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1. Introduction

Lot-sizing problem is a well-known combinatorial optimization
problem that arises in production planning, retailing, and logistics
to provide a production/procurement/shipping and inventory pol-
icy for a given planning horizon such that demand for each time
period is satisfied at minimum total cost [6,19]. One of the var-
ious types of lot-sizing problems is the discrete lot-sizing problem
with a single module of constant capacity (DLS-CC) that assumes “all-
or-nothing” production in each time period, i.e., a module (or a
machine) either produces at its full capacity or it produces nothing.
In this paper, we study generalizations of the single- and multi-
item DLS-CC without and with backlogging where the production
in each time period of the planning horizon is the summation of
binary multiples of the capacities of n available modules, and pro-
duction and holding costs are concave. The modules represent ma-
chines, trucks, or suppliers of different capacities in the context of
production, transportation, or procurement, respectively (see Sec-
tion 1.1 for more details). We refer to these problems as m-Item
Discrete Multi-module Capacitated Lot-Sizing Problem without and
with Backlogging where m is the number of items, and we de-
note them by m-DLS-MC-WB and m-DLS-MC-B, respectively. Math-
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ematically, the m-DLS-MC-B is defined as follows. Given a finite
planning horizon 7 :={1,..., T}, a set of items M :={1,...,m},
demand d! for period t € 7" and item i € M, and a set of modules,
N :={1,...,n}, of time invariant capacities cl,...,C" with setup
cost q;” for the module of capacity C/, j € N associated with item
i€ M, in period t € T, the m-DLS-MC-B is formulated as:

n
Minimize )" " (pi(xé) +hi(s}) +bi(r) + Zqi”yi'1> (1a)
ieMteT j=1
stxi4sl g —rl =d4si—rl teT, ieM, (1b)

n
xi:Zij;'J,teT, ieM, (1c)
j=1
m . 3
Yoyl teT, jeN, (1d)
i=1
yle{0,1)",x, sl ri>0,teT, ieM, (1e)

where x{ is the amount of production of item i € M in period
teT, s{ is the inventory of item i € M at the end of period t € T,
r}' is the amount of backlog at the end of period t, sg =0 and
rf) =0 are the inventory and backlog, respectively, of item i € M
at the beginning of the planning horizon, and y’t'J is a binary vari-
able that determines whether the module j € A" of capacity CJ is
utilized for item i € M in period t € T or not. Constraints (1b) are
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the classical inventory balance constraints. Constraints (1c) are the
capacity constraints that ensure the amount of item i € M pro-
duced in time period t € 7 is equal to the sum of binary multiples
of capacities C!,C?,...,C", ie. sum of a subset of {C!,...,C"},
where C! < C2 < ... < C" without loss of generality. Moreover, we
assume that production costs p£(~), holding costs hg(-), and back-
logging costs b;(-) are concave functions. Constraints (1d) ensure
that at most one item is produced on module j € A/, in each time
period. Such problems are also referred to as small bucket prob-
lems, i.e., each time period is so short that only one product can be
produced on a module during a given period. The formulation for
m-DLS-MC-WB is equivalent to formulation (1) with r{ =0 for all
ie M and t € T. For convenience, often in this paper, we use m-
DLS-MC-(W)B to denote m-DLS-MC-B and m-DLS-MC-WB together.
Below we provide a list of special cases of m-DLS-MC-B and
m-DLS-MC-WB:
DLS-MC-WB: Single-item discrete lot-sizing problem with multiple
capacitated modules and without backlogging, i.e., m-DLS-MC-WB
with m=1;
DLS-MC-B: Single-item discrete lot-sizing problem with multiple
capacitated modules and backlogging;
DLS-CC-WB: Single-item discrete lot-sizing problem with a single
constant capacitated module and without backlogging, i.e., m-DLS-
MC-WB with m=1 and n=1 [17,24];
DLS-CC-B: Single-item discrete lot-sizing with a single constant ca-
pacitated module and backlogging [24];
m-DLS-CC-WB: Multi-item discrete lot-sizing with a single con-
stant capacitated module and without backlogging [17];
m-DLS-CC-B: Multi-item discrete lot-sizing with single constant
capacitated module and backlogging [17].

1.1. Applications of m-DLS-MC-WB and m-DLS-MC-B

In addition to production planning where modules essentially
represent the machines for production, the m-DLS-MC-(W)B prob-
lems are also relevant in making tactical decisions in inventory
management, supply chain, and logistics. The terms machines and
setup costs used in a production planning setting can be inter-
changed with suppliers or trucks of different capacities and fixed
ordering or fixed transportation costs, respectively. The order quan-
tities from each supplier can be interpreted as the capacity of each
supplier. Essentially, the problem objective would be to decide the
quantities to be ordered from each supplier in each time period
such that the overall demands are met and the total ordering and
inventory costs are minimized. Furthermore, the following three
key features of the m-DLS-MC-(W)B problems appear in a variety
of applications:

(a) Multiple capacitated modules in each time period. Unlike DLS-
CC-(W)B in which a single module with a time invariant capacity is
taken into account, in the real-world applications, the total produc-
tion (or transportation) capacity in each time period is obtained by
summing up the capacity of a subset of n available modules, i.e.,
machines (or trucks), of different capacities.

(b) All-or-Nothing Assumption. This assumption is pertinent for
applications where the setup cost of a module is significantly
higher than the variable costs, i.e., production costs, and as a result,
it is beneficial to utilize the module at full capacity. For example,
in the tire manufacturing industry, the tire molds setup during a
given time period are run at full capacity. Likewise, in the freight
transportation and international shipping industries, trucks/con-
tainers carry goods at full capacity in order to maximize their
utilization and thus, considering all-or-nothing assumption is rea-
sonable.

(c) Small Bucket Property. Note that Constraints (1d) are redun-
dant for DLS-MC-(W)B. However, for m > 2, the small bucket prop-
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erty ensures that in each time period, a truck (for example, an oil,
water, or milk tanker) can carry at most one type of item.

1.2. Contributions of this paper

We develop dynamic programming based exact algorithms for
DLS-MC-WB and DLS-MC-B. For n = 1, our algorithm for DLS-
MC-B has the same worst-case complexity as the algorithm pro-
posed by van Vyve [24], ie, O(T?), and for n > 2, it is the
first polynomial time algorithm for DLS-MC-B with a fixed n that
takes O(T"*1) time. This algorithm belongs to the class of fixed-
parameter tractable algorithms (Downey and Fellows [7], Flum and
Grohe [12]) because for a fixed n, it is a polynomial time algo-
rithm for DLS-MC-B (an NP-hard problem if n is a part of the
input). Interestingly, the DLS-MC-WB can be reformulated as a dis-
crete lot-sizing problem with piecewise concave production cost
functions (denoted by DLS-PC-WB). The breakpoints of these piece-
wise functions are determined by taking all the possible binary
combinations of the capacities of the n available modules. In DLS-
PC-WB, the ‘discreteness’ implies that the production in each time
period is equal to either zero or one of the breakpoints. Note that
the number of breakpoints, o, can vary from n (when €/ = C for
all j e N) to 2" — 1 depending on the value of capacities. Koca
et al. [15] and Kulkarni and Bansal [16] developed algorithms for
solving DLS-PC-WB without the assumption of all-or-nothing pro-
duction. These algorithms can be slightly modified to solve DLS-
PC-WB in O(T**!) time which is equal to O(T?") time in the
worst case. Therefore, solving DLS-MC-WB with a fixed n > 1 us-
ing our algorithm is more efficient than reformulating and solving
it as a DLS-PC-WB. For an example, when n = 20, the former takes
0(T?') and the latter takes O (T1948576) time.

We also utilize the aforementioned algorithms for DLS-MC-WB
and DLS-MC-B in solving m-DLS-MC-WB and m-DLS-MC-B, respec-
tively, for m > 2 using a Lagrangian decomposition approach. More
specifically, we first consider a Lagrangian relaxation of formula-
tion (1) in which constraints (1d) are relaxed and introduced in
the objective function with some nonnegative weights (Lagrangian
multipliers) to enforce a penalty for violating these constraints.
Thereafter, we solve this relaxation by decomposing it into m sub-
problems where each problem is a DLS-MC-B corresponding to
each item, thereby providing a lower bound to the original prob-
lem. It is an iterative approach where Lagrangian multipliers are
updated using a cutting-plane based approach [4].

We carry out computational experiments to evaluate the effi-

ciency of our algorithms for solving DLS-MC-WB and DLS-MC-B.
Our computational results show that these algorithms significantly
outperform the state-of-the-art mathematical programming solver
Gurobi 9.0 used for solving the mixed-binary programming formu-
lation (1). In particular, out of the 240 total randomly generated in-
stances of DLS-MC-WB and DLS-MC-B with n =2, 3, and 4, Gurobi
(with its default settings) was unable to solve 81 instances within
a time limit of 2000 seconds whereas our algorithms were able to
solve all these (unsolved) instances in less than 360 seconds, and
in 88 seconds on average. For the remaining 159 instances that
were solved by Gurobi within the time limit, the average solution
times using Gurobi and our algorithms are 812 and 83 seconds,
respectively.
Organization of this paper. In Section 2, we present a review of the
literature on problems related to m-DLS-MC-WB and m-DLS-MC-B.
In Section 3, we present exact dynamic programming (DP) algo-
rithms that solve DLS-MC-WB and DLS-MC-B. In Section 4, we
propose a Lagrangian decomposition approach to obtain a strong
lower bound for m-DLS-MC-(W)B with m > 2. In Section 5, we
report the computational results for m-DLS-MC-(W)B, m=1,2, 3,
and discuss the efficiency of our proposed methods. Finally, in Sec-
tion 6, we provide some concluding remarks.



K. Kulkarni and M. Bansal

2. Literature review

In this section, we discuss the literature on problems that are
either closely related to or special cases of m-DLS-MC-WB and m-
DLS-MC-B.

Discrete Capacitated Lot-Sizing Problems. Florian et al. [11]
and Bitran and Yanasse [5] have independently shown that the
single-item discrete capacitated lot-sizing problem with time vary-
ing capacities is NP-Hard. For DLS-CC-WB and DLS-CC-B with
a time invariant capacity, i.e, DLS-MC-(W)B with n = 1, van
Vyve [24] presented polynomial O(TlogT) and O(T?) time algo-
rithms, respectively. Miller and Wolsey [17] studied the m-DLS-
CC-WB and m-DLS-CC-B and provided a full description of the
convex hull of the feasible region for these problems by adding
Gomory fractional cuts and mixed integer rounding inequalities,
respectively. Bansal et al. [2] studied stochastic DLS-CC-(W)B and
presented tight second stage formulations for these problems.

Several authors have also studied the variants of discrete lot-
sizing problems where they considered start-up costs or sequence-
dependent changeovers [9,21-23]. van Eijl [21] showed that m-
DLS-CC-WB with start-up costs is NP-hard even when production
costs are zero, and startup and holding costs for each item are
time invariant. Note that in the context of logistics, startup costs
are equivalent to the cost of placing orders which are negligible
especially when orders are placed online.

Capacitated Lot-Sizing Problems with Non-discrete Capacity
Constraints. For the completeness of the literature review, we
also briefly review DLS-MC-WB without the all-or-nothing assump-
tion (or with non-discrete capacity constraints), i.e., Problem (1)
where constraints (1c) are replaced by xi < Y7_; Cly;/ for all
t €7 and i € M. Florian and Klein [10] presented a DP algorithm,
which runs in O(T#) time, for this problem with n = 1. Lately,
Kulkarni and Bansal [16] introduced a fixed parameter tractable
algorithm for fixed n > 2 that takes O(T2't3) time. They also
provided a new DP algorithm for DLS-PC-WB without the dis-
creteness assumption, which is computationally 16 times (on av-
erage) faster than the algorithm by Koca et al. [15]. Researchers
have also considered variants of this problem that allow any non-
negative integer number of modules of a given capacity in each
time period, i.e., y:‘j €Z, forallteT and je N, and referred
to these problems as multi-module capacitated lot-sizing (MMLS)
problems. For MMLS with n = 1, Pochet and Wolsey [18] presented
a DP algorithm that takes O(T3) time and introduced so-called
(k,1, S, I) valid inequalities. For MMLS without and with backlog-
ging, Sanjeevi and Kianfar [20] and Bansal and Kianfar [3] derived
valid inequalities using n-mixing and continuous multi-mixing cut-
generation procedure, respectively. Bansal [1] presented sufficient
conditions under which the (k,[, S, I) inequalities and inequalities
of [20] are facet-defining.

3. Exact algorithms for DLS-MC-WB and DLS-MC-B

In this section, we present dynamic programming algorithms to
exactly solve DLS-MC-WB and DLS-MC-B with n > 2 capacitated
modules/machines. We demonstrate that, for a fixed value of the
parameter n, these algorithms run in polynomial time and thus be-
long to the class of fixed-parameter tractable algorithms. Since we
are only considering the single-item DLS-MC-(W)B in this section,
we omit the index i from the notations in formulation (1) to im-
prove the readability of the section.

3.1. Dynamic programming algorithm for DLS-MC-WB with fixed n > 2
Let e; be a unit vector of size n whose jth element is one

and the remaining elements are zeros. We also define a vector
T=(t',7%,...,1") € Z" where t/, j € N, denotes the number of
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times module j of capacity C/ has been set up. Furthermore, we
define dy; as the cumulative demand from period 1 up to period
t, i.e, dit = ZS’:]dj for t > 1. For t € T, let H(t,T) be a func-
tion that denotes the value of minimum cost solution for periods
1,2, ...,t during which module j € N runs 7/ times at full capac-
ity. Clearly, the total amount produced up to period t is Zr}:] Ticd.

We set H(t, ) to infinity if T/ > ¢ for any j € A as there are
only t periods from 1 to t. Since backlogging is not permitted, it
is important to note that if Y j_; tici <dy; for t < T, then the
demand is not satisfied and in such case, we set the value of func-
tion H(t, T) to infinity. In each time period t € T, our objective is
to choose among two possible decisions: (a) to not produce at all
and (b) to set up some subset S C A of n available modules and
produce at full capacity on each of the |S| modules. If we choose
option (a), i.e., if we choose to not produce at all during time pe-
riod t, the value of the overall cost function is equal to the sum of
H(t — 1, T), and the inventory holding cost at the end of period t,

ie. ht<2?:1 7iCi —dy; ). On the other hand, if we choose to pro-

duce in period t using a subset S of the n available modules at full
capacity, then the value of function #(t, t) is obtained by sum-
ming the function value at (t — 1,7 — 3" ;s ej), the cost of setting
up the set S of modules and producing at their full capacity, and
the holding costs at the end of period t i.e., H(t,T)=H({t—1,T —

Yiesen) + pe(Xjes ) + Xjesal + ht(Z'}ﬂ ticl - dn), and
then minimizing this summation over all possible subsets S C N/.
We use these observations to derive the following forward recur-
sion to compute #(t, t) for all possible values of T and t € T:

ift/>tforany je N

n
or thCj <dyg,
Sn;ijglf{’H(t—l,r —Zej)+p:

j=1
jes (
+ qu + ht(

n
erCj—dn)} , otherwise.
jes j=1

o0,

H(t, T)= ZCj>

jes

(2)
3.2. Dynamic programming algorithm for DLS-MC-B

We now extend recursive equation (2) to obtain an exact al-
gorithm to solve DLS-MC-B with a fixed n > 2. For reader’s con-
venience, we keep the same notations 7, H(t, 7), and e; as the
ones defined for DLS-MC-WB. For z € R, we denote max(0, z) by
(2)T. Note that in a time period t € 7T, it is now possible for

?:1 7JCJ to be less than dy;. Hence, we do not set H(t,T) to
infinity in such cases. However, at the end of every period t € T,

either a backlogging cost of by (du - rfo) or a holding cost

of ht(Z?:1 Tici — dn) is incurred. This leads to the summation

+

+
of ht(Z?:] rici — d1[> and b, (dn — Z'}zl 1:fo> as the total

holding/backlogging costs during every time period. Again, simi-
lar to our approach for DLS-MC-WB, we have two choices in every
time period: either to not produce at all, or to produce on a subset
S of modules at full capacity. If we choose to produce nothing in
time period t, the minimum costs of producing Z’}:l T¢I units
from period 1 through t would be equal to the sum of H(t — 1, T)
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and the holding/backlogging costs. However, if we choose to utilize
a subset S of modules at full capacity, the function value would
be equal to the sum of H(t — 1,7 — Z]es ej), the cost of setting
up the subset S of modules and producing on them at full capac-
ity i.e. p[(ZjeS Cj) + Zjes q{, and the holding/backlogging costs.
Below, we present the recursive equation that computes the mini-
mum costs over all possible T and for all t € 7 for DLS-MC-B:

00, if 7/ >t forany je{l,..., n}

. X j J
min {#ie 1.7 = Fep o)+
Jjes jes jes

no + n Nt
(o0 i) (- Yoricl) |

j=1 j=1

H(t,T)=

, otherwise.

3.3. Optimal solution and complexity

The overall minimum costs (denoted by OPT) for both DLS-MC-
WB and DLS-MC-B can be computed by using the expression below
where we find the minimum value of the cost function H(t, ) at
time period T and among all possible T vectors.

OPT = min
1€{0,1,2,...,T
We denote the above DP algorithms to solve DLS-MC-WB and DLS-
MC-B by DP-DLS-MC-WB and DP-DLS-MC-B, respectively.

. H(T, 7).

Theorem 1. For a fixed number of modules n € Z where n > 1, algo-
rithms DP-DLS-MC-WB and DP-DLS-MC-B solve DLS-MC-WB and
DLS-MC-B, respectively, in O (T"*1) time, where T is the number of time
periods in the planning horizon.

Proof. Notice that in order to compute the optimal solution value,
OPT, for a given DLS-MC-WB instance, we compute H(T,t) for
all possible values of t, using the recursive equation (2). Since
H(T, t) is dependent on H(T —1,7) and H(T — 1,7 — Zjes ej)
for all S C{1,...,n}, we compute the values of H(t, ) for all
te7 and T €{0,...,T}". For a givente€ 7 and 7 €{0,...,T}",
H(t, ) can be computed in O(2") time since there are 2" pos-
sible subsets of {1,...,n} modules. Since we assume that n is a
fixed and time invariant parameter, H(t,7) can be computed in
constant time for a given t and t. There are O(T) time periods
in the planning horizon and O (T™) possible T vectors for each pe-
riod t € 7. As a result, in the worst case, the overall running time
of algorithm DP-DLS-MC-WB is 0(2" x T"*1) which is equal to
O(T™1) for a fixed n. Same follows for DP-DLS-MC-B. O

Remark 1. For DLS-MC-B with n =1, van Vyve [24] provided an
0(T?) time algorithm. Note that for DLS-MC-B with n =1, 2, 3,
the DP-DLS-MC-B takes O(T2), O(T?), and O(T*), respectively.

Remark 2. The algorithms developed by Koca et al. [15] and Kulka-
rni and Bansal [16] for lot-sizing problems with piecewise concave
production costs can also be modified slightly and utilized to solve
DLS-MC-WB. However, as mentioned in Section 1.2, depending on
the value of the capacities of n available modules, the running time
of these algorithms can be as much as 0(T?).

Remark 3. Observe that enumerating all the possible solutions of
DLS-MC-WB takes at least 0(2"T) time, even for a fixed n. This
is because in each time period t, there are O(2") possible ways
in which n modules can be set up, and as a result, an exhaustive
enumeration of solutions over the entire planning horizon takes
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at least 0(2" x 2" x ... x 2") = 0(2"T) time. In contrast, the DP-
DLS-MC-WB provides an optimal solution, if it exists, in O(T"+1)
time. The same is true for DP-DLS-MC-B.

4. Lagrangian decomposition for m-DLS-MC-(W)B with m > 2

We present a solution approach based on a Lagrangian relax-
ation scheme to solve the m-DLS-MC-(W)B with m > 2 items and
n modules of time invariant capacities. We view the small bucket
constraints (1d) as complicating constraints and upon relaxing
these constraints, we obtain the following Lagrangian relaxation
formulation:

P()=Min ) >

ieMteT

DI

teT jeN

n
(p}(x}) +hi(sh) +biat) + Zqi”yé”)
j=1

<iyi’j—1>

i=1

s.t. (1b), (1¢), and (1e) hold,

where Aj; > 0 is a Lagrange multiplier corresponding to module j
and time period t. We denote a vector of all Aj for j € A and
t € 7 by A. Upon simplification, we get P(A) = > ;g Pi()) — K;
where K1 =3}, .1 Zje/\/' Xje and P'(%) is a (single item) DLS-MC-
(W)B problem corresponding to item i € M, i.e.,

P'(2) = Minimize )
teT

22

teT jeN

(pi(Xb +hi(sh + bi(ri))

(q’g’ + Mr)y’{’
stxi+s -1l =di4si—rlteT,
. n P
=y Cly’l teT,
j=1

yr €{0, 1} 5o =15 =0,x;, 5,1, >0, teT.

Observe that for a given set of Lagrange multipliers A, the La-
grangian relaxation can be decomposed into m DLS-MC-(W)B
problems and we can compute P!(A) using our algorithms pre-
sented in Section 3.

For a given A, the Lagrangian relaxation provides an optimal
solution for the original problem in case constraints (1d) are satis-
fied; otherwise, it provides a lower bound for the optimal objective
value of m-DLS-MC-(W)B for m > 2. Our objective is to find the
best lower bound over all the possible values of the Lagrange mul-
tipliers. This is done by solving the Lagrangian dual problem which
is given by z;p = max>o P(A) = max{¢ : ¢ < P(1),A > 0}. It is
well known that P()A) is a concave non-smooth function (Section
7.5.3, pg. 717 of [4]). Therefore, we consider a cutting-plane based
approach to solve the aforementioned maximization problem. We
initialize this iterative approach by setting A! equal to zero vec-
tor, ¢! = —oo, and iteration counter k = 1. At each iteration k,
we compute ¢ = P(AX) by solving m single-item sub-problems
of type DLS-MC-(W)B in parallel and computing P'(A¥) for all
i € M along with an optimal solution {j/’t’k,fci’k,ﬂ’k,?;’k},-,t of the
DLS-MC-(W)B associated with item i € M and AX. Then, we de-
rive an outer approximation of the concave function P(A) using a

cutting-plane, i.e., P() < P} + (Z;":I plik _ 1) (L —AK), where

Ye
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> j/i‘j‘k — 1) is a subgradient at A = AX. This results in a lin-

ear program:
m P
Max {¢:¢ <POh+ (Zy;*” - 1)@ -, 1= 1,...,k},
i=1
(3)

which we use to obtain a new Lagrange multiplier A**! and a
k

k+1 ¢ -
lower bound ¢“"". In case “—

we terminate this algorithm. For more details on the finite con-
vergence of this method, we refer the reader to Section 7.5.3 of
Bertsekas et al. [4].

< € (a pre-defined tolerance),

Remark 4. The aforementioned Lagrangian decomposition ap-
proach can be used at each node of the branch-and-bound or
branch-and-cut algorithms to obtain stronger lower bound for the
node problems, thereby contributing to the performance of these
approaches for solving m-DLS-MC-(W)B [8].

5. Computational results for m-DLS-MC-(W)B

In this section, we examine the computational efficiency and
effectiveness of our exact and approximation algorithms for DLS-
MC-(W)B and m-DLS-MC-(W)B for m > 2, respectively. We consider
linear production, holding, and backlogging costs to compare the
solution times of our algorithms with the solution times of Gurobi
9.0 with and without mixed integer rounding (MIR) cuts [25] and
pairing inequalities [13] (a subset of mixing inequalities [14]). For
each instance of DLS-MC-WB, we also compare the run time of our
exact algorithm with the time taken to solve it as a DLS-PC-WB us-
ing algorithms proposed by [15,16]. We implemented the mixed
binary formulation (1) using Gurobi 9.0 and our DP algorithms
to solve the DLS-MC-(W)B using Python 2.7. For m-DLS-MC-WB
with m > 2, our Lagrangian decomposition approach is also imple-
mented in Python 2.7 that calls Gurobi to solve the linear program
(3) and our implementation for DLS-MC-(W)B to solve each sub-
problem in parallel. We set a time limit of 2000 seconds for each
experiment. It should also be noted that all the experiments were
performed on a workstation with an Intel Xeon E5-1660 processor
and 32 GB RAM.

5.1. Instance and cut generation for m-DLS-MC-(W)B with m > 1

For our computational experiments, we generated m-DLS-MC-
WB and m-DLS-MC-B instances for m =1,...,4, as follows. For
each time period t € 7 and for each item i € {1,...,m}, demand
d{ is a random integer drawn from Uniform[400, 600]. Moreover,
per unit production cost p{ is a random number drawn from
Uniform[0.5, 1.0]. The per-unit holding cost and per-unit back-
logging costs are assumed to be 0.05 and 0.15, respectively, for
all items and all periods in the planning horizon. For DLS-MC-
WB and DLS-MC-B, we perform experiments with two, three,
and four capacities. For each set of experiments of DLS-MC-
WB and DLS-MC-B with fixed n capacities, n € {2, 3,4}, we con-
sider four sets of n capacities: (CY,...,C™. For each item i e
M, setup costs of modules with capacities C!, C?, C3, and C*,
ie, g'', g% ¢3, and ¢ are random integers drawn from
Uniform[2850, 3150], Uniform[5850, 6150], Uniform[8850, 9150],
and Uniform[11850, 12150], respectively. All the generated in-
stances are available at https://github.com/Bansal-ORGroup/Multi-
[tem-Discrete-MCLS. We also utilize MIR, pairing, and mixing cut-
generation procedures to generate valid inequalities for m-DLS-
MC-(W)B. These inequalities are added at the root node of the
branch-and-cut search tree used by Gurobi for solving the problem
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instances. The average cut-generation time in our computational
experiments is 0.02 seconds; please refer to the online appendix
for more details.

5.2. Computational results for DLS-MC-WB and DLS-MC-B instances

We evaluate the computational efficiency of DLS-MC-WB and
DLS-MC-B instances with two, three, and four capacities and re-
port the results of these experiments in Tables 1 and 2, respec-
tively. Columns labeled n and T denote the number of modules
and number of periods in the planning horizon. We consider four
sets of capacities (CY,...,C™ for each n e {2,3,4}. Each row in
these tables represents an instance category for a given n, T, and
(CY,...,C™M). For each instance category, we generate ten instances
and solve them using Gurobi with default settings (labeled as GRB-
DEF), Gurobi with aforementioned MIR and pairing cuts (labeled
as GRB-CUTS), and DP-DLS-MC- (W) B, i.e., our DP algorithm for
DLS-MC-(W)B. We also solve DLS-MC-WB instances using the algo-
rithm of [15,16] for DLS-PC-WB (labeled as DP-DLS-PC). Columns
labeled as Avg. and S.Dev. provide the average and standard de-
viation of the solution times (in seconds) for the instances that
were solved to optimality within 2000 seconds. Moreover, columns
labeled as #Sollnst and #USI provide the number of solved and
unsolved instances (out of 10), respectively, within the time limit,
using the corresponding solution approach. In case there is no
#USI column for an algorithm, it implies that #USI= 0, i.e., the
algorithm solved all instances within the time limit. Based on the
results of the 240 considered instances of DLS-MC-WB and DLS-
MC-B with n=2, n=3, and n=4 in Tables 1 and 2, we make the
following observations.

(i) For DLS-MC-WB with n =2, n =3, and n = 4, Gurobi with
default settings (GRB-DEF) was unable to solve 38%, 27%,
and 25% of the instances, respectively. On the other hand
DP-DLS-MC-WB was able to solve all the corresponding in-
stances in less than 20, 75, and 342 seconds, respectively. For
the remaining instances of DLS-MC-WB with n =2, n =3, and
n =4 that GRB-DEF was able to solve within the time limit,
the average solution times of GRB-DEF are 725, 836, and 751
seconds, respectively, whereas the average time taken to solve
the corresponding instances of DLS-MC-WB with n =2, n =3,
and n =4 using DP-DLS-MC-WB is 13.4, 49, and 186 sec-
onds, respectively.

Similar to the results of DLS-MC-WB, we observe that for
DLS-MC-B with n =2, n =3, and n = 4, GRB-DEF was un-
able to solve 40%, 38%, and 35% of the instances, respec-
tively, whereas DP-DLS-MC-B solved all the corresponding
instances in less than 30, 88, and 356 seconds, respectively.
Among the instances that GRB-DEF was able to solve, the
average solution times of GRB-DEF for DLS-MC-B instances
with n=2, n=3, and n =4 are 762, 840, and 936 seconds,
respectively. On the other hand the average time taken by
DP-DLS-MC-B to solve the same DLS-MC-B instances with
n=2,n=3, and n=4 are 18, 53, and 185.8 seconds, respec-
tively.

Upon addition of the MIR cuts and the mixing/pairing cuts,
inequalities (6)-(8) in the online appendix, to the problem
and solving it using Gurobi (denoted by GRB-CUTS), we ob-
served that GRB-CUTS was able to solve the problem in-
stances faster than GRB-DEF. However, notice that our DP
algorithms still outperform the solver. More specifically, for
DLS-MC-WB instances with n =2, n =3, and n = 4, GRB-CUTS
was unable to solve about 33%, 25%, and 23%, respectively,
of the total instances. For the remaining instances that GRB-
CUTS was able to solve within the time limit, the average
time taken to solve DLS-MC-WB instances with n=2, n=3,

(ii)

(iif)
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Table 1
Computational Results for DLS-MC-WB Instances.
n T (ct,....,cMn DLS-MC-WB
GRB-DEF GRB-CUTS DP-DLS-MC-WB DP-DLS-PC
Solution Time (in s) usI Solution Time (in s) UsI Solution Time (in s) Solution Time (in s) #USI
Avg. S.Dev. #Sollnst #USI Gap (%) Avg. S.Dev. # Sollnst #USI Gap (%) Avg. S.Dev. Avg. S.Dev.
2 300 (670, 1280) 4783 293.5 5 5 0.58 381.5 221.6 5 5 0.38 191 0.6 880.2 3.6 0
(850, 1590) 826 2824 7 3 0.73 696.8 214.7 7 3 0.51 15 0.7 789.1 1.9 0
(960, 1970) 7114 3911 8 2 0.28 730.3 501.0 9 1 0.31 12.2 0.5 560.9 17 0
(1310, 2570) 850.8 352.2 5 5 0.42 868.3 449.8 6 4 0.37 71 0.6 289.8 1.2 0
3 100 (670, 1050, 1420) 490.6 649.1 6 4 0.71 413.0 283.8 6 4 0.58 74.2 0.9 - - 10
(790, 1150, 1570) 1033.2 455.8 8 2 0.47 923.8 4381 8 2 0.31 62.5 1.2 - - 10
(870, 1450, 1920) 950.0 460.2 7 3 0.86 853.3 431.6 7 3 0.57 41.0 0.9 - - 10
(970, 1690, 2620) 812.2 5175 8 2 0.71 833.5 579.9 9 1 0.98 24.5 0.9 - - 10
4 50 (470, 850, 1220, 1510) 987.4 389.8 7 3 0.98 839.0 299.2 7 3 0.70 340.5 1.5 - - 10
(670, 1050, 1420, 1790) 5771 4354 8 2 0.72 498.8 342.8 8 2 0.55 195.3 2.3 - - 10
(790, 1150, 1570, 1950) 724.4 666.6 6 4 0.50 780.8 610.3 7 3 0.43 146.6 2.7 - - 10
(870, 1450, 1920, 2290) 7379 503.9 9 1 1.00 655.5 408.0 9 1 0.62 84.8 2.5 - - 10
=
w
Table 2
Computational Results for DLS-MC-B Instances.
n T («c,....cm DLS-MC-B
GRB-DEF GRB-CUTS DP-DLS-MC-B
Solution Time (in s) UsI Solution Time (in s) uUsI Solution Time (in s)
Avg. S.Dev. #Sollnst #USI Gap (%) Avg. S.Dev. # Sollnst #USI Gap (%) Avg. S.Dev.
2 300 (670, 1280) 544.5 567.6 6 4 0.57 659.4 598.1 7 3 0.50 28.1 0.6
(850, 1590) 699.3 311.2 5 5 0.64 607.2 241.6 5 5 0.43 19.1 0.6
(960, 1970) 850.9 497.7 8 2 021 916.0 498.1 10 0 - 14.7 0.6
(1310, 2570) 944.9 5279 5 5 0.86 829.4 383.7 5 5 0.64 9.9 0.6
3 100 (670, 1050, 1420) 684.5 419.1 6 4 0.81 588.0 496.2 6 4 0.57 86.3 6.4
(790, 1150, 1570) 999.3 504.8 5 5 1.24 924.8 3972 6 4 0.85 66.5 115
(870, 1450, 1920) 9104 688.4 7 3 0.57 915.1 457.1 9 1 0.37 41.7 8.9
(970, 1690, 2620) 783.8 286.4 7 3 0.38 807.9 5219 9 1 0.66 24.4 17.7
4 50 (470, 850, 1220, 1510) 1255.9 510.0 5 5 0.94 1170.7 416.8 5 5 0.47 353.8 2.1
(670, 1050, 1420, 1790) 663.1 431.0 7 3 1.05 676.3 4194 8 2 0.67 207.2 1.7
(790, 1150, 1570, 1950) 1205.9 476.6 6 4 0.97 1080.6 427.6 6 4 0.66 154.8 1.5
(870, 1450, 1920, 2290) 772.8 463.9 8 2 0.32 849.7 455.2 10 0 - 84.9 13
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and n =4 was 669, 755, and 694 seconds, respectively. Like-

wise, for DLS-MC-B with n =2, n =3, and n =4, GRB-CUTS §;

could not solve 33%, 25%, and 28% of the instances, and the VE lwumomoe coamn—a
average solution times of GRB-CUTS for the remaining solved SE |9XFEEY REd¥dsd
instances of DLS-MC-B with n=2, n=3, and n =4 are 753,

810, and 944 seconds, respectively. On an average, we ob-

served DP-DLS-MC-WB and DP-DLS-MC-B to be 9 times 9

and 10 times, respectively, faster than GRB-CUTS. E L leosarc S 3aRc-9x

(iv) In addition to high solution times, we also observed that the OO Ao o sa©
variation of the solution times of Gurobi with or without
cuts is significantly high (ranging from 39 seconds to more o e
than 2000 seconds), whereas the solution times of our DP al- 532
gorithms for DLS-MC-(W)B are highly stable and consistent g g g § ; g 5 3 § E '9: § 5 %
among all ten instances. This characteristic makes our algo-
rithms even more reliable for solving the DLS-MC-WB and
DLS-MC-B instances.

(v) We also compare the time taken to solve DLS-MC-WB in- ?Laxé OBt 0O BodD R
stances using DP-DLS-MC-WB with the solution times of LBS |RR9Yaad ER3Fmn
DP-DLS-PC. For DLS-MC-WB with n = 2, we observe that £
DP-DLS-MC-WB was able to solve all instances within 20 g 2 °
seconds and in 13.4 seconds on average. In contrast, DP- g * enhr®oe Voo -oo
DLS-PC solved all DLS-MC-WB instances within 890 seconds A
and 630 seconds on average. For DLS-MC-WB with n =3 and k
n =4, no instance was solved by DP-DLS-PC within the Z =
time limit of 2000 seconds whereas DP-DLS-MC-WB was E? = é sZ g ; % g ; S ; ; N
able to solve all DLS-MC-WB instances within 78 seconds for
n =3, and 360 seconds for n = 4. This is because as discussed Bl nmoan 000w~ 0
before, for n =2, n =3, and n =4, the DP-DLS-MC-WB takes §|lz8=3czY S235:=32
0(T?), 0(T*), and O(T®) time, respectively, whereas DP-

DLS-PC takes O(T*), O(T®), and O(T'5) time, respectively. =8 o
DlFHF [~~~ ©oo oo~ ~N W =0 N~
5.3. Computational results for m-DLS-MC-WB and m-DLS-MC-B
. . . SEEE¥s 2R9SEs
We evaluate the effectiveness of embedding our DP algorithms e QO3RN AE8583
for DLS-MC-(W)B within a Lagrangian decomposition (LD) ap- 25 |[dASHIR SB=TAR
proach to obtain lower bounds for m-DLS-MC-(W)B instances with | e
m > 2. For each instance, we also solve formulation (1) using § C.";
Gurobi (labeled as GRB-DEF), and formulation (1) with additional 2 g ER5NIS g § NegQ
MIR and pairing cuts using Gurobi (labeled as GRB-CUTS). For both © 1= © e A
GRB-DEF and GRB-CUTS, we record the best integer bound (BIB), e
i.e., the best upper bound, provided by Gurobi within 2000 sec- &9 E SERE § ] E § § ;f
onds along with the lower bound provided by linear programming
(LP) relaxation of m-DLS-MC-(W)B without and with cuts, respec- =
tively. We perform experiments for m-DLS-MC-(W)B with n € {2, 3} SR ovona ne2222
modules and m € {2, 3,4} items, and report the results (average
over 10 randomly generated instances) in Tables 3 and 4. Specifi- aaao o " w o~
cally, we report the following: (a) integrality gap at the root node, 2RS2ET Smpmgel
MW T —~ O noaNN O
i.e, 100 x (BIB — LB;p)/BIB where LB;p denotes optimal LP relax- ze g 5 § E § § E 3 B & ﬁ E
ation solution value, in columns labeled as RootGap%, (b) number
of instances (out of the 10 instances) not solved by GRB-DEF and e
GRB-CUTS to optimality within 2000 seconds, denoted by #USI, (c) § E,J 8 o~ o
remaining integrality gap that Gurobi reports at the end of 2000 E % S E S g § § E @ ; g g § E
seconds (labeled as Gap%) for the unsolved instances, (d) number £
of iterations (#Iter) performed by the LD approach, and (e) inte- § 25859
grality gap with respect to the lower bound provided by the LD s g b § S g S
approach, LB;p and the best integer bound obtained using GRB- % % 23228 s8s8s8
DEF and GRB-CUTS, i.e., LD-Gap%:= 100 x (BIB — LB;p)/BIB. Il S8RARNE 8=8=85
Since the BIB provided by GRB-DEF and GRB-CUTS are different, 5| RERZRE g2g=2ge
we report the LD-Gap¥% with respect to each of the procedures and e |2 T 22 2cC
denote them by DEF-LD Gap% and CUTS-LD Gap%, respectively. To E
compare the lower bounds obtained using the LD approach with : £ Noe v Ny
the lower bounds provided by LP relaxation of m-DLS-MC-(W)B 5 .
using GRB-DEF and GRB-CUTS, we provide gap improvements in - g = = A
columns labeled as DEF-Gap Improv% and CUTS-Gap Improv, re- 2E - - -
spectively, which is equal to 100 x (BIB — LB;p)/(BIB — LByp). €3
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5.3.1. Computational results for m-DLS-MC-WB withn =2 andn =3

For m € {2,3,4} and n = 2, we consider 100 periods in the
planning horizon and two sets of capacities (C!, C?): (1270, 2120),
and (1310, 2570). Similarly, for m € {2, 3,4} and n = 3, we con-
sider T = 50 periods and two sets of capacities (C!, C2, C3): (970,
1690, 2620), and (1310, 1750, 2120). For each set of capacities
(CY,...,C™), we generate ten random instances using the proce-
dure mentioned in Subsection 5.1, and report the results in Table 3
where each row is an average of results for ten instances. From Ta-
ble 3, we observe that for m-DLS-MC-WB instances with n =2 and
n = 3, the initial LP gap with respect to the best integer bound ob-
tained using GRB-DEF is 7.53% and 11.54% on average. In contrast,
the LD approach was able to obtain lower bounds that reduced
this gap to 3.77% for n =2 and 5.5% for n = 3, which is 50% and
52%, respectively, improvement over the initial LP gap. Moreover,
the remaining integrality gap reported by GRB-DEF at the end of
2000 seconds is 1.3% (on average) for n = 2 and 1.41% (on average)
for n = 3. Similar comparisons can be made between GRB-CUTS
and the LD approach. For m-DLS-MC-WB instances with n =2 and
n = 3, the initial LP gap with respect to the best integer bound ob-
tained using GRB-CUTS is 6.9% and 9.2% on average. On the other
hand, the LD approach was able to reduce these gaps to 3.7% for
n =2 and 3.9% for n = 3. Note that GRB-DEF and GRB-CUTS were
unable to solve 88% and 72% of the total 120 instances whereas
the LD approach took 15 seconds time (on average) to provide a
strong lower bound. We observe similar results for m-DLS-MC-B
with n € {2, 3}; refer to the online appendix for more details.

6. Conclusion

In this paper, we introduced single- and multi-item discrete
lot-sizing problems without and with backlogging where in each
time period a subset of n available modules (machines or trucks)
are used at full capacity. For single-item versions of the prob-
lems, we developed fixed parameter tractable algorithms that run
in O(T™1) time for n > 2. This implies that for a fixed n € Z ., the
problems are solved in polynomial time. Our computational results
showed that these algorithms are efficient and stable in compar-
ison to using the state-of-the-art solver, Gurobi 9.0. To solve the
multi-item versions, we embedded the foregoing algorithms within
a Lagrangian decomposition framework where the Lagrange multi-
pliers are updated iteratively using a cutting-plane based method.
We observed that this decomposition method is able to provide
stronger lower bounds within a few seconds.
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Appendix A. Supplementary material

Supplementary material related to this article can be found on-
line at https://doi.org/10.1016/j.0r1.2022.01.002.
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ONLINE APPENDIX

Appendiz A: Cut-Generation Procedures

We apply the cut-generation procedures on so-called base inequalities that are derived as follows.
We eliminate z%, r! ;, and s! from (1b) using (1c) and (1e) to get

n
sttt Y Clypl >di, teT,ie M. (4)
=1

Since C! < C? < ... < C™, we get the following valid base inequalities for m-DLS-MC-(W)B:
st i+ 0 (00 2 d )
j=1

fort € T and i € M, where sl | + 71} >0a:ndz _[C7/Cy;? € Zy. For eacht € T and i € M, we
apply a MIR procedure on the base inequality (5) to get MIR cuts for m-DLS-MC-(W)B, i.e.,

st et 80 (o /O — /) 2 ) ©)
j=1

where ,Bgtl} =di — C'|di/C']. Now for each i € M and pair (k,k + 1) where k € {1,...,T — 1}, we
apply the pairing or mixing procedures to get the following valid inequalities for m-DLS-MC-(W)B:

(8] -512h) () (5] S, w22

. n i di 2 reil o\ .
M = z(,lk)-i-l([ k+1—| Z [ —| k+1) (3(1) 185,?“) ([O_kl] _Z [@] yk,j): if 351:3“ < :3;51;3: (8)
=1 j=1

J J=

where ;. = s}, —I—si—l—r};+r};+1.

Remark 5. Based on our preliminary computational experiments, we observed that adding a subset of
the pairing inequalities for k € {1,3,5,...} is more effective in reducing the overall solution time. Note
that the mizing procedure can also be applied on base inequalities (5) corresponding to each subset of T,
but it leads to an exponential number of inequalities. Furthermore, since inequalities (4) are “knapsack-
type” constraints, various cut-generation procedures known in the literature for knapsack problems can
be utilized to derive cutting planes for m-DLS-MC-(W)B. We consider MIR and pairing cuts (a subset
of mizing inequalities) so that O(mT) number of cuts are added at the root node. This led to an average
cut-generation time of 0.02 seconds in our computational experiments.

Appendiz B: Computational Results for m-DLS-MC-B withn =2 and n=3

We also perform experiments for m-DLS-MC-B with n € {2,3} and m € {2,3,4} where the set
of capacities, time periods, and all other input parameters are generated in the same way as done for
m-DLS-MC-WB instances. We report the results for m-DLS-MC-B with n = 2 and n = 3 in Table 4.
Based on these results, we observe that the average initial LP gap using GRB-DEF for instances with
n =2 and n = 3 is about 7.8% and 12.8%, respectively. On the other hand, the average initial LP gap
using GRB-CUTS is 7% for instances with n = 2 and 11.6% for instances with n = 3. In comparison to
GRB-DEF, the LD approach reduced these gaps to 4.6% for n = 2 and 6.5% for n = 3, which is about
49% improvement in 33 seconds. The LD approach also led to 46% gap improvement in comparison to
the initial LP gaps obtained using GRB-CUTS. Again, GRB-DEF and GRB-CUTS were unable to solve
83% and 71% of the instances within a time limit of 2000 seconds, whereas the LD approach took about
half a minute to significantly reduce the integrality gap.
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