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A B S T R A C T

Cellular providers and data aggregating companies crowdsource cellular signal strength measurements from
user devices to generate signal maps, which can be used to improve network performance. Recognizing that
this data collection may be at odds with growing awareness of privacy concerns, we consider obfuscating
such data before the data leaves the mobile device. The goal is to increase privacy such that it is difficult to
recover sensitive features from the obfuscated data (e.g. user ids and user whereabouts), while still allowing
network providers to use the data for improving network services (i.e. create accurate signal maps). To examine
this privacy-utility tradeoff, we identify privacy and utility metrics and threat models suited to signal strength
measurements. We then obfuscate the measurements using several preeminent techniques, spanning differential
privacy, generative adversarial privacy, and information-theoretic privacy techniques, in order to benchmark
a variety of promising obfuscation approaches and provide guidance to real-world engineers who are tasked
to build signal maps that protect privacy without hurting utility. Our evaluation results, based on multiple,
diverse, real-world signal map datasets, demonstrate the feasibility of concurrently achieving adequate privacy
and utility, with obfuscation strategies which use the structure and intended use of datasets in their design,
and target average-case, rather than worst-case, guarantees.

1. Introduction

Network providers and data aggregating companies crowdsource
mobile user data for a variety of reasons. This data can reveal network
performance, allow for the generation of signal strength maps, inform
decisions on where to deploy cell towers or sensors, and provide insight
on how to improve user experience. The measurements are collected
directly from user devices, via standalone mobile apps [1], or measure-
ment software development kits [2] integrated into popular partnering
apps. Providers and aggregators then sell this data to network oper-
ators, regulators, and device and equipment manufacturers. For the
operators, regulators, and manufacturers, this crowdsourced data offers
clear value for network planning. For the user, contributing data can
in turn be useful, given that it leads to better network performance.
However, participation also raises legitimate privacy concerns.

For example, some cellular providers have allegedly been selling
their users’ real-time location data to credit agencies, bail bondsmen,
and other third parties [3]. Furthermore, while these measurements are
assumed to be sparse in space and time and over thousands of users,
previous work has shown that identities are inferable from anonymized
data [4].
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In recent years, privacy issues have come to the front of news,
politics, and public opinion [5–7] and pioneering privacy laws have
been enacted [8,9]. To protect user privacy, a plethora of data masking,
or obfuscating, schemes have been proposed, see, for example, [10].
However, by obfuscating the original data for the sake of privacy, data
can no longer provide the exact insights it once could, sacrificing data
utility for privacy [11].

In this work we examine the privacy-utility tradeoff in the context
of cellular signal strength measurements, focusing on device-level ob-
fuscation where the measurement is obfuscated, or privatized, before
it leaves the user’s phone. The goal is to increase privacy such that
it is difficult to recover sensitive features from the obfuscated mea-
surements, including user ids and whereabouts, while still allowing
network providers to use the measurement for improving network ser-
vices, i.e. create accurate signal maps. To examine this privacy-utility
tradeoff, we identify privacy and utility metrics and threat models
suited to the signal map application at hand. We then obfuscate the
measurements using a number of promising approaches at the forefront
of privacy research, in order to benchmark them and provide guidance
to real-world engineers who are tasked with building signal maps
that provide (some) privacy while maintaining (adequate) utility. To
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evaluate the different approaches, we use multiple, diverse, real-world
signal map datasets to ensure real world applicability of our findings.

We implement four strategies for obfuscating signal strength mea-
surements to assess and compare their application-specific perfor-
mance, selecting preeminent methods from the literature that span a
range of complexities and privacy guarantees. Specifically, the first
is a noise-adding privatizer, which adds independent, identically dis-
tributed Gaussian noise across the features of the data. Albeit simple,
this scheme provides intuition into the privacy-utility tradeoff via
the choice of how much noise to add. The second is based on dif-
ferential privacy (DP) [12], a leading approach to data obfuscation
which provides probabilistic worst-case guarantees against any arbi-
trary adversary, including one with unlimited resources and access to
side-information. In this work we apply the popular local Gaussian
mechanism [12], as well as the recent Truncated Laplacian Mech-
anism [13]. The third leverages the idea of generative adversarial
networks to allow a data-driven method of learning an obfuscation
scheme. This method, which is referred to as generative adversarial
privacy (GAP) [14], positions a privatizer and an adversary, both
modeled as neural networks, against each other. The privatizer learns
to obfuscate the data such that the adversary cannot infer sensitive
features, and the adversary simultaneously learns to infer sensitive
features. While this method cannot offer the formal worst-case guaran-
tees of the differentially private methods, the learning approach offers
the potential to leverage structure in the data set and take advantage
of the specific utility objectives in the network. The fourth strategy
is motivated by an information-theoretic treatment of the problem.
Considering mutual information as a convex metric for privacy per-
formance, we frame a formal optimization problem as finding the
obfuscation strategy which maximizes privacy subject to a constraint
on utility. This approach, to which we refer to as (IT), maximizes user
privacy in an average sense, but sacrifices the worst-case guarantees
offered by the deferentially private methods. Section 5 discusses these
privatizers in more detail.

We analyze the performance of each of these privatizers using
three, diverse, real-world signal map datasets. The first one is collected
from cellular users over a seven month period in the city of Chania,
Greece [15]. The second one is collected over a period of four months
by Android smartphones in the University of California Irvine cam-
pus [16]. The last one is sampled from the Radiocell dataset [17], one
of the largest publicly available datasets with millions of measurements
from nearly one million macrocells around the world. The sample we
work with contains signal strength measurements from hundreds of
users over a one year period in UK’s countryside. Section 3.1 discusses
these datasets in detail.

An important aspect of our study is to identify privacy and utility
metrics (Section 4) as well as threat models (Section 3.2) suited to
signal map application. We assess our obfuscation schemes against
specific adversaries, modeled as neural networks (Section 3.5 discusses
adversary models in detail), which estimate private user information
from observing obfuscated data, and we take the adversary’s estimation
performance as a practical, application-specific privacy metric. We also
consider more robust privacy guarantees, such as DP, which is not
dependent on any specific adversary implementation. With respect to
utility, we consider two metrics. First, we consider a received signal
strength (RSS) model which accurately predicts signal maps when
trained with unobfuscated data. We train this model with the obfus-
cated data. Then, we use as an application-specific utility metric the
L1 distance between the parameters of the RSS model trained with
obfuscated versus unobfuscated data. As a general utility metric, we
use the overall assessment of data distortion. This serves as a proxy for
utility under a wide variety of other potential mobile data applications.

Our main contributions are as follows:

1. We present a framework and define appropriate metrics to assess
the privacy and utility of obfuscation schemes in the context of
signal maps, (Sections 3, 4)

2. We apply, for the first time, two promising general obfuscation
approaches, namely generative adversarial privacy (GAP) and
an information-theoretic approach based on optimization and
coding (IT), to signal maps data, (Section 5)

3. We evaluate the feasibility of achieving different notions of
privacy, namely worst-case (DP) versus on-average (GAP, IT)
privacy guarantees in the signal maps application. (Section 6.1)

4. We conduct a systematic exploration of the privacy-utility trade-
off in signal maps data under different obfuscation approaches.
(Section 6.3)

5. We demonstrate that obfuscation strategies which use the struc-
ture and intended use of datasets in their design, and target
average-case, rather than worst-case, guarantees, can concur-
rently achieve adequate privacy and utility in the context of
signal maps. (Section 6)

In the next section, we briefly discuss relevant work in privacy,
especially as it relates to mobile network data. Section 3 describes our
system model, including the three real-world datasets that we use in our
evaluation, the threat models we consider, the privatizer and adversary
model we implement, and the service provider model we consider.
Section 4 rigorously defines our privacy and utility metrics. Section 5
presents each of the four obfuscation schemes and their application to
signal maps. In Section 6, we evaluate and compare these schemes,
and analyze our results. We discuss the limitations and future works
in Section 7, and present our conclusions in Section 8.

2. Related work

2.1. Privacy mechanisms

Differential privacy (DP) [12,18,19] is a mathematically rigorous
definition of privacy which is useful for quantifying privacy loss and
designing randomized algorithms with privacy guarantees. Motivated
by statistical disclosure control, or providing accurate statistics while
protecting individual survey respondents, DP approaches the problem
of releasing coarse-grained information while keeping fine-grained de-
tails private. This popular approach to data privatization is studied
under the local and global models [20]. The global model assumes
a trusted data analyst has access to the dataset and wants to release
queries computed on it in a privacy-preserving fashion. The local model
assumes the absence of a trusted server, thus the data is randomized
locally prior to aggregation. This work studies DP in local models,
which is referred to as local differential privacy (LDP).

Generative Adversarial Privacy (GAP) [14,21] offers an alterna-
tive to noise-adding mechanisms in that it is context-aware, mean-
ing it takes the dataset statistics into account. GAP learns from the
dataset without the need to explicitly model the underlying distribu-
tion. Leveraging recent advancements in generative adversarial net-
works (GANs) [22–24], GAP allows the privatizer to learn obfuscation
schemes from the dataset itself. Like the generator and discriminator in
a GAN, the privatizer and adversary optimize a minimax game.

Information-theoretic (IT) privacy [11,25,26] provides an alterna-
tive in which privacy metrics are motivated by concepts from infor-
mation theory. For example, mutual information [27] is the measure
of how much one random variable tells us about another. Obfuscation
schemes which minimize mutual information intuitively provide pri-
vacy. Unlike DP which provides guarantees on worst-case privacy, mu-
tual information is an expectation, i.e. provides guarantees on average
privacy.

2.2. Theoretical studies of privacy-utility trades

Previous work has analyzed distortion in the context of DP [28] or
attempted to minimize the utility loss incurred by DP [29]. Previous
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work in GAP maximizes privacy subject to a constraint on distor-
tion [14]. Additionally, previous IT privacy metrics have been con-
sidered in the context of theoretically motivated utility metrics [30].
In contrast, in this work we consider utility metrics beyond distortion
which are specific to our application and are both more intuitive
and relevant for mobile network data. We also formally compare the
performance of context-free (Gaussian noise-adding, local DP) and
context-aware (GAP, IT) approaches in the context of our application.

Prior theoretical studies on the privacy-utility tradeoff include [11,
31,32]. The authors of [11] formally define an analytical model for
trading equivocation (a privacy metric based on Shannon entropy)
and distortion (a utility metric which could be Euclidean distance,
Hamming distortion, Kullback–Leibler divergence, etc.). This model is
designed for ‘‘universal’’ metrics, but is not generalized for non-i.i.d.
datasets or datasets lacking strong structural properties. A so called
geometric mechanism is presented in [32] as a utility-maximizing
alternative to the Laplace or Gaussian mechanisms typically used in
differential privacy, where utility is the expected loss of any symmetric,
monotonic loss function. In [31], the authors define a bound on the
information-theoretic min-entropy leakage of ✏-differential privacy, and
a bound on utility (where utility is roughly the number of differing
dataset entries). Our work uniquely examines this tradeoff for all
of these approaches in the unifying context of a single application,
allowing us to present additional insight.

2.3. Prior work on mobile network data privacy

Previous work on privacy in mobile network data has considered
strategic sampling, distribution modeling, and noise addition as ob-
fuscation strategies. In [10], the authors exploit compressive sensing
techniques to sample and compress received signal strength values
in a privacy-preserving RSS map generation scheme. While privacy
is gained in sampling and compression, the authors of [10] do not
take a formal approach to quantifying privacy. In [33], distributed
algorithms for Gaussian and exponential noise addition are explored
in a crowdsourced data setting. Local differential privacy is applied
to the user-tracking problem for indoor positioning systems in [34].
The authors of [35] present a relaxed version of differential privacy,
probabilistic DP, which accounts for certain worst-case privacy sce-
narios being highly unlikely. They apply this to the generation of
synthetic data which maps daily commutes. In [36], a novel privacy-
preserving incentive mechanism is proposed for mobile crowd sensing,
where the authors employed DP to perturb aggregated data. In each
of [10,33–36], utility is not rigorously considered. Our work takes a
formal approach to both privacy and utility.

In recent years, researchers have grown interested in studying the
privacy-utility tradeoff in mobile network applications. Shokri et al.
in [37] propose an optimal strategy against location attack based on
Stackelberg Bayesian game theory, which provide the best location pri-
vacy while satisfying the user’s service quality requirements. Bordenabe
et al. in [38] formulate the tradeoff optimization problem between geo-
indistinguishability and quality of service, and propose a method based
on linear optimization to solve this problem. Chen et al. in [39] design
a differentially private obfuscation scheme based on reinforcement
learning to optimize privacy budget allocation for each location in
vehicle trajectory obfuscation, which can balance geolocation obfus-
cation and semantic security and thus results in better privacy-utility
tradeoff. In [40], the authors design novel privacy and utility metrics
for location privacy, and perform large-scale evaluation and analysis
of several existing location-privacy preserving mechanisms. In [41],
the authors provide a survey of DP-based obfuscation approaches for
location privacy protection and compare the privacy-utility tradeoff
performance of these approaches. However, these works only focus on
location privacy without considering other privacy metrics for mobile
user data. Moreover, the proposed approaches in [37,38] are based
on linear programming and discrete locations which cannot be easily

applied under our threat models (continue locations and non-linear
adversary). The mechanism proposed by [39] does not formally opti-
mize the privacy-utility tradeoff during trajectory obfuscation. [40] is
an empirical study with no formal analysis or obfuscation schemes that
formally consider both privacy and utility in their design, and [41] only
surveys DP-based obfuscation approaches without considering other
obfuscation schemes.

In [42], the authors propose a novel framework, DP-star, for pub-
lishing trajectory data with differential privacy guarantees, while pre-
serving high utility. In [43] the authors present AdaTrace, a utility-
aware location trace synthesizer which provides a differential privacy
guarantee and inference attack resilience. This work is closely related
to ours in that the authors employ both learning and noise-adding
to generate datasets which they evaluate for statistical utility, and
analyze how the choice of privacy parameter effects utility. In [44],
the authors proposed a privacy-preserving and utility-aware mechanism
based on mutual information optimization, with application to the data
uploading phase in participatory sensing. Zhang et al. in [45] also pro-
pose an information theoretic approach based on mutual information
optimization, which protects the user’s location privacy while satisfy-
ing the user’s utility constraints when releasing location aggregates.
However, these works only consider the database-level threat model
during dataset publishing, which requires a trust-worthy third party to
distort data before release, and they cannot be directly applied to the
device-level obfuscation in our application.

In [46,47], GANs are leveraged to achieve utility-aware obfuscation
of mobile sensor data. However, these works focus on obfuscating
image sensor data to reduce sensitive information leakage in mobile
apps, where both the dataset structure and threat model are different
from ours. Moreover, [47] does not compare GANs with other formal
obfuscation schemes, and [46] does not compare against obfuscation
schemes that formally consider both privacy and utility in their design.

While the advantages and disadvantages of a range of obfuscation
methods are to some extent known in principle from prior work, how
they perform and compare in signal map application is unclear. In
this work, we implement representative obfuscation schemes based
on preeminent approaches, apply them to the important real-world
application of generating signal maps via crowd-sourcing, and compare
their performance. Our performance results can serve as benchmarks,
offering insights about how to design real-world systems to generate
accurate signal maps while protecting user privacy.

3. System model

Fig. 1 illustrates the system model we consider, which involves
mobile users, a service provider or a third party, and an adversary.
User devices record network measurement data and transmit it to a
service-provider or third-party server. Since the reported data contains
information that the users may deem private (e.g. user location, see
Section 3.1), users apply device-level privatizers to obfuscate their data
locally before uploading them to the server (see Section 3.3). The goal
of the service provider is to train a RSS model based on the aggregated
obfuscated user measurement data, which can be used to generate
signal maps and thus guide network planning and operation [48] (see
Section 3.6). Finally, an adversary with access to the obfuscated data
estimates the whereabouts of users, by estimating the user ID and lo-
cation corresponding to the incoming measurements (see Section 3.5).
Note that we assume the service provider is also curious about user
whereabouts and thus can be the adversary. We further assume that the
adversary has access to the obfuscated data as it arrives at the server,
but no side information that directly reveals the identity of users (see
Section 3.2 for a detailed description of the threat model).
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Fig. 1. Overview of system model. (1) Users collect measurement data and obfuscate
it before uploading it to the service provider; (2) The service provider or third party
aggregates obfuscated user data to train a signal map model, i.e. RSS prediction model;
(3) The adversary has access to the obfuscated user data and uses it to estimate the
user ID and locations.

Table 1
Dataset features.
Features User ID Latitude Longitude RSS Others

Sensitivity Private Private Private Public Public
Variable u x1 x2 x3 xj, j>3

3.1. User data

We use three real-world datasets collected from different countries
and over different time periods to evaluate the performance of our
privatization schemes under different environments and user behaviors,
and thus make our findings more conclusive.

The first dataset is taken from users in Chania, Greece, and will be
referred to as the Chania dataset, which contains measurements from
nine users over seven months in 2014. The nine users are mobile device
owners who carry their devices with them throughout the day col-
lecting measurements. Each measurement contains 24 features: device
address, timestamp (to the second), received signal strength (RSS) in
dBm, latitude, longitude, cellID identifying the base station, downlink
carrier frequency, uplink carrier frequency, mobile network code, etc.

The second dataset contains measurements from seven users over
four months in the University of California Irvine (UCI) campus in
2017, and will be referred to as the UCI dataset. Each measurement
consists of 15 features including latitude, longitude, reference signal re-
ceived power (RSRP) in dBm, reference signal reference quality (RSRQ)
in dBm, timestamp. deviceID, cellID, etc.

The third dataset is collected by Radiocell.org [17], which has
been crowdsourcing wireless network measurements from world-wide
mobile users since 2009. It is the largest open-source mobile network
dataset we can have access to. We sample about 0.5 million mea-
surements from 219 mobile users in UK, 2019,1 and refer to it as
Radiocell dataset. Each measurement has 23 features including latitude,
longitude, altitude, speed, signal strength (SS) in dBm, country code,
mobile network code, etc.

The most relevant features to this paper are tabulated in Table 1
along with an indicator of their sensitivity. User ID and location are
assumed sensitive features (private), whereas RSS/RSRP and others are
not sensitive (public).

For visualization purposes, we have plotted the data of the first
dataset over the geographic region in Fig. 2. The colors indicate user
ID, and it is apparent that one cannot easily assume user ID based on
location alone.

1 We choose UK since most of the collected measurements in 2019 come
from mobile users in UK (10 million measurements in total). To limit com-
putational complexity, we select three cells containing the largest amount of
data.

Fig. 2. Chania Dataset (colored by user). (For interpretation of the references to color
in this figure legend, the reader is referred to the web version of this article.)

3.2. Threat model

Our adversary has the goal of gathering private information that
may be revealed by users operating in the mobile data network who
are sending data reports to the service provider. The adversary may
use this information for purposes not in the users’ interest, or even
to aid criminal attacks such as identity theft. Note that the adversary
can either be an undetected malware software installed in the service
provider, or the service provider itself, since we assume that the service
provider or third party may also be curious about the user whereabouts,
as it can be sold to other third parties or used for other purposes [3].

To accomplish his/her goal, the adversary will seek to obtain access
to as many user feature reports as possible, consisting of (u, x1, x2,
x3,…). Since the primary information sought by the adversary may not
be explicitly present in the reports, e.g., if the reports are intentionally
obfuscated, the adversary will perform inference attacks to estimate the
private user information they desire. The nature of the threat may have
some variation dependent on the specific mobile data application and
the capabilities of the adversary. With this in mind, we consider the
following properties as part of the definition of the threat model:

• Whether the adversary can access individual user reports directly,
or whether their access is limited to the aggregated reports of all
users,

• whether the adversary should be assumed to have bounded com-
putational resources,

• whether the adversary has access to relevant side information,
and

• whether users are primarily concerned with potential exposure
of private information from their reports on average or in the
worst-case.

Side information is any additional information that may be available
to an adversary that could be used to supplement the information
collected from the user reports to increase the efficacy of an inference
attack. This could include public databases from organizations like the
US Census Bureau or the Department of Transportation which allow an
adversary to associate data features, e.g., addresses with names.
Typical mobile network data threat model: For most mobile network
data applications and users, we apply the following threat model:

• The adversary can access individual user reports directly,
• the adversary’s computational resources are bounded,
• the adversary has limited access to side information, and
• users are primarily concerned with privacy exposure on average.

We consider that many users are likely to have reservations about
providing private data to a service provider, either because they do not
trust the provider to adequately protect their data or they believe the
service provider will themselves use the data in ways that do not align
with the user’s interests. For this reason, we assume a threat model
where users must be able to protect their private information at the
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Table 2
Context used by privatizers (last 4 rows) and properties of threat models (first 6 rows).

LDP GAP IT

Th
re
at
m
od
el Adversary computational resources Unlimited Limited Unlimited

Adversary side-info access Unlimited Limited Unlimited
Type of privacy-loss guarantee Worst-case On-average On-average

Provable adversary privacy protection Against any adversary Against trained adversary Against any adversary Context

Privatizer access to data for training Not necessary but helpfula Yes No
Privatizer access to data distribution Not necessary but helpfula No Yes

Utility protection type None/Somea Maximize utility Lower bound on utility

aAs discussed in detail in Section 5.2, LDP requires clipping. While clipping can be done in a manner which is agnostic to the data [49,50], this may result in large utility loss.
As a result, clipping is usually performed using information about the data to ensure the added noise is calibrated with the range of data values, see Eq. (16).

local level, e.g., at the user device. We also recognize that some users
likely will not have such reservations, and thus a minority of users can
be incentivized, e.g., through discounts, to trust a data aggregator with
their data, allowing for the possibility of training or tuning privacy
schemes based on real user data. Adversary computational resources
are assumed to be bounded, recognizing that other methods outside
the scope of the data network could be employed to reliably obtain
the same private information if an adversary is assumed to have lim-
itless resources. Adversary access to side information is assumed to be
limited for the same reason. Finally, we assume users will typically be
concerned with the exposure of their private information on average.
For most mobile data applications, a user will likely operate with the
network over a long period of time and will generate many feature
reports as a result. Further, exposure of the private data of any one
report will typically pose a much lower risk than exposure through the
aggregation of many reports over a period of time. Thus, protecting
against an adversary attack on any single report under worst-case
conditions is unnecessary for typical applications.
Worst-case mobile network data threat model: Due to the wide
variety of potential mobile network data applications and possible user
privacy concerns, we acknowledge there may be some use cases where
a worst-case threat model is appropriate. To account for this, we also
treat such a model in our analysis. This adversary can access individual
reports directly, but in contrast to the typical threat model we assume
the adversary has unbounded computational resources and unlimited
access to side information. Also, users are concerned with exposure of
any single feature report, and their private information in each report
must be protected from exposure under worst-case conditions.

3.3. Data obfuscation and privatizers

To protect against the adversary threat, privacy can be preserved
through obfuscation of the feature data provided by individual users
before being released to the service provider. At a minimum, the feature
set is stripped of user ID. Remaining features are then obfuscated
according to the selected privatization scheme, or ‘‘privatizer’’ for short.
This is needed because the adversary may learn patterns in the data
which associate public and private features, thus it is not sufficient to
only obfuscate private features.

The privatizer will produce an obfuscated measurement feature
report (u, x1, x2, x3,…) ô (y1, y2, y3,…), with yi denoting the obfuscated
version of xi, where the mapping depends on the design of the priva-
tizer. We will consider several privatizers, described fully in Section 5.
Some privatizers leverage actual user data in their design. We assume
such data is collected either through opt-in surveys and service provider
incentives, or else collected by the provider through other means such
as wardriving. In our analysis, we use 70% of our available dataset for
training our adversary (see Section 3.5 for more details) as well as for
training, fitting models, and/or choosing parameters of the privatizers
(see Section 5 for more details). The remainder of the dataset will be
used to test our privatizers against the adversary.

3.4. Context

User data is a type of application-specific context, and different
privatizers may use the actual data, data distributions, or merely data
moments like mean and variance. There are other types of application-
specific context, e.g. privacy and utility metrics of interest, which
privatizers may optimize over. Since mobile service providers know
what they want to use the data for, and may ask their clients about
privacy concerns, such metrics may indeed be available to be used in
the design of privatizers.

Using context has implications to the threat model. For exam-
ple, optimizing over a particular privacy metric guarantees protection
against this privacy metric but not against any function of the data.
As another example, if a privatizer optimizes its design under a known
data distribution, or is trained under a given dataset, its performance
is not guaranteed under different distributions and datasets.

Using context may also offer utility guarantees since optimizing
over, or putting a constraint on a utility metric, restricts the privatizer
from making obfuscation decisions that reduce utility below acceptable
levels.

Table 2 compares different privatizers with respect to how much
context they use and which threat model properties they can protect
against. LDP offers stronger privacy protection than the rest as it
provides worst-case privacy guarantees against any adversary with
potentially unlimited resources and side information access. However,
it does not have a formal mechanism to guarantee a minimum level
of utility. In contrast, GAP and IT are aware of application specific
utility metrics which they include in their optimization setups, and thus
provide utility guarantees. The GAP privatizer in particular optimizes a
multi objective function which considers both privacy and utility. That
said, it is optimized and can offer formal guarantees only against the
particular adversary in its training loop. These fundamental distinctions
among the different obfuscation approaches are discussed in more
detail in Section 5 and their implications to the privacy-utility tradeoff
are presented and discussed in detail in Section 6.

3.5. Adversary model

Depending on whether users upload measurements to the server
one at a time or in batches, the adversary may or may not know
whether a sequence of measurements originated from a single user
or multiple users. Consider first the scenario where each user uploads
one obfuscated measurement each time. Given that the user ID of each
obfuscated measurement is unknown, the adversary takes as input one
measurement from the obfuscated dataset (y1, y2, y3,…) and predicts
the user ID and true location (the unobfuscated latitude and longitude)
from which the measurement originated ( Çu, Çx1, Çx2, Çx3 …). Now consider
the scenario where, for the sake of reduced system complexity, each
user uploads a sequence of obfuscated measurements each time.2 While

2 In practice, the service provider can require users to upload their data
weekly or monthly.
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Fig. 3. A diagram of adversary implementation.

the user ID of each obfuscated measurement in the database is un-
known, the adversary knows that measurements in the same batch
belong to the same user, and can take advantage of correlations across
measurements to improve estimation. In this case the adversary takes as
input a measurement sequence {(y1i, y2i, y3i,…)}i=Li=1 from a single user
and predicts a single user ID Çu and the true locations {(x1i, x2i)}i=Li=1
(i denotes the ith measurement in this sequence, and L is the se-
quence length). In Section 6 we investigate the performance under both
scenarios, see Section 6.2 for a direct comparison between the two.

The adversary estimation is a mapping from (y1, y2, y3,…) to ( Çu, Çx1,
Çx2) and one may use a number of approaches to perform that mapping.
In theory, one may discretize the continuous xi’s and yi’s and use em-
pirical conditional probabilities and maximum likelihood estimation,
but in practice the state space would explode. Given the availability of
real world datasets, learning is a better choice. We experimented with
linear and non-linear models for used ID estimation, and chose a deep
neural network (DNN) to model our adversary (see Fig. 3), given the
effectiveness of DNNs in approximating non-linear functions.

Specifically, our adversary is modeled as a fully-connected DNN
containing two hidden layers with 256 neurons each. Between layers
we employ Rectified Linear Unit (ReLU) activations, and our optimiza-
tion relies on Adaptive Moment Estimate (Adam) stochastic gradient
descent with a learning rate of 0.001. These values were empirically
selected to maximize the adversary’s performance when given the
unobfuscated data as input.

Assume that the input measurement contains m features and there
are k users (m and k depend on three datasets described in Section 3.1).
Then each input batch has n measurements containing the m features.
The output of the adversary neural net is a nù(k+2)matrix representing
estimates of user ID and location (n = 1024 in our experiments).
Each row in this matrix contains the likelihood that this measurement
belongs to different users, and the estimated latitude and longitude of
the original measurement. The loss function used to train the adversary
is a weighted sum of the categorical cross entropy loss of the user ID
estimate vector and the euclidean distance between the actual location
and the location estimate. The user ID estimate error, location estimate
error, and adversary loss functions are defined in Section 4.

We provide our adversary 70% of the obfuscated dataset to train
on, for which it has access to the unobfuscated user IDs and locations,
and test it on the remaining 30% of the data. Providing the adversary
such a high portion of the data for training makes our privacy results
conservative. In our threat model we have assumed some access to side
information but comprehensively modeling access to possible forms of
side information is intractable. The adversary’s access to 70% of the
dataset with obfuscated and true user ID and location labels serves as
an approximation of some form of side information. Side information
may include known user locations at certain times, or inputs from the
adversary’s own devices on the network to establish ground truth. The
training set could also correspond to the adversary simulating published
privatizers which may be revealed by the service provider to help
convince users regarding their ability to preserve privacy.

3.6. Signal map model

The service provider trains an RSS predictor based on the ag-
gregated user data such that it can generate accurate signal maps.
Specifically, the model input features include (obfuscated) latitude,
longitude and other features (i.e. (x1, x2, xj , j > 3)), and the model
output is the RSS value x3 in dBm.

There is a long line of research on RSS predictor models, see, for
example [51–53]. We first consider a simple path loss model [54] but
find its accuracy to be underwhelming. We also consider a linear and
a neural network model and find that both have good comparable
accuracy yet the former is easier to work with. Notably, its parameters
can be estimated in one step which allows us to calculate application-
specific utility metrics more efficiently (see Section 4.2). We thus select
a linear RSS prediction model. Specifically, we use the following model:

x3 = a0 +
j=m…

j=1,jë3
aj*1xj , (1)

where k is the total number of features in a measurement and ↵ =
[a0,… , am*1]T is the parameter vector. Given a set of n measurements
X = [xji] where j = 1,… ,m and i = 1,… , n (m is the number of
features), the parameter vector of the RSS prediction model can be
estimated via linear regression as follows:

↵X = (XT
*3X*3)*1XT

*3X3, (2)

where X3 is the third column of X and X*3 is the remaining columns
of X without the third column. Similarly, given a set of n obfuscated
measurements Y = [yji] where j = 1,… ,m and i = 1,… , n, the
parameter vector of RSS prediction model can be estimated as ↵Y .

3.7. Practical considerations regarding the implementation of privatizers

As discussed in our system model, the privatizer is deployed in local
devices of mobile network users to obfuscate the collected measure-
ments. In practice, the privatizer can be implemented as a software
function, being part of the crowdsourcing Apps used to collect and
upload signal map measurements (e.g. RadioBeacon [55] used for
Radiocell dataset collection and AntMonitor [16] used for UCI datset
collection). We can integrate the privatizer into these Apps. After each
device collects the signal map measurements, instead of sending the
raw measurements with actual features (e.g. user locations and rss
values), each device will first call the privatizer function to obfuscate
those features in raw measurements and then send the measurements
with obfuscated features to the service provider or third-party, who will
receive the obfuscated measurements and store them in its database
as XML or JSON files (e.g. in [17]). Note that the service providers
can be cellular providers like AT&T [56] and the third parties can
be mobile analytics companies like Tusla [57]. They will build RSS
prediction models using the crowdsourced signal map measurements
for various purposes like improving network performance and coverage
as discussed in [53]. Since our obfuscated measurements have the same
format as the raw measurements, they can be directly used to train the
RSS model without any changes in the original infrastructure.

Moreover, the only part of the crowdsourcing Apps that requires
new implementation work is the privatizer, which will not lead to large
system overhead (e.g. memory and CPU overhead). Specifically, adding
noise should be easy to implement and with negligible overhead. The IT
privatizer only needs to select codes from a codebook, which also does
not have significant overhead. GAP needs more computation resources
during its training phase while fewer resources during runtime. More-
over, since the number of features in signal map measurements is small,
the system overhead of running GAP privatizer is also not significant.
Therefore, we expect that the runtime overhead of running privatizers
will not be a problem for today’s mobile devices.
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4. Definition of metrics

In this section we define the metrics used to evaluate privacy and
utility.

4.1. Privacy

Let n denote the number of measurements per batch. u = [ui], i =
1… n represent the user ID of each collected measurement and Çu = [ Çui]
is the adversary’s estimate of u. The adversary computes a probability
distribution over the space of possible user IDs and selects for each
measurement the user ID estimate with the maximum likelihood. We
define the adversary estimate accuracy as the fraction of correct user
ID estimates, that is,

acc( Çu, u) = 1
n

n…
i=1

1 Çui=ui ,

where the indicator function 1 Çui=ui is equal to 1 if the estimate is correct
and 0 otherwise. Since high values of accuracy correspond to low values
of privacy, we define the first privacy metric as

P1( Çu, u) = 1 * acc( Çu, u). (3)

Çx1 and Çx2 are the adversary’s estimates of the true latitude x1 and
longitude x2. While Çu represents a probability distribution, Çx1 and
Çx2 specify an exact location. Our second privacy metric is the Eu-
clidean distance between the true location and the adversary’s estimate
averaged over the batch, defined by

P2( Çx1, Çx2, x1, x2) =
1
n

n…
i=1

t
( Çx1i * x1i)2 + ( Çx2i * x2i)2, (4)

where the subscript i = 1...n corresponds to the ith measurement in
the batch of size n. This metric defines how well the adversary is able
to recover the original user location. High values of adversary location
error correspond to high privacy.

Since both user IDs and locations are considered as private and
sensitive information in our application, we further define the following
composite privacy metric:

P ( Çx1, Çx2, Çu, x1, x2, u) = v1P1( Çu, u) + v2P2( Çx1, Çx2, x1, x2), (5)

where v1 and v2 are parameters controlling the weights of the two
aforementioned privacy metrics. P1,P2 and P are the privacy metrics
we use throughout the paper to compare the performance of different
privatizers.

4.1.1. Additional privacy metrics
The composite privacy metric defined above is not differentiable be-

cause P1 is not differentiable. This is a problem for adversary training.
To handle this we use the cross entropy loss of the user ID estimate

P ce
1 ( Çu, u) = * 1

n

n…
i=1

log pi, (6)

where pi is the estimated likelihood of user ID ui for measurement i,
and define the loss function of the adversary as

La( Çx1, Çx2, Çu, x1, x2, u) = v1P ce
1 ( Çu, u) + v2P2( Çx1, Çx2, x1, x2), (7)

which is used in the training of the adversary and of the GAP neural net-
works (the GAP privatizer and adversary used in the iterative training,
see Section 5.3).

Our IT privacy approach, see Section 5.4, is motivated by the use of
mutual information as a measure a privacy. The mutual information
between two random variables X (e.g., our input) and Y (e.g., the
obfuscated data) quantifies how much information about one random
variable is obtained through observing the other. It is given by

I(X; Y ) =
…
yÀY

…
xÀX

pX,Y (x, y) log
⇠ pX,Y (x, y)
pX (x)pY (y)

⇡
, (8)

where pX,Y is the joint probability mass function and pX , pY are the
marginal probability mass functions.

Last, the privacy metrics defined above are well suited for the
typical threat model discussed in Section 3.2. However, for the worst-
case threat model involving adversaries with unbounded computational
resources and auxiliary information where users seek protection of
any single report (see Section 3.2) we resort to differential privacy
(DP) [19]. Specifically, let K be a randomized function applied to the
input dataset. K gives ✏, �-differential privacy if for all datasets D1 and
D2 which differ in at most one element and ≈S À range(K),

Pr[K(D1) À S] f e✏P r[K(D2) À S] + �, (9)

where the probability is taken over the randomness in K. ✏ and � bound
the difference between the output of K on D1 and D2 thus making
it hard to guess the input (D1 versus D2) by observing the output.
DP is a strong guarantee, since it does not make any assumptions
about the computation power and auxiliary information available to
the adversary, and ✏ and � serve as metrics for privacy, see [12] for
more details.

4.2. Utility

Let m be the number of features at each measurement excluding the
user ID which is stripped from the input. The output of the privatizer
y = [yj ], j = 1…m is the obfuscated data, e.g. y1 and y2 denote
obfuscated latitude and longitude, respectively. Our utility metrics
quantify the difference between the input data x = [xj ] and the
obfuscated data y = [yj ]. Recall that we consider n measurements per
batch thus xj and yj are vectors of size n with elements xji and yji,
i = 1… n, respectively. We consider several utility metrics motivated
by real-world applications of crowdsourced network data.

The first metric quantifies the overall distortion of the dataset,
considering all m features, by the L2 norm distance between input and
obfuscated data, averaged over all n batch measurements:

U1(x, y) = *1
n

n…
i=1

yxxw
m…
j=1

(yji * xji)2. (10)

Intuitively, high values of distortion correspond to low utility thus the
minus sign in front of distortion in Eq. (10).

The second utility metric is related to the RSS prediction model
described in Section 3.6. Recall that the goal of service provider is to es-
timate an accurate RSS prediction model based on the aggregated user
data. However, with obfuscated user data, the estimated parameters
of RSS prediction model differs from those estimated by unobfuscated
user data (i.e. the estimated parameter vector changes from ↵X to ↵Y ,
see Eq. . (2)). To minimize the difference between them, we define our
second utility function as the opposite of L1-norm distance between ↵X
and ↵Y as follows:

U2(x, y) = *↵X * ↵Y 1. (11)

where ↵X represents the RSS prediction model parameters estimated
by unobfuscated user data (i.e. the privatizer’s input) and ↵Y represents
the RSS prediction model parameters estimated by obfuscated user data
(i.e. the privatizer’s output). We refer to ↵X * ↵Y 1 as the generated
map error, where higher values of map error corresponds to lower
utility. While many metrics could be used to measure the distance
between ↵X and ↵Y , comparing the fitted parameters over this bounded
space provides a simple, effective loss function. Note that this map error
does not capture how well a RSS prediction model generated by the
obfuscated data could be used to predict RSS values at a new location,
but rather captures the ‘‘distance’’ between maps generated before and
after obfuscation.

Envisioning that the service provider may care for more than a
single application-specific utility metric like U2 in practice, we further
define a composite utility metric U (x, y) as

U (x, y) = w1U1(x, y) +w2U2(x, y), (12)
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Fig. 4. Noise privatizer when � = 0.1.

Fig. 5. Noise privatizer when � = 0.9.

where w1 and w2 are parameters adjusting the weights of each utility
metric.

5. Privatizers

In this section we introduce in detail each of the four privatizers,
which represent different types of obfuscation schemes. Specifically, we
first select a Gaussian noise-adding privatizer for its simplicity and as
a benchmark. We then select a locally differentially private privatizer
(LDP) motivated by the well known strengths of Differential Privacy.
We then select a privatizer based on GANs (referred to as the GAP pri-
vatizer), given the recent interest on how adversarial learning may be
used to train privatizers by positioning them against adversities. Last,
we select the so-called IT privatizer since it is a good representative of
obfuscation schemes which use mutual information as a privacy metric
and optimization to optimally design obfuscation.

5.1. Gaussian noise-adding privacy

Our Gaussian noise-adding privatizer (Noise privatizer) takes the
simplest approach to data obfuscation. For each input batch of size nùm,
where n is the number of points and m is the number of features, we
add an nùm matrix of Gaussian noise. Each element in this noise matrix
is normally distributed with a mean of 0 and a standard deviation of
�. Since the data is also normalized such that each feature has a mean
value of zero with a standard deviation of 1, values of � close to 1 add
a significant amount of noise and we choose to vary � between 0 and
1. Fig. 4(a) provides a visualization of what the normalized input data,
obfuscated data, and adversary’s estimate look like side by side using
the Noise privatizer for a low value of �. Fig. 4(b) shows the signal
maps generated before and after obfuscation. This shows that even in
the presence of obfuscation, we can generate representative signal maps
with the obfuscated data. Figs. 5(a) and 5(b) show the same plots for
a high value of �. Note that while the privacy is improved, i.e. the
adversary estimate is further from the input data, the signal maps differ
significantly.

For reference, a privatizer which releases a completely random
dataset (from a normal distribution with variance of 1.0) regardless of
input data would observe the errors shown in Table 3.

Table 3
Utility reference values.
Metric No obfuscation Random data

Distortion (*U1) 0 5.74
Generated map error (*U2) 0 2.41

5.2. Local differential privacy

We implement two local DP (LDP) privatizers which provide mathe-
matical guarantees for privacy (see Eq. (9)) under the worst-case threat
model discussed in Section 3.2.

The first approach is the Gaussian Mechanism with parameters ✏
and �, which we refer to as GLDP [12]. This mechanism adds zero-mean
Gaussian noise with variance b to each feature. This variance is defined
by

b = �2

✏2
2 ln( 1.25

�
), (13)

where � is the L2-sensitivity of a function f given by

� = max
D1 ,D2ÀD

f (D1) * f (D2)2, (14)

where D1 and D2 are subsets of the dataset D differing only by one
element. Generally, in the local DP model, one can think of D1 and D2
as datasets of size 1 (i.e. one data point) and f as an identity function.
Therefore the sensitivity becomes the greatest L2-distance between any
two data points. In practice, we use an analytically calibrated Gaussian
Mechanism which is shown to extend better to the very high privacy
regime (✏ ⇤ 0) and the low privacy regime (✏ ⇤ ÿ), see Algorithm
1 in [58] for the exact calculation for the variance of the added noise
b.

The second approach is the Truncated Laplacian Mechanism with
parameters ✏ and �, which we refer to as LLDP, recently proposed
in [13]. This mechanism adds noise satisfying the truncated Laplacian
distribution, with probability density function

f (x) =
T

Be*
x
� , for x À [*A,A]

0, otherwise
(15)

where

� = �
✏
, A = �

✏
log(1 + e✏ * 1

2� ), B = 1

2�(1 * e*
A
� )

,
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Table 4
Comparison of GLDP and LLDP privatizer on Chania dataset.
✏ Mechanism P1 P2 U1 U2

1 GLDP 0.68 0.94 113.76 2.96
LLDP 0.68 0.94 84.60 2.95

10 GLDP 0.63 0.91 16.46 2.39
LLDP 0.49 0.69 8.50 2.49

100 GLDP 0.32 0.36 4.21 2.44
LLDP 0.05 0.10 0.93 2.20

and � is defined in Eq. (14).
For both approaches, we follow standard practice and use � =

0.00001 (� should be much smaller than 1_n [59]) and ✏ between 1 and
10 (larger ✏ values yield a very loose bound, see Eq. (9)), where low
values of epsilon guarantee better privacy.

Moreover, following standard practice again, we clip each data
point to have L2-norm f �

2 . Then, by invoking the triangle inequality,
we can ensure that sensitivity is no greater than �. Specifically, for both
the Gaussian mechanism and Laplacian mechanisms, we clip each data
point according to the following function

xnew = x
x2

min (�2 , x2). (16)

To choose �
2 , we use the rule of thumb that clipping should occur 5%

of the time. Using the pilot dataset to approximate how much of the
data would be clipped for a given value, we choose �

2 = 7.154 and use
this parameter during testing.

Table 4 compares the GLDP and LLDP privatizers with respect to our
privacy and utility metrics on Chania dataset. We notice that both GLDP
and LLDP privatizers yield quite large utility losses. From this table, it
is evident that GLDP achieves sizably higher privacy than LLDP w.r.t.
P1 and P2, especially for larger ✏ values. Although GLDP privatizer has
larger loss in utility, both GLDP and LLDP privatizers cannot offer any
utility protection. Hence, we use GLDP with higher privacy in the rest
of the paper when comparing LDP with other approaches under the
typical threat model, see Section 6.

Note that while our Noise and LDP privatizers both add normally
distributed noise, the key difference between the two is the noise
clipping step. Intuitively, this ensures that no two data points are too
different. This gives an anonymity to each measurement that is crucial
to privacy under a worst-case threat model.

5.3. Generative adversarial privacy

Generative Adversarial Privacy is a data-driven approach to obfus-
cation which learns a privatization strategy by positioning the priva-
tizer and adversary against each other in a minimax game [14,21].
Our privatizer is a fully-connected feedforward neural network with
a similar structure to our adversary. It has two hidden layers of 256
units each. Between layers we employ Rectified Linear Unit (ReLU)
activations, and our optimization relies on Adaptive Moment Estimate
(Adam) stochastic gradient descent with a learning rate of 0.001. Our
privatizer, which takes an input batch of size n ù m, outputs an n ù m
batch of obfuscated data, where each measurement has been obfuscated
independently. (We treat the case where measurements are grouped
into batches and then jointly obfuscated in Section 6.2.)

Our privatizer wants to minimize the following loss function

Lp(x, y, Çu, Çx1, Çx2) = *⇢U (x, y)
* (1 * ⇢)La( Çx1, Çx2, Çu, x1, x2, u),

(17)

where U is the composite utility metric defined in Eq. (12) and La is
the adversary loss function defined in Eq. (7) which is a differentiable
version of the composite privacy metric and depends on the adversary
estimate error of the user ID and location.

Notice that as the adversary’s loss decreases (implying less privacy),
the privatizer’s loss increases. ⇢ quantifies the penalty on utility loss,
as opposed to privacy loss. Utility losses have a large effect on the
privatizer when ⇢ ⇤ 1 and privacy losses have a large affect on the
privatizer when ⇢ ⇤ 0.

We take an iterative approach to training the two neural networks.
We first train the adversary, specifically, we fix the neural network
(NN) weights of the privatizer and perturb the NN weights of the
adversary along the negative gradient of La for k epochs. We then train
the privatizer, that is, we perturb the NN weights of the privatizer along
the negative gradient of Lp for k epochs, and so on and so forth. When
both have converged, we have found the equilibrium of our minimax
game. We then fix the weights of both NNs during testing.

The GAP privatizer incorporates the privacy and utility metrics in
its loss function Lp and trains against an adversary with the same
loss function La as the one used to evaluate privatizers. While it is
advantageous to incorporate specific privacy metrics, for generality we
evaluate the GAP privatizer’s performance against other loss functions
too, see Section 6.5.

5.4. Information-theoretic privacy

For this approach, we consider the privacy-utility tradeoff in an
analytically tractable fashion under a formal optimization framework.

Considering X À X and Y À Y as random variables describing
our input and obfuscated data respectively, our IT privatizer tries to
minimize the mutual information I(X; Y ), see Eq. (8), subject to a
constraint on utility. The privatizer is specified by the conditional
probability distribution pY X , the probability of releasing Y given input
data X. Without the utility constraint, the optimal solution is to release
Y independent of X.

Formally, the problem becomes:

min
pY X

I(X; Y ) (18a)

s.t.
…
yÀY

pY X (yx)U (x, y) g Uc ,≈x À X (18b)

pY X (yx) g 0,≈x À X ,≈y À Y (18c)
…
yÀY

pY X (yx) = 1,≈x À X , (18d)

where (18b) is a constraint on the composite utility U (x, y) defined in
Eq. (12), and constraints (18c) and (18d) ensure that pY X is a valid
probability distribution.

We approach this constrained minimization problem by rewriting
it as a Lagrange function whose optimal point is a global minimum
over the domain of the choice variables and a global maximum over
the Karush–Kuhn–Tucker (KKT) multipliers [60]. We analyze the KKT
conditions below to derive key observations on the optimal solution:

pX (x)log(
p<Y X (yx)
pY (y)

) * �<
1U (x, y) * �<

2 + � = 0 (19a)

�<
1 (Uc *

…
yÀY

p<Y X (yx)U (x, y)) = 0,≈x À X (19b)

�<
2p

<
Y X (yx) = 0,≈x À X ,≈y À Y (19c)

�<
1 ,�

<
2 >= 0. (19d)

Solving this for the optimal conditional probability distribution, we see

p<Y X (yx) = p<Y (y) exp (
�<
1U (x, y) + �<

2 * �<

pX (x)
). (20)

We take the sum of both sides,
…
yÀY

p<Y (y) exp (
�<
1U (x, y) + �<

2 * �<

pX (x)
) = 1. (21)
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Fig. 6. Privacy and utility of different privatizers. Note that Noise, GLDP, GAP, and IT refer to the Gaussian noise-adding, local Gaussian Mechanism DP, GAP, and the
information-theoretic privatizers, respectively.

We then manipulate this to get an expression in terms of �<, which we
substitute back into Eq. (20) to get the following:

p<Y X (yx) =
1
⌘
p<Y (y) exp (

�<
1U (x, y)
pX (x)

), (22)

where ⌘ is a normalization term over y À Y . From this formal treatment,
and reminiscent of our previous work [61,62], we derive two important
characteristics of the optimal solution: (i) pY X should exponentially
increase with utility, and (ii) pY X should linearly increase with pY , the
probability that y is reported for any x, i.e. we should reuse released
datasets to the extent practical.

Given the above qualities of an optimal solution, we design the
following heuristic approach. We use the pilot dataset to empirically de-
termine the distribution pX using multi-variate Gaussian kernel density
estimation. We then sample from this distribution Ns times to create
a ‘‘codebook’’ which approximates the sample space Y . Limiting Ns
allows us to reuse released datasets, as mentioned above.

The weight of each ‘‘code’’ or possible y value is given by

w(y) = exp (�<
1U (x, y)), (23)

where �<
1 is our KKT multiplier. Given an input data x, our information

theoretic privatizer selects a y from the codebook with probability
w(y)_≥yÀcodebook w(y). This ensures the likelihood of reporting a y
increases exponentially with utility. As �<

1 increases, the IT privatizer
offers higher utility but lower privacy. By contrast, as �<

1 approaches
zero, the IT privatizer achieves lower utility while higher privacy.

In implementation, we use a codebook with size of 51. This code-
book size was empirically determined to be large enough that one or
more codes would provide good utility, yet small enough that codes
are reused to the extent practical. Note that we bias the codebook by
including a copy of the unobfuscated data (i.e. 50 obfuscated codes +
1 unobfuscated code). This ensures at least one y has very high utility
even for relatively small codebooks. Also, to reduce computational
complexity, we split the n measurements into batches and for each
batch x we select a batch y from the codebook.

6. Performance evaluation

In this section we compare the performance of the privatizers
against different adversaries when users upload a single or a batch of
measurements, and evaluate where they sit in the privacy-utility design
trade space. All performance comparisons in this section are under the
typical threat model (bounded adversary). We use the three real-world
traces introduced in Section 3.1 in our evaluation. Unless otherwise
stated, the default trace is the Chania dataset.

6.1. Comparison of privatizers

Consider the scenario where users upload a single measurement
at a time. Fig. 6(a)/Fig. 6(b) show the adversary estimate user ID
error/adversary location error respectively against each privatizer (its
privacy), and Fig. 6(c)/Fig. 6(d) show the distortion/generated map
error of each privatizer(its utility). The x-axis in these and the following
plots represents the parameterization of each privatizer, i.e. �, ✏, ⇢, and
�<
1 .
As expected, for the noise privatizer, as � increases from 0 to 1

the adversary’s user ID and location estimate errors increase, demon-
strating higher privacy (larger P1 and P2). At the same time, both the
distortion and generated map errors increase, demonstrating lower util-
ity (smaller U1 and U2). For the GLDP/GAP/IT privatizers, decreasing
✏/⇢/�<

1 leads to higher privacy (i.e. an increase in the adversary’s user
ID and location estimate error rate) and lower utility (i.e. an increase
in distortion and generated map error).

Among these privatizers, the GLDP privatizer consistently achieves
high privacy for typical values of ✏. Specifically, against the GLDP
privatizer with 1 f ✏ f 10, the adversary’s user ID estimation error
is around 70% and the adversary’s location estimate error is close
to 1. These numbers can be explained as follows. In the absence of
any intelligible patterns due to obfuscation, the adversary learns to
assume all measurements came from the geographic center of the
dataset, thus its error is on the same order as the spread of input
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Fig. 7. Visualization of obfuscated measurements generated by different privatizers when P = 1.0. Note that each cell in these figures represents a geographical location. The color
of each cell represents the average signal strength value in this location. Lighter color represents higher signal strength value. (For interpretation of the references to color in this
figure legend, the reader is referred to the web version of this article.)

Table 5
RMSE (root mean square error) of RSS prediction model trained with obfuscated
measurements when P = 1.0. Note that we use the RSS prediction model trained with
non-obfuscated measurements as a baseline (privatizer is none).
Privatizer None Noise GAP IT
RMSE (dBm) 2.46 2.90 2.54 2.48

data, i.e. roughly 1. Both the IT and GAP privatizers can approach
this privacy performance as �<

1 and ⇢ get close to 0.1 or smaller. As
for the user ID estimation error, the user with the most measurements
contributes roughly 30% of them, thus a simple adversary assigning this
user’s ID to all measurements would have 70% user ID error, hence this
can be considered as the upper bound of P1.

With respect to the utility, the GLDP privatizer offers the worst per-
formance. The GAP privatizer outperforms the others for ⇢ in the range
[0.0,0.4] (i.e. high privacy region), while the IT privatizer achieves the
best utility for �<

1 in the range [0.4,1.0] (i.e. low privacy region). As it
will become clear in the next couple of sections, a major reason why
GLDP has the best privacy and worst utility is that for the range of ✏
values considered, it distorts the data to a larger extent than the rest of
the approaches. We discuss in more detail the differences between the
4 privatizers in Section 6.3.

Furthermore, we visualize the obfuscated measurements generated
by different privatizers as heat maps in Fig. 7. Note that the x-axis and
y-axis of each heat maps represent longitude and latitude respectively,
and the color of each cell in these heat maps represents the signal
strength value. Compared with the heat map generated by Noise pri-
vatizer, the heat maps generated by GAP and IT privatizers are more
similar to the heat map without obfuscation under the same privacy
level, indicating that GAP and IT privatizers inject less distortion into
the measurement data during obfuscation.

Lastly, we report the root mean square error (RMSE) of RSS pre-
diction model trained by obfuscated measurements in Table 5. Note
that the goal of the service provider is to train a RSS prediction model
based on the obfuscated measurements uploaded by users. The more
accurate the RSS prediction model is, the higher utility the obfuscated
scheme can provide. As illustrated in Table 5, under the same privacy
level, the RSS prediction model trained with measurements obfuscated
by IT privatizer achieves the lowest RMSE, which is close the RMSE
of RSS prediction model trained with non-obfuscated measurements.
The RSS prediction model trained with measurements obfuscated by
Noise privatizer achieves the highest RMSE, indicating that the Noise
privatizer provides the worst utility.

6.2. Leveraging measurement sequences

To directly investigate the effect of correlations and predictable
patterns when considering mobile measurements as a time sequence,
we consider an adversary which takes measurement sequences as input,
i.e. time sequences of lengths 1, 5, 10, and 20 which belong to a
single user, and estimates the (common) user ID and locations of all
these measurements, taking advantage of correlations across data of
the same user. In practice, the adversary can do this when users upload
measurements in batches.

The adversary we consider is trained via supervised learning with
the final output of the converged GAP privatizer. The GAP privatizer is
a good choice to study sequences of data as it can be trained to consider
correlations of sequences and privatize batches of data in one shot as
well.

Fig. 8 demonstrates the effect of leveraging measurement sequences
on adversary’s user ID estimate error, where three cases are considered:
only the adversary, only the privatizer, and both of them consider
sequences of data. Specifically, Fig. 8(a) shows results when only
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Fig. 8. Effect of leveraging measurement sequences on adversary’s user ID estimate error.

Fig. 9. Effect of leveraging measurement sequences on adversary’s user location estimate error.

Fig. 10. Privacy-utility tradeoff of different privatizers under the Chania, UCI, and Radiocell datasets with composite metrics. Note that Noise, GLDP, GAP, and IT refer to the
Gaussian noise-adding, local Gaussian Mechanism DP, GAP, and the information-theoretic privatizers, respectively. Note that P is the composite privacy metric defined in Eq. (5)
and U is the composite utility metric defined in Eq. (12).

the adversary considers measurement sequences. We observe that the
longer the sequence the better the adversary performance, as the adver-
sary achieves smaller error for the same data distortion. Fig. 8(b) shows
results when only the privatizer considers measurement sequences. We
notice that the longer the sequence the better the privatizer perfor-
mance, as the privatizer forces the adversary to achieve higher error for
the same data distortion. Thus, sequences of measurements help both
the adversary and the privatizer, which is expected in the presence of
inter-measurement correlations. That said, the tradeoff in both cases
above is the additional computational and memory resources required
to handle input sequences as opposed to single measurements. Lastly,
Fig. 8(c) shows results when both the adversary and privatizer consider
sequences of the same length. We observe that longer sequences result
in better privacy, as the adversary’s user ID estimate error increases.

Fig. 9 demonstrates the effect of leveraging measurement sequences
on adversary’s user location estimate error. Similar to the results in
Fig. 8, we observe that when the adversary leverages longer measure-
ment sequence, it achieves lower user location estimate error and hence
degrades the user privacy. However, when the privatizer leverages
longer measurement sequence, higher privacy can be achieved in term
of increasing user location estimate error.

6.3. Analysis of privacy-utility trade space

Fig. 10 and Fig. 11 illustrate where each privatizer sits in the
privacy-utility tradeoff space under real-world datasets with different

metrics. Specifically, in Fig. 10, we consider the composite privacy and
utility metrics on Chania, UCI, and Radiocell datasets, where the x axis
shows the composite privacy P defined in Eq. (5) with weights v1 =
v2 = 1 and the y axis shows the composite utility U defined in Eq. (12)
with weights w1 = w2 = 1. Note that we consider such composite
privacy and utility metrics since in practice a service provider may care
about both P1 and P2 and about both U1 and U2.

In Fig. 11, we further consider four different combinations of non-
composite privacy and utility metrics, and we use the Chania dataset
as an example to illustrate how the privacy-utility tradeoff curves of
different privatizers change with different non-composite metrics.

In all these plots, the ideal privatizer should sit in the top right
corner implying high privacy and high utility. While the three traces
are collected in different countries, areas, and years, the results are
qualitatively the same. From both plots we conclude that GAP and the
IT privatizer outperform the Noise and GLDP privatizers. It is important
to remind the reader that the above comparison is under the typical
threat model where the adversary is bounded, whereas GLDP privatizer
is the only privatizer that provides privacy guarantees under the worst-
case threat model. As discussed in detail in Section 3.2, we focus on the
typical threat model as it is more relevant to our context/application.

A major reason why GAP and the IT privatizer perform well is that
they rely on the notion of context, as we have already discussed in
Section 3.4. The GAP privatizer gains some insight about the structure
of the dataset through data-driven learning. It also tries to minimize
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Fig. 11. Privacy-utility tradeoff of different privatizers under the Chania dataset with non-composite metrics.

the difference between the true and obfuscated data while achieving
privacy, as encoded in its loss function. In summary, GAP uses P , U
and the data. The IT privatizer gains some insight about the structure
of the databset through Gaussian kernel density estimation. It does well
because it releases obfuscated datasets which inherently mirror the true
dataset’s structure, thanks to a constraint on utility. In summary, IT
uses U and the data distribution. In contrast to GAP and IT, GLDP only
needs information about the data to perform clipping without hurting
utility too much (in our implementation we used the data directly for
this purpose, see Eq. (16)), and Noise only needs the variance of the
data to normalize the amount of Gaussian noise that it adds.

Comparing GAP with IT, because GAP tries to prevent an adversary
from estimating features of x given y, this strategy can be thought of as
a data-driven approach to what IT does, i.e. minimizing mutual infor-
mation. Yet while the IT strategy adds privacy by choosing y randomly
(with appropriate weights), the GAP privatizer maintains a model of
a rational adversary which it intentionally tries to deceive. Training
against an adversary with the same loss function as the adversary used
to test the performance of the privatizers, might be perceived as unfair.
To address this, in Section 6.5 we test privatizers against adversaries
with different loss functions.

The GLDP privacy-utility curve shown in Fig. 10 shows values of
✏ up to 100. Note that this is an order of magnitude greater than the
values of ✏ shown in Fig. 6(c)/Fig. 6(d) and such high values yield a
very loose bound on Eq. (9), yet we do so to show that the Noise and
GLDP privatizer meet when noise levels are similar. Note that values
of ✏ f 10 lie along the asymptotic behavior around the P = 1.6_1.5_2.0
line for the Chania/UCI/Radiocell dataset, respectively.

Finally, note that when we train the GAP privatizer and compute
the codebook of the IT privatizer to generate the results of Fig. 11,
we use the composite privacy and utility metrics to avoid retrain-
ing/recomputing them for each case. Interestingly, this does not deteri-
orate their performance in a visible manner. While real-world engineers
could retrain/recompute the GAP/IT privatizers for the specific pri-
vacy and utility metrics they care about, in practice this may be
cumbersome.

6.4. Constraining distortion levels

Previously we have considered privacy and utility as two compo-
nents of our objective. Suppose instead we wish to maximize privacy

Fig. 12. Choosing parameters under a constraint on distortion.

subject to a constraint on utility. In Fig. 12 we re-frame previous
results to demonstrate choosing the appropriate parameters to meet a
constraint on distortion (*U1), which can act as an empirical measure
of how different the obfuscated data is compared to the original data.
Fig. 12 presents a plot which can be interpreted as a continuous lookup
table. For example, to meet the constraint *U1 f 3, we could choose
� = 0.2 or �<

1 = 0.6 or ⇢ = 0.4. This plot also offers a sense of which
range of distortion each approach may achieve for its selected range of
parameter.

6.5. Performance against different adversaries

So far we have tested each privatizer against an adversary trained
on the obfuscated data generated by the privatizer. We refer to this as
the privatizer’s ‘‘own’’ adversary. What is more, the GAP privatizer is
explicitly trained to beat its own adversary and it would be informative
to investigate its performance against other adversaries.

Motivated by the above, we investigate how the four privatizers
perform against the following three adversaries: (i) ‘‘Unobfuscated’’
adversary which is trained with the unobfuscated data via supervised
learning (rather than the obfuscated data that we have used so far),
(ii) ‘‘Aggregate’’ adversary which has access to all obfuscated data
generated by all privatizers, and is trained with the aggregated obfus-
cated data, and (iii) ‘‘Alternative’’ adversary trained with a different
loss function than the one used so far, which has also been used for
training the GAP adversary inside the iterative GAP loop. Specifically,
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Table 6
Evaluation results against common adversaries. Baseline reports the privacy of a privatizer against the adversary trained with its own obfuscated data. Unobfuscated is trained
against unobfuscated data. Aggregate is trained against aggregate obfuscated data. Alternative is trained using a different loss function.
Privatizer Parameter Utility U Privacy P against different adversaries

Baseline Unobfuscated Aggregate Alternative (different La)

v1 = 0.8, v2 = 0.2 v1 = 0.2, v2 = 0.8

Noise � = 0.2 *2.5 0.13 0.30 0.80 0.13 0.14
GAP ⇢ = 0.4 *2.5 0.95 1.54 1.33 1.05 0.88
IT �<

1 = 0.6 *2.5 0.70 1.26 1.18 0.68 0.70

alternative adversaries use different weights v1 and v2 in the loss
function La.

Recall that for each privatizer, we have different parameter settings
to trade privacy and utility. For a fair comparison, we first set a
target utility value and use for each privatizer its parameter value that
achieves this utility.

Table 6 shows the corresponding parameter values for a composite
target utility of *2.5. This value is motivated by Table 3 and Fig. 10,
as the former shows the (negative) utility of a random dataset and
the latter shows the entire privacy-utility spectrum considered. (Notice
that for GLDP to achieve a *2.5 utility value it would use too large
of an ✏ value (>100) thus we omit this line from the table.) We
report the privacy achieved by each privatizer against its own adversary
(Baseline) and the three adversaries introduced above.

Interestingly, the GAP privatizer outperforms all the other pri-
vatizers not only when privatizers are positioned against their own
adversaries (see also Section 6.1) but also against the other adversaries,
namely Unobfuscated, Aggregate, and Alternative. That said, the per-
formance gap does reduce, which can be explained by the fact that
the GAP privatizer is trained against an adversary with a loss function
which is now different from that of the adversary used to test the
privatizers.

As expected, all privatizers achieve the lowest privacy against their
own adversary (baseline), since the latter is trained with the obfuscated
data of each privatizer. Also, all privatizers achieve the highest privacy
against the Unobfuscated adversary. This is also expected as the Unob-
fuscated adversary is trained using unobfuscated data thus it is weaker
than the others.

7. Limitations and future work

Points of interest: The adversary we consider predicts user IDs and
all locations from where measurements are collected. However, an
adversary may be particularly interested to learn specific users’ points
of interest (POIs). For instance, the adversary may want to predict the
target user’s home or work location. We do not consider this in the
paper since users can choose to not collect measurements around POIs
as a defense mechanism.
Side information: We assume the adversary has access only to the
obfuscated user data shared with the service provider, which does not
contain user ID information. A stronger adversary might leverage side
information to estimate the user ID of each measurement. For exam-
ple, the adversary might be able to monitor the network connection
between the service provider and mobile users, such that it knows from
which device each obfuscated measurement comes from and thus the
user ID. This adversary may then build a user whereabouts model. Since
it is much harder for an adversary to have access to such information
than to merely access database updates, we do not consider this threat
model.
Federated learning: Mobile crowdsourcing applications lend them-
selves to a federated learning implementation [63,64], which can pro-
vide some privacy for mobile users. Recent works show that federated
learning could also leak user privacy [65–70]. However, it would be
a reasonable solution for opt-in mobile users used to collect training
data for the GAP privatizer and to estimate data distributions for the
IT privatizer.

Another avenue for future work is to investigate how federated
learning can be applied, with additional privacy mechanisms, to achieve
privacy-preserving training of an RSS predictor. For instance, one may
add noise to local model updates or carefully select the measurements
used for local model training epochs, to weaken data reconstruction
attacks (see, for example, the DLG attack proposed in [71]).

8. Conclusions

In this work, we have systematically examined the privacy-utility
tradeoff which exists in crowdsourced mobile network data obfus-
cation. We have considered four preeminent privatizers employing
different obfuscation strategies. To compare them, we have identified
several privacy and utility metrics as well as a number of adver-
saries under two different threat models suited to crowdsourced mobile
network data, and evaluate the privacy-utility tradeoff performance
of different privatizers on three diverse real-world mobile network
datasets. The main takeaway is that under a typical threat model with
a bounded adversary, which is of more practical interest in the context
of our application, incorporating the structure and intended use of
datasets in obfuscation can provide privacy gains without significant
utility losses.
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