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Abstract. Using the resolvent operator, we develop an algorithm for computing smoothed approx-
imations of spectral measures associated with self-adjoint operators. The algorithm can
achieve arbitrarily high orders of convergence in terms of a smoothing parameter for com-
puting spectral measures of general differential, integral, and lattice operators. Explicit
pointwise and LP-error bounds are derived in terms of the local regularity of the measure.
We provide numerical examples, including a partial differential operator and a magnetic
tight-binding model of graphene, and compute 1000 eigenvalues of a Dirac operator to
near machine precision without spectral pollution. The algorithm is publicly available in
SpecSolve, which is a software package written in MATLAB.
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I. Introduction. The spectrum of a finite matrix consists only of discrete eigen-
values; however, many of the infinite-dimensional operators in mathematical anal-
ysis and physical applications include a continuous spectral component [60, 100].
Notably, eigenvalues and eigenvectors do not diagonalize operators with continuous
spectra, and one needs extra information to fully describe the operator and associ-
ated dynamics of physical models [47, 109]. Given a self-adjoint operator £ acting
on a Hilbert space H, the spectral measure (see (2.2)) of L is a quantity of great
interest because it provides an analogue of diagonalization through the spectral the-
orem (see section 2). Spectral measures are related to correlation in stochastic pro-
cesses and signal-processing [44, 59], [89, Chap. 7], scattering cross-sections in particle
physics [33, 34, 35], the local density-of-states in crystalline materials [5, 50, 70], and
many other quantities [25, 28, 62, 114, 119]. Furthermore, through spectral mea-
sures one can compute the functional calculus of £, which is used to solve evolution
equations such as the Schrédinger equation in quantum mechanics [52, 72].

The eigenvalues and eigenvectors of an infinite-dimensional operator with dis-
crete spectrum are usually computed by discretizing and employing a matrix eigen-
solver [9, 13]. Computing spectral measures is more subtle, and previous efforts have
mainly focused on operators for which analytical formulas or heuristics are available
(see section 3). Building on [16, 55], we develop a general framework for computing
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approximations to spectral measures of operators that requires only two capabilities:
1. A numerical solver for shifted linear equations, i.e., (£ —2z)u = f with z € C.
2. Numerical approximations to inner products of the form (u, f).
Here, (-, -) is the inner product associated with H, which can be general, provided one
can compute (u, f). We develop high-order rational convolution kernels that allow us
to construct accurate approximations to spectral measures by solving the shifted linear
equations (see Table 5.1 and Figure 5.1). Error bounds show that our approximations
to the spectral measure converge rapidly (see Theorems 5.2 and 5.3). We apply
our algorithm to differential (see subsection 7.1), integral (see subsection 4.1), and
lattice (see subsection 7.2) operators to demonstrate its versatility, high accuracy, and
robustness. We also use our approximations of spectral measures to compute the first
thousand eigenvalues of a Dirac operator (corresponding to bound states in the gap of
the essential spectrum) without spectral pollution (see subsection 7.3). Thus, spectral
measures are also a useful tool for the computation of discrete spectra when there are
gaps in the essential spectrum or when discrete spectra cluster (see subsections 7.2
and 7.3). To accompany this paper, we have developed a publicly available MATLAB
package called SpecSolve for computing spectral measures of a large class of self-
adjoint operators [20].
The paper is organized as follows. We recall the definition of the spectral measure
of an operator in section 2 and survey existing algorithms in section 3. In section 4,
we introduce our computational framework, and we derive high-order versions in sec-
tion 5. In section 6 we discuss algorithmic issues, and in section 7 tackle challenging
applications. Finally, we point out additional capabilities and uses of the algorithm
in section 8.

2. The Spectral Measure of a Self-Adjoint Operator. Any linear operator act-
ing on a finite-dimensional Hilbert space has a purely discrete spectrum consisting of
eigenvalues. In particular, the spectral theorem for self-adjoint A € C™*™ states that

there exists an orthonormal basis of eigenvectors vy, ..., v, for C™ such that
n n
(2.1) wv= <Z vw,ﬁ) v, veCr and Av = (Z Aww,ﬁ) v, veC"
k=1 k=1
where Aq,..., A\, are eigenvalues of A, i.e., Avy = A\yvg for 1 < k < n. In other words,

the projections v,v} decompose C" and diagonalize A.

In the infinite-dimensional setting, we replace v € C" by f € H, and A by a self-
adjoint operator £ with domain D(£) C H.! If £ has nonempty continuous spectrum,
then eigenfunctions of £ do not form a basis for H or diagonalize £. However, the
spectral theorem for self-adjoint operators states that the projections vgvj in (2.1)
can be replaced by a projection-valued measure £ [87, Thm. VIIL.6]. The measure &
assigns an orthogonal projector to each Borel-measurable set such that

f= (/R d5<y)> fofeH,  ad  Lf= (/Rycw(yﬂ f, feD).

Analogous to (2.1), £ decomposes H and diagonalizes the operator L.
The spectral measure of £ with respect to f € H is a scalar measure defined
as wr(Q) == (E(Q)f, ), where Q C R is a Borel-measurable set [87]. It is useful to

LConsidering £ : D(L) — H allows us to treat unbounded operators such as differential operators.
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examine Lebesgue’s decomposition of pf [97], i.e.,

(2.2) dupy) = Y (Paf.£) oy — Ny + ps(y) dy + dul (y) .
AEAP (L)

continuous part

discrete part

The discrete part of uy is a sum of Dirac delta distributions, supported on the set
of eigenvalues of £, which we denote by AP(L). The coefficient of each ¢ in the sum
is (Paf, f) = [IPAf]I?, where Py is the orthogonal spectral projector associated with
the eigenvalue A, and || - || = /{:,-) is the norm on #H. The continuous part of uy
consists of an absolutely continuous? part with Radon-Nikodym derivative p S L'(R)
and a singular continuous component ,u(sc). Without loss of generality, we assume
throughout that || f|| = 1, which ensures that u is a probability measure.

Many operators have nonempty continuous spectra [60, Chap. 10] such as self-
adjoint Toeplitz operators on £2(N) (square summable sequences, where N = {1,2,...})
[8], differential operators on bounded domains with singular variable coefficients [45,
67] and unbounded domains [108, Chap. V], [31, Chap. XIII, Chap. XIV], and integral
perturbations of multiplication operators and Cauchy-type integral operators [38, 63].
In physical systems that scatter or radiate energy, the associated operator typically
has a mix of continuous and discrete spectra; e.g., see the RAGE theorem [2, 36, 90].
We aim to evaluate smoothed approximations of 1y when £ has a nonempty continu-
ous spectrum. This means that we compute samples from a smooth function g., with
smoothing parameter e > 0, that converges weakly to ps [6, Chap. 1]. That is,

/ 6(4)ge () dy — / o) dusly) as  €l0
R R

for any bounded, continuous function ¢. Approximation properties and explicit con-
vergence bounds are studied in sections 4 and 5.

3. Applications of Spectral Measures. Spectral measures appear in many tra-
ditional topics of applied analysis, such as ordinary differential equations (ODEs) and
partial differential equations (PDEs), stochastic processes, orthogonal polynomials,
and random matrix theory. Here, we give a brief survey of existing algorithms for
computing ps and closely related quantities.

3.1. Particle and Condensed Matter Physics. Spectral measures are prominent
in quantum mechanics [48, 87], where a self-adjoint operator £ represents an observ-
able quantity, and py describes the likelihood of different outcomes when the observ-
able is measured (see subsection 5.2). In this setting, f € H with || f|| = 1 represents
a quantum state. For example, in quantum models of interacting particles, spectral
measures of many-body Hamiltonians are used to study the response of a quantum
system to perturbations [33]. In condensed matter physics, spatially resolved statisti-
cal properties of materials are analyzed using the local density-of-states® (LDOS) of
an n X n matrix A, [61, sect. 6.4], which is the spectral measure of A,, taken with re-
spect to a vector b [70]. Here, A, is typically a discretized or truncated Hamiltonian,
and one is interested in the thermodynamic limit n — oo, so that A, is too large to
compute a full eigenvalue decomposition.

2We take “absolutely continuous” to be with respect to Lebesgue measure.
3This is distinct from the global density-of-states (DOS), which is formally obtained from the
LDOS via an averaging procedure [61, sect. 6.4].
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There are two main classes of numerical methods for computing these measures.
One class constructs smooth global approximations of the measure with explicit
moment-matching procedures [66, 92, 118], while another class exploits a connec-
tion between the spectral measure and the resolvent operator to evaluate samples
from a smoothed approximation to the measure [5, 34, 50]. For example, the so-
called recursion method [5, 50] evaluates the resolvent of tridiagonal Hamiltonians
using associated continued-fraction expansions. Resolvent techniques to compute the
DOS of finite matrices also appear in the study of random matrices and Schrodinger
operators, where the connection is made through the Stieltjes transform [4, 10].

The resolvent of an operator £ with spectrum A(L) is given by [60, p. 173]

(3.1) Re(z)=(L—2)7Y,  zeC\A(L).

In section 4, we evaluate a smoothed approximation of s by evaluating the resol-
vent function (Rz(z)f, f) in the upper half-plane, i.e., Im(z) > 0. Our approach is
closely related to the second class of methods developed for operators in quantum me-
chanics. A key theme in the above moment-matching and resolvent-based approaches
is smoothing, which is introduced by convolution with a smoothing kernel to avoid
difficulties associated with the singular part of the measure [70]. The smoothed ap-
proximations of the spectral measures that we compute in sections 4 and 5 also have
the form of K. * u¢, where K is a smoothing kernel with smoothing parameter € > 0.
Our framework is “discretization-oblivious” in the sense that it directly resolves
the spectral measure of an infinite-dimensional £, and not an underlying discretiza-
tion. This means that our algorithms do not suffer from spectral pollution.* Moreover,
our framework can be used with any accurate numerical method for solving linear op-
erator equations and computing inner products, making it applicable to differential,
integral, and lattice operators. Achieving a discretization-oblivious framework re-
quires balancing refinement in the computation of (R, (z)f, f) and refinement in the
smoothing parameter, which we do in a principled way (see subsection 4.3).

3.2. Time Evolution and Spectral Density Estimation. Spectral measures pro-
vide a useful lens when studying processes that evolve over time. Suppose that
u: [0, T] — H evolves over time according to the abstract Cauchy problem

du
(3.2) 7= —iLlu, u(0) = f eH,
where L is a self-adjoint operator. For example, (3.2) could describe the evolution of
a quantum system according to the Schrodinger equation [72]. Semigroup theory [81]
shows that the solution to (3.2) is given by the operator exponential e ***f. The
autocorrelation function of u is of interest, i.e.,

wlt), f) = (e f, f) = / ey, te0,T),
R

which can reveal features that persist over time [105]. This interpretation of a time
evolution process is quite flexible and can be adapted to describe many signals, u,
generated by PDEs [27, 56, 94] and stochastic processes [44, 59], [89, Chap. 7].

In certain evolution processes, uy is referred to as the spectral density of w [22].
The task of spectral density estimation is to recover py from samples of u(t) [99,

4Spectral pollution is the phenomenon of eigenvalues of finite discretizations/truncations clus-
tering at points not in the spectrum of £ as the truncation size increases.
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sect. 1.5]. A popular technique used in spectral density estimation, related to statisti-
cal kernel density estimation [115, 116], reconstructs a smoothed approximation to ¢
by convolving the empirical measure (a discrete measure supported on the observed
samples) with a smoothing kernel [78, 83]. The particular choice of smoothing kernel
affects the convergence properties of the smoothed spectral density [79].

In analogy to the variance-bias tradeoff encountered when selecting the smoothing
parameter in statistical kernel density estimation [80, 88], our smoothed approxima-
tions, K¢ * s, exhibit a tradeoff between numerical cost and smoothing (see sub-
section 4.3). In section 5, we adapt arguments from kernel density estimation to
determine what properties a smoothing kernel needs to achieve a high order of con-
vergence in the smoothing parameter.

3.3. Sturm-Liouville and Jacobi Operators. Spectral density functions are used
in the analysis of singular Sturm—Liouville problems and related classes of self-adjoint
operators [73]. A subtle distinction between spectral measures p; and the spectral
density function associated with a Sturm-Liouville problem is that the latter does
not depend on a given vector f. Instead, the spectral density function corresponds to
the multiplicative version of the spectral theorem [87, Thm. VIIL.4], which induces a
Fourier transform—type pair [15]. However, computational methods for both spectral
quantities share similarities. For example, one can compute spectral density functions
using a Plemelj-type formula [119], which is similar to (4.1).

A common approach to computing spectral density functions associated with
Sturm—Liouville operators on unbounded domains is to truncate the domain and
take an appropriate limit of an eigenvalue counting function, as implemented in the
software package SLEDGE [41, 42, 84]. This is similar in spirit to DOS calculations,
though convergence analysis remains challenging due to the truncation of the infinite
interval [85]. This approach can be computationally expensive since the eigenvalues
cluster as the domain size increases; often, hundreds of thousands of eigenvalues and
eigenvectors need to be computed. One can avoid this cost for certain operators by
leveraging analytic limit formulas and solving an ODE at each evaluation point of
the spectral density function [39, 40]. Similar methods apply to compute the inverse
scattering transform for the Toda lattice and the KdV equation [7, 114].

For a Jacobi operator J on £%(N), under suitable conditions [106, Chap. 2], the
spectral measure ., of J (e; denotes the first canonical basis vector) coincides with
the measure given by the multiplicative version of the spectral theorem. Moreover,
e, is the probability measure associated with the orthonormal polynomials whose
three-term recurrence relation is associated with J [26]. Due to this connection, the
study of spectral measures has a rich history in the theory of orthogonal polynomials
and quadrature rules for numerical integration [26, 28, 69, 103, 106]. In special cases,
one can recover a distribution function for p., as a limit of functions constructed using
Gaussian quadrature [14, Chap. 2]. One can even use connection coefficients between
families of orthogonal polynomials to compute spectral measures of Jacobi operators
that arise as compact perturbations of Toeplitz operators [117]. Applications in this
direction include quantum theory and random matrix theory [43, 62, 95].

While these approaches are specialized to a selected class of operators, we focus
on developing a general framework to deal rigorously with arbitrary order ODEs
and PDEs (see subsection 7.1) and integral operators (see subsection 4.1). The
price we pay for this generality is the need to solve shifted linear systems close to
the operator’s spectrum. We demonstrate that this can be done robustly with fast,
well-conditioned, and spectrally accurate methods (see section 6). Similarly, we aim
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to build a framework that treats general discrete or lattice operators (see subsec-
tion 6.3).

4. Resolvent-Based Approach to Evaluate the Spectral Measure. The key to
our framework for computing spectral measures is the resolvent of £ (see (3.1)). A
classical result in operator theory is Stone’s formula, which says that the spectral
measure of £ can be recovered from the jump in the resolvent R.(z) across the real
axis [101], [87, Thm. VIL.13]. More precisely, if we select € > 0 and regard R (z + i€)
as a function of the real variable x, then we have that

1 ) _ 1 .

(4.1) %«RL( c+ie) —Re(-—ie))f, ) = ;Im((Rg(- +ie)f, f)) = uraselO.

Here, the equality is due to the conjugate symmetry of R (z) across the real axis and

the limit should be understood in the sense of weak convergence of measures.
Stone’s formula is a consequence of the functional calculus identity

‘ dpy (y)
4.2 Re(x+ie)f, f) = / —_—
(42) Re(w+iof )= [ 0
By using (4.2) to rewrite (4.1), we arrive at an expression for the jump over the real
axis as a convolution of the spectral measure with the Poisson kernel, i.e.,

1 . 1 €

(43) Sn((Rea+i0)f. 1) = 1 [ i)

The Poisson kernel is one of the most common kernels used to smooth approximations
of measures in particle and condensed matter physics (see the discussion in subsec-
tion 3.1). When £ has no singular continuous spectrum, substituting the spectral
measure given in (2.2) into the expression (4.3) shows that R, (z + ie) provides an
approximation to both the discrete and the continuous components of the measure
py for e > 0. That is,

(4.4) %Im((RE(xHE)f,f»:l > MJFE/%@

2 )2 2 — 2
ey € +(x—N) T Jr €+ (x—y)

The contribution from the sum in (4.4) is a series of Poisson kernels centered at the
eigenvalues and scaled by the corresponding coefficients (P, f, f) for A € AP(L). As
€ | 0, the sum converges to a series of Dirac delta distributions representing the
discrete part of the measure in (2.2). Meanwhile, the integral in (4.4) contributes a
smoothed approximation to the Radon-Nikodym derivative py.

Motivated by (4.4), we select € > 0 and approximate samples of 1, by evaluating

(45) i (a) = Im((Re(a +ie)f, )

From (4.1), we know that as € | 0 we have W5 — fuf in the sense of weak convergence of
measures. Moreover, if ;17 has some additional local regularity about a point zy € R,
then u$(xo) — pr(xo) as € | 0 (see Theorem 4.1). There is a two-step procedure for
evaluating u%(zo) at some zo € R, which is immediate from (4.5):

1. Solve the shifted linear equation for u¢:

(4.6) (L —xo—ic)u = f,  u€DL).

2. Compute the inner product u$(zo) = LIm((us, f)).
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In practice, the smaller € >0, the more computationally expensive it is to evaluate (4.5)
because if g € A(L), then the resolvent operator Rp(xg + i€) is unbounded in the
limit € | 0. One often computes K5 (z9) for successively smaller € to obtain a sequence
that converges to py¢(xp). For example, Richardson’s extrapolation can improve the
convergence rate in € [16], which can be proven using the machinery of section 5.

Typically, one wants to sample ;1% at several points @1, ..., Zm € R and then con-
struct a local or global representation of p§ for visualization or further computations.
If one wants to visualize K5 in an interval, then we recommend evaluating at equis-
paced points in that interval. However, when one wants to calculate an integral with
respect to pf, it is better to evaluate p at quadrature nodes (see subsection 5.2).
Note that if z; ¢ A(L), then pu$(z;) — 0as e L 0 (for example, see Figure 4.1).

Although the singular continuous spectrum may appear to be an exotic phe-
nomenon, it occurs in applications of practical interest. For example, discrete
Schrodinger operators with aperiodic potentials on ¢%(Z) (such as the Fibonacci
Hamiltonian) can have spectra that are Cantor sets with purely singular continu-
ous spectral measures (see [3, 23, 24, 46, 86, 102]). When A(L) has a nonzero singular
continuous component, uy — py weakly as € | 0 and our algorithms can compute
pr(U) (for open sets U) and the functional calculus of £.5

4.1. Evaluating the Spectral Measure of an Integral Operator. To illustrate
our evaluation strategy, consider the integral operator defined by

1
(4.7) [Lu)(z) = zu(x) +/ e @y dy,  xe[-1,1),  weL*(]-1,1)).
-1

The integral operator £ in (4.7) has continuous spectrum in [—1, 1], due to the zu(x)
term, and discrete spectrum in R\ [—1, 1] from the integral term (a compact per-
turbation [60]). Figure 4.1 (left) shows three smoothed approximations of py with
flz) = Mm, for smoothing parameter ¢ = 0.1,0.01, and 0.001. We see the pres-
ence of an eigenvalue near x ~ 1.37 from a spike in the smoothed measure that
approximates a Dirac delta.

To perform the two-step procedure described above on a computer, we must
discretize the operator £, and we do this by discretizing £ with an N x N matrix
corresponding to an adaptive Chebyshev collocation scheme.® While the precise dis-
cretization details are delayed until subsection 6.2, Figure 4.1 illustrates the critical
role that IV plays when evaluating u%. In particular, there are two limits to take in
theory: N — oo and € ] 0. It is known that these two limits must be taken with con-
siderable care [16]. If N is kept fixed as one takes € | 0, then the computed samples of
p§ do not converge (see Figure 4.1 (right)) because they get polluted by the discrete
spectrum of the discretization. Instead, as one takes € | 0, one must appropriately
increase N too. In practice, we increase N by selecting it adaptively to ensure that
we adequately resolve solutions to (4.6) (see Figure 4.1 (left)). The precise details on
how we adequately resolve solutions are given in subsection 6.2.

4.2. Pointwise Convergence of Smoothed Measure. It is known that if ji is lo-
cally absolutely continuous with continuous Radon-Nikodym derivative p; (see (2.2)),

5In general, it is also impossible to design a black-box method that separates the singular con-
tinuous component of s from the other components. This is made precise in [16], which uses the
framework of the solvability complexity index (SCI) hierarchy [17, 18, 19].

SWhile N x N discretizations converge for Fredholm operators [57], square truncations of spectral
discretizations of operators may not always converge. Instead, one may need to take rectangular
truncations to ensure that discretizations of Rz (z)f converge [16].
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Fig. 4.1 Left: The smoothed approzimation uS for the integral operator in (4.7) and different e.
The discretization sizes for solving the shifted linear systems are adaptively selected. The
dashed line corresponds to the spectral measure of the operator given by u(xz) — zu(z).
Adding the compact perturbation (the integral term) alters the shape of the measure over
[—1,1], and there is an additional eigenvalue near x =~ 1.37. Right: The same computation
except with a fized discretization size of N = 300 to solve (4.6). The magnified region
shows spurious high-frequency oscillations for e = 0.001, an artifact caused by the discrete
spectrum of the underlying discretization.

then p$ converges pointwise to py [63, p. 22]. However, under additional smooth-
ness assumptions on /iy, it is useful to understand how rapidly p$ converges to py.
The connection between u$ and the Poisson kernel in (4.3) allows us to do this on
intervals for which pf possesses some local regularity so that py is Holder continuous.
We let C*(I) denote the Holder space of functions that are k times continuously
differentiable on an interval I with an a-Holder continuous kth derivative [37]. For
hy € C%(I) and hy € C¥*(I) we define the seminorm and norm, respectively, as

[ (z) = h(y)|

_y‘a

. |
o lhallerary = 1157 eomn + max (A5,

|h1|c0,a([) = Ssup <i<k

z#yel |z

THEOREM 4.1. Suppose that the measure py in (2.2) is absolutely continuous on

the interval I = (zg — n,x0 + 1) for some xg € R and n > 0, let Wy be defined as
in (4.5), and let 0 < o < 1. If py € C%*(I), then

Ips(w0) = g (o)l = O(c) a5 € L0,

Proof. First, decompose p; into two nonnegative parts so that p; = p1 + po,
where the support of p; is in I and pe vanishes on (xg — /2,29 + 1/2). Since
pr(xo) = p1(zo) and the Poisson kernel integrates to 1, we can use the convolution
representation for p§ (see (4.3) and (4.5)) and the commutativity of convolution to
bound the approximation error as

wlston) o) =| [ ooty [
(4.8) i

<| [ i nan) — nto |+ [ S

Here, d,u}r) (y) := duy(y) — p1(y)dy is a nonnegative measure with support in R\ (¢ —

n/2, 20+ 1/2). Since ps is a probability measure, we have that [ d,ugcr) (y) <1, and

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.



Downloaded 08/09/22 to 132.174.252.179 . Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/terms-privacy

498 MATTHEW COLBROOK, ANDREW HORNING, AND ALEX TOWNSEND

the second term in (4.8) is bounded via

(r) (r)
(4.9) /R edp;’ (y) / eduy (y) e

€2+ (xg —y)? wo—yzn/2 €+ (o —y)? T 2+ %'

Since py € C%*(I), standard arguments using cutoff functions [37] show that we can
choose p1 so that |p1]co.e(ry < [pflco.a(ry +Cn~|psllco,r for some universal constant
C. Consequently, we have that

lp1(z0) — p1(xo — y)| < |p1leoa(nyyl® < (lpgleoery + Cn™ o lloo,r) |yl

Substituting this bound into the first term on the right-hand side of (4.8) and com-
bining with (4.9) yields

dy +

. lpflcoery + Cn~ | pslloo,s €
Ip# (o) — 4 (o) | < 21D ! A

[yl dy + ————
i S )
Calculating the integral explicitly leads to

€

€ —« T o
(4.10) |ps(z0) = py@0)| < (Ingleveqn + Cnlosllo.r) sec( 0 ) e+ ———.
T (62 + %)

The right-hand side of (4.10) is O(e*) as € | 0, which concludes the proof. |

In Theorem 4.1, we see that the convergence rate of |ps(xo) — p§(xo)| as € | 0
depends on the local regularity of py. One can also show (see Theorem 5.2) that
s (w0) — p (o) = O(elog(1/e€)) if py € C'(I) as well as the fact that any additional
smoothness assumptions on py no longer improve the convergence rate.” Since our
procedure is local, the convergence rate is not affected by far away discrete and singular
continuous components of y ;. However, the convergence degrades near singular points
in the spectral measure because the constants in (4.10) blow up as n — 0. While
lpg(zo) — p§(x0)| = O(e”) in Theorem 4.1 is stated as an asymptotic statement, we
can also obtain explicit bounds for adaptive selection of € (see Theorem 5.2).

4.3. A Numerical Balancing Act. To explore the practical importance of the
convergence rates in Theorem 4.1, we examine the numerical cost associated with
solving the shifted linear systems in (4.6). When the real component of the shift is in
the continuous spectrum of £ and e is small, we typically require large discretizations
to avoid the situation observed in Figure 4.1 (right). There are many potential reasons
why we require large discretization sizes as € | 0. Here are two illustrative examples:

(1) Interior layers. Revisiting the integral operator example in (4.7), we select zg =
1/2 in the continuous spectrum of £ and f(z) = /3/2x. In Figure 4.2 (left), we
observe that the solution uf(x) develops an interior layer and blows up at zop = 1/2
as € } 0. The blow-up occurs because the multiplicative term in £ — (xg + i€) has a
root at o = 1/2 when € = 0, giving rise to a pole in u¢(z). For ¢ > 0, the pole of
u(z) is located at a distance of O(e) away from the real axis. A large discretization
size is needed to resolve uf(x) for small € due to the thin interior layer in u®(x).

"The logarithmic term occurs due to the nonintegrability of z/(m(z? + 1)). One can also show
that the error rate of O(elog(1/e€)) is achieved if p; € C%*(I) is Lipschitz continuous.
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Fig. 4.2 Real part of the numerical solutions to the shifted linear equations in (4.6) for the integral
operator in (4.7) (left) and the Schrédinger operator in (4.11) (right), with e = 0.1 (yellow),
e = 0.05 (orange), and € = 0.01 (blue). The solutions to (4.11) are mapped to [—7, 7] via
x = 10i(1 — €9)/(1 4 €f). We discretize using sparse, well-conditioned spectral methods,
and the discretization sizes are selected adaptively to accurately resolve u®(x) and u¢(0).

(2) Oscillatory behavior. Consider the second-order differential operator given by

4 r B d*u x? R
(4.11) [Lu](z) = —@(x) + mu(m), z €R.

We select 7o = 0.3 in the continuous spectrum of £, and f(x) = 1/9/7 - 2%/(1 + 2°).
In Figure 4.2 (right), we plot solutions mapped onto the domain [—, 7] by the change
of variables 2 = 10i(1 — €'?) /(1 + €'?). The solutions u(x) are highly oscillatory with
slow decay as 8 — +m. As € | 0 the decay degrades and the persistent oscillations
correspond to a transition in the nature of the singular points of (4.6) at £oo. This
means a large discretization is needed to resolve u¢(z) for small e.

The dominating computational expense in evaluating pf is solving the shifted
linear systems in (4.6), and the cost of computing u¢(x) generally increases as € | 0.
There is a balancing act. On the one hand, we wish to stay as far away from the
spectrum as possible, so that the evaluation of K is computationally efficient. On the
other hand, we desire samples of p5 to be good approximations to py, which requires
a small € > 0. Even though we use sparse, well-conditioned spectral methods to
discretize (4.6) (see section 6), the tradeoff between computational cost and accuracy
means that the slow convergence rate determined in Theorem 4.1 is a severe limitation.
In Figure 4.3, we explore the discretization sizes that are needed to evaluate spectral
measures with the Poisson kernel accurately. For the integral operator in (4.7) and € =
0.05, 0.01, and 0.005, we observe that we need N = 400, 1700, and 3100, respectively
(see Figure 4.3 (left)). Unfortunately, to obtain samples of the spectral measure
with two digits of relative accuracy, we require that € & 0.01 (see Figure 4.3). For this
example, we observe that we require N & 20/¢ for small ¢ > 0, so it is computationally
infeasible to obtain more than five or six digits of accuracy with the Poisson kernel.

In addition to the computational cost of increasing IV, the discretizations used to
solve the linear systems in (4.6) become increasingly ill-conditioned when zy € A(L)
and € | 0 (a reflection of ||Rz(zg+i€)|| = €~1). This can limit the attainable accuracy.
Moreover, the performance of iterative methods, if used to accelerate the solution
of the large shifted linear systems, may also suffer. In our experience, the cost of
increasing N is usually the limiting factor and we rarely take ¢ < 1072,
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Fig. 4.3 Left: The relative error in the numerical approximation ps NV corresponding to discretiza-
tion size N, of the smoothed measure in (4.5) for the integral operator in (4.7) with
e = 0.05, ¢ = 0.01, and ¢ = 0.005. Right: The pointwise relative difference between
the smoothed measure us () and the density ps(x), evaluated at xo = 1/2, compared with
the O(elog(e™1)) error gound in Theorem 5.2 for the integral operator in (4.7). The rel-
ative error is computed by comparing with a numerical solution that has been adaptively
resolved to machine precision.

5. High-Order Kernels. Theorem 4.1 demonstrates that p$ — py pointwise in
intervals for which py is absolutely continuous with Hélder continuous density py,
where the rate of convergence depends on the Holder exponent of pr. However, even
when py possesses additional regularity, the best rate of convergence for smoothed
measures using the Poisson kernel is O(elog(1/¢€)). A natural question is:

“Can we use other kernels to exploit additional regularity in 17"

In this section, we construct kernels that can be used to compute smoothed mea-
sures that approximate py to high order in € when p; is smooth. This allows us to
obtain accurate samples of yy while avoiding extremely small ¢ and the associated
computational cost of solving the shifted linear equations in (4.6) when the shifts are
close to the real line. We use K (z) to denote a kernel for which K (z) = e 1K (z/¢)
is an approximation to the identity, i.e., K. — ¢ as € | 0 in the sense of distribu-
tions [98, Chap. 3|, where § is the Dirac delta distribution.

To gain intuition about the conditions that K (z) must satisfy so that K¢ * puf
approximates yiy to high order, consider an absolutely continuous probability measure
w with density p supported on an interval I = (z¢ — 1,20 + n) for some g € R and
1 > 0. The following argument is common in statistical nonparametric regression [115,
116]. Sincc we want K. to be an approximation to the identity, our first property is
that fR x)dx = 1. For further properties, we examine the approximation error

[Ke * p)(zo) — p(x0) / Ke(y)(p(xo —y) — p(x0)) dy.

Assuming that p € C™*(I) for some 0 < o < 1, we can use an nth-order Taylor
expansion of p(xg — y) — p(xo) to rewrite the approximation error as

Koo -~ ploo) = - RO [ ctay s [ K Rt
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where R,,(xo,y) denotes the O(|y|") remainder term in the Taylor series and p(*) is
the kth derivative of p. The change of variables y — ey reveals that the kth term in
the series is of size O(e"), provided that K (y)y" is integrable. Meanwhile, the Holder
continuity of p(™ shows that the term involving R, (xo,y) is of size O(¢"*®), provided
that K(y)y"** is integrable and [, K(y)y" dy = 0. Therefore, a kernel that achieves
an O(e"™*) approximation error has vanishing moments, i.e., [; K(y)y*dy = 0 for
1<k<n.

In practice, ;4 may not be absolutely continuous and its absolutely continuous part
may have a density p with singular points or unbounded support. As in Theorem 4.1,
we can deal with the general case by decomposing p = p; + p2 into two nonnegative
parts, where p; is sufficiently smooth and compactly supported on I, and where po
vanishes in a neighborhood of xy. The cost of this decomposition is a second term
in the approximation error (analogous to the second term on the right-hand side
of (4.8)),

[Ke* p](x0) — plz0) = /RKe(y)(m(xo —y) — p1(wo)) dy + /RKe(xo —y) du(y),

where du™ (y) = du(y) — p1(y)dy. To ensure that this additional term does not
dominate as € | 0, it is necessary that the kernel K(y) decays at an appropriate rate
as |y| — oo. This ensures that K.(xg — y) is sufficiently small on the support of
dp™) (y) (see (4.9) for the decay in the Poisson kernel). Motivated by this discussion,
we make the following definition (similar to [115, Def. 1.3]).

DEFINITION 5.1 (mth-order kernel). Let m be a positive integer and K € L*(R).
We say K is an mth-order kernel if it satisfies the following properties:
(i) Normalized: [, K(x)dx =1.
(ii) Zero moments: K (x)x? is integrable and [ K(z)aidz =0 for 0 < j <m.
(iil) Decay at +oo: There is a constant Cg, independent of x, such that
Ck

(5.1) |K (z)| < A ) z eR.

It is straightforward to verify that the Poisson kernel is a first-order kernel and
the Gaussian kernel, i.e., h(x) = (277)_1/26_”’2/2, is a second-order kernel. While the
Gaussian kernel plays an important role in DOS calculations [70] and kernel density
estimation [93], it is not as useful in our framework since the evaluation of h * py is
not immediately related to pointwise evaluations of the resolvent (see subsection 5.1).

Since an mth-order kernel, K, is an approximation to the identity, one can show
that K¢ * p1y converges weakly to py. Moreover, in intervals where p¢ is absolutely
continuous and sufficiently regular, K. * iy converges pointwise to py and the rate of
convergence increases with the smoothness of ps, up to a maximum of O(e™ log(1/¢)).

THEOREM 5.2. Let K be an mth-order kernel and suppose that the measure iy
is absolutely continuous on I = (xg — n,xo + ) for n > 0 and a fized xg € R.
Let py be the Radon—Nikodym derivative of the absolutely continuous component of
wyr, and suppose that py € C™*(I) with o € [0,1). Denote the pointwise error by
E.(z) = |ps(z) — [Ke * uy](z)|. Then the following hold:

(1) If n 4+ a < m, then, for a constant C(n,«) depending only on n and «,

(5.2)

m

E.(wg) < — K¢

W‘Fc(n»a)npﬂ

e / K () |y dy (1 + ") e
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(ii) If n + o > m, then, for a constant C(m) depending only on m,
(5.3)

n

Cge™ ‘
E.(xz9) < (E—I—IZW_FC(m)”prCM(I) <0K+/
7 _n

€

K(y)lylmdy>(1 +07 M)

Here, Ck is from (5.1).
Proof. See Appendix A.1. ]

Using (5.1) to bound |K(y)| in (5.2) and (5.3), Theorem 5.2 shows that, under
local regularity conditions near xg € R and for fixed n > 0, an mth-order kernel has

o5 (x0) = [Kex pg](wo)| = O(€"™) + O(¢™ log(1/e))  as € 0.

The logarithmic term appears in the case that K(z)z™ is not integrable. The upper

bounds on E(xg) in Theorem 5.2 deteriorate as the interval of regularity shrinks
(n — 0), which is to be expected.®

5.1. Rational Kernels. Now that we know the necessary properties of a kernel
K such that K. * py achieves high-order convergence (see Definition 5.1), we can
develop a resolvent-based approach to approximately evaluate a spectral measure more
efficiently. The key to our computational framework (see section 4) is the connection
between the smoothed measure and the resolvent in (4.3). This relationship allows us
to compute the convolution of the measure py with the Poisson kernel by evaluating
the resolvent operator at the poles of the (rescaled) Poisson kernel. In other words,
we can sample the smoothed measure by solving the shifted linear equations in (4.6).

Using the identity in (4.2), we can build generalizations of (4.3) for convolutions
with rational functions. Suppose that the kernel K is of the form

(5.4) K(z) = —— Yo L i

2~ x—a; 2mi x—b
J=1 J=

where ay, ..., a,, are distinct points in the upper half-plane and by, .. ., b, are distinct
points in the lower half-plane. We restrict K to having only simple poles to avoid
the need to compute powers of the resolvent. Using (4.2), the convolution K. * py is
given by

(55)  [Ke*pl(@) = 5— Za] (Re(x — eaj)f, f) Zﬁj (Re(x —eby)f, f)

j=1

Our goal is to choose the poles and residues in (5.4) so that K is an mth-order kernel.
Given an integer m > 1, we are interested in finding the smallest possible n; and no
in (5.4) so that (5.5) is as efficient to evaluate as possible.

We want K (x) = O(|z|~(™+1) as |2| — oo, which forces linear constraints to
hold between the aq,...,an, and B1, ..., By, parameters, as follows. Generically, K
in (5.4) is a type (n1+ng —1,n1 +n2) rational function, which means it can be written
as the quotient of a degree ny 4+ ny — 1 polynomial and a degree ny 4+ no polynomial.

8Similar results to Theorem 5.2, without the first term on the right-hand sides of (5.2) and (5.3),

for absolutely continuous probability measures with globally Holder continuous density functions are
used in kernel density estimation in statistics (see, for example, [115, Prop. 1.2]).

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.



Downloaded 08/09/22 to 132.174.252.179 . Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/terms-privacy

COMPUTING SPECTRAL MEASURES OF SA OPERATORS 503

In this form, the coefficient of highest power of = in the numerator is a multiple of
ny na
D= b
j=1 j=1

which must vanish for K to have sufficient decay. Under this condition, we find that
1 « oja
K - )
(z)a 2771';:5—@] 27mzx—b

We can apply the same argument as before to see that when m > 2, we require that
ny no
Zozjaj - Zﬁjbj =0.
j=1 j=1

We repeat this process m — 1 times (each time multiplying each term in the sum by
the appropriate a; or b;) to find that K (z) = O(|z|~(™*1)) as |z| — oo if and only if

(5.6) Za] Zﬁj k=0,...,m—1.

Assuming (5.6) is satisfied, the normalization and zero moment conditions (see prop-
erties (i) and (ii) of Definition 5.1) provide us with m linear conditions on the moments
of K, which can be computed explicitly via contour integration. Employing a semi-
circle contour in the upper half-plane, applying Cauchy’s residue theorem, and taking
the radius of the semicircle to infinity, we find that the moments are given in terms
of the poles and residues of K, i.e.,

ni ng
/K(y)ykdy:E aja?: E ij;?, k=0,...,m—1,
R ) 3

j=1 j=1

where the second equality follows from (5.6) or closing the contour in the lower half-
plane. Therefore, the rational kernel in (5.4) is an mth-order kernel, provided that
the following (transposed) Vandermonde systems are satisfied:

1 ce 1 aq 1 e 1 51 1
ap ce A,y (65) bl [N bn2 52 0

(5’7) . . . . - . . . . =
N AT N V- 0

The systems in (5.7) are guaranteed to have solutions when ny,ny > m. For compu-
tational efficiency, we select n; = ny = m poles in the upper and lower half-planes.
The Poisson kernel fits into this setting with m =1, a; = by =i,and o = 1 = 1.

It may appear from (5.5) that we need 2m resolvent evaluations to evaluate K¢/t f
at a single point . However, if the poles are selected so that b; = @; and 3; = @j, then
the conjugate symmetry of the resolvent, i.e., (R (2)f, f) = (Rc(2)f, f), reduces the
number of resolvent evaluations to m. With this choice, we find that

[K */’(’f]( Zlm Oé] R£($_€a])f,f>),

Jj=1

which is analogous to (4.5). While the properties of an mth order kernel determine
the number of poles and the residues of K (see (5.7)), the locations of the poles in
the upper half-plane are left to our discretion.
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K(x) lps(z0) — [Ke* pugl(zo)l/lpf(2o)|
m=206 H 10° T
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Fig. 5.1 Left: The mth-order kernels constructed from (5.7) with poles in (5.8) for 1 < m < 6.
Right: The pointwise relative error in smoothed measures of the integral operator in (4.7)
computed using the high-order kernels with poles in (5.8) for 1 < m < 6. The relative error
is computed by comparing with a numerical solution that is resolved to machine precision.

Table 5.1 The numerators and residues of the first sixz rational kernels with equispaced poles
(see (5.8)). We give the first [m/2] residues because the others follow by the symmetry
Amt1-j = Oy

m —_
m mK(z)[[;2,(z — a;)(z — @) {ar, ..., apm/a}
20 1437
: : (5%}
5.2, 65 .
3 —37°+ 78 {-2+1,5}
35362 , 21216 —39-65i 17485i
4 625 £~ T 35 { 22 8 }
130,.4 _ 123502 , 70720 15-10i —39+13i 65
5 31 720 L7 1 661 { I 0 2 2
G | 12876004 343360002 | 667835200 {725+1015¢ —2775— 64754 1073+7511i}
117649 823543 40353607 192 192 ) 96

5.1.1. Equispaced Poles. As a natural extension of the Poisson kernel, whose
two poles are at +i, we consider the family of mth-order kernels with equispaced
poles in the upper and lower half-planes given by

(5.8) a; = —— —1+14, b; =aj, 1<j5<m.

We then determine the residues by solving the Vandermonde system in (5.7). The first
six kernels are plotted in Figure 5.1 (left) and are explicitly written down in Table 5.1.

Empirically, we have found that the choice in (5.8) performs slightly better than
other natural choices such as Chebyshev points with an offset +i, rotated roots of
unity, or dyadic poles a; = i277. Dyadic poles have the advantage that if € is halved,
the resolvent only needs to be computed at one additional point. The ill-conditioning
of the Vandermonde system does not play a role for the values of m here. Moreover,
equispaced poles are particularly useful when one wishes to sample the smoothed
measure K, * p1y over an interval since samples of the resolvent can be reused for
different points in the interval. Finally, if € is found to be insufficiently small, instead
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Fig. 5.2 Results for the Schrodinger operator in (4.11) using mth-order kernels with equispaced
poles (see (5.8)). Left: Smoothed approzimations to the spectral measure. Right: Point-
wise relative error, computed by comparing with a numerical solution resolved to machine
precision.

of reevaluating the resolvent at m points, one can add poles closer to the real axis
(with a smaller €) and reuse the old resolvent evaluations. This effectively increases m,
and hence the coefficients a;; need to be recomputed. This may be computationally
beneficial since the cost of solving the Vandermonde system is typically negligible
compared to the cost of evaluating the resolvent close to the real axis.

To demonstrate the practical advantage of high-order kernels, we revisit the ex-
amples from section 4 and compute the smoothed measure K. * py using mth-order
kernels with equispaced poles. In Figure 5.1 (right) and Figure 5.2 (right), we observe
the convergence rates predicted in Theorem 5.2 for the integral operator in (4.7) and
the differential operator in (4.11), respectively. While the Poisson kernel requires us
to solve linear equations with shifts extremely close to the continuous spectrum to
achieve a few digits of accuracy in our approximation to ps, a sixth-order kernel en-
ables us to achieve about 11 and 9 digits of accuracy, respectively, without decreasing e
below 0.01. Figure 5.2 (left) shows the increased resolution obtained when using high-
order kernels for the differential operator in (4.11) with smoothing parameter e = 0.1.
Although using a sixth-order kernel requires six times as many resolvent evaluations
as that of the Poisson kernel, this is typically favorable because the cost of evaluating
the resolvent near the continuous spectrum of £ increases as € | 0 (see subsection 4.3).

In Figure 5.3 (which should be compared to Figure 4.2), we plot the real part of
the linear combination of solutions, given by

Re Z BiRe(x — eb))f
j=1

Here, € is selected to achieve a relative error of 0.0001 and 0.005 in the density of
the integral and Schrédinger operators, respectively. For a fixed relative error, the
high-order kernels lead to numerical solutions that are less peaked (or less oscillatory),
which allows us to use much smaller discretizations of the linear operators.
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Fig. 5.3 Real part of Z;'Lzl BjRe(x —ebj)f, where € is chosen to achieve a relative error of 0.0001
for the integral operator in (4.7) (left) and 0.005 for the Schrédinger operator in (4.11)
(right), with m =1 (blue), m = 2 (yellow), m = 3 (orange), and m = 4 (purple). Recall
that the solutions to (4.11) are mapped to [—m, 7] via x = 10i(1 — €*9)/(1 4 €%).

5.2. Other Types of Convergence. Consider the radial Schrédinger operator
with a Hellmann potential and angular momentum quantum number ¢, given by [51]

&y (e(/z +1) 1

(5.9) [Lu](r) = —ﬁ(r) + > +—(e" = 1)) u(r), r > 0.

r r
The spectral properties of £ are of interest in quantum chemistry, where the Hellman
potential models atomic and molecular ionization processes [49]. Ionization rates and
related transition probabilities are usually studied by computing bound and resonant
states of £; however, we compute this information directly from the spectral measure.

For example, if f(r) = Ce=(r=ro)’ (where C'is chosen so that || f||L2@,) = 1) is
the radial component of the wave function of an electron interacting with an atomic
core via the Hellmann potential in (5.9), then we can calculate the probability that
the electron escapes from the atomic core with energy E € [a,b] (with 0 < a < b) via

b

(5.10) Pla < E <b) = us(fa,b)) ~ / K.+ ufl(y)dy, €< 1.

a

The error for the approximation in (5.10) is bounded above by

b b
iy ([a,b]) - / K. * pfl(y) dy| < / 107 (0) — (Kertag) )] dy = Nl — Ko 1| 2 G-

This leads us naturally to the notion of L? convergence on an interval. The smoothed
measure always converges to py in L' ([a, b)) when y is absolutely continuous on [a, b].
However, in analogy with the pointwise results in subsection 4.2 and section 5, we
need to impose some additional regularity on ps to obtain rates of convergence. We
let W¥P(I) denote the Sobolev space of functions in LP(I) such that f and its weak
derivatives up to order k have a finite L? norm [37].

THEOREM 5.3. Let K be an mth-order kernel and 1 < p < oco. Suppose that the
measure py is absolutely continuous on the interval I = (a —n,b+n) for n > 0 and
some a < b. Let py denote the Radon—Nikodym derivative of the absolutely continuous
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Fig. 5.4 Left: The smoothed approzimation to the density on the absolutely continuous spectrum of
L in (5.9), with fr,(r) = C'Toe*(T*TO)2 and ¢ =1, forrg =2, ro = 3, and ro = 4 (Cr,
is a mormalization constant so that || frollp2m, ) =1). The shaded area under each curve
corresponds to P(1/2 < E < 2) in (5.10) for the particle with wave function fr,(r). Right:
The L'((1/2,2)) relative error in smoothed measures for the radial Schrédinger operator
in (5.9). The relative error is computed by comparing with a numerical solution that is
resolved to machine precision.

component of jiy, and suppose that pr == pglr € W™P(I). Then

Cx(b—a)'/? ,
(c+9)™"

T+ Cm)Crllprlwrc) (1+77™) 1og(1 +

lpr — [Ke* pyllle((ap)) <

IS

b—a-+ 27]) m
—— T em,
€
where C(m) is a constant depending only on m, and Ck is from (5.1).

Proof. See Appendix A.2. ]

Theorem 5.3 implies the asymptotic error rate”
lor = K il oy = O™ log(1/e)  as € L.

The L' convergence for the approximation to the probabilities in (5.10) is shown
in Figure 5.4 (right), which agrees with the asymptotic rates implied by Theorem 5.3.

If one wishes to compute dynamics of the electron interacting with the atomic core
via the Hellman potential, then we need a slightly weaker form of convergence. For
instance, the time autocorrelation of the electron’s wave function can be computed

by integrating the function Fy(E) = e~ *F? against the measure u £, so that
psB) = (e S ) = [ )~ [ e K @) dn, o<1,
— 00 — 00

Unlike the previous cases of pointwise and L' convergence, we do not need any ad-
ditional requirements on the measure iy, which may be singular and have discrete

9Theorem 5.3 for p = 2 without the first term on the right-hand side and for absolutely con-

tinuous probability measures with Wm’2(]R) density function is used in kernel density estimation in
statistics [115, Prop. 1.5]. In this context, the L? error is used to bound the bias term in the mean
integrated squared error. The case of L1 convergence requires a different proof technique.
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components, to obtain convergence rates. Instead, we require that the function F' be
sufficiently smooth. For example, if F' € C™*(R) and K is an mth-order kernel, then
approximating F' via convolutions and applying Fubini’s theorem shows that

1p(F) = (Ko i) (F)| = O(€") + O(e™ log(1/e))  as € L0,

Finally, note that a kernel cannot be nonnegative everywhere and have an order
greater than two. This is not a problem in practice since we can replace [K. * puy](z)
by max{0, [K. * u¢](z)} with the same error bounds in Theorems 5.2 and 5.3.

6. The Resolvent Framework in Practice. Given an mth-order rational ker-
nel, defined by distinct poles a1, ..., a,, in the upper half-plane, the resolvent-based
framework for evaluating an approximate spectral measure is summarized in Algo-
rithm 6.1. This algorithm, which can be performed in parallel for several x(, forms
the foundation of SpecSolve. SpecSolve uses equispaced poles (see subsection 5.1.1)
by default, but users may select other options with the name-value pair ‘PoleType’.

Algorithm 6.1 A practical framework for evaluating an approximate spectral mea-
sure of an operator £ at x¢ € R with respect to a vector f € H.

Input: L:D(L) > H, feH, z0 €R, a1,...,am,m € {z € C:Im(z) > 0}, and € > 0.
1: Solve the Vandermonde system (5.7) for the residues a1, ..., a,, € C.
2: Solve (£ — (o — eaj))u§ = f for 1 <j < m.

3: Compute u;(xo) = _711111 (Z;nzl Qj <u;7f>)
Output: x5 (zo).

In practice, the resolvent in Algorithm 6.1 is discretized before being applied. We
compute an accurate value of K provided that the resolvent is applied with suffi-
cient accuracy (see Figure 4.1), which can be done adaptively with a posteriori error
bounds [16]. For an efficient adaptive implementation, SpecSolve constructs a fixed
discretization, solves linear systems at each required complex shift, and checks the ap-
proximation error at each shift. If further accuracy is needed at a subset of the shifts,
then the discretization is refined geometrically, applied at these shifts, and the error
is recomputed. This process is repeated until the resolvent is computed accurately at
all shifts. The user may (optionally) specify initial and maximum discretization sizes
with the name-value pairs ‘DiscMin’ and ‘DiscMax’.

SpecSolve supports three types of operators: (1) ordinary differential opera-
tors, (2) integral operators, and (3) infinite matrices with finitely many nonzeros per
column. For more general operators and inner products, the user must supply a com-
mand that solves the shifted linear equations in Algorithm 6.1 and a command that
evaluates the inner products, allowing a user to evaluate spectral measures for exotic
problems and employ their favorite discretization.

6.1. Ordinary Differential Operators. As part of its capabilities, SpecSolve
computes samples from a smoothed approximation to the spectral measure of a self-
adjoint, regular ordinary differential operator on the real line or on the half line,
ie.,

(6.1) [Lu](z) = ¢ (:c)dp—u(x) +---+Fc (x)d—u(x) + co(z)u(z) >0
. — Cp daP 1 dx 0 ’ p=Y,
with the standard inner products. Here, the variable coefficients co, . .., ¢, are smooth

functions and ¢, # 0 on the relevant domain (real line or half line). Note that £ in (6.1)
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is not necessarily self-adjoint: the user provides the variable coefficients cy, ..., c, and
must verify that £ is self-adjoint.

To demonstrate, recall the Schrodinger operator defined on the real line in (4.11).
We can compute a smoothed approximation to its spectral measure using the function
diffMeas as follows:

xi = linspace(0,6,121); % Evaluation pts

f=0(x) x.72./(1+x.76) * sqrt(9/pi); % Measure wrt f(x)

c = {e(x) x.72./(1+x.76), @(x) 0, @(x) -1%}; % Schrodinger op

mu = diffMeas(c, f, xi, 0.1, ‘order’, 1); % epsilon=0.1, m=1
The differential operator is specified by its coefficients cg, ..., co, which are input as

a cell array of function handles. Given evaluation points xi and function handle f,
diffMeas computes the smoothed measure, with respect to f, using the specified
smoothing parameter and kernel order (the default kernel is m = 2).

To apply the resolvent of a differential operator acting on functions on the real
line, the associated differential equation (see Algorithm 6.1) is automatically trans-
planted to the periodic interval [—m, 7] with an analytic map and solved with an
adaptive Fourier spectral method [9]. Typically, the differential equation has singular
points at +7 after mapping, and the Fourier spectral method usually converges to a
bounded analytic solution [9, sect. 17.8]. Similarly, on the half line, the differential
equation is mapped to the unit interval [—1,1] with an analytic map and solved with
an adaptive nonperiodic analogue of the Fourier spectral method known as the ultra-
spherical spectral method [77]. After solving the differential equation on the mapped
domain, the inner products in (4.5) are computed using a trapezoidal rule (for the
unit circle) [113] or a Clenshaw—Curtis rule (for the unit interval) [111, Chap. 19].

In many applications, differential operators on the half line may have a singular
point at the origin. This makes an efficient and automatic representation of variable
coefficients somewhat subtle. For example, the radial Schrédinger operator in (5.9)
has a singular point at the origin for ¢ > 1, and the shifted linear equations in Algo-
rithm 6.1 should be multiplied through by 72 so that subsequent discretizations yield
sparse, banded matrices [77]. In addition to diffMeas, SpecSolve contains a small
gallery of functions that sample smoothed spectral measures for common operators
with singular points, such as rseMeas, which samples the smoothed measure of the
radial Schrédinger operator with a user-specified potential.

To illustrate, we use rseMeas to compute P(1/2 < E < 2) from (5.10):

normf = sqrt(pi/8)*(2-igamma(1/2,8)/gamma(1/2)); % Normalization

f = 0(r) exp(-(r-2).72)/sqrt(normf); % Measure wrt f(r)
v={@(r) 0, @(r) exp(-r)-1, 1}; % Potential, 1=1

[xi, wi]l = chebpts(20, [1/2 2]); % Quadrature rule
mu = rseMeas(V, f, xi, 0.1, ‘Order’, 4) % epsilon=0.1, m=4
ion_prob = wi * mu; % Ionization prob

The user specifies the potential of the radial Schrédinger operator through a cell array
of function handles: V{1} is the nonsingular part of the potential, V{2} is the variable
coefficient for the r—1 Coulomb term, and V{3} is the quantum angular momentum
number that defines the coefficient for the r=2 centrifugal term.

6.2. Integral Operators. In SpecSolve, the function intMeas computes samples
from a smoothed approximation of the spectral measure of an integral operator, acting
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on functions defined on [—1, 1], of the form

1

[Lul(z) = a(z)u(z) +[19(x,y)U(y) dy, wel[-1,1, weLl*([-11]).

We assume that the multiplicative coefficient a(z) and the kernel g(z,y) are smooth
functions (well approximated by polynomials) and that g(x,y) = g(y, z) so that L is
self-adjoint with respect to the standard inner product. Revisiting the integral opera-
tor from (4.7), we can compute the smoothed measure with a few simple commands:

xi = linspace(-2.5,2.5,501); % Evaluation pts

f = 0(x) sqrt( 3/2 ) * x; % Measure wrt f(x)
a={0ex x, 0(x,y) exp(-(x.72+y."2)) }; % Integral operator
mu = intMeas(a, f, xi, 0.1, ‘Order’, 1); % epsilon=0.1, m=1

The integral operator is specified by a cell array containing function handles for the
kernel and multiplicative coefficient. Given smoothing parameter and kernel order,
the smoothed measure is approximated at the evaluation points xi.

To apply the resolvent, we use an adaptive Chebyshev collocation scheme to solve
the shifted linear systems in Algorithm 6.1. For efficient storage and computation, we
exploit low numerical rank structure in the discretization of the smooth kernels when
possible [110]. We apply a Clenshaw—Curtis quadrature rule to compute the inner
products required to sample u§ [111].

6.3. Infinite Sparse Matrices. In SpecSolve, the function infmatMeas deals
with discrete systems. We consider the canonical Hilbert space ¢?(N) (with the stan-
dard inner product) and assume that £ is realized as an infinite matrix A such that

—la a cee — — T
A= 21 22 5 Q5 = <£€j, €i> = Qjs,

where e; is the ith canonical unit vector. We assume that the span of the canonical
basis forms a core'® of £ and that there is a known function F' : N — N such that
ai; = 0if i > F(j).* There is no loss of generality in working in ¢*(N) since we can
always choose an orthonormal basis of a separable Hilbert space to obtain H = ¢*(N).
The majority of graph operators that are encountered in physics can be put into this
framework. For example, given a finite range interaction Hamiltonian on ¢2(Z%), one
can enumerate the vertices of the graph to obtain a realization of £2(Z9) = (?(N) as
well as an associated function F. The value of [K. * pf](xo) for some f € ¢*(N) is
then approximated through least-squares solutions of the rectangular systems [16]

PF(N) (A — (l‘o + E(Lj))P]\ﬂL; = PF(N)f,

where P, denotes the orthogonal projection onto the span of the first n basis vectors.
For a rectangular truncation H = Pp(n)APy supplied by the user, we can, for exam-
ple, compute the smoothed measure with respect to the first canonical basis vector
via the following commands:

10This technical condition means that the closure of £ restricted to the span of the canonical basis

is £, and hence we can equate £ with the infinite matrix A.
HWeaker assumptions such as known asymptotic decay of each column are also possible.
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xi = linspace(-3.1,3.1,125); % Evaluation pts
b = zeros(size(H,1),1); b(1) = 1; % Measure wrt vector b
mu = infmatMeas(H,b,xi,0.05, ‘Order’,2); % epsilon=0.05, m=2

An example for a magnetic Schrodinger equation on a graphene lattice (see subsec-
tion 7.2) is provided in the gallery of examples in SpecSolve.

7. Examples. We now provide three examples to demonstrate the versatility of
our computational framework.

7.1. Example |I: Beam and Two-Dimensional Schrodinger Equations. The
increased computational efficiency achieved through high-order kernels allows us to
treat PDEs and high-order ODEs. First, consider a fourth-order differential operator
associated with the elastic beam equation given by

(T.1)  [Lul(x) = %(x) - % [(1 —e) Zﬂ () + alsil;?u(x), reR,

for some constant a € R. Figure 7.1 (left) shows K, * 1y for a second-order kernel

with € = 0.05 and f(x) = v27~1/(1 + 2?), when a = 0, 5, and 10. When a = 0, the

operator is positive with continuous spectrum in [0, 00). When a # 0, there is also an

eigenvalue below the continuous spectrum, corresponding to the spikes in Figure 7.1

(left). We also observe that different values of a alter the profile of p; on [0, 00).
Next, consider the two-dimensional Schrodinger operator given by

(7.2)

2
—x7

[Lu)(x1,20) = —VZu(z1, 22) + <le+as§ +a(erf(z1) + erf(m))) u(zy,z2), «; €R,

for some constant a € R, where erf(+) is the error function. To apply the resolvent we
map R? to the torus [—m, 7]? via 2; — 10i(1—e%)/(14¢%). We then use a tensorized
Fourier spectral method with hyperbolic cross ordering of the basis functions [72,
Chap. III]. Figure 7.1 (right) shows K, * puy for a fourth-order kernel with e = 0.2
and f(z1,72) = exp(—a? — 22)v27~1, when a = 0,1, and 2. The spectrum of the
operator is [—2a,00), and we observe that the convolution [K * pf|(z) takes small
negative values in the vicinity of the lower boundary of the spectrum.

7.2. Example 2: The Schrodinger Equation on a Graphene Lattice. We now
apply our method to a magnetic tight-binding model of graphene, which involves
a discrete graph operator [1]. Graphene is a two-dimensional material with carbon
atoms situated at the vertices of a honeycomb lattice (see Figure 7.2), whose unusual
properties are studied in condensed-matter physics [11, 76]. The magnetic properties
of graphene are important because of the experimental observation of the quantum
Hall effect and Hofstadter’s butterfly [82], and the exciting new area of twistronics
[12, 71].

7.2.1. The Model. A honeycomb lattice can be decomposed into two bipartite
sublattices (see Figure 7.2 (left)), and thus the wave function of an electron can be
modeled as the spinor [1]

U = (@@ WE VT €€ = (Ym,n) € 13(Z%C?) = (2(N).

Here, (m,n) € Z? labels a position on the sublattices and ¢(Z?; C?) denotes the space
of square summable C2-valued sequences indexed by Z2. To define the Hamiltonian,
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Fig. 7.1 Left: Smoothed approzimations to the spectral measures of the elastic beam operators

in (7.1) for a second-order kernel with a = 0,5, and 10. Right: Smoothed approzimations
to the spectral measures of the two-dimensional Schrédinger operators in (7.2) for a fourth-
order kernel with a = 0,1, and 2. The magnified region demonstrates that [Ke * uy](x) is
not always positive for kernels of order greater than two.

100

200

300

400

600

700

800

900

1000 —
0 200 400 600 800 1000

Fig. 7.2 Left: Honeycomb structure of graphene as a bipartite graph. We have shown the spinor
structure via the circled lattice vertices and the indexing via (m,n). The arrow shows the
perpendicular magnetic field B. Right: Sparsity structure of the first 103 x 103 block of the
infinite matriz and the corresponding growing local bandwidth.

consider the following three magnetic hopping operators Ty, Ty, T3 : (%(Z*;C?) —
(2(Z2;C?) for a given magnetic flux per unit cell ® (in dimensionless units):

7[721]71 TZJ[Q] . 6727ri<1>m¢[2] )
(le)m,n: [1]7 ) (Tzw)m,n: q/;[q{bfr o ) (T37/})m,n: eQﬂq)mw[{T]L,nJr
m,n m—1,n m,n—1

After a suitable gauge transformation, the free Hamiltonian can be expressed as Hy =
Ty + To + T3 and A(Hp) C [-3,3]. A suitable ordering of lattice points leads to a
sparse discretization of Hy, where the kth column contains O(vk) nonzero entries
(see Figure 7.2 (right)). Therefore, for an approximation using N basis sites, the
action of the resolvent can be computed in O(N?3/2) operations [112].

7.2.2. The Computed Measures. Figure 7.3 shows how the spectral measure of
Hy, taken with respect to the vector e;, varies with ®. For ® € Q, the spectrum is
absolutely continuous, and we show the Radon—Nikodym derivative of the measure,
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Fig. 7.3 The Radon—Nikodym derivative of the measure for various ®, computed with ¢ = 0.01.
The spectrum is fractal for irrational ®, which is approrimated by rational . The small
gaps in the spectrum are clearly visible (corresponding to the blue shaded regions) and the
logarithmic scale shows the sharpness of the approzimation to pe,, which vanishes in these

gaps.

Pe,- The calculations, performed with a fourth-order kernel and € = 0.01, show a
sharp Hofstadter-type butterfly.!?

Figure 7.4 (left) shows an approximation of p., when ® = 1/4 using a fourth-
order kernel and ¢ = 0.01. We also show, as shaded vertical strips, the output of
the algorithm in [21] which computes the spectrum with error control (we use an
error bound of 107%) and without spectral pollution.!® The support of K, * py is
the whole real line due to the noncompact support of the kernel K. However, if
x & A(Hp), then applying (5.1) directly to the definition of convolution shows that
[[Ke* pr](z)] < Cre™/(e+dist(z, A(Hp)))™ !, where C is the constant in (5.1), so
|[ K * py](z)| decays rapidly when off the spectrum. We also consider a multiplication
operator (potential) perturbation, modeling a defect, of the form

cos([[x[|am)

(7:3) V)= e + 12

where x denotes the position of a vertex normalized so each edge has length 1. The
perturbed operator is then Hy+V'. Since the perturbation is trace class, the absolutely
continuous part of the spectrum remains the same (though the measure changes) and
the potential induces additional eigenvalues (see Figure 7.4 (right)). Again, we see
that |[K¢ * puf|(2)| decays rapidly when off the spectrum. In particular, the measure
is not corrupted by spikes in the gaps in the essential spectrum or similar artifacts
caused by spectral pollution.

7.3. Example 3: Discrete Spectra and Dirac Operators. In this example, we
consider the case of the Dirac operator £ = Dy defined below. Often this operator
has discrete eigenvalues in the interval (—1,1), which forms a gap in the essential

2Hofstadter’s butterfly [54] is the visual representation of the fractal, self-similar nature of the

spectrum of a Hamiltonian describing noninteracting two-dimensional electrons in a magnetic field
in a lattice. The most famous example is that of the almost Mathieu operator on £2(Z).

13With a nonperiodic potential (7.3), this is a highly nontrivial problem since finite truncation
methods typically suffer from spectral pollution inside the convex hull of the essential spectrum.
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102

10

Fig. 7.4 Left: Smoothed measure with no potential. We show the algorithm in [21] as shaded strips
(green) for comparison. Right: The same computation but with the added potential in (7.3).
The additional eigenvalues correspond to spikes in the smoothed measure.

spectrum. This means that standard Galerkin methods used to compute A(Dy)
typically suffer from spectral pollution in the gap. That is, as the discretization size
increases, the discrete spectrum of the Galerkin discretization clusters in a way that
does not approximate A(Dy ). There is a vast literature on methods that seek to
avoid spectral pollution when computing A(Dy) [30, 64, 65, 91, 104]. The majority of
existing approaches work for certain classes of potentials and avoid spectral pollution
on particular subsets of (—1,1). Even for Coulomb-type potentials, spectral pollution
can be a difficult issue to overcome, and computations typically achieve a few digits of
precision for the ground state and a handful of the first few excited states. A popular
approach is the so-called kinetic balance condition, which does not always work for
Coulomb potentials [32, 68, 96]. Our approach does not suffer from spectral pollution
and can compute the first thousand eigenvalues to near machine precision accuracy.

7.3.1. Recovering Eigenvalues and Projections onto Eigenspaces. The domi-
nated convergence theorem applied to (4.3) shows that, for any « € R, we have

(7.4) lime T ((Re(e+ie)f.f)) = 3 (PAfif):
AEAP(L)N{z}

Moreover, if there is no singular continuous spectrum in a neighborhood of z, and x
is not an accumulation point of AP(L), then (7.4) can be sharpened to

(7.5) e-Im((Re(z+ie)f, )= > (Pxfif)+0(e).
AEAP(L)N{z}

These formulas allow us to compute the locations of eigenvalues of the operator and
the corresponding projection coefficients onto the eigenspaces for vectors f.

7.3.2. The Dirac Operator. We consider a differential operator Dy associated
with a coupled first-order system of differential equations that describes the motion
of a relativistic spin-1/2 particle in a radially symmetric potential V' (r), defined by

_(1+V(r) -4 4=
pe= (Y SR0G)

Here, k = j + 1/2 for j € Z (related to the angular momentum of the particle) and
Dy is a special case of the Dirac operator with a radially symmetric potential [107].
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Fig. 7.5 Left: The function V}(w) for x near 1. The sloped dashed line shows the algebraic decay

of ||73Ejf||2 (approzimately O(j73)). The magnified region shows the extreme clustering,
with the wvertical dashed line corresponding to E1o00. Right: The absolute error in the
computed eigenvalues E;(Dy ) for j = 0,5,10,100,500,1000 as € ] 0.

If V satisfies suitable conditions [107], then Dy is a self-adjoint operator with
essential spectrum supported on (—oo, —1] U [1,00). Depending on V(r), the spec-
trum may also contain discrete eigenvalues in (—1,1). Generally, in computational
chemistry, positive eigenvalues correspond to bound states of a relativistic quantum
electron in the external field V', and negative eigenvalues correspond to bound states
of a positron [107].

7.3.3. Computing Eigenvalues while Avoiding Spectral Pollution. Assuming
that f in (7.4) is not orthogonal to any of the eigenfunctions, it follows from (7.4)
and (7.5) that the positions of the peaks of the function

vi(x) :=e-Im ((Rpy (z +i€)f, f))

correspond to the eigenvalues. To test this, we consider the case of Kk = —1 and the
Coulomb-type potentials V(r) = v/r for —v/3/2 < v < 0. For these potentials, the
eigenvalues are known analytically as [107, Chap. 7]

E;(Dy) = (1+4° y+ﬁ) >0,

Note that the eigenvalues accumulate at 1. This makes computing E;(Dy ) difficult
when j is large, even in the absence of spectral pollution.

Figure 7.5 (left) shows v§ with e = 107", f(r) = (V2re=",y/2re™"), and v =
—0.8. One can robustly compute v for a fixed € > 0 using the techniques in sub-
section 6.1 and adaptively selecting the discretization size. For € = 107'°, we can
accurately compute E1(Dy),..., E1000(Dv) by the location of the local maxima of
v§. Moreover, the sizes of the peaks correspond to ||Pg; f |2. Figure 7.5 (left) shows
that ||Pg, f||* decreases at an algebraic rate as j — oo. If one is not satisfied with
the accuracy of the computed eigenvalues, then one can decrease € at the expense of
an increased computational cost. In Figure 7.5 (right), we show the absolute error in
the computed eigenvalues E;(Dy ) for j = 0, 5,10, 100, 500, and 1000 as € | 0. We find
that our algorithm can resolve hundreds of eigenvalues, even when highly clustered,
to an accuracy of essentially machine precision.
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8. Conclusions and Additional Potential Applications. In this paper, we have
developed a general framework for evaluating smoothed approximations to the spectral
measures of self-adjoint operators. We have highlighted the theoretical and practical
aspects of the algorithm in the contexts of differential, integral, and lattice operators.
The resolvent-based framework robustly captures discrete and continuous spectral
properties of the operator, rather than any underlying discretizations, yielding a flex-
ible and efficient method for a variety of spectral problems.

A general computational framework for computing the spectral measure p s opens
the door to a new set of algorithms for computing with operators and studying their
spectral properties. As spectral characterizations of continuous and discrete models
attract renewed interest in the context of data-centered applications, our algorithms
may be useful in understanding the behavior of large real-world networks and new
random graph models. The development of rational kernels and corresponding local
evaluation schemes may also be useful for local explorations of the spectral density
of operators of large finite dimension, such as in DOS calculations in physics [70] or
real-world networks [29].

Our framework can be used to compute the vector-valued functional calculus via

211

<v~—j" 0> 0 Rely — cay)f — BRe(y — b)) ] dy,

Jj=1

which is useful in the solution of time-evolution problems. For example, taking F'(y) =
exp(—ity) gives an approximation of the solution to the linear Schrédinger equation
with initial state f at time ¢. The vector-valued functional calculus may also be used to
solve more complicated evolution systems, such as nonautonomous Cauchy problems
and nonlinear problems, through splitting methods [72, 74]. Therefore, our approach
may aid the development of discretization-oblivious exponential integrators for PDEs
or sampling from stochastic processes with self-adjoint generators [58, Chap. 17].

Appendix A. Convergence Rates and Error Bounds. In this appendix, we prove
the pointwise and L? convergence bounds of K. * pu¢ to py as € | 0.

A.l. Pointwise Error Bounds. The pointwise convergence shows that samples
of K. * puy are meaningful because they converge to ps, at a rate determined by the
local regularity of py and the order of the kernel. Recall that in Theorem 5.2, K is
an mth-order kernel, the measure p¢ is absolutely continuous on I = (2o —n,zo + 1)
for n > 0 and a fixed zy € R, and that py € C™*(I) with o € [0,1).

Proof of Theorem 5.2. First, we decompose ps into two nonnegative parts py =
p1-+ p2, where p; is compactly supported on I and py vanishes on (zg—n/2,z9+7/2).
Using the convolution representation for K. * p1r, we have

(A1) [ps(xo) - m*wmm<UK p@my)muO@Hk*MW o)

Here, the measure du(r)( ) = dus(y) — p1(y)dy is nonnegative and supported in the
complement of (zg — 77/ 2,20 +n/2). Since p5 is a probability measure, we have that
Jz d,uf) (y) <1, and the second term on the right-hand side of (A.1) is bounded by

Cge™
Ke _\d (r) < K Ki,
[ Ko i) ) < s 1] < A

(42) |[Kew ] (wo)| = iz

where the constant Ck is given in Definition 5.1.
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To bound the first term in (A.1), we expand p1(zo — y) using Taylor’s theorem:

=1 i) () (k)
(A8)  prleo—y) = 3 A Cap B i, m),

j=0
where |£, — x| < |y|. We consider two cases separately.
Case (i): n + o < m. In this case k = n and we can select p; so that

11
n!

< C 5 n,o 1 —noa

oy = (n,@)lpsllenacr (L+n7""7)
for some universal constant C(n, ) that depends only on n and «. Existence of such a
decomposition follows from standard arguments with cutoff functions. Plugging (A.3)
into (A.1) and applying the vanishing moment condition (Definition 5.1 (ii)), we obtain

(A.4) /K (p1(wo —y) — p1(x0)) /K A7) y" dy.

Since n < m, we can use the vanishing moment condition again to obtain

(A.5) /K v, dy_/K V(&) - (xo)y" dy.

n!
Since pi") € CO(I) and [&, —o| < [y]. we have o} (&) = pi" (w0)| < o1 eoe(r) |yl
Applymg this bound to the integrand in (A.5) and changlng variables y — ey,

A (E,) — o
pi (o) / nta
K dy.
woey |G ay

n!
Recalling our selection of p; and combining (A.6) with (A.2) proves Case (i).

(n)

(A.6) y"dy| <

Case (ii): n + o > m. In this case kK = m and we can select p; such that

2e

A" < comlioslenn (1407

for some universal constant C'(m) that only depends on m. Again, existence of such
a decomposition follows from standard arguments with cutoff functions. Since p; has
compact support in I, we have that pi(zg —y) = 0 if |y| > n. We split the range of
integration in (A.4), substitute the Taylor expansion in (A.3), and change variables
Yy — €y to obtain

’/K (p1(wo — )—m(xo))dy‘ < [p1(o)|

i Z ‘p(J)

By the vanishing moment condition (see Definition 5.1 (ii)), we have that

/ K(y)y’ dy| = / K(y)y’ dy|,
lyl<n/e ly|>n/e

/ K(y)dy
ly|>n/e

em .
+ A /| K@) ly|™ dy

[<n/e

K(y)y’ dy
lyl<n/e

1<j<m-—1.
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Definition 5.1 (iii) implies that |K (z)||z|™™ < |K(z)|(1 + |z|)™™ < Ck. Substitut-
ing (A.8) into (A.7) with the bound for |K (x)| and integrating yields an upper bound
for the right-hand side of (A.7):

a9 3 00| 295 ()" )| [yl d
9 ,—(p aﬂ() +—HpmH / )| yl™ dy.
= 4! 1 m—7j\n m! 1" lyl<n/e

Since we can write pgj )(1'0) as an iterated integral of pgm), we find that
) o t1 tm—j—1 (m)
W= [ [ [ O )ty dn 0SS me,
zo—n Jx To—n

o—n

and so it follows that |p§j)(ac0)| < nm*ijgm)Hoo. Thus, we have

m—1 m—j
e 2C € m m
(A.10) & o ()| 25 () < 2eCic)|p{™ looe™
= ! m—j\n
Recalling our selection of p;, Case (ii) follows from (A.2), (A.9), and (A.10). ad

A.2. L? Error Bounds. In subsection 5.2 we motivated error bounds for ||p; —
K¢ % pf||pr to ensure that the calculation of ionization probabilities is meaningful.
In this subsection, we prove the LP error bounds stated in Theorem 5.3. It is often
easier to prove these kinds of results in Fourier space, so we begin by understanding
the regularity properties of K for an mth-order kernel (see Definition 5.1), where

(A.11) K(w) = / K(z)e ™™ dzr,  weR.
R

LEMMA A.1 (regularity of Fourier transform). Let K be an mth-order kernel
(see Definition 5.1). For any o € (0,1), we have that K € C™1%(R) and

|Km=D)| 0.0
(m—1)!

Proof. Using (5.1) we can differentiate through the integral sign in (A.11) to
conclude that K is (m — 1)-times continuously differentiable. Moreover, (5.1) implies
that K™= e W*2(R) for any s < 3/2 (see [75] for the definition of fractional
Sobolev spaces). Therefore, K € C™1%(R) for any € (0,1) [75, Thm. 3.26].

For (A.12), note that the normalization condition (Definition 5.1 (i)) implies
that K(0) = 1, while the vanishing moment criterion (Definition 5.1 (ii)) implies
that (K)9(0) = (—2mi) Jg K(z)a?dz = 0 for 1 < j < m — 1. The bound (A.12)
then follows by using the (m — 1)th-order Taylor expansion for K at the origin and
applying the Holder condition to the remainder. 0

(A.12) IK(w)—1| <

l ‘m—l-i-a_

We can now use this to bound the LP error of a smoothed approximation K, *x g
when g € W™P(R) and has compact support.

LEMMA A.2. Let K be an mth-order kernel and let g be any function such that
g € W™P(R) for 1 <p< oo and supp(g) C I = (a—n,b+n) for somen > 0. Then,
for any € > 0, we have that'*

QGmOK

(A.13) 11K * g1 = glleo(ny < ——

19" || Lo ry log (1 + (b — a + 2n) /e).

14The log(1/¢) factor is avoided if extra decay—beyond Definition 5.1 (iii)—is assumed on K.
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Proof. Since K € L'(R), we can define the function

(A.14) dn(:v):/j K(y)dy — /K Jdy —{ f ]E')d?y iig

where H (z) denotes the Heaviside step function. Using (5.1) and integrating directly,
we see that ¢1 € L?(R). Furthermore, since [, K (y)dy = 1, we can differentiate ¢; in
the sense of tempered distributions to obtain ¢} = K — §y. Taking Fourier transforms,
we see that

(2miw) 1 (w) = K (w) — 1.

However, ¢1, K € L?(R), and hence we must have b1 (w) = (I/(\'(w) —1)(2miw) ! almost
everywhere, and in particular that (I/(\'(w) —1)(2miw)~! € L3(R).

If m > 1, then by (5.1) and the case definition of ¢1 in (A.14), we have ¢; € L'(R),
and hence &1 can be identified with a continuous function. Furthermore, (A.12)
implies that qbl fR ¢1(y)dy = 0, and hence we can define

[T — H(z B f o1(y)dy, =<0,
x)—/_qul(y)dy H( )/Rmy)dy—{ RPN,

Again by using (5.1) and integrating directly, we see that ¢ € L%(R). We can take
distributional derivatives and Fourier transforms as before to deduce that ¢ (w) =
(K (w) — 1)(2miw)~2 almost everywhere We continue this argument inductively, us-
ing Lemma A.1, and for j = 2,...,m we define ¢;(z) = [*_¢;_1(y)dy. The ar-
gument shows that gb]( ) = (K( ) 1)(2miw) 7. Usmg (5.1) and integrating, we
have

(A15)  1o;(@)] < Clm— )Y (ml(1 + [2))"F),  1<j<m.

Let g, € CX(R) for n > 1 be a sequence of functions with supp(g,) C (e —n —
n~ ! b+n+n~") such that ||g—gn[lwmrr) — 0asn — oo. Let ¢y e = € L (ze?),
so that R
K (w)-1
(2miew)™

(W) =

It follows, by the convolution theorem and Carleson’s theorem, that for a.e. z € R
(A.16)

(Ko % 9a)(0) — gn(e) = | ZLD L i, ()2 dos = €[ ) ).

) 2miwe _
iy (27) ()7 o = €

Letting L, = ((b — a) + 2(n + n™)), we have [dm.c * 00" )(@) = [X(_L, .01 Omec *

g&m)](a:) for x € I, where xy denotes the indicator function of a set U. Moreover,

X[=Ln,Ln]®m,e € L*(R) by Holder’s inequality. Taking the LP norm on both sides
of (A.16) and applying Young’s convolution inequality yields

(A17) MK * ga] = galloery < €™ 195 2o @) | m.el £ (= L La)-

By taking the limit n — oo in (A.17), we have that

(A.18) 1. * 9] — gllriy < €™ llor / (mc(y)] d.
ly|<(b—a)+2n

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.



Downloaded 08/09/22 to 132.174.252.179 . Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/terms-privacy

520 MATTHEW COLBROOK, ANDREW HORNING, AND ALEX TOWNSEND

Finally, by (A.15) with j = m, we have that |¢,, 1(z)] < Cx(m!(1 + |z]))~ .
Changing variables y — ey in the last integral in (A.18), applying the bound for ¢, 1,
and integrating yields the upper bound in (A.13). d

We are now ready to prove the LP error bounds when 1 < p < oo.

Proof of Theorem 5.3. Let I' = (a —n/2,b+ n/2). Since ps|; € W™P(I), we
can decompose py = pi + pz such that p; is nonnegative, supported in I with
2||p§m)||LP(R)/m! < C(m)lpgllwmre (1 +n~™) for some constant C(m) (that de-
pends only on m), and ps is nonnegative with support contained in R\ I’. Therefore,
pr = p1on (a,b) and

(A19) [lpr — Kex pgllprany) < o1 — Kexpilloe(ap)) + 1 Ke* p1 — Ke* pgll Lo ((a,p))-

The first term is bounded via Lemma A.2. To bound the second term, we note that
the measure M?) = s —p1 is nonnegative, supported in R\ I’, and has fR dugf) (y) <1.
Applying property (iii) in Definition 5.1, we see that

p

b
1K % p1 = Ke * pip Lo (apy) < e K (@ —y)/0)du®(y) | da
((a;b)) " B\L"
< CT (b= a)(e +n/2)~(mHDremy,
Combining the bounds for the terms in (A.19) concludes the proof. |
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