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Abstract. In this paper, we present a sequential sampling-based algorithm for the two-stage4
distributionally robust linear program (2-DRLP) with general ambiguity set. The algorithm is a5
distributionally robust version of the well-known stochastic decomposition algorithm of Higle and6
Sen (Math. of OR 16(3), 650-669, 1991) that was designed for risk-neutral two-stage stochastic linear7
programs. We refer to the algorithm as the distributionally robust stochastic decomposition (DRSD)8
method. The algorithm works with data-driven approximations of ambiguity sets that are construc-9
ted during the course of the algorithm using samples of increasing size. It constructs statistical10
approximations of the worst-case expectation function by solving subproblems corresponding to the11
latest observation(s) in every iteration. We show that the DRSD method asymptotically identifies an12
optimal solution, with probability one, for a family of ambiguity sets that includes the moment-based13
and Wasserstein distance-based ambiguity sets. We also computationally evaluate the performance14
of the DRSD method for solving distributionally robust variants of instances considered in the sto-15
chastic programming literature. The numerical results corroborate our analysis of the DRSD method16
and illustrate the computational advantage over an external sampling-based decomposition approach17
and reformulation techniques known in the literature.18
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1. Introduction. Stochastic programming (SP) is a well-known framework for22

decision-making under uncertainty that arises in applications such as finance, capac-23

ity expansion, manufacturing, wildfire planning, power systems, healthcare, and many24

more. The SP models with recourse, particularly in a two-stage setting, have gained25

wide acceptance across these application domains. In the two-stage SP models, the26

first-stage decision (referred to as the here-and-now decision) is taken before the re-27

alization of uncertainty. Following this, the second-stage decision (referred to as the28

wait-and-see decision) is taken in response to the first-stage decision and a realization29

of the uncertain data. In the classical setting of two-stage stochastic linear programs30

(2-SLPs), the decisions are solutions to linear programs in both stages [12].31

The SP models are stated with an expectation-valued objective function. There-32

fore, stating an SP model either requires complete knowledge of the underlying prob-33

ability distribution or the ability to simulate observations from this distribution. The34

latter leads to the construction of a sample average approximation (SAA) of the35

problem. In many practical applications, the distribution associated with random36

parameters in the optimization model is not precisely known. It either has to be esti-37

mated from data or constructed by expert judgments, which tend to be subjective. In38

any case, identifying a distribution using available information may be cumbersome39

at best. Stochastic min-max programming that has gained significant attention in re-40

cent years under the name of distributionally robust optimization (DRO) is intended41

to address the ambiguity in distributional information.42
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2 H. GANGAMMANAVAR AND M. BANSAL

In this paper, we study a particular manifestation of the DRO problem in the two-43

stage setting, viz., the two-stage distributionally robust linear program (2-DRLP). We44

state this problem as:45

min {f(x) = c>x+ Q(x) | x ∈ X}.(1.1)4647

Here, c is the coefficient vector of a linear cost function and X is the feasible set48

of the first-stage decision vector. The feasible region takes the form of a compact49

polyhedron, i.e., X = {x ∈ Rdx | Ax ≥ b, x ≥ 0}, where A ∈ Rm1×dx and b ∈ Rm1 .50

The function Q(x) is the worst-case expected recourse cost, that we define as:51

Q(x) = max
P∈P

{
Q(x;P ) := EP [Q(x, ω̃)]

}
.(1.2)52

53

We define the random vector ω̃ ∈ Rd on a measurable space (Ω,F), where Ω is54

a continuous or discrete sample space equipped with the sigma-algebra F . P is55

a set of probability distributions defined on the measurable space (Ω,F). The set56

of probability distributions P is referred to as the ambiguity set. The expectation57

operation EP [·] is taken with respect to a probability distribution P ∈ P. For a given58

x ∈ X , we refer to the optimization problem in (1.2) as the distribution separation59

problem. For a given realization ω of the random vector ω̃ and a first-stage solution60

x, the recourse value in (1.2) is the optimal value of the following second-stage linear61

program:62

Q(x, ω) := min g(ω)>y(1.3)63

s.t. y ∈ Y(x, ω) :=
{
W (ω)y = r(ω)− T (ω)x, y ∈ Rdy+

}
.6465

Here, for each ω ∈ Ω, we have uncertain second-stage parameters: g(ω), the recourse66

matrix W (ω), the right-hand side vector r(ω), and the technology matrix T (ω) of67

appropriate dimensions. A special case of 2-DRLP is the 2-SLP where P is a singleton,68

i.e., P = {P ?}, resulting in the following optimization problem:69

min {c>x+ EP? [Q(x, ω̃)] | x ∈ X}.(1.4)7071

Most data-driven and SAA-based approaches to solve 2-SLPs tackle the problem72

in two steps. In the first simulation/sampling step, an uncertainty representation is73

generated using a finite set of observations that serves as an approximation of Ω and74

the corresponding empirical distribution serves as an approximation of P ?. For a given75

uncertainty representation, one obtains a deterministic approximation of (1.4). In76

the second optimization step, the approximate problem is solved using deterministic77

optimization methods. Such a two-step approach may lead to poor out-of-sample78

performance, forcing the entire process to be repeated from scratch with an improved79

uncertainty representation. Since sampling is performed prior to the optimization80

step, this two-step approach is also referred to as the external sampling procedure.81

This procedure has also been utilized for solving 2-DRLPs where in the first step, an82

approximation of the ambiguity set P is obtained using a finite set of observations.83

Then, in the second step, a deterministic min-max problem, i.e., Problem (1.1) where84

expectation operator is replaced by summation over the finite sample, is solved. Once85

again, using a finite sample to approximate the original sample space may result in86

similar out-of-sample performance as in the case for 2-SLP.87
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1.1. Contributions. In light of the above observations regarding the two-step88

external sampling procedure, the main contributions of this manuscript are as follows.89

1. A Sequential Sampling Algorithm: We present a sequential sampling approach90

for solving a 2-DRLP. We refer to this algorithm as the distributionally robust91

stochastic decomposition (DRSD) algorithm following its risk-neutral prede-92

cessor, the two-stage stochastic decomposition (SD) method [24] that was93

designed for 2-SLPs. The DRSD algorithm concurrently performs the simu-94

lation and optimization steps in every iteration. In the simulation step, new95

observation(s) are included to improve the representation of the ambiguity96

set. The sequential inclusion of observations results in approximate ambi-97

guity sets that evolve over the course of the algorithm. In the optimization98

step, the solution is updated in an online manner by solving second-stage99

programs for only the new observation(s) in each iteration. In this sense, the100

DRSD method is an internal sampling procedure. Moreover, the algorithmic101

design of the DRSD does not depend on any specific ambiguity set descrip-102

tion. Hence, this method is suitable for any (general) ambiguity set for which103

the distribution separation problem (1.2) can be solved efficiently.104

2. Convergence Analysis: The DRSD method is an inexact bundle method that105

creates outer linearization for the dynamically evolving approximation of the106

first-stage problem. We provide the asymptotic analysis of DRSD and identify107

conditions on ambiguity sets under which the sequential sampling approach108

identifies an optimal solution to the 2-DRLP in (1.1) with probability one.109

3. Computational Evidence of Performance: We provide the first set of exper-110

iments that illustrates the advantages of a sequential sampling approach to111

solving 2-DRLPs. We demonstrate these advantages through computational112

experiments conducted on well-known problems in the SP literature. These113

problems are modified to create distributionally robust variants with moment-114

based, `1-type Wasserstein, and `∞-type Wasserstein ambiguity sets.115

1.2. Related work. For 2-SLPs with finite support, including the SAA prob-116

lems, the L-shaped method due to Van Slyke and Wets [46] has proven to be very117

effective. Other algorithms for 2-SLPs such as the Dantzig-Wolfe decomposition [13]118

and the progressive hedging (PH) algorithm [36] also operate on problems with finite119

support. The well-established theory of SAA (see Chapter 5 in [43]) supports the ex-120

ternal sampling procedure for 2-SLP. The quality of the solution obtained by solving121

an SAA problem is assessed using the procedures developed, e.g., in [5]. When the122

quality of the SAA solution is not acceptable, a new SAA is constructed with a larger123

number of observations. Prior works, such as [6] and [38], provide rules on how to124

choose the sample sizes in a sequential SAA procedure.125

In contrast to the above, SD incorporates one new observation in every iteration126

to create approximations of the dynamically updating SAAs of (1.4). First proposed127

in [24], this method has seen significant development in the past three decades with128

the introduction of the quadratic proximal term [25], statistical optimality rules [27],129

and extensions to multistage stochastic linear programs [21]. The DRSD method130

extends the notion of sequential sampling of SD to DRO problems.131

The concept of DRO dates back to the work of Scarf [40], and has gained sig-132

nificant attention in recent years. Readers can refer to [34] for a comprehensive133

treatment on various aspects of the DRO. The algorithmic works on DRO are either134

decomposition-based or reformulation-based approaches. The decomposition-based135

methods for 2-DRLP mimic the two-stage SP approach of using a deterministic repre-136
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sentation of the sample space using a finite number of observations. As a consequence,137

the SP solution methods with suitable adaptation can be applied to solve the 2-DRLP138

problems. For instance, Breton and El Hachem [11] applied the PH algorithm for a139

2-DRLP model with a moment-based ambiguity set. Riis and Anderson [35] extended140

the L-shaped method for 2-DRLP with continuous recourse and moment-based ambi-141

guity set. Bansal et al. [1] extended the algorithm in [35], which they refer to as the142

distributionally robust (DR) L-shaped method, to solve 2-DRLPs, with an ambiguity143

set defined by a polytope. Further extensions of this decomposition approach are144

presented in [1] and [2] for two-stage DRO problems with mixed-binary recourse and145

disjunctive programs, respectively. Lately in [3], the authors considered two-stage146

DRO problems with p-order conic mixed-integer programs in the second stage and147

utilized scenario-based cuts to obtain linear programming equivalent (for p = 1) and148

convex approximations (for p ≥ 2) of the second-stage problems. We discuss key149

differences of DRSD with SD and DR L-shaped method in Remark 3.3 at the end of150

§3.151

Another predominant approach to solve 2-DRLP problems is to reformulate the152

distribution separation problem in (1.2) as a minimization problem, pose the problem153

in (1.1) as a single deterministic optimization problem, and use off-the-shelf deter-154

ministic optimization tools to solve the reformulation. For example, Shapiro and155

Kleywegt [44] and Shapiro and Ahmed [42] used such an approach for a 2-DRLP with156

moment matching set. They derived an equivalent stochastic program defined with a157

reference distribution. Bertsimas et al. [8] provided tight semidefinite programming158

reformulations for 2-DRLP where the ambiguity set is defined using multivariate dis-159

tributions with known first and second moments. Likewise, Hanasusanto and Kuhn160

[22] provided a conic programming reformulation for 2-DRLP where the ambiguity161

set comprises of a `2-type Wasserstein ball centered at a discrete distribution. Xie [47]162

provided similar reformulations to tractable convex programs for 2-DRLP problems163

with ambiguity set defined using `∞ Wasserstein metric. By taking the dual of the in-164

ner maximization problem, Love and Bayraksan [4] demonstrated that a 2-DRLP with165

the ambiguity set defined using φ-divergence and finite sample space is equivalent to166

2-SLP with a coherent risk measure. A similar reformulation approach is employed in167

[16] for ambiguity sets defined using Wasserstein and quadratic transport function on168

unbounded and hyper-rectangle support. Jiang and Guan [29] reduced the worst-case169

expectation in 2-DRLP, where the ambiguity set is defined using the `1-norm on the170

space of all (continuous and discrete) probability distributions, to a convex combina-171

tion of CVaR and an essential supremum. Under the assumption of finite support,172

[28] showed that a 2-DRLP with CVaR objective can be reformulated into a linear173

program. On the other hand, the two-stage DRO problem with a linear recourse was174

reformulated as a conic optimization problem under an assumption that second-stage175

decisions are affine functions of the random vector in [30]. When reformulations result176

in equivalent stochastic programs (as in [4, 28, 29, 42], for instance), an SAA of the177

reformulation is used to obtain an approximate problem. This approximate problem178

is amenable to standard cutting plane or bundle type methods prevalent in SP.179

Data-driven approaches for DRO have been presented for specific ambiguity sets.180

In [14], problems with ellipsoidal moment-based ambiguity set whose parameters are181

estimated using sampled data are addressed. Esfahani et al. [32] tackled data-driven182

problems with Wasserstein metric-based ambiguity sets with convex reformulations.183

In both these works, the authors provide finite-sample performance guarantees that184

probabilistically bound the gap between approximate and true DRO problems. Sun185

and Xu presented asymptotic convergence analysis of DRO problems with ambigu-186
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ity sets that are based on moments and mixture distributions constructed using a187

finite set of observations in [45]. A practical approach to incorporate the results of188

these works to identify a high-quality DRO solution is similar to the sequential SAA189

procedure for SP in [6]. Such an approach involves the following steps performed in190

series – obtaining a deterministic representation of ambiguity set using sampled obser-191

vations, applying appropriate reformulation, and solving the resulting deterministic192

optimization problem. If the quality of the solution is deemed insufficient, then the193

entire series of steps is repeated with an improved representation of the ambiguity set194

(possibly with a larger number of observations).195

Organization. We organize the remainder of the paper as follows. In §2, we196

present the two key ideas of the DRSD- the sequential approximation of the ambiguity197

set and the recourse function. We provide a detailed description of the DRSD method198

in §3. We show the convergence of the value functions and solutions generated by the199

DRSD method in §4. We present results of our computational experiments in §5, and200

finally we conclude and discuss potential future directions in §6.201

Notations and Definitions. We define the ambiguity sets over M, the set of202

all finite signed measures on the measurable space (Ω,F). A nonnegative measure203

that satisfies P (Ω) = 1 is a probability distribution. For probability distributions204

P, P ′ ∈ P, we define205

dist(P, P ′) := sup
F∈F

∣∣∣EP [F (ω̃)]− EP ′ [F (ω̃)]
∣∣∣(1.5)206

207

as the uniform distance of expectation, where F is a class of measurable functions.208

The above is the distance with ζ-structure that is used for stability analysis in SP209

[37]. The distance between a single probability distribution P to a set of distributions210

P is given as dist(P,P) = infP ′∈P dist(P, P ′). The distance between two sets of211

probability distributions P and P̂ is given as212

D(P, P̂) := sup
P∈P̂

dist(P,P).(1.6)213

214

Finally, the Hausdorff distance between P and P̂ is defined as215

H(P, P̂) := max{D(P, P̂), D(P̂,P)}.(1.7)216217

With suitable definitions for the set F , the distance in (1.5) accepts the bounded218

Lipschitz, the Kantorovich and the p-th order Fortet-Mourier metrics (see [37]).219

2. Approximating Ambigiuty Set and Recourse Function. In this section,220

we present the building blocks that we embed within a sequential sampling setting221

of the DRSD method. Specifically, we present procedures to approximate ambiguity222

set P and recourse function Q(x, ω) in an iteration of the DRSD. Going forward we223

make the following assumptions on the 2-DRLP models:224

(A1) The first-stage feasible region X is a non-empty and compact set.225

(A2) Q(·) satisfies relatively complete recourse. The dual feasible region of the226

recourse problem is a nonempty compact polyhedral set. The transfer (or227

technology) matrix satisfies supP∈P EP [T (ω̃)] <∞.228

(A3) The randomness only affects the right-hand sides of constraints in (1.3).229

(A4) The sample space Ω is a compact metric space and the ambiguity set P is230

nonempty.231

This manuscript is for review purposes only.



6 H. GANGAMMANAVAR AND M. BANSAL

As a consequence of (A2), the recourse function satisfies Q(x, ω̃) <∞ with probability232

one for all x ∈ X . It also implies that the second-stage feasible region, i.e., {y : Wy =233

r(ω) − T (ω)x, y ≥ 0}, is non-empty for all x ∈ X and every ω ∈ Ω. The non-234

empty dual feasible region D implies that there exists a constant L > −∞ such that235

Q(x, ω̃) > L, almost surely. Without loss of generality, we assume that L = 0. As a236

consequence of (A3), the cost coefficient vector g and the recourse matrix W are not237

affected by uncertainty. Problems that satisfy (A3) are said to have a fixed recourse.238

Finally, the compactness of the support Ω guarantees that every probability measure239

P ∈ P is tight.240

2.1. Approximating the Ambiguity Set. The DRO approach assumes only241

partial knowledge about the underlying uncertainty that is captured by a suitable242

description of the ambiguity set. An ambiguity set must capture the true distribution243

with an absolute or high degree of certainty and must be computationally manageable.244

The description of the ambiguity set involves parameters that are determined based245

on a practitioner’s risk preferences. The ambiguity set descriptions that are prevalent246

in the literature include moment-based ambiguity sets with linear constraints (e.g.,247

[15]) or conic constraints (e.g., [14]); Kantorovich distance or Wasserstein metric-248

based ambiguity sets [31]; ζ-structure metrics [48], φ-divergences such as χ2 distance249

and Kullback-Leibler divergence [7]; Prokhorov metrics [17], among others. In this250

section, we present steps to construct approximate ambiguity sets in a data-driven251

manner. We use moment-based and Wasserstein distance-based ambiguity sets to252

illustrate these steps.253

In a data-driven setting, the parameters used in the description of ambiguity sets254

are estimated using a finite set of independent observations which can either be past255

realizations of the random variable ω̃ or generated using computer simulations. We256

will denote such a sample by Ωk ⊆ Ω. When one observation is added to the sample257

in every iteration, we obtain Ωk = {ωj}kj=1. Naturally, we can view Ωk as a random258

sample and define the empirical frequency259

p̂k(ω) =
κ(ω)

k
for all ω ∈ Ωk,(2.1)260

261

where κ(ω) denotes the number of times observation ω is observed in the sample. Since262

in the sequential sampling setting, the sample set is updated within the optimization263

algorithm, it is worthwhile to note that the empirical frequency can be updated using264

the following recursive equations:265

p̂k(ω) =

 θkp̂k−1(ω) if ω ∈ Ωk−1, ω 6= ωk

θkp̂k−1(ω) + (1− θk) if ω ∈ Ωk−1, ω = ωk

(1− θk) if ω /∈ Ωk−1, ω = ωk.
(2.2)266

267

where θk = k−1
k . In general, when more than one observation is added to the sample268

in every iteration, we have θk ∈ (0, 1). We will succinctly denote the above using the269

operator Θk : R|Ωk−1| → R|Ωk|.270

In this paper, we focus on a setting where the ambiguity set P is replaced by a271

sequence of approximate ambiguity sets {P̂k}k>0 such that the following properties272

are satisfied: (B1) for any P ∈ P̂k−1, there exists θk ∈ (0, 1) such that Θk(P ) ∈ P̂k273

and (B2) H(P̂k,P) → 0 as k → ∞, almost surely. We show that approximate274

ambiguity sets for the moment-based ambiguity set Pmom and Wasserstein distance-275

based ambiguity set Pw can be constructed such that these properties are satisfied276

(Propositions 2.1 and 2.3, respectively).277
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Let Fk = σ(ωj | j ≤ k) be the σ-algebra generated by the observations in the278

sample Ωk. Notice that Fk−1 ⊆ Fk, and hence, {Fk}k≥1 is a filtration. We will279

define the approximate ambiguity sets over the measurable space (Ωk,Fk). These280

sets should be interpreted to include all distributions that could have been generated281

using the sample Ωk, which share a certain relationship with sample statistics. We282

will use Mk to denote the finite signed measures on (Ωk,Fk).283

2.1.1. Moment-based Ambiguity Sets. Given the first q moments associated284

with the random variable ω̃, the moment-based ambiguity set can be defined as285

Pmom =

{
P ∈M

∣∣∣∣ ∫Ω dP (ω̃) = 1,∫
Ω
ψi(ω̃)dP (ω̃) = bi i = 1, . . . , q

}
.(2.3)286

287

While the first constraint ensures the definition of a probability measure, the moment288

requirements are guaranteed by the second constraints. Here, ψi(ω̃) denotes a real289

valued measurable function on (Ω,F) and bi ∈ R is a scalar for i = 1, . . . , q. Existence290

of moments ensures that bi < ∞ for all i = 1, . . . , q. Notice that the description of291

the ambiguity set requires explicit knowledge of the following statistics: the support292

Ω and the moments bi for i = 1, . . . , q. In the data-driven setting, the support is293

approximated by Ωk and the sample moments b̂ki = (1/k)
∑k
j=1 ψi(ω

j) are used to294

define the following approximate ambiguity set295

P̂k
mom =

{
P ∈Mk

∣∣∣∣ ∑ω∈Ωk p(ω) = 1,∑
ω∈Ωk p(ω)ψi(ω) = b̂ki i = 1, . . . , q

}
.(2.4)296

297

The following result characterizes the relationship between distributions drawn298

from the above approximate ambiguity set, as well as asymptotic behavior of the299

sequence {P̂k
mom}k≥1.300

Proposition 2.1. For any P ∈ P̂k−1
mom, we have Θk(P ) ∈ P̂k

mom. Further, sup-301

pose P̂k
mom 6= ∅ for all k ≥ 1, H(P̂k

mom,Pmom)→ 0 as k →∞, almost surely.302

Proof. See Appendix §A.303

In the context of DRO, similar ambiguity sets have been studied in [9, 15] where304

only the first moment (i.e., q = 1) is considered. The above form of ambiguity set305

also relates to those used in [14, 35, 40, 45] where constraints were imposed only on306

the mean and covariance. In the data-driven setting of [14] and [45], the statistical307

estimates are used in constructing the approximate ambiguity set as in the case of308

(2.4). However, the ambiguity sets in these previous works are defined over the original309

sample space Ω, as opposed to Ωk that is used in (2.4). This marks a critical deviation310

in the way the approximate ambiguity sets are constructed.311

Remark 2.2. When moment information is available about the underlying distri-312

bution P ?, an approximate moment-based ambiguity set with constant parameters in313

(2.4) (i.e., with b̂ki = bi for all k) can be constructed. Such an approximate ambiguity314

set defined over Ωk is studied in [35]. Notice that these approximate ambiguity sets315

satisfy ∪k≥1P̂
k ⊆ P and P̂k ⊆ P̂k+1, for all k ≥ 1. Therefore, they satisfy the316

properties (i) and (ii) necessary for approximate ambiguity sets.317

2.1.2. Wasserstein distance-based Ambiguity Sets. We next present ap-318

proximations of another class of ambiguity sets that has gained significant attention319

in the DRO literature, viz., the Wasserstein distance-based ambiguity sets. Consider320

probability distributions µ1, µ2 ∈M, and a function ν : Ω×Ω→ R+∪{∞} such that321
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8 H. GANGAMMANAVAR AND M. BANSAL

ν is symmetric, ν
1
r (·) satisfies triangle inequality for 1 ≤ r < ∞, and ν(ω1, ω2) = 0322

whenever ω1 = ω2. If J (µ1, µ2) denotes the joint distribution of random vectors ω1323

and ω2 with marginals µ1 and µ2, respectively, then the Wasserstein metric of order324

r is given by325

dw(µ1, µ2) =

[
inf

η∈J (µ1,µ2)

{∫
Ω×Ω

νr(ω1, ω2)η(dω1, dω2)

}]1/r

.(2.5)326
327

In the above definition, the decision variable η ∈ J can be viewed as a plan to trans-328

port goods/mass from an entity whose spatial distribution is given by the measure µ1329

to another entity with spatial distribution µ2. Therefore, the dw(µ1, µ2) measures the330

optimal transport cost between the measures. Notice that an arbitrary norm ‖•‖r on331

Rd satisfies the requirement of the function ν(·). In our presentation, we will use the332

`1 Wasserstein metric. However, the definition of the approximate ambiguity sets and333

their use within the solution method are applicable to ambiguity sets defined using334

Wasserstein metric of higher orders. Using the `1 Wasserstein metric, we define an335

ambiguity set as follows:336

Pw = {P ∈M | dw(P, P ∗) ≤ ε}(2.6)337338

for a given ε > 0 and a reference distribution P ∗. In practice, the value of ε is chosen339

based on user’s risk preferences; a smaller value indicates lower risk aversion. As done340

in §2.1.1, we present approximate Wasserstein distance-based ambiguity sets defined341

over the measurable space (Ωk,Fk) as follows:342

P̂k
w = {P ∈Mk | dw(P, P̂ k) ≤ ε},(2.7)343344

where P̂ k = (p̂k(ω))ω∈Ωk . For this approximate ambiguity set, the distribution sepa-345

ration problem in (1.2) is a finite dimensional linear program:346

max
∑
ω∈Ωk

p(ω)Q(x, ω)(2.8a)347

subject to P ∈ P̂k
w =


P ∈Mk

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

∑
ω∈Ωk p(ω) = 1∑
ω′∈Ωk η(ω, ω′) = p(ω) ∀ω ∈ Ωk,∑
ω∈Ωk η(ω, ω′) = p̂k(ω′) ∀ω′ ∈ Ωk,∑
(ω,ω′)∈Ωk×Ωk ‖ω − ω′‖η(ω, ω′) ≤ ε

η(ω, ω′) ≥ 0 ∀ω, ω′ ∈ Ωk


.

(2.8b)

348

349

Note that when Wasserstein metric of order r > 1 is used in the definition of the350

ambiguity sets, the foregoing optimization problem remains a finite dimensional linear351

program. In this case, the coefficients ‖ω − ω′‖ and right-hand side ε in the fourth352

set of constraints in (2.8b) must be replaced by ‖ω − ω′‖r and εr, respectively. The353

following result characterizes the distributions drawn from the approximate ambiguity354

sets of the form in (2.7), or equivalently (2.8b).355

Proposition 2.3. Under compactness of the support set Ω ⊂ Rd, i.e., (A4),356

with d > 2, the sequence of Wasserstein distance-based approximate ambiguity sets357

satisfies the following properties (i) for any P ∈ P̂k−1
w , we have Θk(P ) ∈ P̂k

w, and358

(ii) H(P̂k
w,Pw)→ 0 as k →∞, almost surely.359
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Proof. See appendix §A.360

Note that, as in the case of moment-based ambiguity set, we also define Wasserstein361

distance-based approximate ambiguity set over an approximation of the true sample362

space, i.e., Ωk. This approach precludes the need for exact knowledge of the sample363

space and allows us to depend only on what is known until iteration k.364

Remark 2.4. In [32], an approach that involves solving a sequence of DRO prob-365

lems is used to tackle the risk-neutral 2-SLP problem (1.4). They use approximate366

ambiguity set to be a ball constructed in the space of probability distributions that367

are defined over the sample space Ω and whose radius reduces with an increase in368

the number of observations. Using Wasserstein balls of shrinking radii, the authors369

of [32] show that the optimal value of the sequence of DRO problems converges to370

the optimal value of the expectation-valued objective in (1.4) associated with the true371

distribution P ?. A similar approach of involving a sequence of DRO problems is used372

in [48] to solve (1.4), albeit using ambiguity sets with ζ−structure. In contrast to373

these works, our goal is to solve the DRO problem in (1.1). Therefore, we use a374

constant radius for all k ≥ 1 to define the approximate ambiguity set in (2.7).375

2.2. Approximating the Recourse Problem. Cutting plane methods for the376

2-SLPs use an outer linearization-based approximation of the first-stage objective377

function in (1.4). In such algorithms, the challenging aspect of computing the ex-378

pectation is addressed by taking advantage of the structure of the recourse problem379

(1.3). Specifically, for a given ω, the recourse value Q(·, ω) is known to be convex in380

the right-hand side parameters that includes the first-stage decision vector x. Addi-381

tionally, if (A2) holds, then the function Q(·, ω) is polyhedral. Under assumptions382

(A2) and (A4), this structural property of convexity extends to the expected recourse383

value Q(x).384

Due to the strong duality of linear programs, the recourse value is also equal to385

the optimal value of the dual of (1.3), i.e.,386

Q(x, ω) = max π>[r(ω)− T (ω)x](2.9)387

subject to π ∈ D := {π | W>π ≤ g}.388389

Due to (A2) and (A4), the dual feasible region D is a polytope that is not impacted390

by the uncertainty. If Π ⊆ D denotes the set of all extreme points of the polytope391

D, then the recourse value can also be expressed as the pointwise maximum of affine392

functions computed using elements of set Π:393

Q(x, ω) = max
π∈D

π>[r(ω)− T (ω)x].(2.10)394
395

The outer linearization approaches tend to approximate the above form of recourse396

function by identifying the extreme points (optimal solutions to (2.9)) at a sequence of397

candidate (or trial) solutions {xk}, and generating the corresponding affine functions.398

If π(xk, ω) is an optimal dual obtained by solving (2.9) with xk as input, then the399

affine function αk(ω) + (βk(ω))>x is obtained by computing the coefficients αk(ω) =400

(π(xk, ω))>r(ω) and βk(ω) = T (ω)>π(xk, ω). Following linear programming duality,401

notice that this affine function is a supporting hyperplane to Q(x, ω) at xk, and lower402

bounds the function at every other x ∈ X .403

If the support Ω is finite, then one can solve a dual subproblem for all ω ∈ Ω404

with the candidate solution as input, generate the affine functions, and collate them405

together to obtain an approximate first-stage objective function. This is the essence406
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10 H. GANGAMMANAVAR AND M. BANSAL

of the L-shaped method applied to 2-SLP in (1.4). In each iteration of the L-shaped407

method, the affine functions generated using a candidate solution xk and information408

gathered from individual observations are weighed by the probability density of the409

observation to update the approximation of the first-stage objective function. The L-410

shaped method can also be applied to the SAA of the 2-SLP with continuous sample411

space Ω that uses a sample ΩN ⊂ Ω of finite size N . A similar approximation strategy412

is used in the DR L-shaped method for 2-DRLP problems [1, 35].413

Alternatively, we can consider the following approximation of the recourse func-414

tion expressed in the form given in (2.10):415

Qk(x, ω) = max
π∈Πk

π>[r(ω)− C(ω)x].(2.11)416
417

Notice that the above approximation is built using only a subset Πk ⊂ Π of extreme418

points, and therefore, satisfies Qk(x, ω) ≤ Q(x, ω). Since Q(x, ω) ≥ 0, we begin419

with Π0 = {0}. Subsequently, we construct a sequence of sets {Πk} such that Π0 ⊆420

. . .Πk ⊆ Πk+1 ⊆ . . . ⊂ Π that ensures Qk(x, ω) ≥ 0 for all k. The following result421

from [24] captures the behavior of the sequence of approximation {Qk}.422

Proposition 2.5. The sequence {Qk(x, ω)}k≥1 converges uniformly to a contin-423

uous function on X for any ω ∈ Ω.424

Proof. See Appendix A.425

The approximation of the form in (2.11) is one of the principal features of the426

SD algorithm (see [24, 25]). While the L-shaped and DR L-shaped methods require427

finite support for ω̃, SD is applicable even for problems with continuous support. The428

algorithm uses an “incremental” SAA for the first-stage objective function by adding429

one new observation in each iteration. Therefore, the first-stage objective function430

approximation used in SD is built using the recourse problem approximation in (2.11)431

and the incremental SAA. This approximation is given by:432

Qk(x) = c>x+
1

k

k∑
j=1

Qk(x, ωj).(2.12)433

434

The affine functions generated in SD provide an outer linearization for the approxi-435

mation in (2.12). The sequence of sets that grow monotonically in size, viz. {Πk}, is436

generated by adding one new vertex to the previous set Πk−1 to obtain the updated437

set Πk. The newly added vertex is an optimal dual solution obtained by solving (2.9)438

with the most recent observation ωk and candidate solution xk as input.439

We refer the reader to [10], [1, 35], and [24, 26] for the a detailed exposition of the440

L-shaped, the DR L-Shaped, and the SD methods, respectively. Here, we only note the441

key differences between these methods. Firstly, the sample used in the (DR) L-shaped442

method is fixed before the optimization. In SD, this sample is updated dynamically443

throughout the course of the algorithm. Secondly, in the (DR) L-shaped method,444

subproblems corresponding to the current iterate and all observations in the sample445

are solved exactly. The resulting optimal dual solutions are used to compute the affine446

lower bounding functions (cuts). On the other hand, in SD, only two subproblems447

corresponding to the latest observation are solved exactly, while the subproblems448

corresponding to other observations in the sample use the approximation in (2.11).449

3. Distributionally Robust Stochastic Decomposition. In this section, we450

provide a detailed description of the DRSD algorithm. The pseudocode of the DRSD451
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Algorithm 3.1 Distributionally Robust Stochastic Decomposition

1: Input: Incumbent solution x̂0 ∈ X ; initial sample Ω0 ⊆ Ω; stopping tolerance
τ > 0; γ ∈ (0, 1), θ1 = 0, and maximum and minimum iterations kmax > kmin > 1.

2: Initialization: Set iteration counter k ← 1; Π0 = ∅; L0 = ∅, and f0(x) = 0.
3: while (k ≤ kmax) do
4: Solve the master problem (3.1) to obtain a candidate solution xk.
5: if k > kmin and fk−1(x̂k−1)− fk−1(xk) < τfk−1(x̂k−1) then, Go to Line 28.
6: end if
7: Generate a scenario ωk ∈ Ω to get sample Ωk ← Ωk−1 ∪ {ωk}.
8: Solve the second-stage linear program (1.3) with (xk, ωk) as input;
9: Obtain the optimal value Q(xk, ωk) and optimal dual solution π(xk, ωk);

10: Update dual vertex set Πk ← Πk−1 ∪ {π(xk, ωk)}.
11: for ω ∈ Ωk \ {ωk} do
12: Use the argmax procedure (3.2) to identify dual vertex π(xk, ωk);
13: Store Qk(xk, ω) = (π(xk, ω))>[r(ω)− T (ω)xk].
14: end for
15: Solve the distribution separation problem using the ambiguity set P̂k and
{Qk(xk, ω)}ω∈Ωk to get an extremal distribution P k := (pk(ω))ω∈Ωk .

16: Derive affine function `kk(x) = αkk + (βkk )>x using {π(xk, ω)}ω∈Ωk and P k to
get lower bound approximation of Qk(x) as in (3.5);

17: Perform Steps 8-16 with x̂k−1 (incumbent solution) to obtain ˆ̀k
k(·).

18: for `k−1
j ∈ Lk−1 do

19: Update previously generated affine functions `k−1
j (x):

αkj = θkαk−1
j and βkj = θkβk−1

j ;

20: Set `kj (x) = αkj + (βkj )>x that provides lower bound approx. of Qk(x);
21: end for
22: Build a collection of these affine functions, denoted by Lk;
23: Update approximation of the first-stage objective function:

c>x+ Qk(x) ≥ fk(x) = c>x+ max
j∈Lk

{αkj + (βkj )>x};

24: If incumbent update rule (3.9) is satisfied, then set x̂k ← xk and x̂k ← x̂k−1,
otherwise.

25: Update the master problem (3.1) by replacing fk−1(x) with fk(x);
26: k ← k + 1; θk ← (k − 1)/k
27: end while
28: return Incumbent solution x̂k and objective function estimate fk(x̂k).

method is given in Algorithm 3.1. In the following, we discuss the main steps of the452

algorithm in iteration k (Steps 4-26 of Algorithm 3.1). At the beginning of iteration453

k, we have a certain approximation of the first-stage objective function that we denote454

as fk−1(x), a finite set of observations Ωk−1 and an incumbent solution x̂k−1. We use455

the term incumbent solution to refer to the best solution discovered by the algorithm456

until iteration k. The solution identified in the current iteration is referred to as the457

candidate solution and denoted as xk (without •̂).458

Iteration k begins by first identifying the candidate solution by solving the fol-459
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12 H. GANGAMMANAVAR AND M. BANSAL

lowing the master problem (Step 4):460

xk ∈ arg min {fk−1(x) | x ∈ X}.(3.1)461462

Following this, a new observation ωk ∈ Ω is obtained and added to the current sample463

of observations Ωk−1 to get Ωk = Ωk−1 ∪ {ωk} (Step 7).464

In order to build the first-stage objective function approximation, we rely upon465

the recourse function approximation presented in Section 2.2. For the most recent466

observation ωk and the candidate solution xk, we evaluate the recourse function value467

Q(xk, ωk) by solving (1.3), and obtain the dual optimum solution π(xk, ωk) in Steps468

8–10. These dual vectors are added to a set Πk−1 of previously discovered optimal469

dual vectors. In other words, we recursively update Πk ← Πk−1∪{π(xk, ωk)}. For all470

other observations (ω ∈ Ωk, ω 6= ωk), we identify a dual vector in Πk that provides the471

best lower bounding approximation at Q(xk, ω) using the following operation (Steps472

12–13):473

(3.2) π(xk, ω) ∈ arg max {π>[r(ω)− T (ω)xk] | π ∈ Πk}.474

Note that the calculations in (3.2) are carried out only for previous observations as
π(xk, ωk) provides the best lower bound at Q(xk, ωk). Further, notice that

π(xk, ω)>[r(ω)− T (ω)xk] = Qk(xk, ω),

the approximate recourse function value at xk defined in (2.11), for all ω ∈ Ωk, and475

Qk(xk, ωk) = Q(xk, ωk).476

Using {Qk(xk, ωj)}kj=1, we solve a distribution separation problem (in Step 15):477

Qk(xk) = max

{ ∑
ω∈Ωk

p(ω)Qk(xk, ω) | p(ω) ∈ P̂k

}
.(3.3)478

479

Let P k = (pk(ω))ω∈Ωk denote an optimal solution of the above problem which we480

identify as a maximal/extremal probability distribution. Since the problem is solved481

over measuresMk that are defined only over the observed set Ωk, the maximal proba-482

bility distribution has weights pk(ω) for ω ∈ Ωk, and pk(ω) = 0 for ω ∈ Ω\Ωk. Notice483

that the problem in (1.2) differs from the distribution separation problem (3.3) as the484

latter uses the recourse function approximation Qk(·) and approximate ambiguity set485

P̂k as opposed to the true recourse function Q(·) and ambiguity set P, respectively.486

For the moment-based and Wasserstein distance-based ambiguity sets (discussed in487

Section 2.1), the distribution separation problem is a deterministic linear program. In488

general, the distribution separation problems associated with well-known ambiguity489

sets remain deterministic convex optimization problems [34], and off-the-shelf solvers490

can be used to obtain the extremal distribution.491

In Step 16 of Algorithm 3.1, we use the dual vectors {π(xk, ωj)}j≤k and the492

maximal probability distribution P k to generate a lower bounding affine function:493

Qk(x) = max
P∈P̂k

EP [Qk(x, ω̃)] ≥
∑
ω∈Ωk

pk(ω) · (π(xk, ω))>[r(ω)− T (ω)x],(3.4)494

495

for the worst-case expected recourse function measured with respect to the maximal496

probability distribution P k ∈ P̂k. We denote the coefficients of the affine function on497

the right-hand side of (3.4) by498

αkk =
∑
ω∈Ωk

pk(ω)π(xk, ω)>r(ω) and βkk = −
∑
ω∈Ωk

pk(ω)T (ω)>π(xk, ω),(3.5)499

500
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and succinctly write the affine function as `kk(x) = αkk + (βkk )>x. Similar calculations501

are carried out using the incumbent solution x̂k−1 to identify a maximal probabil-502

ity distribution and a lower bounding affine function resulting in the affine function503
ˆ̀k
k(x) = α̂kk + (β̂kk )>x (Step 17). Note that we use two indices for the cut coefficients504

(α, β) and the affine function `. The superscript indicates the current iteration, while505

the subscript indicates the iteration when the quantities were first computed. Since,506

one observation is added to Ωk in every iteration, the subscript also indicates the507

number of observations used in computing the quantities.508

While the latest affine functions provide a lower bound for Qk, the affine func-509

tions generated in previous iteration are not guaranteed to lower bound Qk. To see510

this, let us consider the moment-based approximate ambiguity sets {P̂k
mom}k≥1. Let511

P jmom ∈ P̂j
mom be the maximal distribution identified in an iteration j < k which was512

used to compute the affine function `jj(x). By assigning pj(ω) = 0 for all new obser-513

vations encountered after iteration j, i.e., ω ∈ Ωk \Ωj , we can construct a probability514

distribution P̄ = ((pj(ω))ω∈Ωj , (0)ω∈Ωk\Ωj ) ∈ R|Ω
k|

+ . This reconstructed distribution515

satisfies
∑
ω∈Ωk p̄(ω) = 1. However, it is easy to see that

∑
ω∈Ωk ψi(ω)p̄(ω) = b̂ji 6= b̂ki516

for all i = 1, . . . , q. Therefore, P̄ /∈ Pk. In other words, while the coefficients (αjj , β
j
j )517

are F j-measurable, the corresponding measure is not feasible to the approximate am-518

biguity set Pk. Therefore, `jj(x) is not a valid lower bound to Qk. The arguments for519

the Wasserstein-based approximate ambiguity set are more involved, but persistence520

of a similar issue can be demonstrated.521

To address this, we recursively update the previously generated affine functions522

`k−1
j (x) = αk−1

j + (βk−1
j )>x for j < k as follows (Steps 18 - 21):523

αkj = θkαk−1
j , βkj = θkβk−1

j , and `kj (x) = αkj + (βkj )>x for all j < k,(3.6)524
525

such that `kj (x) provides lower bound approximation of Qk(x) for all j ∈ {1, . . . , k−1}.526

Similarly, we update the affine functions ˆ̀k
j (x), j < k, associated with incumbent527

solution. The candidate and the incumbent affine functions (`kk(x) and ˆ̀k
k(x), respec-528

tively), as well as the updated collection of previously generated affine functions are529

used to build the set of affine functions which we denote by Lk (Step 22). Using530

this collection of affine functions Lk, we update the approximation of the first-stage531

objective function in Step 23, as follows:532

fk(x) = c>x+ max
`∈Lk

{`(x)}.(3.7)533
534

The lower bounding property of this first-stage objective function approximation is535

captured in the following result.536

Theorem 3.1. Under assumption (A2), the first-stage objective function approx-537

imation in (3.7) satisfies538

fk(x) ≤ c>x+ Qk(x) for all x ∈ X and k ≥ 1.539540

Proof. For the non-empty approximate ambiguity set P̂1 of ambiguity set P, the541

construction of the affine function ensures that `11(x) ≤ Q1(x). Now assume that542

`(x) ≤ Qk−1(x) for all ` ∈ Lk−1 and k > 1. The maximal nature of the probability543

distribution P k satisfies:544 ∑
ω∈Ωk

pk(ω)Qk(x, ω) ≥
∑
ω∈Ωk

p(ω)Qk(x, ω) ∀P ∈ P̂k.545

546
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Using above and the monotone property of the approximate recourse function, we547

have548 ∑
ω∈Ωk

pk(ω)Qk(x, ω) ≥
∑
ω∈Ωk

p(ω)Qk−1(x, ω)549

=
∑

ω∈Ωk\{ωk}

p(ω)Qk−1(x, ω) + p(ωk)Qk−1(x, ωk),(3.8)550

551

for all {p(ω)}ω∈Ωk ∈ P̂k. Based on the properties of P and {P̂k}k≥1 (similar to552

Propositions 2.1 and 2.3), we know that for every P ∈ P̂k−1 we can construct a553

probability distribution in Pk using the mapping Θk defined by (2.2). Considering a554

probability distribution P ′ = {p′(ω)}ω∈Ωk−1 ∈ P̂k−1 we have Θk(P ′) ∈ P̂k and the555

inequality (3.8) reduces to556 ∑
ω∈Ωk

pk(ω)Qk(x, ω) ≥
∑

ω∈Ωk\{ωk}

[θkp′(ω)Qk−1(x, ω)] + [θkp′(ωk) + (1− θk)]Qk−1(x, ωk)557

= θk
[ ∑
ω∈Ωk−1

p′(ω)Qk−1(x, ω)

]
+ (1− θk)Qk−1(x, ωk)558

≥ θk
[ ∑
ω∈Ωk−1

p′(ω)Qk−1(x, ω)

]
.559

560

The last inequality is due to assumption (A2), i.e., Q(x, ωk) ≥ 0 and the construction561

of recourse function approximation Qk described in §2.2. Since `(x) lower bounds the562

term in bracket, we have563 ∑
ω∈Ωk

pk(ω)Qk(x, ω) ≥ θk`(x).564

565

Using the same arguments for all ` ∈ Lk−1, and the fact that the `kk(x) and ˆ̀k
k(x) are566

constructed as lower bounds to the Qk, we have fk(x) ≤ c>x+Qk(x). This completes567

the proof by induction.568

Once the approximation (3.7) is updated, the performance of the candidate so-569

lution is compared relative to the incumbent solution (Step 24). This comparison is570

performed by verifying if the following inequality is satisfied:571

fk(xk)− fk(x̂k−1) < γ[fk−1(xk)− fk−1(x̂k−1)],(3.9)572573

where parameter γ ∈ (0, 1). If so, the candidate solution is designated to be the574

next incumbent solution, i.e., x̂k = xk. If the inequality is not satisfied, the previous575

incumbent solution is retained as x̂k = x̂k−1. This completes a DRSD iteration.576

Remark 3.2. We can extend the algorithm design for 2-DRLPs where the rela-577

tively complete recourse assumption of (A2) and/or assumption (A3) is not satisfied.578

For problems where relatively complete recourse condition is not met, a candidate579

solution may lead to one or more subproblems to be infeasible. In this case, the dual580

extreme rays can be used to compute a feasibility cut that is included in the first-stage581

approximation. The argmax procedure in (3.2) is only valid when assumption (A3)582

is satisfied. In problems where the uncertainty also affects the cost coefficients, the583

argmax procedure presented in [20] can be utilized. These algorithmic enhancements584

can be incorporated without affecting the convergence properties of DRSD.585
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Remark 3.3 (Relation between DRSD, SD, and DR L-shaped Method). We586

close this section by identifying the key differences in the DRSD algorithm design587

when compared to SD and DR L-shaped methods.588

• There are two main differences between DRSD and the DR L-Shaped method.589

Firstly, the DR L-shaped method operates with a deterministic representation of590

the ambiguity set computed using a fixed sample of observations, an input to the591

algorithm. In contrast, a new observation is added (Line 7) in every iteration592

of DRSD to improve the approximation of the ambiguity set. Secondly, every593

iteration of the DR L-shaped method involves solving a subproblem corresponding594

to each observation used in the ambiguity set representation. On the other hand,595

in DRSD, only two subproblems corresponding to latest observation ωk are solved596

to optimality, and the argmax procedure is used for the other observations.597

• While DRSD is designed to address the 2-DRLP problem (1.1), the SD and its vari-598

ants [24, 25, 41] are for risk-neutral 2-SLP. This generalization introduces another599

layer of approximation to SD, viz., the approximation of ambiguity sets. The algo-600

rithmic enhancements necessary to address this new layer of approximations make601

the DRSD significantly different from its risk-neutral predecessors. For instance,602

we need to solve an approximate distribution separation problem in every iteration603

(Line 15). The cut coefficients are computed and updated (in Lines 18-21) in a604

manner that is consistent with the updates carried out to approximate the ambi-605

guity sets (see propositions 2.1 and 2.3, and coefficient updates in (3.6)). The cut606

updates that are undertaken in SD only need to be consistent with the updates in607

empirical distribution. This critical difference in cut computations also introduces608

significant differences in the convergence analysis of DRSD that we present next.609

4. Convergence Analysis. In this section we provide the convergence result of610

the sequential sampling-based approach to solve DRO problems. In order to facilitate611

the exposition of our theoretical results, we will define certain quantities for notational612

convenience that are not necessarily computed during the course of the algorithm. Our613

convergence results are built upon stability analyses presented in [45] and convergence614

analysis of the SD algorithm in [24].615

We define a function over the approximate ambiguity set using the recourse func-616

tion Q(·, ·), that is617

gk(x) := c>x+ max
P∈P̂k

EP [Q(x, ω̃)].(4.1)618

619

We begin by analyzing the behavior of the sequence {gk}k≥1 as k →∞. In particular,620

we will assess the sequence of function evaluations at a converging subsequence of621

first-stage solutions. The result is captured in the following proposition.622

Proposition 4.1. Suppose {x̂kn} denotes a subsequence of {x̂k} such that x̂kn →623

x̄, then limn→∞ |gkn(x̂kn)− f(x̄)| = 0, with probability one.624

Proof. Consider an approximate ambiguity set P̂k. For i = 1, 2 and xi ∈ X , let625

P (xi) ∈ arg maxP∈P̂k{EP [Q(xi, ω̃)]}. Then,626

gk(x1) = c>x1+EP (x1)[Q(x1, ω̃)] ≥ c>x1 + EP (x2)[Q(x1, ω̃)]627

= c>x2 + EP (x2)[Q(x2, ω̃)] + c>(x1 − x2)+628

EP (x2)[Q(x1, ω̃)]− EP (x2)[Q(x2, ω̃)]629

= gk(x2) + c>(x1 − x2) + EP (x2)[Q(x1, ω̃)]− EP (x2)[Q(x2, ω̃)].630631
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The inequality in the above follows from optimality of P (x1). The above implies that632

gk(x2)− gk(x1) ≤ c>(x2 − x1) + EP (x2)[Q(x2, ω̃)]− EP (x2)[Q(x1, ω̃)]633

≤ |c>(x2 − x1)|+
∣∣∣∣EP (x2)[Q(x2, ω̃)]− EP (x2)[Q(x1, ω̃)]

∣∣∣∣634
635

The second relationship is due to the triangular inequality. Under assumption (A2),636

the recourse function Q(x, ω̃) is a uniformly Lipschitz continuous function, with prob-637

ability one (see Chapter 2 in [43] for details). This implies that there exists a constant638

C such that |EP [Q(x1, ω̃)]−EP [Q(x2, ω̃)]| ≤ C‖x1−x2‖ for any probability distribu-639

tion P . As a result,640

gk(x2)− gk(x1) ≤ (‖c‖+ C)‖x2 − x1‖.(4.2)641642

Starting with x2 and using the same arguments, we have643

gk(x1)− gk(x2) ≤ (‖c‖+ C)‖x1 − x2‖.(4.3)644645

Therefore, the function gk(x) is equi-continuous on x ∈ X . Now consider ambiguity646

sets P and P̂k. Note that for all x ∈ X ,647

|f(x)− gk(x)| =
∣∣∣∣max
P∈P

EP [Q(x, ω̃)]− max
P ′∈P̂k

EP ′ [Q(x, ω̃)]

∣∣∣∣648

≤ max
P∈P

min
P ′∈P̂k

∣∣EP [Q(x, ω̃)]− EP ′ [Q(x, ω̃)]
∣∣649

≤ max
P∈P

min
P ′∈P̂k

sup
x∈X

∣∣EP [Q(x, ω̃)]− EP ′ [Q(x, ω̃)]
∣∣.650

651

Using the definition of deviation (1.6) and Hausdorff distance (1.7) between ambiguity652

sets P and P̂k, we have653

|f(x)− gk(x)| ≤ D(P, P̂k) ≤ H(P, P̂k).(4.4)654655

For x̂kn and x̄, using the triangle inequality we have656

|f(x̄)− gkn(x̂kn)| ≤ |f(x̄)− gkn(x̄)|+ |gkn(x̄)− gkn(x̂kn)|657

≤ H(P, P̂kn) + (‖c‖+ C)‖x̄− x̂kn‖.658659

The second inequality is justified by combining (4.2), (4.3), and (4.4). As n → ∞,660

H(P, P̂kn) → 0 due to property (B2) of the considered family of ambiguity sets.661

Furthermore, since x̂kn → x̄, the right-hand side of the above inequality vanishes.662

Therefore, we conclude that gkn(x̂kn)→ f(x̄) as n→∞.663

Notice that the behavior of the approximate ambiguity sets defined in §2.1, in664

particular, the condition H(P, P̂k) → 0 as k → ∞ plays a central role in the above665

proof. Recall that for the moment and Wasserstein distance-based ambiguity sets, the666

condition is established in propositions 2.1 and 2.3, respectively. It is also worthwhile667

to note that under the foregoing conditions, (4.4) also implies uniform convergence of668

the sequence {gk} to f(x), with probability one.669

The above result applies to any algorithm that generates a converging sequence of670

iterates {xk} and a corresponding sequence of extremal distributions. Such an algo-671

rithm is guaranteed to exhibit convergence to the optimal distributionally robust ob-672

jective function value. Therefore, this result is applicable to the sequence of instances673
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constructed using external sampling and solved, for example, using reformulation-674

based methods. Such an approach was adopted in [35] and [45]. The analysis in [35]675

relies upon two rather restrictive assumptions. The first assumption is that for all676

P ∈ P, there exists a sequence of measures {P k} such that P k ∈ P̂k and converges677

weakly to P . The second assumption requires the approximate ambiguity sets to be678

strict subsets of the true ambiguity set, i.e., P̂k ⊂ P. Both of these assumptions are679

very difficult to satisfy in a data-driven setting (also see Remark 2.2).680

The analysis in [45], on the other hand, does not make the above assumptions.681

Therefore, their analysis is more broadly applicable in settings where external sam-682

pling is used to generate Ωk. DRO instances are constructed based on statistics683

estimated using Ωk and solved to optimality for each k ≥ 1. They show the conver-684

gence of optimal objective function values and optimal solution sets of approximate685

problems to the optimal objective function value and solutions of the true DRO prob-686

lem, respectively. In this regard, the result in Proposition 4.1 can alternatively be687

derived using Theorem 1(i) in [45]. While the above function is not computed during688

the course of the sequential sampling algorithm, it provides the necessary benchmark689

for our convergence analysis.690

One of the main point of deviation in our analysis stems from the fact that we691

use the objective function approximations that are built based on the approximate692

recourse function in (2.11). In order to study the piecewise affine approximation of693

the first-stage objective function, we introduce another benchmark function694

φk(x) := c>x+ max
P∈P̂k

EP [Qk(x, ω̃)].(4.5)695

696

Notice that the above function uses the approximations for the ambiguity set (as in the697

case of (4.1)) as well as the approximation of the recourse function. This construction698

ensures that φk(x) ≤ gk(x) for all x ∈ X and k ≥ 1, which follows from the fact that699

Qk(x, ω̃) ≤ Q(x, ω̃), almost surely. Further, the result in Theorem 3.1 ensures that700

fk(x) ≤ φk(x). Putting these together, we obtain the following relationship:701

fk(x) ≤ φk(x) ≤ gk(x) ∀x ∈ X , k ≥ 1.(4.6)702703

While the previous proposition was focused on the upper limit in the above rela-704

tionship, we present the asymptotic behavior of the {fk} sequence in the following705

results.706

Lemma 4.2. Suppose {x̂kn} denotes a subsequence of {x̂k} such that x̂kn → x̄.707

Then, limn→∞ fkn(x̂kn)− f(x̄) = 0, with probability one.708

Proof. From Proposition 4.1, we have limn→∞ |f(x̄)− gkn(x̂kn)| = 0. Therefore,709

there exists N1 <∞ and ε1 > 0 such that710 ∣∣∣∣max
P∈P

EP [Q(x̄, ω̃)]− max
P∈P̂kn

EP [Q(x̂kn , ω̃)]

∣∣∣∣ < ε1/2 ∀n > N1.(4.7)711

712

Now consider,713 ∣∣∣∣ max
P∈P̂kn

EP [Q(x̂kn , ω̃)]− max
P∈P̂kn

EP [Qkn(x̂kn , ω̃)]

∣∣∣∣714

≤ max
P∈P̂kn

∣∣EP [Q(x̂kn , ω̃)]− EP [Qkn(x̂kn , ω̃)]
∣∣715

= max
P∈P̂kn

EP [|Q(x̂kn , ω̃)−Qkn(x̂kn , ω̃)|].716

717
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The last equality follows from the fact thatQ(x, ω̃) ≥ Qk(x, ω̃) for all x ∈ X and k ≥ 1,718

almost surely. Moreover, because of the uniform convergence of {Qk} (Proposition719

2.5), the sequence of approximate functions {φk} also convergences uniformly. This720

implies that, there exists N2 <∞ such that for all n > N2,721 ∣∣∣∣ max
P∈P̂kn

EP [Q(x̂kn , ω̃)]− max
P∈P̂kn

EP [Qkn(x̂kn , ω̃)]

∣∣∣∣ < ε1/2.(4.8)722

723

Let N = max{N1, N2}. Using (4.7) and (4.8), we have for all n > N ,724 ∣∣∣∣max
P∈P

EP [Q(x̄, ω̃)]− max
P∈P̂kn

EP [Qkn(xkn , ω̃)]

∣∣∣∣ < ε1.725

726

This implies that |f(x̄) − φkn(x̂kn)| → 0 as n → ∞. Based on (3.2), we have727

Qkn(x̂kn , ω) = (π(x̂kn , ω))>[r(ω) − T (ω)x̂kn ] ≥ (π(x̂kn , ω))>[r(ω) − T (ω)x] for all728

x ∈ X and ω ∈ Ωkn . Let729

αknkn =
∑

ω∈Ωkn

pkn(ω)(π(x̂kn , ω))>r(ω) and βknkn = −
∑

ω∈Ωkn

pkn(ω)T (ω)>π(x̂kn , ω),730

731

where {pkn(ω)}ω∈Ωkn is an optimal solution of the distributional separation problem732

(3.3) where index k is replaced by kn. Then, the affine function αknkn + (c + βknkn )>x733

provides a lower bound approximation for function φkn(x), i.e.,734

φkn(x) ≥ αknkn + (c+ βknkn )>x for all x ∈ X ,735
736

with strict equality holding only at x̂kn . Therefore, using the definition of fk(x) we737

have limn→∞ αknkn + (c + βknkn )>x̂kn = limn→∞ fkn(x̂kn) = limn→∞ φkn(x̂kn) = f(x̄),738

almost surely. This completes the proof.739

The above result characterizes the behavior of the sequence of affine functions740

generated during the course of the algorithm. In particular, the sequence {fk(x̂k)}k≥1741

accumulates at the objective value of the original DRO problem (1.1). Recall that the742

candidate solution xk is a minimizer of fk−1(x) and an affine function is generated743

at this point such that fk(xk) = φk(xk) in all iterations k ≥ 1. However, due to744

the update procedure in (3.6) the quality of the estimates at xk gradually diminishes745

leading to a large value for (φk(xk)−fk(xk)) as k increases. This emphasizes the role746

of the incumbent solution and computing the incumbent affine function ˆ̀(x) during747

the course of the algorithm. By updating the incumbent solution and frequently748

reevaluating the affine functions at the incumbent solution, we can ensure that the749

approximation is “sufficiently good” in the neighborhood of the incumbent solution.750

In order to assess the improvement of approximation quality, we define751

δk := fk−1(xk)− fk−1(x̂k−1) ≤ 0 ∀k ≥ 1.(4.9)752753

The inequality follows from the optimality of xk with respect to the objective func-754

tion fk−1. The quantity δk measures the error in objective function estimate at the755

candidate solution with respect to the estimate at the current incumbent solution.756

The following result captures the asymptotic behavior of this error term.757

Lemma 4.3. Let K denote a sequence of iterations where the incumbent solution758

changes. There exists a subsequence of iterations, denoted as K∗ ⊆ K, such that759

limk∈K∗ δ
k = 0.760
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Proof. We will consider two cases depending on whether the set K is finite or not.761

First, suppose that |K| is not finite. By the incumbent update rule and (4.9),762

fkn(xkn)− fkn(x̂kn−1) < γ[fkn−1(xkn)− fkn−1(x̂kn−1)] = γδkn ≤ 0 ∀kn ∈ K.763764

Subsequently, we have lim supn→∞ δkn ≤ 0. Since xkn = x̂kn and x̂kn−1 = x̂kn−1 , we765

have766

fkn(x̂kn)− fkn(x̂kn−1) ≤ γδkn ≤ 0.767768

The left-hand side of the above inequality captures the improvement in the objective769

function value at the current incumbent solution over the previous incumbent solution.770

Using the above, we can write the average improvement attained over n incumbent771

changes as772

1

n

n∑
j=1

[
fkj (x̂kj )− fkj (x̂kj−1)

]
≤ 1

n

n∑
j=1

γδkj ≤ 0 for all n.773

774

This implies that775

1

n

(
fkn(x̂kn)− fk1(x̂k0)

)
︸ ︷︷ ︸

(a)

+
1

n

[ n−1∑
j=1

(
fkj (x̂kj )− fkj+1(x̂kj )

)
︸ ︷︷ ︸

(b)

]
≤ 1

n

n∑
j=1

γδkj ≤ 0,776

777

for all n. Under the assumption that the dual feasible region is non-empty and778

bounded (this is ensured by relatively complete recourse, (A2)), {fk} is a sequence779

of Lipschitz continuous functions. This, along with compactness of X (A1), implies780

that fkn(x̂kn)− fk1(x̂k0) is bounded from above. Hence, the term (a) reduces to zero781

as n → ∞. The term (b) converges to zero, with probability one, due to uniform782

convergence of {fk}. Since γ ∈ (0, 1), we have783

lim
n→∞

1

n

n∑
j=1

δkj = 0,784

785

with probability one. Further,786

lim
n→∞

1

n

n∑
j=1

δkj ≤ lim sup
n→∞

δkn ≤ 0.787

788

Thus, there exists a subsequence indexed by the set K∗ such that limk∈K∗ δ
k = 0,789

with probability one.790

Now if |K| is finite, then there exists x̂ and K < ∞ such that for all k ≥ K, we791

have x̂k = x̂. Notice that, if limk∈K∗ x
k = x̄, uniform convergence of the sequence792

{fk} and Lemma 4.2 ensure that793

lim
k∈K∗

fk(xk) = lim
k∈K∗

fk−1(xk) = f(x̄)(4.10a)794

lim
k∈K∗

fk(x̂) = lim
k∈K∗

fk−1(x̂) = f(x̂).(4.10b)795
796

Further, since the incumbent is not updated in iterations k ≥ K, we must have from797

the update rule in (3.9) that798

fk(xk)− fk(x̂) ≥ γ[fk−1(xk)− fk−1(x̂)] = γδk for all k ≥ K.799800
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Using (4.10), we have801

lim
k∈K∗

(
fk(xk)− fk(x̂)

)
≥ γ lim

k∈K∗

(
fk−1(xk)− fk−1(x̂)

)
,802

⇒ f(x̄)− f(x̂) ≥ γ(f(x̄)− f(x̂)).803804

Noting that γ ∈ (0, 1), the above inequality reduces to f(x̄) − f(x̂) ≥ 0. Further,805

using (4.9) in the limit as k → ∞ and the fact that x̂k = x̂ for all k ≥ K, we806

have f(x̄) − f(x̂) ≤ 0. Therefore, we have f(x̄) − f(x̂) = 0. Hence, limk∈K∗ δ
k =807

f(x̄)− f(x̂) = 0, with probability one.808

Equipped with the results in lemmas 4.2 and 4.3, we state the main theorem809

which establishes the existence of a subsequence of the incumbent sequence generated810

by the algorithm for which every accumulation point is an optimal solution to (1.1).811

Theorem 4.4. Let {xk}∞k=1 and {x̂k}∞k=1 be the sequence candidate and incum-812

bent solutions generated by the DRSD algorithm. There exists a subsequence {x̂k}k∈K813

for which every accumulation point is an optimal solution of 2-DRLP (1.1), with814

probability one.815

Proof. Let x∗ ∈ X be an optimal solution of (1.1). Consider a subsequence816

indexed by K such that limk∈K x̂
k = x̄. Compactness of X ensures the existence of817

accumulation point x̄ ∈ X and therefore,818

f(x∗) ≤ f(x̄).(4.11)819820

From Theorem 3.1, we have for all k, x ∈ X821

fk(x) ≤ c>x+ Qk(x) ≤ c>x+ max
P∈P̂k

EP [Q(x, ω̃)] = gk(x).822

823

Thus, using the uniform convergence of {gk} (Proposition 4.1) we have824

lim sup
k∈K′

fk(x∗) ≤ lim
k∈K′

gk(x∗) = f(x∗)(4.12)825

826

for all subsequences indexed by K′ ⊆ {1, 2, . . .}, with probability one. Recall that,827

δk = fk−1(xk)− fk−1(x̂k−1) ≤ fk−1(x∗)− fk−1(x̂k−1) for all k ≥ 1.828829

The inequality in the above follows from the optimality of xk with respect to fk−1(x).830

Taking limit over K, we have831

lim
k∈K

δk ≤ lim
k∈K

(
fk−1(x∗)− fk−1(x̂k−1)

)
832

≤ lim sup
k∈K

fk−1(x∗)− lim inf
k∈K

fk−1(x̂k−1) ≤ f(x∗)− f(x̄).833

834

The last inequality follows from (4.12) and limk∈K f
k−1(x̂k−1) = f(x̄) (Lemma835

4.2). From Lemma 4.3, there exists a subsequence indexed by K∗ ⊆ K such that836

limk∈K∗ δ
k = 0. Therefore, if {x̂k}k∈K∗ → x̄, we have837

f(x∗)− f(x̄) ≥ 0.838839

Using (4.11) and the above inequality, we conclude that x̄ is an optimal solution with840

probability one.841
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5. Computational Experiment. In this section, we evaluate the effectiveness842

and efficiency of the DRSD method in solving 2-DRLPs. For our preliminary exper-843

iments, we consider 2-DRLPs with moment-based ambiguity set Pmom for the first844

two moments (q = 2). We also consider 2-DRLPs with Wasserstein ambiguity set Pw845

with `1 and `∞ distance metrics.846

We report results from the computational experiments conducted on four well-847

known SP test problems: the capacity expansion planning (CEP) [26], the power gen-848

eration planning (PGP) [26], multilocation transshipment (RETAIL) [23], and cargo849

flight scheduling (STORM) [33]. In Table 1, we provide the number of variables (#Var)

Table 1
Details of CEP, PGP, RETAIL, and STORM Test Problems, and Computational Results for the SD

Algorithm

Problem
Stage I Stage II SD Results

#Var #Cons #Var #Cons #RV |Ω| #Iter ObjEst Time

PGP 4 2 16 7 3 576 215(±8) 446(±2.4) 0.43(±0.04)

CEP 8 5 15 7 3 216 153(±7) 343886(±12783) 0.18(±0.02)

RETAIL 7 0 70 22 7 1011 721(±44) 154(±1.92) 4.20(±0.76)

STORM 121 185 1259 528 117 1081 238(±17) 15173494(±657272) 2.83(±0.21)

850
and constraints (#Cons) in the first- and second-stage of the test problems. Notice851

that the PGP and CEP have relatively smaller supports (216 and 576, respectively),852

while RETAIL and STORM have a support size of 1011 and 1081, respectively. In the853

table, we also provide computational results from solving the risk-neutral versions of854

these problems using the SD algorithm [41]. For these results, we report the number855

of iterations (#Iter), objective function estimate (ObjEst) at termination, and total856

time (in seconds) taken by the SD algorithm. We refer the readers interested in a857

computational comparison between SD and an external sampling-based approach for858

risk-neutral 2-SLPs to [41] and [20].859

Following the rule of thumb adopted in experiments involving sampling-based860

SP, we conduct 30 independent replications for each problem instance. The choice861

of 30 replications is the same as in previous experiments with SD (see [20] and [41],862

for example). Each replication uses a different seed for the random number gen-863

erator. The algorithms are implemented in the C programming language, and the864

experiments are conducted on a 64-bit Intel core i7 - 4770 CPU at 3.4GHz × 8 ma-865

chine with 32 GB memory. All linear programs, i.e., master problem, subproblems,866

and distribution separation problem, are solved using CPLEX 12.10 callable subrou-867

tines. For DRSD, we use τ = 0.001 and γ = 0.2 in our experiments. We add one868

new observation to the sample in every iteration and therefore, θk = k−1
k is used869

for the updates in (3.6). The source code for the DR L-shaped, DRSD algorithms,870

and the reformulation techniques are available under the GNU general public license871

at https://github.com/SMU-SODA/distributionallyRobust.git. The repository also872

includes the test problems in SMPS file format.873

5.1. Results for 2-DRLPs with Moment-based Ambiguity Set. The first874

set of experiments concerns the 2-DRLP problems with a moment-based ambiguity875

set Pmom for which we use an external sampling-based approach as a benchmark for876

comparison with DRSD. The external sampling-based instances involve constructing877

approximate problems of the form (4.1) with a pre-determined number of observations878

N ∈ {100, 250, 500, 1000}. The resulting instances are solved using the DR L-Shaped879

method. For a fair comparison, the DRSD method is run for a maximum of N itera-880
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Table 2
Computational Results for 2-DRLP Instances with Moment-based Ambiguity Set

N
DRSD Algorithm DR L-Shaped Algorithm

#Iter ObjEst Time #Iter ObjEst Time

PGP

100 100 (±0) 460.89 (±3.76) 0.04 (±0.00) 18 (±0.9) 457.61 (±3.28) 0.052 (±0.00)

250 250 (±0) 466.91 (±2.52) 0.13 (±0.00) 20 (±0.7) 462.92 (±2.28) 0.077 (±0.00)

500 500 (±0) 471.40 (±3.49) 0.32 (±0.00) 20 (±0.6) 464.70 (±1.95) 0.096 (±0.00)

1000 504 (±687) 463.19 (±16.28) 0.35 (±0.70) 20 (±0.8) 466.10 (±1.78) 0.121 (±0.00)

CEP

100 100 (±0) 658831 (±14453) 0.04 (±0.00) 3 (±0.2) 658817 (±14457) 0.015 (±0.00)

250 250 (±0) 680795 (±10524) 0.12 (±0.00) 2 (±0.2) 680736 (±10511) 0.024 (±0.00)

500 256 (±0) 683300 (±5955) 0.30 (±0.00) 20 (±0.6) 683252 (±5949) 0.028 (±0.00)

1000 256 (±0) 683300 (±5955) 0.30 (±0.00) 2 (±0) 679665 (±4926) 0.028 (±0.00)

RETAIL

100 100 (±0) 326.21 (±15.35) 0.07 (±0.00) 46 (±1) 327.26 (±14.79) 0.370 (±0.01)

250 250 (±0) 365.00 (±19.03) 0.27 (±0.01) 45 (±2) 365.54 (±19.45) 0.839 (±0.03)

500 500 (±0) 387.98 (±17.10) 0.86 (±0.02) 45 (±1) 388.84 (±17.48) 1.587 (±0.05)

1000 625 (±31) 396.67 (±15.99) 1.13 (±0.12) 45 (±1) 401.71 (±14.38) 3.176 (±0.09)

STORM

100 100 (±0) 15755337 (±12314) 0.74 (±0.02) 12 (±0.51) 15742456 (±12192) 0.434 (±0.02)

250 250 (±0) 15795815 (±8493) 4.66 (±0.13) 11 (±0.52) 15781725 (±8754) 1.008 (±0.05)

500 500 (±0) 15811923 (±5233) 20.54 (±0.51) 12 (±0.59) 15797020 (±5346) 2.117 (±0.10)

1000 516 (±108) 15786865 (±9155) 30.44 (±15.28) 12 (±0.52) 15806575 (±3772) 4.318 (±0.19)

tions to have an estimate based upon a sample of size not greater than N . Specifically,881

it terminates when conditions in Step 5 of Algorithm 3.1 are satisfied. We compare882

the solution quality provided by these methods along with the computational time.883

The results from the experiments are presented in Table 2.884

Table 2 shows the number of iterations, objective function estimate fk(x̂k) at885

termination, and solution time (in seconds) averaged over 30 replications. The val-886

ues in the parenthesis are the half-widths of the corresponding confidence intervals.887

Similar to SD, the number of iterations for DRSD is also equal to the number of888

observations used to approximate the ambiguity set. To begin, observe the increase889

in the objective function estimates of distributionally robust variants when compared890

to the risk-neutral results from SD in Table 1.891

The objective function estimate obtained using the DRSD is comparable to the892

objective function estimate obtained using the DR L-shaped method. Notice that for893

instances with N = 1000, DRSD took less than 1000 iterations because the termi-894

nation conditions were satisfied. The same is true for CEP instances with N = 500.895

This shows the potential ability of DRSD to dynamically determine the number of896

observations by assessing the progress made during the algorithm. For instance, the897

DRSD objective function estimate for STORM that is based upon a sample of size 516898

(on average) is within 0.1% and 0.12% of the objective function value estimate pro-899

vided by the DR L-shaped method for N = 500 and N = 1000, respectively. These900

results show that the optimal objective function estimate obtained from DRSD are901

comparable to those obtained using an external sampling-based approach.902

The results for small scale instances (PGP and CEP) show that both DRSD and903
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the DR L-shaped method take a fraction of a second, but the computational time904

for DRSD is higher than the DR L-shaped method for all N . We attribute this905

behavior to two reasons. (i) The computational effort to solve all the subproblems906

in each iteration does not increase significantly with N as they are easy to solve.907

This observation is in-line with our computational experience with the SD method908

for 2-SLPs (see [20]). (ii) The DRSD takes a larger number of iterations, resulting909

in an increased number of master and distribution separation problems solved. It is910

important to note that, while the computational time for the DR L-shaped method911

on an individual instance may be lower, the iterative procedure necessary to identify912

a sufficient sample size may require solving several instances with increasing sample913

size. This may result in a significantly higher cumulative computational time.914

On the other hand, for large-scale problems (RETAIL and STORM), we observe a915

noticeable increase in the computational time for the DR L-shaped method with an916

increase in N . A significant portion of this time is spent solving the subproblems.917

Since the DRSD solves only two subproblems in each iteration, the time taken to solve918

the subproblems is significantly less in comparison to the DR L-shaped method where919

all subproblems corresponding to unique observations are solved in each iteration.920

Notice that for RETAIL, the average number of iterations taken by DRSD is at least921

8.2 times the average number of iterations taken by DR L-shaped for any N . This922

increases the computational time spent for solving the master and distributional sepa-923

ration problems. However, the reduction in the overall computational time is a direct924

consequence of solving only two subproblems in each iteration. The results for STORM925

also show similar behavior in terms of computational time associated with solving926

master and subproblems. However, the overall increase in the computational time is927

due to a significant computational expense (∼ 78%) in naively solving the distribution928

separation problem. This computational time associated with solving the distribution929

separation problem can be reduced by using column-generation procedures that take930

advantage of the problem structure. Such an implementation is not undertaken for931

our current experiments and is a fruitful future research avenue.932

5.2. Results for 2-DRLPs with `1-type Wasserstein Ambiguity Set. For933

the Wasserstein distance-based ambiguity sets, we benchmark against the reformation934

techniques proposed by [49]. Specifically, in [49], it has been shown that a 2-DRLP935

(1.1) with Wasserstein ambiguity set can be reformulated as a two-stage robust opti-936

mization problem. This reformulation is given by937

min
x∈X,η≥0

{
c>x+ ηε+

1

Ns

Ns∑
n=1

max
ω∈Ω

{
Q(x, ω)− η||ω − ωn||

}}
,(5.1)938

939

where {ω1, . . . , ωNs
} is a finite set of observations obtained using true distribution.940

Notice that the reformulation (5.1) can be written as the following semi-infinite pro-941

gram:942

min
x∈X,η≥0

c>x+ ηε+
1

Ns

Ns∑
n=1

νn :943

s.t. Q(x, ω)− η||ω − ωn|| ≤ νn, n ∈ {1, . . . , Ns}, ω ∈ Ω.944945

For problem instances with `1-type Wasserstein ambiguity set, we solve the foregoing946

program using a Benders decomposition approach.947

For `1-norm, the reformulation in (5.1) admits the application of Benders decom-948

position algorithm. To address the semi-infinite nature of the linear program, [19]949
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Table 3
Computational Results for 2-DRLP Instances with Wasserstein-1 Ambiguity Set

Problem N
DRSD Algorithm Reformulation Approach [49]

ObjEst Time ObjEst Time

PGP

100 447.04 (±3.34) 0.05 (±0.00) 444.85 (±3.26) 0.94 (±0.07)

250 454.06 (±2.64) 0.25 (±0.04) 449.85 (±2.23) 7.02 (±0.63)

500 457.48 (±2.76) 1.79 (±0.26) 451.57 (±1.92) 27.73 (±1.81)

CEP

100 338295.71 (±14430.81) 0.25 (±0.01) 338295.71 (±14430.81) 0.32 (±0.02)

250 355054.48 (±11823.37) 3.12 (±0.09) 355054.48 (±11823.37) 2.29 (±0.08)

500 356757.34 (±6917.77) 13.24 (±0.26) 356757.34 (±6917.77) 10.90 (±0.15)

RETAIL

100 157.09 (±4.00) 0.53 (±0.04) 153.67 (±3.89) 9.41 (±0.67)

250 155.32 (±3.39) 7.75 (±0.22) 154.06 (±3.40) 331.15 (±13.89)

500 155.20 (±2.39) 72.02 (±2.05) 154.62 (±2.38) 2189.66 (±65.97)

STORM

100 15504501.91 (±11397) 0.64 (±0.04) 15498236.10 (±11445) 21.51 (±1.09)

250 15508623.20 (±7481) 8.86 (±0.19) 15501074.50 (±7571) 333.22 (±11.80)

500 15507815.12 (±5059) 83.33 (±2.55) - -

consider a special case where the sample space Ω is defined by a bounded hyper-950

rectangle and derive a finite subset of the sample space (without loss of optimality)951

using extreme points of the hyper-rectangle. Since the test problems used in our952

experiments do not impose any restrictions on Ω, we adopt a sampling-based dis-953

cretization of the ambiguity set to tackle (5.1). Such a discretization satisfies the954

result in Proposition 2.3 and therefore, provides a suitable benchmark for DRSD.955

We use the reformulation corresponding to ambiguity set defined by the finite set of956

observations, i.e. Ω := {ω1, . . . , ωN}, Ns = N , and ωi = ωi for i = 1, . . . , N .957

In this second set of experiments, we consider N = 100, 150, and 500 observations.958

We use an external sampling approach to construct the instances of reformulation and959

solve these instances using the Benders decomposition method. We run the DRSD960

algorithm for the same number of iterations (N) to have the same set of observations961

for approximating the ambiguity set (recall that we run replications of both algorithms962

with the same seed for random number generation). The results of this experiment963

are shown in Table 3 for ε = 0.05. The table shows the average objective function964

estimates and computational time (in seconds) computed across 30 replications along965

with half widths of the corresponding confidence interval.966

The results indicate that the estimates of the objective function obtained from967

the DRSD algorithm and the reformulation approach are comparable. For all the968

test problems, the computational time for both approaches increases with N . We969

attribute this to the increase in the size of the master problem. While the additional970

effort associated with solving distribution separation problems also contributes to971

the increased computation time in DRSD, the number of subproblems solved in each972

iteration of Benders decomposition increases with N . In any case, DRSD outperforms973

Benders decomposition applied to the reformulation across all test problems. Since we974

ran out of memory when solving the instances of STORM with N = 500 using Benders975

decomposition, we do not report its results.976

5.3. Results for 2-DRLPs with `∞-type Wasserstein Ambiguity Set. In977

contrast to the case of problems with `1-type Wasserstein ambiguity sets, a problem978

with `∞-type Wasserstein ambiguity set (5.1) further reduces to a linear program979

(refer to Theorem 1 of [47]). We use this approach to benchmark the performance of980

This manuscript is for review purposes only.



STOCHASTIC DECOMPOSITION ALGORITHM FOR DRO 25

Table 4
Computational Results for 2-DRLP Instances with Wasserstein-∞ Ambiguity Set

Problem N
DRSD Algorithm Reformulation Approach [47]

ObjEst Time ObjEst Time

PGP

100 448.94 (±3.64) 0.05 (±0.00) 447.10 (±3.26) 0.00 (±0.00)

250 455.04 (±2.49) 0.24 (±0.04) 450.79 (±2.03) 0.06 (±0.00)

500 458.40 (±2.94) 1.58 (±0.16) 451.31 (±1.23) 0.21 (±0.01)

CEP

100 338291.53 (±14434.11) 0.25 (±0.01) 338307.14 (±14431.53) 0.00 (±0.00)

250 355061.07 (±11823.37) 3.13 (±0.08) 355066.83 (±11823.82) 0.06 (±0.01)

500 356763.93 (±6917.77) 12.65 (±0.28) 356769.76 (±6918.07) 0.22 (±0.02)

RETAIL

100 156.40 (±4.24) 0.44 (±0.02) 153.49 (±3.89) 0.18 (±0.01)

250 155.12 (±3.43) 7.89 (±0.16) 153.86 (±3.40) 0.59 (±0.02)

500 155.12 (±2.39) 60.39 (±0.91) 154.42 (±2.38) 1.36 (±0.03)

STORM

100 15504413.45 (±11396.84) 0.56 (±0.01) 15502082.05 (±11445.84) 20.25 (±0.27)

250 15508768.42 (±7477.52) 8.65 (±0.29) 15504919.06 (±7571.13) 81.22 (±1.30)

500 15507936.99 (±5058.71) 63.10 (±0.87) 15503343.24 (±5140.36) 220.65 (±2.57)

DRSD for `∞-type Wasserstein ambiguity sets. As in the previous set of experiments,981

we use the empirical distribution with N observations as reference distribution for the982

ambiguity sets. We generate the observations using an external sampling approach983

and set up the linear programming reformulation. We solve this reformulation using984

an off-the-shelf solver (CPLEX 12.10). We summarize the results for N = 100, 250,985

and 500 in Table 4.986

For all the problems, the estimates of the objective function obtained from DRSD987

and the reformulation linear program are comparable. The results show that for988

instances test problems PGP, CEP, and RETAIL, the linear programming reformulation989

outperforms the DRSD algorithm. However, for larger problem STORM, the advantages990

of sequential sampling become prevalent resulting in a nearly 3.5 times decrease in991

the overall computational time for N = 500, for instance.992

Remark 5.1. Overall, the computational experiments with all three ambiguity993

sets illustrate the advantages of the sequential sampling approach of DRSD to tackle994

large-scale 2-DRLP problems. Before we end this section, we note that the external995

sampling-based benchmark instances are set up and solved for a given N . Since we996

are dealing with sampling-based approximations, identifying a suitable N a priori is997

not a trivial task. A procedure to tackle this task involves solving several instances998

with progressively increasing sample sizes (see for e.g., [6] for risk-neutral SP). The999

overall computational cost of identifying a high-quality solution is the cumulative cost1000

associated with individual instances. The DRSD method, and the sequential sampling1001

idea in general, mitigates the need for such an iterative process.1002

6. Conclusions and Future Work. We presented a new decomposition ap-1003

proach for solving two-stage distributionally robust linear programs (2-DRLPs) with1004

a general ambiguity set defined using probability distributions with continuous or1005

discrete sample space. Since this approach extended the stochastic decomposition ap-1006

proach of Higle and Sen [24] for 2-DRLPs with a singleton ambiguity set, we referred1007

to it as Distributionally Robust Stochastic Decomposition (DRSD) method. The1008

DRSD method is a sequential sampling-based approach that allows sampling within1009

the optimization step where we solved second-stage subproblem(s) associated with1010
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only the current observation in each iteration. While the design of DRSD accommo-1011

dates general ambiguity sets, we provided its asymptotic convergence analysis for a1012

family of ambiguity sets that includes the well-known moment-based and Wasserstein1013

metric-based ambiguity sets. Furthermore, we performed computational experiments1014

to evaluate the efficiency and effectiveness of solving distributionally robust variants1015

of four well-known stochastic programming test problems that have supports of size1016

ranging from 216 to 1081. Based on our results, we observed that the objective func-1017

tion estimates obtained using the DRSD and the external sampling-based approaches1018

are statistically comparable. These DRSD estimates are obtained while providing1019

computational improvements on most problem instances. Such a computational edge1020

will enable the application of DRO to critical applications that result in large-scale1021

problem instances.1022

The preliminary computational experiments are encouraging. However, there are1023

two components of the algorithm that require careful deliberation. Since DRSD is1024

a randomized algorithm that simultaneously deals with the approximation of ambi-1025

guity sets and recourse function values, the deterministic stopping criteria are not1026

applicable. Therefore, the development of reliable stopping criteria is a potential fu-1027

ture research direction. Statistical approaches, similar to those developed in a series1028

of papers for SD [26, 27, 41], could provide initial direction to address this issue.1029

Another future research direction is to incorporate more efficient algorithms to solve1030

the distribution separation problems. For example, instead of resolving distribution1031

separation problem in every iteration, we can utilize a column generation procedure.1032

Finally, we will explore a proximal point algorithm design to that will allow us to1033

maintain a fixed-sized master problem.1034

Appendix A. Proofs. In this appendix, we provide the proofs for the propo-1035

sitions related to the asymptotic behavior of the approximate ambiguity sets defined1036

in §2.1 and the recourse function approximation presented in §2.2.1037

Proof. (Proposition 2.1) For P = (p(ω))ω∈Ωk−1 ∈ P̂k−1
mom, it is easy to verify that1038

P ′ = (p′(ω))ω∈Ωk = Θk(P ) satisfies the support constraint, viz.,
∑
ω∈Ωk p′(ω) = 1.1039

Now consider for i = 1, . . . , q, we have1040 ∑
ω∈Ωk

p′(ω)ψi(ω) =
∑

ω∈Ωk−1,ω 6=ωk

p′(ω)ψi(ω) + p′(ωk)ψi(ω
k)1041

= θk
∑

ω∈Ωk−1,ω 6=ωk

p(ω)ψi(ω) + θkp(ωk)ψi(ω
k) + (1− θk)ψi(ω

k)1042

= θk
∑

ω∈Ωk−1

p(ω)ψi(ω) + (1− θk)ψi(ω
k) = b̂k−1

i + (1− θk)ψi(ω
k) = b̂ki .1043

1044

This implies that Θk(P ) ∈ P̂k
mom.1045

Using Proposition 4 in [45], there exists a positive constant χ such that1046

0 ≤ H(P̂k
mom,Pmom) ≤ χ‖b̂k − b‖.10471048

Here, b = (bi)
q
i=1 and b̂k = (b̂ki )qi=1, and ‖ · ‖ denotes the Euclidean norm. Since1049

the approximate ambiguity sets are constructed using independent and identically1050

distributed samples of ω̃, using law of large numbers, we have b̂ki → bi for all i =1051

1, . . . , q. This completes the proof.1052

Proof. (Proposition 2.3) Consider approximate ambiguity sets P̂k−1
w and P̂k

w of1053

the form given in (2.8b). Let P = (p(ω))ω∈Ωk−1 ∈ P̂k−1
w , and let the reconstructed1054
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probability distribution be denoted by P ′. We can easily check that P ′ = Θk(P ) is1055

indeed a probability distribution. With P ′ = (p′(ω))ω∈Ωk fixed, it suffices now to1056

show that the polyhedron1057

E(P ′, P̂ k) =

η
′ ∈ RΩk×Ωk

∣∣∣∣∣∣∣∣∣
∑
ω′∈Ωk η′(ω, ω′) = p′(ω) ∀ω ∈ Ωk,∑
ω∈Ωk η′(ω, ω′) = p̂k(ω′) ∀ω′ ∈ Ωk,∑
(ω,ω′)∈Ωk×Ωk ‖ω − ω′‖η′(ω, ω′) ≤ ε

 .(A.1)1058

1059

is non-empty. Since P ∈ P̂k−1
w , there exist η(ω, ω′) for all (ω, ω′) ∈ Ωk−1×Ωk−1 such1060

that the constraints in the description of the approximate ambiguity set in (2.8b) are1061

satisfied. We show that E is non-empty by analyzing two possibilities,1062

1. We encounter a previously seen observation, i.e., ωk ∈ Ωk−1 and Ωk = Ωk−1.1063

Let η′(ω, ω′) = θkη(ω, ω′) for ω, ω′ ∈ Ωk−1 and ω 6= ω′ 6= ωk; and η′(ωk, ωk) =1064

θkη(ωk, ωk)+(1−θk). We verify the feasibility of this choice by checking the three1065

sets of constraints in (A.1). For all ω ∈ Ωk1066 ∑
ω′∈Ωk

η′(ω, ω′) =
∑

ω′∈Ωk\{ωk}

η′(ω, ω′) + η′(ω, ωk)1067

=
∑

ω′∈Ωk−1\{ωk}

θkη(ω, ω′) + θkη(ω, ωk) + 1ω=ωk(1− θk)1068

= θk
( ∑
ω′∈Ωk−1

η(ω, ω′)

)
+ 1ω=ωk(1− θk) = θkp(ω) + 1ω=ωk(1− θk) = p′(ω).1069

1070

For all ω′ ∈ Ωk, we have1071 ∑
ω∈Ωk

η′(ω, ω′) =
∑

ω∈Ωk\{ωk}

η′(ω, ω′) + η′(ωk, ω′)1072

=
∑

ω∈Ωk−1\{ωk}

θkη(ω, ω′) + θkη(ωk, ω′) + 1ω′=ωk(1− θk)1073

= θk
∑

ω∈Ωk−1

η′(ω, ω′) + 1ω′=ωk(1− θk) = θkp̂k−1(ω′) + 1ω′=ωk(1− θk) = p̂k(ω′).1074

1075

And finally,1076 ∑
(ω,ω′)∈Ωk×Ωk

‖ω − ω′‖η′(ω, ω′)1077

=
∑

(ω,ω′)∈Ωk−1×Ωk−1

ω 6=ω′ 6=ωk

θk‖ω − ω′‖η(ω, ω′) + ‖ωk − ωk‖η′(ωk, ωk)1078

= θk
( ∑

(ω,ω′)∈Ωk−1×Ωk−1

‖ω − ω′‖η(ω, ω′)

)
≤ θkε ≤ ε.1079

1080

Since all the three constraints are satisfied, the chosen values for η is an element1081

of the polyhedron E , and therefore, E 6= ∅.1082

2. We encounter a new observation, i.e., ωk /∈ Ωk−1. Let η′(ω, ω′) = θkη(ω, ω′) for1083

ω, ω′ ∈ Ωk−1, η′(ωk, ω′) = 0 for ω′ ∈ Ωk−1, η′(ω, ωk) = 0 for ω ∈ Ωk−1, and1084
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η′(ωk, ωk) = (1 − θk). Let us again verify the three sets of constraints defining1085

(A.1) with this choice for η′.1086 ∑
ω′∈Ωk

η′(ω, ω′) =
∑

ω′∈Ωk\{ωk}

η′(ω, ω′) + η′(ω, ωk)1087

=
∑

ω′∈Ωk−1

θkη(ω, ω′) + 1ω=ωk(1− θk) = θkp(ω) + 1ω=ωk(1− θk) = p′(ω);1088

∑
ω∈Ωk

η′(ω, ω′) =
∑

ω∈Ωk\{ωk}

η′(ω, ω′) + η′(ωk, ω′)1089

=
∑

ω′∈Ωk−1

θkη(ω, ω′) + 1ω′=ωk(1− θk) = θkp̂k−1 + +1ω′=ωk(1− θk) = p̂k(ω′);1090

1091

and finally,1092 ∑
(ω,ω′)∈Ωk×Ωk

‖ω − ω′‖η′(ω, ω′)1093

=
∑

(ω,ω′)∈Ωk−1×Ωk−1

θk‖ω − ω′‖η(ω, ω′) + ‖ωk − ωk‖η′(ωk, ωk)1094

+
∑
ω∈Ωk

‖ω − ωk‖η′(ω, ωk) +
∑
ω′∈Ωk

‖ωk − ω′‖η′(ωk, ω′) ≤ θkε ≤ ε.1095

1096

Therefore, the value of η′ variables satisfies the constraints and E 6= ∅. This implies1097

that Θk(P ) ∈ P̂k
w.1098

Next, let us consider a distribution Q ∈ P̂k
w. Then,1099

dw(Q,P ∗) ≤ dw(Q, P̂ k) + dw(P̂ k, P ∗) ≤ ε+ dw(P̂ k, P ∗).11001101

The above inequality is a consequence of the triangle inequality of Wasserstein dis-1102

tance. Since Q ∈ P̂k
w, we have dw(Q, P̂ k) ≤ ε. Under compactness assumption for Ω,1103

we have EP∗ [exp(‖ω̃‖a)] <∞. Therefore, for d > 2, Theorem 2 in [18] guarantees1104

Prob
[
dw(P̂ k, P ∗) ≤ δ

]
≤
{
C exp(−ckδd) if δ > 1
C exp(−ckδa) if δ ≤ 1

1105
1106

for all k ≥ 1. This implies that the limk→∞ dw(P̂ k, P ∗) = 0, almost surely. Conse-1107

quently, we obtain that dw(Q,P ∗) ≤ ε (or equivalently Q ∈ Pw) as k → ∞, almost1108

surely. This completes the proof.1109

Proof. (Proposition 2.5) Recall that X ×Ω is a compact set because of Assump-1110

tions (A1) and (A4), and {Qk} is a sequence of continuous (piecewise linear and1111

convex) functions. Further, the construction of the set of dual vertices satisfies1112

Π0 = {0} ⊆ . . . ⊆ Πk ⊆ Πk+1 ⊆ . . . ⊆ D which ensures that 0 ≤ Qk(x, ω) ≤1113

Qk+1(x, ω) ≤ Q(x, ω) for all (x, ω) ∈ (X ,Ω) and k ≥ 1. Since {Qk} increases1114

monotonically and is bounded by a finite function Q (due to (A2)), this sequence1115

pointwise converges to some function ξ(x, ω) ≤ Q(x, ω). Once again due to (A2),1116

we know that the set of dual vertices D is finite and since Πk ⊆ Πk+1 ⊆ D, the set1117

limk→∞Πk := Π (⊆ D) is also a finite set. Clearly,1118

ξ(x, ω) = lim
k→∞

Qk(x, ω) = max {π>[r(ω)− T (ω)x] | π ∈ Π}1119
1120
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is the optimal value of a LP. Note that the right-hand side is a pointwise maximum of1121

affine function and hence, is a continuous function. The compactness of X × Ω, and1122

continuity, monotonicity and pointwise convergence of {Qk} to ξ guarantees that the1123

sequence uniformly converges to ξ (implied by a slight modification of Theorem 7.131124

in [39]).1125
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