 0 1.03
(0.99–1.06)

1.02
(0.98–1.06)

1.07
(0.99–1.57)

1.14
(0.85–1.53)

1.14
(0.85–1.53)

1.09
(1.01–1.17)

Lag 1 1.02
(0.98–1.07)

1.02
(0.98–1.07)

0.95
(0.87–1.04)

1.01
(0.73–1.41)

1.01
(0.72–1.41)

0.96
(0.88–1.04)

Lag 2 0.99
(0.95–1.03)

0.99
(0.95–1.04)

0.94
(0.85–1.03)

1.04
(0.72–1.51)

1.04
(0.72–1.51)

0.94
(0.86–1.03)

Lag 3 1.00
(0.96–1.04)

1.01
(0.97–1.05)

0.97
(0.90–1.05)

0.98
(0.70–1.38)

0.98
(0.70–1.38)

0.97
(0.90–1.05)

Lag 0–3 1.04
(0.99–1.08)

1.05
(1.00–1.10)

0.92
(0.83–1.03)

1.19
(0.74–1.92)

1.18
(0.73–1.92)

0.95
(0.85–1.05)

O3 Lag 0 1.02
(1.01–1.04)

1.02
(1.01–1.03)

1.09
(1.01–1.18)

1.09
(1.04–1.13)

1.08
(1.04–1.13)

1.07
(0.99–1.16)

Lag 1 0.97
(0.96–0.99)

0.97
(0.96–0.99)

0.97
(0.88–1.05)

0.97
(0.92–1.01)

0.97
(0.93–1.01)

0.96
(0.88–1.05)

Lag 2 1.00
(0.99–1.02)

1.00
(0.99–1.02)

0.94
(0.86–1.03)

0.94
(0.98–1.02)

0.98
(0.94–1.03)

0.94
(0.86–1.03)

Lag 3 1.00
(0.99–1.01)

1.00
(0.99–1.02)

0.97
(0.89–1.05)

1.01
(0.96–1.05)

1.01
(0.97–1.06)

0.97
(0.90–1.05)

Lag 0–3 1.00
(0.98–1.01)

1.00
(0.98–1.01)

0.96
(0.87–1.07)

1.04
(0.97–1.11)

1.05
(0.98–1.12)

0.95
(0.85–1.05)
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(RRLag0:1.04, 95% CI: 1.00–1.08). Analogous analysis for ACHA showed
null results (Supplemental Table 4).

Similarly, we extended the same stratification analysis using a dichoto-
mous classification for NAAQS exceedance (Table 6). All-cause mortality
increased when ozone levels exceeded the NAAQS threshold. Notably, the
increases in mortality risk associated with ozone NAAQS exceedance
were considerably higher during EHE days. For example, same-day mortal-
ity risk increased by 22% (RRLag0:1.22, 95% CI: 1.07–1.40) during extreme
heat days, whereas risk increased 9% during non-EHE (RRLag0:1.09, 95%
CI: 1.04–1.14. Evidence of EHE modification between O3-NAAQS exceed-
ance and ACM was observed in Lag 0–2 models (EHE days RRLag0–2:1.34,
95% CI: 1.09–1.66 vs. non-EHE days RRLag0–2:1.03, 95% CI: 0.97–1.10).
Table 4
Rate ratios and 95% confidence intervals for associations between air pollution and all-ca
0–3). Models 1 & 2 represent continuous exposure (10-unit increment). Models 3&4 re
70 ppbv for Ozone and Daily average of 35 μg/m3 for PM2.5).

Hospital admissions

Model 1
Unadjusted, continuous

Model 2
Adjusted, continuou

Pollutant type Lag Air pollutant Air pollutant

PM2.5 Lag 0 0.99
(0.97–1.01)

0.99
(0.97–1.00)

Lag 1 1.01
(0.99–1.03)

1.01
(0.99–1.03)

Lag 2 1.00
(0.98–1.01)

1.00
(0.98–1.02)

Lag 3 1.00
(0.98–1.02)

1.00
(0.98–1.01)

Lag 0–3 0.99
(0.97–1.01)

0.99
(0.97–1.01)

O3 Lag 0 1.00
(0.99–1.00)

1.00
(0.99–1.00)

Lag 1 1.00
(0.99–1.01)

1.00
(0.99–1.01)

Lag 2 1.00
(0.99–1.01)

1.00
(0.99–1.01)

Lag 3 1.00
(1.00–1.01)

1.00
(1.00–1.01)

Lag 0–3 1.00
(0.99–1.01)

1.00
(0.99–1.01)
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We did not observe such association for ACHA outcomes. Analysis using
PM2.5 NAAQS exceedances were excluded due to limited data.

4. Discussion

In this regional-scale analysis of an ESKD population undergoing HD
treatments in FKC clinics located within 28 northeastern US counties, expo-
sure to PM2.5 and O3 were associatedwith increased risk of mortality. Find-
ings regarding hospitalizations were mainly null. There were multiple
instances of significant interaction between extreme heat events and con-
tinuous measures of ozone (Lag 0–1, Lag 0–2, and Lag 0–3) and PM2.5

(Lag 0–3) in ACM models. We found examples of qualitative effect
use hospital admission (ACHA) across individual lags and cumulative 4-day lag (Lag
present categorical exposure (NAAQS exceedance: Daily maximum 8-h average of

s
Model 3
Unadjusted, NAAQS

Model 4
Adjusted, NAAQS

EHE air pollutant Air pollutant EHE

1.03
(1.00–1.07)

0.96
(0.81–1.13)

0.96
(0.82–1.14)

1.03
(0.99–1.06)

1.00
(0.96–1.04)

0.90
(0.75–1.09)

0.90
(0.75–1.08)

1.00
(0.96–1.04)

0.99
(0.91–1.03)

0.97
(0.82–1.15)

0.97
(0.82–1.15)

0.95
(0.91–0.99)

1.03
(0.99–1.06)

0.86
(0.74–1.01)

0.87
(0.74–1.01)

1.03
(0.99–1.06)

1.00
(0.96–1.05)

0.73
(0.57–0.93)

0.73
(0.57–0.93)

1.00
(0.96–1.05)

1.03
(0.99–1.07)

1.00
(0.98–1.02)

1.00
(0.98–1.02)

1.03
(0.99–1.06)

1.00
(0.96–1.04)

1.02
(1.00–1.04)

1.02
(1.00–1.04)

1.00
(0.96–1.04)

0.95
(0.91–0.99)

0.99
(0.97–1.01)

0.99
(0.97–1.01)

0.95
(0.91–0.99)

1.02
(0.99–1.06)

1.00
(0.98–1.02)

1.00
(0.98–1.02)

1.03
(0.99–1.06)

0.99
(0.95–1.04)

1.01
(0.98–1.04)

1.01
(0.98–1.04)

1.00
(0.95–1.05)



Table 5
Adjusted main effect, model comparison test outputs for interaction (F-statistic, degrees of freedom (df), p-value), and EHE-stratified effects. Results displayed across cumu-
lative Lag 0, Lag 0–1, Lag 0–2, and Lag 0–3 lag structures using PM2.5 and O3 exposures and ACM outcome (per 10 μg/m3 for PM2.5 and 10 ppbv for O3). Bold values denote
significant modification.

Lag Structure Air Pollutant RR (95% CI) Interaction with EHE EHE Stratification

F-test, df p-value EHE Days Non-EHE Days

Lag 0–3 PM2.5 1.05 (1.00–1.10) F(2.655), 4 p = 0.031 0.78 (0.44–1.38) 1.02 (0.97–1.07)
O3 1.00 (0.98–1.01) F(3.915),4 p = 0.004 1.23 (1.01–1.50) 0.99 (0.97–1.00)

Lag 0–2 PM2.5 1.04 (0.99–1.09) F(2.129), 3 p = 0.094 0.76 (0.92–1.22) 1.02 (0.97–1.07)
O3 0.99 (0.98–1.01) F(4.430), 3 p = 0.004 1.07 (0.91–1.26) 0.99 (0.97–1.00)

Lag 0–1 PM2.5 1.05 (1.00–1.09) F(2.694), 2 p = 0.068 0.53 (0.38–0.74) 1.04 (1.00–1.09)
O3 0.99 (0.98–1.01) F(3.857), 2 p = 0.021 1.11 (0.98–1.26) 1.00 (0.99–1.02)

Lag 0 PM2.5 1.02 (0.98–1.06) F(2.261), 1 p = 0.133 0.70 (0.55–0.89) 1.04 (1.00–1.08)
O3 1.02 (1.01–1.03) F(0.610), 1 p = 0.435 1.01 (0.91–1.11) 1.02 (1.01–1.04)
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modification (Bours, 2021) where cumulative lag structures with signifi-
cant effect modification (Lag 0–3 O3, Lag 0–1 PM2.5, and Lag 0 PM2.5)
displayed opposite direction of effects between EHE and non-EHE days
within continuous exposure models for ACM. Whereas for O3-NAAQS ex-
ceedance analyses, Lag 0–2 ACM exhibited quantitative effect modification
(Bours, 2021) where EHE-stratified effects suggest more substantial effects
during EHE-days when compared to non-EHE days. Also, mostly all cumu-
lative ozone exposures yielded increased effect sizes for EHE days com-
pared to non-EHE days in this study.

Our study provided preliminary evidence that extreme heat events can
interact with EHE and modify the short-term association between PM2.5

and O3-related mortality. The findings are consistent with prior studies
that have confirmed interaction and effect modification by temperature be-
tween air pollutants and mortality among the general population (Chen
et al., 2018b; Kim et al., 2015; Li et al., 2015; Ren et al., 2006; Stafoggia
et al., 2008). By comparison, analyses did not suggest such effect modifica-
tion for ACHA outcomes and NAAQS-based exposure models. While few
studies have shown the independent effect of air pollution on ESKD patients
(Wyatt et al., 2020; Xi et al., 2020), this work is one of the first studies to
demonstrate the combined effect between EHE and air pollution among
ESKD patients. Understanding ESKD sensitivities fromheat-air quality expo-
sures is critical, especially when considering projected increases in average
regional temperatures and extreme heat frequencies and durations within
the near term (Chen et al., 2018a). As an example, increased temperature
projections will very likely increase ozone production, and as a result, con-
tribute to deleterious human health effects. Recentwork has highlighted the
complex relationships between air pollution, greenhouse gases, and climate
change as stressors that can, directly and indirectly, impact human health as
well as the natural environment (Orru et al., 2017; Sillmann et al., 2021).
Though, region-specific efforts in evaluating and anticipating combined
health impacts for vulnerable populations such as the ESKD population
are scant. Recent environmental and occupational epidemiological work
has identified air pollution and heat stress exposures as risk factors for de-
clining renal function and chronic kidney disease. The heat-air quality inter-
dependence within the context of a changing climate and its impact among
the ESKD population also remains relatively unknown.
Table 6
Adjusted main effect, model comparison test outputs for interaction (F-statistic, degrees
lative Lag 0, Lag 0–1, Lag 0–2, and Lag 0–3 lag structures using NAAQS-O3 exceedance
(ref)). Bold values denote significant modification.

Outcome Lag structure RR (95% CI) Inter

F-tes

Mortality 0–3 1.05 (0.98–1.12) F(1.6
0–2 1.03 (0.97–1.10) F(0.8
0–1 1.05 (1.00–1.11) F(1.1
0 1.08 (1.04–1.13) F(0.2

Hospital Admissions 0–3 1.01 (0.98–1.04) F(1.4
0–2 1.01 (0.98–1.04) F(1.6
0–1 1.01 (0.99–1.03) F(1.8
0 1.00 (0.98–1.02) F(1.3
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Unhealthy levels of PM2.5 and ground-level O3 are known to impair
breathing, trigger asthmatic episodes, and exacerbate respiratory-
related illnesses (Lippmann, 1989; Lovasi et al., 2013; Sapkota et al.,
2020). In this work, we extend these findings to include mortality risk
among ESKD patients. Our findings have clinical implications as expo-
sure to these pollutants can exacerbate shortness of breath and result
in unintended complications. This is especially critical since HD patients
commonly have to manage respiratory-related symptoms caused by
fluid build-up in the lungs between dialysis treatments (Zoccali et al.,
2013).

Regionally, our findings do suggest that exceeding regulatory ozone
NAAQS may substantially increase mortality risk among ESKD patients.
An additional layer of importance is the consideration of ESKD patients as
a priority population consisting of individuals with chronic healthcare
needs (Agency for Healthcare Research and Quality, 2021; Moy et al.,
2005) for developing air quality standards, in addition to older adults, chil-
dren, and persons with asthma. Atmospheric warming due to ongoing cli-
mate change can enhance ground-level ozone production during warmer
months (Chen et al., 2018a; He et al., 2016; He et al., 2018; Weaver et al.,
2009; Wuebbles et al., 2017). Our results indicate that ESKD patients may
face a disproportionate mortality risk during periods of extreme heat and
high ozone levels co-occurring as a compound hazard.

Methodologically, we included interaction and effect modification anal-
yses to appreciate the nuanced interdependent effects (VanderWeele,
2009). As expected, we observed some perceived disagreement for evi-
dence of interactive effects and effect modification between stratum-
based effect estimates. Li and colleagues have suggested that comparing
point estimate differences between EHE strata as a direct approachmay cre-
ate unintendedmeasurement error due to loss of statistical variabilitywhen
using categorized variables (Li et al., 2015). Also, we may expect differ-
ences between interaction and effect modification analyses since our
model comparison tests involved the use of a complex interaction term in-
volving two bidimensional variables. The EHE variable represented a com-
plexity that is not suitable for subgroup analyses. A hallmark feature for
interpreting interaction analyses is that any observed significant interaction
between EHE and air pollutants suggests that both exposures have equal
of freedom (df), p-value), and EHE-stratified effects. Results displayed across cumu-
exposures and ACM & ACHA outcomes (exceeded NAAQS vs. not exceeded NAAQS

action test EHE stratification

t, df p-value EHE Days Non-EHE days

14), 4 p = 0.168 1.29 (1.00–1.66) 1.04 (0.97–1.11)
13),3 p = 0.487 1.34 (1.09–1.66) 1.03 (0.97–1.10)
07), 2 p = 0.330 1.15 (0.97–1.38) 1.05 (1.00–1.11)
23), 1 p = 0.636 1.22 (1.07–1.40) 1.09 (1.04–1.14)
01), 4 p = 0.231 0.70 (0.47–1.02) 0.70 (0.47–1.02)
80), 3 p = 0.221 0.70 (0.50–1.00) 1.00 (0.97–1.03)
41), 2 p = 0.159 0.85 (0.64–1.11) 1.00 (0.98–1.03)
16), 1 p = 0.251 1.00 (0.82–1.21) 0.99 (0.97–1.01)
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status. Whereas in effect modification, the effect of air pollution is the pri-
mary interest (Bours, 2021).

Unexpectedly, we observed significant EHE modification that resulted
in reduced PM2.5-related mortality risks during EHE days in Lag 0–1 and
Lag 0 models. Protective effects from PM2.5 exposures have been recorded
in otherwork (Fisher et al., 2019;Wang et al., 2020b).Wang and colleagues
postulated that individuals may reduce outdoor activities during extreme
heat days, consequently reducing their exposures to both heat and PM2.5

(Wang et al., 2020b). Though, we saw that cumulative ozone exposures
had a notable increase in mortality risk during EHE days. Future work
could focus on cause-specific analysis to identify clinically meaningful out-
comes or competing risks after acute PM2.5 exposures during extreme heat
exposures. Also, this approachmight help provide additional context to un-
derstanding delayed effects in some lag structures. Such findingsmay prove
advantageous for identifying mechanistic plausibility associated with com-
bined environmental exposures for ESKD patients as exact mechanisms are
unclear.

In this study, wemainly observed negligible or null associations for hos-
pital admissions. A plausible clinical explanation for this population-level
response could relate to the higher frequency of clinical visits for HD treat-
ments. Thrice-weekly treatments may promote a survival advantage by sta-
bilizing deleterious health responses after short-term environmental
exposures. Similar to identifying meaningful outcomes that might explain
the association between air pollutants and morbidities, a cause-specific
analysis might also be necessary for hospital admissions. For example,
Wyatt and colleagues observed increased cause-specific risk of hospital ad-
missions (Wyatt et al., 2020).

There are several strengths of our study, including the use of
temporally-resolved air pollution data. The case-crossover study design di-
minished concerns related to individual-level confounding. The use of
DLNM enabled us to simultaneously estimate risk using both nonlinear
and lagged exposure-response functions (Gasparrini et al., 2010). Likewise,
the mortality and hospital admission data used in this study are of high
quality, obtained from FKC- a major internationally known dialysis service
provider. Patient data on mortality and hospital admission events are con-
sidered accurate since they are subject to billing requirements and tracking
protocols established by Centers for Medicare&Medicaid (CMS) reporting.
Our study also has some limitations that include the use of modeled air pol-
lution data. We compared county-level CWRF-CMAQ estimates against sta-
tionary USEPA Air Quality System (AQS) observations using the AQS
database (US Environmental Protection Agency) which suggest that
CWRF-CMAQ observations appear to overestimate O3 and underestimate
PM2.5 (Supplemental Tables 3, Supplemental Figs. 2–6), as reported
previously (Girguis et al., 2020; Travis et al., 2016). Another limitation is
that we conducted single pollutant models that focused only on PM2.5 and
O3. Future studies should incorporate additional air pollutants in
multipollutant models. Also, future studies should account for historical
lifestyle modifiers that could exacerbate kidney health, such as smoking
habits and diet. Likewise, focusing on cause-specific outcomes related to
cardiac and vascular systems could enhance clinical specificity for preven-
tion and treatment. Lastly, we did not consider chronic air pollution expo-
sures and the role of social stressors that can also modify and mediate the
impact of air pollution within this population (Shmool et al., 2015).

5. Conclusions

Our data suggest that short-term exposure (up to 3 days) to PM2.5 and
O3 is associated with increased ACM among ESKD patients. Also, the in-
creases in mortality risk associated with ozone exposure is considerably
higher during extreme heat events. Our data has also shown instances of in-
teraction and effect modification between air pollutants andmortality. Fur-
ther studies are needed to replicate this result. As climate change-driven
compound hazards (such as simultaneous exposure to extreme heat and
high ozone pollution episodes) continue to increase, advanced warnings
for high-risk groups such as ESKD patients and their care providers are
needed to enhance adaptation.
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