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STOCHASTIC DECOMPOSITION METHOD FOR TWO-STAGE
DISTRIBUTIONALLY ROBUST LINEAR OPTIMIZATION *

HARSHA GANGAMMANAVART AND MANISH BANSAL?*

Abstract. In this paper, we present a sequential sampling-based algorithm for the two-stage
distributionally robust linear program (2-DRLP) with general ambiguity set. The algorithm is a
distributionally robust version of the well-known stochastic decomposition algorithm of Higle and
Sen (Math. of OR 16(3), 650-669, 1991) that was designed for risk-neutral two-stage stochastic linear
programs. We refer to the algorithm as the distributionally robust stochastic decomposition (DRSD)
method. The algorithm works with data-driven approximations of ambiguity sets that are construc-
ted during the course of the algorithm using samples of increasing size. It constructs statistical
approximations of the worst-case expectation function by solving subproblems corresponding to the
latest observation(s) in every iteration. We show that the DRSD method asymptotically identifies an
optimal solution, with probability one, for a family of ambiguity sets that includes the moment-based
and Wasserstein distance-based ambiguity sets. We also computationally evaluate the performance
of the DRSD method for solving distributionally robust variants of instances considered in the sto-
chastic programming literature. The numerical results corroborate our analysis of the DRSD method
and illustrate the computational advantage over an external sampling-based decomposition approach
and reformulation techniques known in the literature.

Key words. Distributionally robust optimization, stochastic programming, stochastic decom-
position, sequential sampling, cutting-plane method.

AMS subject classifications. 90C15, 90C06, 90C47

1. Introduction. Stochastic programming (SP) is a well-known framework for
decision-making under uncertainty that arises in applications such as finance, capac-
ity expansion, manufacturing, wildfire planning, power systems, healthcare, and many
more. The SP models with recourse, particularly in a two-stage setting, have gained
wide acceptance across these application domains. In the two-stage SP models, the
first-stage decision (referred to as the here-and-now decision) is taken before the re-
alization of uncertainty. Following this, the second-stage decision (referred to as the
wait-and-see decision) is taken in response to the first-stage decision and a realization
of the uncertain data. In the classical setting of two-stage stochastic linear programs
(2-SLPs), the decisions are solutions to linear programs in both stages [12].

The SP models are stated with an expectation-valued objective function. There-
fore, stating an SP model either requires complete knowledge of the underlying prob-
ability distribution or the ability to simulate observations from this distribution. The
latter leads to the construction of a sample average approximation (SAA) of the
problem. In many practical applications, the distribution associated with random
parameters in the optimization model is not precisely known. It either has to be esti-
mated from data or constructed by expert judgments, which tend to be subjective. In
any case, identifying a distribution using available information may be cumbersome
at best. Stochastic min-max programming that has gained significant attention in re-
cent years under the name of distributionally robust optimization (DRO) is intended
to address the ambiguity in distributional information.
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2 H. GANGAMMANAVAR AND M. BANSAL

In this paper, we study a particular manifestation of the DRO problem in the two-
stage setting, viz., the two-stage distributionally robust linear program (2-DRLP). We
state this problem as:

(1.1) min {f(z)=c'z+Q(z) | x € X}.

Here, ¢ is the coefficient vector of a linear cost function and X is the feasible set
of the first-stage decision vector. The feasible region takes the form of a compact
polyhedron, i.e., X = {x € R% | Az > b,z > 0}, where A € R™*% and b € R™1.
The function Q(x) is the worst-case expected recourse cost, that we define as:

(1.2) Q(z) = max {Q(a:;P) = EP[Q(x,JJ)]}

Pep

We define the random vector @ € R? on a measurable space (£, F), where Q is
a continuous or discrete sample space equipped with the sigma-algebra F. B is
a set of probability distributions defined on the measurable space (2, F). The set
of probability distributions P is referred to as the ambiguity set. The expectation
operation Ep|[-] is taken with respect to a probability distribution P € 3. For a given
x € X, we refer to the optimization problem in (1.2) as the distribution separation
problem. For a given realization w of the random vector @ and a first-stage solution
x, the recourse value in (1.2) is the optimal value of the following second-stage linear
program:

(13)  Qw)=min g(w)Ty
st yeV(x,w) = {Wwy=rw) —T(wz, yc Ri’y }.

Here, for each w € 2, we have uncertain second-stage parameters: g(w), the recourse
matrix W(w), the right-hand side vector r(w), and the technology matrix T'(w) of
appropriate dimensions. A special case of 2-DRLP is the 2-SLP where 8 is a singleton,
i.e., P = {P*}, resulting in the following optimization problem:

(1.4) min {¢'z+Ep:[Q(z,@)] | 2 € X}.

Most data-driven and SAA-based approaches to solve 2-SLPs tackle the problem
in two steps. In the first simulation/sampling step, an uncertainty representation is
generated using a finite set of observations that serves as an approximation of {2 and
the corresponding empirical distribution serves as an approximation of P*. For a given
uncertainty representation, one obtains a deterministic approximation of (1.4). In
the second optimization step, the approximate problem is solved using deterministic
optimization methods. Such a two-step approach may lead to poor out-of-sample
performance, forcing the entire process to be repeated from scratch with an improved
uncertainty representation. Since sampling is performed prior to the optimization
step, this two-step approach is also referred to as the external sampling procedure.
This procedure has also been utilized for solving 2-DRLPs where in the first step, an
approximation of the ambiguity set % is obtained using a finite set of observations.
Then, in the second step, a deterministic min-max problem, i.e., Problem (1.1) where
expectation operator is replaced by summation over the finite sample, is solved. Once
again, using a finite sample to approximate the original sample space may result in
similar out-of-sample performance as in the case for 2-SLP.
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STOCHASTIC DECOMPOSITION ALGORITHM FOR DRO 3

1.1. Contributions. In light of the above observations regarding the two-step
external sampling procedure, the main contributions of this manuscript are as follows.
1. A Sequential Sampling Algorithm: We present a sequential sampling approach
for solving a 2-DRLP. We refer to this algorithm as the distributionally robust
stochastic decomposition (DRSD) algorithm following its risk-neutral prede-
cessor, the two-stage stochastic decomposition (SD) method [24] that was
designed for 2-SLPs. The DRSD algorithm concurrently performs the simu-
lation and optimization steps in every iteration. In the simulation step, new
observation(s) are included to improve the representation of the ambiguity
set. The sequential inclusion of observations results in approximate ambi-
guity sets that evolve over the course of the algorithm. In the optimization
step, the solution is updated in an online manner by solving second-stage
programs for only the new observation(s) in each iteration. In this sense, the
DRSD method is an internal sampling procedure. Moreover, the algorithmic
design of the DRSD does not depend on any specific ambiguity set descrip-
tion. Hence, this method is suitable for any (general) ambiguity set for which

the distribution separation problem (1.2) can be solved efficiently.

2. Convergence Analysis: The DRSD method is an inexact bundle method that
creates outer linearization for the dynamically evolving approximation of the
first-stage problem. We provide the asymptotic analysis of DRSD and identify
conditions on ambiguity sets under which the sequential sampling approach
identifies an optimal solution to the 2-DRLP in (1.1) with probability one.

3. Computational Fvidence of Performance: We provide the first set of exper-
iments that illustrates the advantages of a sequential sampling approach to
solving 2-DRLPs. We demonstrate these advantages through computational
experiments conducted on well-known problems in the SP literature. These
problems are modified to create distributionally robust variants with moment-
based, ¢1-type Wasserstein, and /.-type Wasserstein ambiguity sets.

1.2. Related work. For 2-SLPs with finite support, including the SAA prob-
lems, the L-shaped method due to Van Slyke and Wets [46] has proven to be very
effective. Other algorithms for 2-SLPs such as the Dantzig-Wolfe decomposition [13]
and the progressive hedging (PH) algorithm [36] also operate on problems with finite
support. The well-established theory of SAA (see Chapter 5 in [43]) supports the ex-
ternal sampling procedure for 2-SLP. The quality of the solution obtained by solving
an SAA problem is assessed using the procedures developed, e.g., in [5]. When the
quality of the SA A solution is not acceptable, a new SAA is constructed with a larger
number of observations. Prior works, such as [6] and [38], provide rules on how to
choose the sample sizes in a sequential SAA procedure.

In contrast to the above, SD incorporates one new observation in every iteration
to create approximations of the dynamically updating SAAs of (1.4). First proposed
in [24], this method has seen significant development in the past three decades with
the introduction of the quadratic proximal term [25], statistical optimality rules [27],
and extensions to multistage stochastic linear programs [21]. The DRSD method
extends the notion of sequential sampling of SD to DRO problems.

The concept of DRO dates back to the work of Scarf [40], and has gained sig-
nificant attention in recent years. Readers can refer to [34] for a comprehensive
treatment on various aspects of the DRO. The algorithmic works on DRO are either
decomposition-based or reformulation-based approaches. The decomposition-based
methods for 2-DRLP mimic the two-stage SP approach of using a deterministic repre-
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4 H. GANGAMMANAVAR AND M. BANSAL

sentation of the sample space using a finite number of observations. As a consequence,
the SP solution methods with suitable adaptation can be applied to solve the 2-DRLP
problems. For instance, Breton and El Hachem [11] applied the PH algorithm for a
2-DRLP model with a moment-based ambiguity set. Riis and Anderson [35] extended
the L-shaped method for 2-DRLP with continuous recourse and moment-based ambi-
guity set. Bansal et al. [1] extended the algorithm in [35], which they refer to as the
distributionally robust (DR) L-shaped method, to solve 2-DRLPs, with an ambiguity
set defined by a polytope. Further extensions of this decomposition approach are
presented in [1] and [2] for two-stage DRO problems with mixed-binary recourse and
disjunctive programs, respectively. Lately in [3], the authors considered two-stage
DRO problems with p-order conic mixed-integer programs in the second stage and
utilized scenario-based cuts to obtain linear programming equivalent (for p = 1) and
convex approximations (for p > 2) of the second-stage problems. We discuss key
differences of DRSD with SD and DR L-shaped method in Remark 3.3 at the end of
§3.

Another predominant approach to solve 2-DRLP problems is to reformulate the
distribution separation problem in (1.2) as a minimization problem, pose the problem
in (1.1) as a single deterministic optimization problem, and use off-the-shelf deter-
ministic optimization tools to solve the reformulation. For example, Shapiro and
Kleywegt [44] and Shapiro and Ahmed [42] used such an approach for a 2-DRLP with
moment matching set. They derived an equivalent stochastic program defined with a
reference distribution. Bertsimas et al. [8] provided tight semidefinite programming
reformulations for 2-DRLP where the ambiguity set is defined using multivariate dis-
tributions with known first and second moments. Likewise, Hanasusanto and Kuhn
[22] provided a conic programming reformulation for 2-DRLP where the ambiguity
set comprises of a fo-type Wasserstein ball centered at a discrete distribution. Xie [47]
provided similar reformulations to tractable convex programs for 2-DRLP problems
with ambiguity set defined using ¢, Wasserstein metric. By taking the dual of the in-
ner maximization problem, Love and Bayraksan [4] demonstrated that a 2-DRLP with
the ambiguity set defined using ¢-divergence and finite sample space is equivalent to
2-SLP with a coherent risk measure. A similar reformulation approach is employed in
[16] for ambiguity sets defined using Wasserstein and quadratic transport function on
unbounded and hyper-rectangle support. Jiang and Guan [29] reduced the worst-case
expectation in 2-DRLP, where the ambiguity set is defined using the ¢;-norm on the
space of all (continuous and discrete) probability distributions, to a convex combina-
tion of CVaR and an essential supremum. Under the assumption of finite support,
[28] showed that a 2-DRLP with CVaR objective can be reformulated into a linear
program. On the other hand, the two-stage DRO problem with a linear recourse was
reformulated as a conic optimization problem under an assumption that second-stage
decisions are affine functions of the random vector in [30]. When reformulations result
in equivalent stochastic programs (as in [4, 28, 29, 42], for instance), an SAA of the
reformulation is used to obtain an approximate problem. This approximate problem
is amenable to standard cutting plane or bundle type methods prevalent in SP.

Data-driven approaches for DRO have been presented for specific ambiguity sets.
In [14], problems with ellipsoidal moment-based ambiguity set whose parameters are
estimated using sampled data are addressed. Esfahani et al. [32] tackled data-driven
problems with Wasserstein metric-based ambiguity sets with convex reformulations.
In both these works, the authors provide finite-sample performance guarantees that
probabilistically bound the gap between approximate and true DRO problems. Sun
and Xu presented asymptotic convergence analysis of DRO problems with ambigu-
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STOCHASTIC DECOMPOSITION ALGORITHM FOR DRO 5

ity sets that are based on moments and mixture distributions constructed using a
finite set of observations in [45]. A practical approach to incorporate the results of
these works to identify a high-quality DRO solution is similar to the sequential SAA
procedure for SP in [6]. Such an approach involves the following steps performed in
series — obtaining a deterministic representation of ambiguity set using sampled obser-
vations, applying appropriate reformulation, and solving the resulting deterministic
optimization problem. If the quality of the solution is deemed insufficient, then the
entire series of steps is repeated with an improved representation of the ambiguity set
(possibly with a larger number of observations).

Organization. We organize the remainder of the paper as follows. In §2, we
present the two key ideas of the DRSD- the sequential approximation of the ambiguity
set and the recourse function. We provide a detailed description of the DRSD method
in §3. We show the convergence of the value functions and solutions generated by the
DRSD method in §4. We present results of our computational experiments in §5, and
finally we conclude and discuss potential future directions in §6.

Notations and Definitions. We define the ambiguity sets over M, the set of
all finite signed measures on the measurable space (2, F). A nonnegative measure
that satisfies P(2) = 1 is a probability distribution. For probability distributions
P, P’ € P, we define

(1.5) dist(P, P') := sup |Ep[F(@)] — Ep/[F(®)]

FeF
as the uniform distance of expectation, where F is a class of measurable functions.
The above is the distance with (-structure that is used for stability analysis in SP
[37]. The distance between a single probability distribution P to a set of distributions
B is given as dist(P,B) = infpcyp dist(P, P'). The distance between two sets of
probability distributions 3 and ‘}A3 is given as

(1.6) D(P,F) := sup dist(P,P).

Pep
Finally, the Hausdorff distance between B and ‘i? is defined as

(1.7) H(P, B) := max{D(P,P), D(F,P)}.

With suitable definitions for the set F, the distance in (1.5) accepts the bounded
Lipschitz, the Kantorovich and the p-th order Fortet-Mourier metrics (see [37]).

2. Approximating Ambigiuty Set and Recourse Function. In this section,
we present the building blocks that we embed within a sequential sampling setting
of the DRSD method. Specifically, we present procedures to approximate ambiguity
set P and recourse function Q(z,w) in an iteration of the DRSD. Going forward we
make the following assumptions on the 2-DRLP models:

(A1) The first-stage feasible region X is a non-empty and compact set.

(A2) Q(-) satisfies relatively complete recourse. The dual feasible region of the
recourse problem is a nonempty compact polyhedral set. The transfer (or
technology) matrix satisfies sup peqy Ep[T'(@)] < oc.

(A3) The randomness only affects the right-hand sides of constraints in (1.3).

(A4) The sample space 2 is a compact metric space and the ambiguity set 9 is
nonempty.

This manuscript is for review purposes only.
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6 H. GANGAMMANAVAR AND M. BANSAL

As a consequence of (A2), the recourse function satisfies Q(z, ) < oo with probability
one for all x € X. It also implies that the second-stage feasible region, i.e., {y : Wy =
r(w) — T(w)z, y > 0}, is non-empty for all x € X and every w € Q. The non-
empty dual feasible region D implies that there exists a constant L > —oo such that
Q(z,&) > L, almost surely. Without loss of generality, we assume that L = 0. As a
consequence of (A3), the cost coefficient vector g and the recourse matrix W are not
affected by uncertainty. Problems that satisfy (A3) are said to have a fixed recourse.
Finally, the compactness of the support {2 guarantees that every probability measure
P €79 is tight.

2.1. Approximating the Ambiguity Set. The DRO approach assumes only
partial knowledge about the underlying uncertainty that is captured by a suitable
description of the ambiguity set. An ambiguity set must capture the true distribution
with an absolute or high degree of certainty and must be computationally manageable.
The description of the ambiguity set involves parameters that are determined based
on a practitioner’s risk preferences. The ambiguity set descriptions that are prevalent
in the literature include moment-based ambiguity sets with linear constraints (e.g.,
[15]) or conic constraints (e.g., [14]); Kantorovich distance or Wasserstein metric-
based ambiguity sets [31]; (-structure metrics [48], ¢-divergences such as x? distance
and Kullback-Leibler divergence [7]; Prokhorov metrics [17], among others. In this
section, we present steps to construct approximate ambiguity sets in a data-driven
manner. We use moment-based and Wasserstein distance-based ambiguity sets to
illustrate these steps.

In a data-driven setting, the parameters used in the description of ambiguity sets
are estimated using a finite set of independent observations which can either be past
realizations of the random variable w or generated using computer simulations. We
will denote such a sample by Q* C Q. When one observation is added to the sample
in every iteration, we obtain Q% = {w’ }?:1- Naturally, we can view QF as a random
sample and define the empirical frequency

(2.1) P (w) = Klw) for all w € QF,

where k(w) denotes the number of times observation w is observed in the sample. Since
in the sequential sampling setting, the sample set is updated within the optimization
algorithm, it is worthwhile to note that the empirical frequency can be updated using
the following recursive equations:

OFpF—1(w) if we Q1w £ Wk
(2.2) PFw) =< FpF 1w+ (1 -0 ifweQF 1 w=uwk
(1—6%) ifwé¢ QF 1 w=uwk.

where F = % In general, when more than one observation is added to the sample
in every iteration, we have 6% € (0,1). We will succinctly denote the above using the
operator ©F : RI?* ™' 5 RI?YI,

In this paper, we focus on a setting where the ambiguity set 3 is replaced by a
sequence of approzimate ambiguity sets {B*}r~o such that the following properties
are satisfied: (B1) for any P € BF~1, there exists 6% € (0,1) such that ©F(P) € Pk
and (B2) H(‘i?k,ﬁ)’.?) — 0 as k — oo, almost surely. We show that approximate
ambiguity sets for the moment-based ambiguity set Bom and Wasserstein distance-
based ambiguity set P, can be constructed such that these properties are satisfied
(Propositions 2.1 and 2.3, respectively).
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STOCHASTIC DECOMPOSITION ALGORITHM FOR DRO 7

Let F* = o(w? | j < k) be the o-algebra generated by the observations in the
sample QF. Notice that F*=! C F* and hence, {F*};>1 is a filtration. We will
define the approximate ambiguity sets over the measurable space (QF, F¥). These
sets should be interpreted to include all distributions that could have been generated
using the sample QF, which share a certain relationship with sample statistics. We
will use MP* to denote the finite signed measures on (%, F*).

2.1.1. Moment-based Ambiguity Sets. Given the first ¢ moments associated
with the random variable @, the moment-based ambiguity set can be defined as

_ fpdP(@) = 1. |

(2.3) ‘Bmom—{PeM fgﬂhaﬂ) ( ) = b, i=1....q [

While the first constraint ensures the definition of a probability measure, the moment
requirements are guaranteed by the second constraints. Here, 1;(w) denotes a real
valued measurable function on (2, F) and b; € R is a scalar fori = 1, ..., ¢. Existence
of moments ensures that b; < oo for all i = 1,...,q. Notice that the description of
the ambiguity set requires explicit knowledge of the following statistics: the support
Q and the moments b; for ¢« = 1,...,q. In the data-driven setting, the support is
approximated by Q% and the sample moments b = (1/k) E _, ¥i(w?) are used to
define the following approximate ambiguity set

Soerplw) =1, }
Zweﬂk P(w)i/h(w) = b']f 1= 1, - q '

The following result characterizes the relationship between distributions drawn
from the above approximate ambiguity set, as well as asymptotic behavior of the

sequence {‘Bmom} E>1-

PROPOSITION 2.1. For any P € P*L  we have OF(P) € Bk . Further, sup-
pose ‘Bmom #0 forallk >1, H(mmom,mmom) — 0 as k — 0o, almost surely.

Proof. See Appendix §A. a0

In the context of DRO, similar ambiguity sets have been studied in [9, 15] where
only the first moment (i.e., ¢ = 1) is considered. The above form of ambiguity set
also relates to those used in [14, 35, 40, 45] where constraints were imposed only on
the mean and covariance. In the data-driven setting of [14] and [45], the statistical
estimates are used in constructing the approximate ambiguity set as in the case of
(2.4). However, the ambiguity sets in these previous works are defined over the original
sample space (2, as opposed to QF that is used in (2.4). This marks a critical deviation
in the way the approximate ambiguity sets are constructed.

(2.4) pr o= {P e MF

Remark 2.2. When moment information is available about the underlying distri-
bution P*, an approximate moment-based ambiguity set with constant parameters in
(2.4) (i.e., with b¥ = b, for all k) can be constructed. Such an approximate ambiguity
set defined over QF is studied in [35]. Notice that these approximate ambiguity sets
satisfy Uk>1§3k C P and ‘,)A’.?k ‘ﬁ’”‘l for all £ > 1. Therefore, they satisfy the
properties (i) and (i¢) necessary for approximate ambiguity sets.

2.1.2. Wasserstein distance-based Ambiguity Sets. We next present ap-
proximations of another class of ambiguity sets that has gained significant attention
in the DRO literature, viz., the Wasserstein distance-based ambiguity sets. Consider
probability distributions py, pa € M, and a function v : 2 x Q — R4 U{oo} such that

This manuscript is for review purposes only.
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8 H. GANGAMMANAVAR AND M. BANSAL

v is symmetric, v (-) satisfies triangle inequality for 1 < 7 < oo, and v(wy,ws) = 0
whenever w; = wy. If J(u1, 1) denotes the joint distribution of random vectors wy
and wo with marginals p1 and po, respectively, then the Wasserstein metric of order
r is given by

1/r
(2.5) dyw(p1, u2) = [ inf {/ Vr(wl,wQ)n(dwl,de)H :
neJ (p1,p2) QxQ

In the above definition, the decision variable n € J can be viewed as a plan to trans-
port goods/mass from an entity whose spatial distribution is given by the measure
to another entity with spatial distribution ps. Therefore, the dy (p1, p2) measures the
optimal transport cost between the measures. Notice that an arbitrary norm || e||” on
R? satisfies the requirement of the function v/(+). In our presentation, we will use the
¢1 Wasserstein metric. However, the definition of the approximate ambiguity sets and
their use within the solution method are applicable to ambiguity sets defined using
Wasserstein metric of higher orders. Using the ¢; Wasserstein metric, we define an
ambiguity set as follows:

(2.6) Py = {P € M | dy(P,P*) < ¢}

for a given € > 0 and a reference distribution P*. In practice, the value of € is chosen
based on user’s risk preferences; a smaller value indicates lower risk aversion. As done
in §2.1.1, we present approximate Wasserstein distance-based ambiguity sets defined
over the measurable space (QF, F¥) as follows:

(2.7) PE = {P e MF | dy(P,P*) < ¢},

where P* = (p*(w)),cqor. For this approximate ambiguity set, the distribution sepa-
ration problem in (1.2) is a finite dimensional linear program:

(2.8a) max Zp(w)@(x,w)

weNFk
(2.8b)

E:wEQkp@U)::l

Swear Nw,w') =pw)  Vw e QF,
subject to P € ‘ﬁfv =< PeMF Zwem n(w,w') = pk(w’) V' e QF,
Z(w,w’)eﬂkxﬂk ”w - w/Hn(wvw/) <e

n(w,w) >0 Yw,w €QF

Note that when Wasserstein metric of order » > 1 is used in the definition of the
ambiguity sets, the foregoing optimization problem remains a finite dimensional linear
program. In this case, the coefficients ||w — w’|| and right-hand side € in the fourth
set of constraints in (2.8b) must be replaced by |jw — «’||" and €", respectively. The
following result characterizes the distributions drawn from the approximate ambiguity
sets of the form in (2.7), or equivalently (2.8b).

PROPOSITION 2.3. Under compactness of the support set Q C RY, i.e., (A}),
with d > 2, the sequence of Wasserstein distance-based approzimate ambiguity sets
satisfies the following properties (i) for any P € BE=1 we have OF(P) € B~ and
(i) H(‘jﬁ@,‘ﬁw) — 0 as k — oo, almost surely.

Tha anuscript is for review purpose: 0y,
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Proof. See appendix §A. ]

Note that, as in the case of moment-based ambiguity set, we also define Wasserstein
distance-based approximate ambiguity set over an approximation of the true sample
space, i.e., QF. This approach precludes the need for exact knowledge of the sample
space and allows us to depend only on what is known until iteration k.

Remark 2.4. In [32], an approach that involves solving a sequence of DRO prob-
lems is used to tackle the risk-neutral 2-SLP problem (1.4). They use approximate
ambiguity set to be a ball constructed in the space of probability distributions that
are defined over the sample space {2 and whose radius reduces with an increase in
the number of observations. Using Wasserstein balls of shrinking radii, the authors
of [32] show that the optimal value of the sequence of DRO problems converges to
the optimal value of the expectation-valued objective in (1.4) associated with the true
distribution P*. A similar approach of involving a sequence of DRO problems is used
in [48] to solve (1.4), albeit using ambiguity sets with (—structure. In contrast to
these works, our goal is to solve the DRO problem in (1.1). Therefore, we use a
constant radius for all k& > 1 to define the approximate ambiguity set in (2.7).

2.2. Approximating the Recourse Problem. Cutting plane methods for the
2-SLPs use an outer linearization-based approximation of the first-stage objective
function in (1.4). In such algorithms, the challenging aspect of computing the ex-
pectation is addressed by taking advantage of the structure of the recourse problem
(1.3). Specifically, for a given w, the recourse value Q(-,w) is known to be convex in
the right-hand side parameters that includes the first-stage decision vector . Addi-
tionally, if (A2) holds, then the function Q(-,w) is polyhedral. Under assumptions
(A2) and (A4), this structural property of convexity extends to the expected recourse
value Q(x).

Due to the strong duality of linear programs, the recourse value is also equal to
the optimal value of the dual of (1.3), i.e.,

(2.9) Q(z,w) = max 7' [r(w) — T(w)z]
subject to 7 € D := {m | W w < g}.

Due to (A2) and (A4), the dual feasible region D is a polytope that is not impacted
by the uncertainty. If II C D denotes the set of all extreme points of the polytope
D, then the recourse value can also be expressed as the pointwise maximum of affine
functions computed using elements of set II:
(2.10) Q(z,w) = max7 ' [r(w) — T(w)z].
weD

The outer linearization approaches tend to approximate the above form of recourse
function by identifying the extreme points (optimal solutions to (2.9)) at a sequence of
candidate (or trial) solutions {z*}, and generating the corresponding affine functions.
If 7(2¥,w) is an optimal dual obtained by solving (2.9) with z* as input, then the
affine function o (w) + (B8¥(w)) "z is obtained by computing the coefficients a* (w) =
(m(2*,w)) Tr(w) and p*(w) = T(w) "7 (2*,w). Following linear programming duality,
notice that this affine function is a supporting hyperplane to Q(z,w) at ¥, and lower
bounds the function at every other z € X.

If the support € is finite, then one can solve a dual subproblem for all w €
with the candidate solution as input, generate the affine functions, and collate them
together to obtain an approximate first-stage objective function. This is the essence
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10 H. GANGAMMANAVAR AND M. BANSAL

of the L-shaped method applied to 2-SLP in (1.4). In each iteration of the L-shaped
method, the affine functions generated using a candidate solution 2* and information
gathered from individual observations are weighed by the probability density of the
observation to update the approximation of the first-stage objective function. The L-
shaped method can also be applied to the SAA of the 2-SLP with continuous sample
space (2 that uses a sample Qy C Q of finite size N. A similar approximation strategy
is used in the DR L-shaped method for 2-DRLP problems [1, 35].

Alternatively, we can consider the following approximation of the recourse func-
tion expressed in the form given in (2.10):

(2.11) Q*(z,w) = max 7" [r(w) — C(w)z].

mellk

Notice that the above approximation is built using only a subset ITI¥ C II of extreme
points, and therefore, satisfies Q*(z,w) < Q(z,w). Since Q(z,w) > 0, we begin
with TI° = {0}. Subsequently, we construct a sequence of sets {II*} such that II° C
.1k C Ik C ... C T that ensures Q%(x,w) > 0 for all k. The following result
from [24] captures the behavior of the sequence of approximation {Q*}.

PROPOSITION 2.5. The sequence {Qk(:mw)}kzl converges uniformly to a contin-
uous function on X for any w € ).

Proof. See Appendix A. ]

The approximation of the form in (2.11) is one of the principal features of the
SD algorithm (see [24, 25]). While the L-shaped and DR L-shaped methods require
finite support for @, SD is applicable even for problems with continuous support. The
algorithm uses an “incremental” SAA for the first-stage objective function by adding
one new observation in each iteration. Therefore, the first-stage objective function
approximation used in SD is built using the recourse problem approximation in (2.11)
and the incremental SAA. This approximation is given by:

k
(2.12) OF(z)=c'az + ZQk(:C,wj).

The affine functions generated in SD provide an outer linearization for the approxi-
mation in (2.12). The sequence of sets that grow monotonically in size, viz. {II*}, is
generated by adding one new vertex to the previous set IT*~! to obtain the updated
set IT¥. The newly added vertex is an optimal dual solution obtained by solving (2.9)
with the most recent observation w” and candidate solution z* as input.

We refer the reader to [10], [1, 35], and [24, 26] for the a detailed exposition of the
L-shaped, the DR L-Shaped, and the SD methods, respectively. Here, we only note the
key differences between these methods. Firstly, the sample used in the (DR) L-shaped
method is fixed before the optimization. In SD, this sample is updated dynamically
throughout the course of the algorithm. Secondly, in the (DR) L-shaped method,
subproblems corresponding to the current iterate and all observations in the sample
are solved exactly. The resulting optimal dual solutions are used to compute the affine
lower bounding functions (cuts). On the other hand, in SD, only two subproblems
corresponding to the latest observation are solved exactly, while the subproblems
corresponding to other observations in the sample use the approximation in (2.11).

3. Distributionally Robust Stochastic Decomposition. In this section, we
provide a detailed description of the DRSD algorithm. The pseudocode of the DRSD

This manuscript is for review purposes only.
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Algorithm 3.1 Distributionally Robust Stochastic Decomposition

1: Input: Incumbent solution £ € X; initial sample Q° C Q; stopping tolerance
7> 0;v € (0,1), 9! =0, and maximum and minimum iterations k™8 > k™in > 1,
. Initialization: Set iteration counter k < 1; I1° = (); £° = (), and f°(z) = 0.
while (£ < k™) do
Solve the master problem (3.1) to obtain a candidate solution z*.
if k> k™ and fF1(2F1) — fA(2k) < 7f%1(2%~1) then, Go to Line 28.
end if
Generate a scenario w”® € Q to get sample QF «+— QF~1 U {w*}.
Solve the second-stage linear program (1.3) with (z*,w*) as input;
Obtain the optimal value Q(z*,w*) and optimal dual solution 7(z*,w*);
10: Update dual vertex set II* < TT*=1 U {n (2, w¥)}.
11: for w € 0%\ {w*} do

© P NPT

12: Use the argmax procedure (3.2) to identify dual vertex 7(z*, w");

13: Store Q¥ (z*,w) = (r(2*,w)) T[r(w) — T(w)z*].

14: end for R

15: Solve the distribution separation problem using the ambiguity set % and
{QF(z*,w)}peqr to get an extremal distribution P* := (p*(w))y,ecqx-

16: Derive affine function ¢§(x) = of + (8F) Tz using {m (2", w)},cqr and P* to
get lower bound approximation of Q(z) as in (3.5);

17:  Perform Steps 8-16 with #*~! (incumbent solution) to obtain £(-).

18: for 4‘?_1 € £F1 do

19: Update previously generated affine functions Ef_l(a:):

k _ gk k—1 k _ pk gk—1,
ozj—Gozj andﬂj—ﬁﬁj ;

20: Set 5 (x) = of + (BF) "« that provides lower bound approx. of Q*(z);
21: end for

22: Build a collection of these affine functions, denoted by £F;

23: Update approximation of the first-stage objective function:

clo+ Q@) > fH(2) = "o+ max {of +(87) " z};
JELT

24: If incumbent update rule (3.9) is satisfied, then set #* < z* and 2% < #F1,

otherwise.
25: Update the master problem (3.1) by replacing f*~!(z) with f*(z);
2: k< k+1;08— (k—1)/k
27: end while
28: return Incumbent solution #* and objective function estimate f*(&%).

method is given in Algorithm 3.1. In the following, we discuss the main steps of the
algorithm in iteration k (Steps 4-26 of Algorithm 3.1). At the beginning of iteration
k, we have a certain approximation of the first-stage objective function that we denote
as f*=1(x), a finite set of observations Q=1 and an incumbent solution #¥~1. We use
the term incumbent solution to refer to the best solution discovered by the algorithm
until iteration k. The solution identified in the current iteration is referred to as the
candidate solution and denoted as z* (without e).

Iteration k begins by first identifying the candidate solution by solving the fol-
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12 H. GANGAMMANAVAR AND M. BANSAL

lowing the master problem (Step 4):
(3.1) 2% € argmin {f*'(z) | x € X}.

Following this, a new observation w* € €2 is obtained and added to the current sample
of observations QF~! to get QF = QF~1 U {w*} (Step 7).

In order to build the first-stage objective function approximation, we rely upon
the recourse function approximation presented in Section 2.2. For the most recent
observation w® and the candidate solution z*, we evaluate the recourse function value
Q(z*,w*) by solving (1.3), and obtain the dual optimum solution 7(z*,w*) in Steps
8-10. These dual vectors are added to a set IT*~1 of previously discovered optimal
dual vectors. In other words, we recursively update IT* < IT*=1 U {7 (z*, w*)}. For all
other observations (w € QF, w # w*), we identify a dual vector in IT* that provides the
best lower bounding approximation at Q(x*,w) using the following operation (Steps
12-13):

(3.2) 7(z®, w) € argmax {7 [r(w) — T(w)z¥] | 7 € TI¥}.

Note that the calculations in (3.2) are carried out only for previous observations as
7(x®, wk) provides the best lower bound at Q(x*,w*). Further, notice that

m(2*,w) "r(w) - T(w)z"] = Q" (2", w),

the approximate recourse function value at x* defined in (2.11), for all w € QF, and
Qk(xk,wk) — Q(xk,wk)
Using {Qk(xk,oﬂ)}f:l, we solve a distribution separation problem (in Step 15):

(3.3) Q*(*) = max { T p(@)@H (", w) | plw) € s%’f}.

weNk

Let P* = (p*(w)),cor denote an optimal solution of the above problem which we
identify as a maximal/extremal probability distribution. Since the problem is solved
over measures M¥ that are defined only over the observed set QF, the maximal proba-
bility distribution has weights p*(w) for w € Q¥ and p*(w) = 0 for w € Q\ Q*. Notice
that the problem in (1.2) differs from the distribution separation problem (3.3) as the
latter uses the recourse function approximation Q*(-) and approximate ambiguity set
‘ﬁk as opposed to the true recourse function Q(-) and ambiguity set 3, respectively.
For the moment-based and Wasserstein distance-based ambiguity sets (discussed in
Section 2.1), the distribution separation problem is a deterministic linear program. In
general, the distribution separation problems associated with well-known ambiguity
sets remain deterministic convex optimization problems [34], and off-the-shelf solvers
can be used to obtain the extremal distribution.

In Step 16 of Algorithm 3.1, we use the dual vectors {m(z*,w?)};<; and the
maximal probability distribution P* to generate a lower bounding affine function:

(34)  Qz) = max Ep[Q*(z,@)] 2 Y p*(w)- (n(a",w)) T [r(w) — T(w)a],

k
Pey weNFk

for the worst-case expected recourse function measured with respect to the maximal
probability distribution P* € 3¥. We denote the coefficients of the affine function on
the right-hand side of (3.4) by

(3.5) ap = Y (e w)Trw) and B = = Y pF(W)T(w) (e w),

weNk weNk
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STOCHASTIC DECOMPOSITION ALGORITHM FOR DRO 13

and succinctly write the affine function as £§(z) = af + (8F) T. Similar calculations
are carried out using the incumbent solution #*~! to identify a maximal probabil-
ity distribution and a lower bounding affine function resulting in the affine function
Ok (x) = &k + (BF) T (Step 17). Note that we use two indices for the cut coefficients
(a, B8) and the affine function ¢. The superscript indicates the current iteration, while
the subscript indicates the iteration when the quantities were first computed. Since,
one observation is added to QF in every iteration, the subscript also indicates the
number of observations used in computing the quantities.

While the latest affine functions provide a lower bound for QF, the affine func-
tions generated in previous iteration are not guaranteed to lower bound QF. To see
this, let us consider the moment-based approximate ambiguity sets {% . }r>1. Let
Pl € ﬁ{nom be the maximal distribution identified in an iteration j < k which was
used to compute the affine function E; (7). By assigning p’(w) = 0 for all new obser-

vations encountered after iteration 7, i.e., w € Q¥ \ €, we can construct a probability
distribution P = ((p/(w))weqs, (0)wear\oi) € R‘fkl. This reconstructed distribution
satisfies ) cqr P(w) = 1. However, it is easy to see that } o ¥i(w)p(w) = ZA)f bk
for all i = 1,...,q. Therefore, P ¢ B*. In other words, while the coefficients (a?, Bj])
are F/-measurable, the corresponding measure is not feasible to the approximate am-
biguity set 3*. Therefore, E;- () is not a valid lower bound to Q*. The arguments for
the Wasserstein-based approximate ambiguity set are more involved, but persistence
of a similar issue can be demonstrated.

To address this, we recursively update the previously generated affine functions
E;?*l(m) = a;?*l + (ﬁffl)—'—x for j < k as follows (Steps 18 - 21):

(3.6) of =6l Y =608, and (F(x) = o} + (B)) T2 for all j < k,

such that E? (x) provides lower bound approximation of Q*(z) for all j € {1,...,k—1}.
Similarly, we update the affine functions éf (z), j < k, associated with incumbent

solution. The candidate and the incumbent affine functions (¢%(z) and £%(z), respec-
tively), as well as the updated collection of previously generated affine functions are
used to build the set of affine functions which we denote by £ (Step 22). Using
this collection of affine functions £F, we update the approximation of the first-stage
objective function in Step 23, as follows:

(3.7 fH) = ¢z +max {l(z)}.
Lelk

The lower bounding property of this first-stage objective function approximation is
captured in the following result.

THEOREM 3.1. Under assumption (A2), the first-stage objective function approx-
imation in (3.7) satisfies

o) <c'z+QF(x) forallz € X and k > 1.

Proof. For the non-empty approximate ambiguity set ‘%1 of ambiguity set 3, the

construction of the affine function ensures that ¢1(z) < Q!(z). Now assume that

{(z) < Q¥ Y(z) for all £ € £F~! and k > 1. The maximal nature of the probability
distribution P* satisfies:

S WM @ w) > Y pw)QF(rw) VP e P

weNk weNk
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14 H. GANGAMMANAVAR AND M. BANSAL

Using above and the monotone property of the approximate recourse function, we
have

> WM @,w) = Y pw)@  (z,w)
weNk weQk

(3-8) = Y p@)QF (mw) + pwh)QF (Wb,

wek\{wk}

for all {p(w)}uecar € B*. Based on the properties of P and {‘ﬁk}kzl (similar to
Propositions 2.1 and 2.3), we know that for every P € ‘/ﬁk’l we can construct a
probability distribution in B* using the mapping ©F defined by (2.2). Considering a
probability distribution P’ = {p'(w)},ecqr-1 € P! we have ek(P) e Bk and the
inequality (3.8) reduces to

Y QM @ w) = Y 10 (@)Q (w,w)] + [0° (W) + (1 - 67)]Q" (&, ")

wenk weQk\{wk}

= 9k|: Z p’(w)le(:E,w)] + (1 _ Qk)Qkil(m,wk)

weNk—1

LA IR IOl

weNk—1

The last inequality is due to assumption (A42), i.e., Q(z,w*) > 0 and the construction
of recourse function approximation Q¥ described in §2.2. Since /() lower bounds the
term in bracket, we have

3 (@)@ (@,w) > 654(a).

weNk

Using the same arguments for all £ € £*~1, and the fact that the ¢§(x) and EAZ (z) are
constructed as lower bounds to the QF, we have f*(z) < ¢"x+QF(z). This completes
the proof by induction. O

Once the approximation (3.7) is updated, the performance of the candidate so-
lution is compared relative to the incumbent solution (Step 24). This comparison is
performed by verifying if the following inequality is satisfied:

(3:9) PER) = FEEY <Al - A EY)

where parameter v € (0,1). If so, the candidate solution is designated to be the
next incumbent solution, i.e., % = x*. If the inequality is not satisfied, the previous
incumbent solution is retained as & = £¥~1. This completes a DRSD iteration.

Remark 3.2. We can extend the algorithm design for 2-DRLPs where the rela-
tively complete recourse assumption of (A2) and/or assumption (A3) is not satisfied.
For problems where relatively complete recourse condition is not met, a candidate
solution may lead to one or more subproblems to be infeasible. In this case, the dual
extreme rays can be used to compute a feasibility cut that is included in the first-stage
approximation. The argmax procedure in (3.2) is only valid when assumption (A3)
is satisfied. In problems where the uncertainty also affects the cost coefficients, the
argmax procedure presented in [20] can be utilized. These algorithmic enhancements
can be incorporated without affecting the convergence properties of DRSD.
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Remark 3.3 (Relation between DRSD, SD, and DR, L-shaped Method). We

close this section by identifying the key differences in the DRSD algorithm design
when compared to SD and DR L-shaped methods.

e There are two main differences between DRSD and the DR L-Shaped method.
Firstly, the DR L-shaped method operates with a deterministic representation of
the ambiguity set computed using a fixed sample of observations, an input to the
algorithm. In contrast, a new observation is added (Line 7) in every iteration
of DRSD to improve the approximation of the ambiguity set. Secondly, every
iteration of the DR L-shaped method involves solving a subproblem corresponding
to each observation used in the ambiguity set representation. On the other hand,
in DRSD, only two subproblems corresponding to latest observation w” are solved
to optimality, and the argmax procedure is used for the other observations.

e While DRSD is designed to address the 2-DRLP problem (1.1), the SD and its vari-
ants [24, 25, 41] are for risk-neutral 2-SLP. This generalization introduces another
layer of approximation to SD, viz., the approximation of ambiguity sets. The algo-
rithmic enhancements necessary to address this new layer of approximations make
the DRSD significantly different from its risk-neutral predecessors. For instance,
we need to solve an approximate distribution separation problem in every iteration
(Line 15). The cut coefficients are computed and updated (in Lines 18-21) in a
manner that is consistent with the updates carried out to approximate the ambi-
guity sets (see propositions 2.1 and 2.3, and coefficient updates in (3.6)). The cut
updates that are undertaken in SD only need to be consistent with the updates in
empirical distribution. This critical difference in cut computations also introduces
significant differences in the convergence analysis of DRSD that we present next.

4. Convergence Analysis. In this section we provide the convergence result of
the sequential sampling-based approach to solve DRO problems. In order to facilitate
the exposition of our theoretical results, we will define certain quantities for notational
convenience that are not necessarily computed during the course of the algorithm. Our
convergence results are built upon stability analyses presented in [45] and convergence
analysis of the SD algorithm in [24].

We define a function over the approximate ambiguity set using the recourse func-
tion Q(-,-), that is

(4.1) g"(x) := ¢z + max Ep[Q(z,d)].
Pepk

We begin by analyzing the behavior of the sequence {g*} k>1 as k — oo. In particular,
we will assess the sequence of function evaluations at a converging subsequence of
first-stage solutions. The result is captured in the following proposition.

PROPOSITION 4.1. Suppose {#¥7} denotes a subsequence of {#*} such that $*» —
T, then lim, o |gF~ (2%7) — f(z)| = 0, with probability one.

Proof. Consider an approximate ambiguity set ‘jﬁk . Fori=1,2 and z; € X, let
P(zi) € argmaxp g {Ep[Q(z;,)]}. Then,
g*(x1) = CTIlJrEP(zl)[Q(Il,@)] > c'my + Ep(2,)[Q(z1,0)]
= ¢ @+ Ep(s,)[Q(a2,@)] + ¢ (21 — 22)+
Ep(2,)[Q(21,0)] — Ep(ay)[Q(22,D)]
= ¢F(w2) + ¢ (21— m2) + Ep(z5)[Q(71,@)] — Ep(e,)[Q(22,0)].
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The inequality in the above follows from optimality of P(z1). The above implies that
9" (x2) — g"(11) < ¢ (w2 — 21) + Ep (o) [Q(22, 0)] — Ep(ay)[Q(z1,d)]

< e (@2 — 21)| + [Ep(ay)[Q(22, @)] — Ep(ey) [Q(21,D)]

The second relationship is due to the triangular inequality. Under assumption (A2),
the recourse function Q(z,®) is a uniformly Lipschitz continuous function, with prob-
ability one (see Chapter 2 in [43] for details). This implies that there exists a constant
C such that [Ep[Q(z1, )] —Ep[Q(z2,®)]| < C||x1 — 2] for any probability distribu-
tion P. As a result,

(4.2) 9" (@2) — ¢"(z1) < (llell + O)l|lw2 — a1 ]|
Starting with x5 and using the same arguments, we have
(4.3) 9" (@1) = g"(z2) < (llell + O) |1 — 22|

Therefore, the function ¢g¥(x) is equi-continuous on x € X. Now consider ambiguity
sets P and P*. Note that for all z € X,

f(x) = ¢"(2)] r}glg%Ep[Q(%@)]— max Ep[Q(z,w)]

Prepk

max Pr,réi%k |Ep[Q(z,@)] — Ep[Q(a,o)]|

o Prlréig%k sup [Ep[Q(z,@)] — Ep[Q(z,0)]|.

IN

IN

Using the definition of deviation (1.6) and Hausdorff distance (1.7) between ambiguity
sets P and P*, we have

(4.4) |f(x) = ¢"(2)| < D(P,B*) < H(B, F).
For 2%~ and Z, using the triangle inequality we have

1f(@) — g" (@")| < |f(2) — g" (@) + |g" (2) — g (&™)
< H(B,B5) + (el + O) |7 — &+ .

The second inequality is justified by combining (4.2), (4.3), and (4.4). As n — oo,
H(ﬁ,‘i\?kn) — 0 due to property (B2) of the considered family of ambiguity sets.
Furthermore, since #*» — z, the right-hand side of the above inequality vanishes.
Therefore, we conclude that g*» (&) — f(Z) as n — oo. 0

Notice that the behavior of the approximate ambiguity sets defined in §2.1, in
particular, the condition H(B,B¥) — 0 as k& — oo plays a central role in the above
proof. Recall that for the moment and Wasserstein distance-based ambiguity sets, the
condition is established in propositions 2.1 and 2.3, respectively. It is also worthwhile
to note that under the foregoing conditions, (4.4) also implies uniform convergence of
the sequence {g*} to f(x), with probability one.

The above result applies to any algorithm that generates a converging sequence of
iterates {z*} and a corresponding sequence of extremal distributions. Such an algo-
rithm is guaranteed to exhibit convergence to the optimal distributionally robust ob-
jective function value. Therefore, this result is applicable to the sequence of instances

This manuscript is for review purposes only.
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constructed using external sampling and solved, for example, using reformulation-
based methods. Such an approach was adopted in [35] and [45]. The analysis in [35]
relies upon two rather restrictive assumptions. The first assumption is that for all
P € %P, there exists a sequence of measures {P*} such that P* € B*¥ and converges
weakly to P. The second assumption requires the approximate ambiguity sets to be
strict subsets of the true ambiguity set, i.e., ¥ C 9. Both of these assumptions are
very difficult to satisfy in a data-driven setting (also see Remark 2.2).

The analysis in [45], on the other hand, does not make the above assumptions.
Therefore, their analysis is more broadly applicable in settings where external sam-
pling is used to generate QF. DRO instances are constructed based on statistics
estimated using QF and solved to optimality for each & > 1. They show the conver-
gence of optimal objective function values and optimal solution sets of approximate
problems to the optimal objective function value and solutions of the true DRO prob-
lem, respectively. In this regard, the result in Proposition 4.1 can alternatively be
derived using Theorem 1(i) in [45]. While the above function is not computed during
the course of the sequential sampling algorithm, it provides the necessary benchmark
for our convergence analysis.

One of the main point of deviation in our analysis stems from the fact that we
use the objective function approximations that are built based on the approximate
recourse function in (2.11). In order to study the piecewise affine approximation of
the first-stage objective function, we introduce another benchmark function

(4.5) ¢*(x) == ¢"z + max Ep[Q*(z,d)].

Pepk
Notice that the above function uses the approximations for the ambiguity set (as in the
case of (4.1)) as well as the approximation of the recourse function. This construction
ensures that ¢*(z) < g¥(x) for all z € X and k > 1, which follows from the fact that

QF(x,@) < Q(x,@), almost surely. Further, the result in Theorem 3.1 ensures that
fF(x) < ¢¥(x). Putting these together, we obtain the following relationship:

(4.6) fE(x) < ¢F(x) < g*(z) Ve e X k> 1.

While the previous proposition was focused on the upper limit in the above rela-
tionship, we present the asymptotic behavior of the {f*} sequence in the following
results.

LEMMA 4.2. Suppose {i*~} denotes a subsequence of {#*} such that #*» — z.
Then, lim,, oo f¥(2%) — f(z) = 0, with probability one.

Proof. From Proposition 4.1, we have lim,, o, |f(Z) — g¥»(2*")| = 0. Therefore,
there exists N; < oo and €; > 0 such that

(4.7 maxEp[Q(Z,0)] — max Ep[Q(ﬁk”7cD)]’ <€/2 ¥Yn > Ni.
pPeyp PeBkn

Now consider,

max ER(Q )]~ max Br(Q" (24,
Pepkn PcPkn
< max [Ep[Q(i*,@)] — Ep[Q™ (&%, @)]]
Pepkn

= max Ep[|Q(¢™,@) — Q" (2", &)
PeRkn
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The last equality follows from the fact that Q(x, @) > Q*(x, &) forallz € X and k > 1,
almost surely. Moreover, because of the uniform convergence of {Q*} (Proposition
2.5), the sequence of approximate functions {¢*} also convergences uniformly. This
implies that, there exists Ny < oo such that for all n > Nj,

(4.8)

max Ep[Q(i*",@)] — max Ep[Qk"(ik",cD)]' < €1/2.
Peqyc.,, PePkn

Let N = max{Ny, No}. Using (4.7) and (4.8), we have for all n > N,

maxEp[Q(Z,&)] — max Ep[QF» (xk",(l))]‘ < €.
Pep P

This 1mphes that |f( ) — qbk"(aﬁ ") — 0 as n — oo. Based on (3.2), we have

QFn (kW) = (W( w)'r(w) = T(w)i™] > (7(#%,w)) " [r(w) — T(w)z] for all
z € X and w € QF». Let

apr = () (@t w) Tr(w) and B = = Y P (w)T(w) (@, w),

wENkn weNkn

where {p*" (w)}weqrn is an optimal solution of the distributional separation problem
(3.3) where index k is replaced by k. Then, the affine function aﬁz +(c+ B::)Tx

provides a lower bound approximation for function ¢*=(z), i.e.,
P (x) > a’,ﬁZ + (c+ 5’,::)Tx for all x € X,

with strict equality holding only at 2%, Therefore, using the definition of f*(z) we
have lim,, o aZZ + (e + 5’};:,)T n — hmn%oo fkn( ") = limp o0 ¢kn( k) = f(&),
almost surely. This completes the proof. O

The above result characterizes the behavior of the sequence of affine functions
generated during the course of the algorithm. In particular, the sequence { f*(2%)} E>1
accumulates at the objective value of the original DRO problem (1.1). Recall that the
candidate solution z* is a minimizer of f*~!(x) and an affine function is generated
at this point such that f*¥(z*) = ¢¥(2*) in all iterations k¥ > 1. However, due to
the update procedure in (3.6) the quality of the estimates at ¥ gradually diminishes
leading to a large value for (¢*(x*) — f*(x*)) as k increases. This emphasizes the role
of the incumbent solution and computing the incumbent affine function #(x) during
the course of the algorithm. By updating the incumbent solution and frequently
reevaluating the affine functions at the incumbent solution, we can ensure that the
approximation is “sufficiently good” in the neighborhood of the incumbent solution.
In order to assess the improvement of approximation quality, we define

(4.9) oF .= ALy — A <0 VE> L

The inequality follows from the optimality of 2* with respect to the objective func-
tion f¥~1. The quantity 6* measures the error in objective function estimate at the
candidate solution with respect to the estimate at the current incumbent solution.
The following result captures the asymptotic behavior of this error term.

LEMMA 4.3. Let K denote a sequence of iterations where the incumbent solution
changes. There exists a subsequence of iterations, denoted as K* C IC, such that
hmke)g* 5k =0.
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Proof. We will consider two cases depending on whether the set K is finite or not.
First, suppose that || is not finite. By the incumbent update rule and (4.9),

frr(atn) = fre(@ ety <Alfftat) - i@ =0t <00 Yk, € K

k 1 ~k

Subsequently, we have limsup,, . 6*» < 0. Since z*» = #F» and $%»~1 = gkn—1 we

have
£in (@) = £ (@) < 8t <o,

The left-hand side of the above inequality captures the improvement in the objective
function value at the current incumbent solution over the previous incumbent solution.
Using the above, we can write the average improvement attained over n incumbent
changes as

Z{f’“ — fe @ ] 3%275’%50 for all .
j=1

This implies that

(fk”( By pa (g ) rzl< _ phier (ks ﬂ Z’yékJ<0

=1

(a) (b)

<.

for all n. Under the assumption that the dual feasible region is non-empty and
bounded (this is ensured by relatively complete recourse, (A2)), {f*} is a sequence
of Lipschitz continuous functions. This, along with compactness of X (A1), implies
that fFn (&kn) — fF1(2k0) is bounded from above. Hence, the term (a) reduces to zero
as n — oco. The term (b) converges to zero, with probability one, due to uniform
convergence of {f*}. Since v € (0, 1), we have

1 n
lim —Zékﬂ' =0,
n—oo N

j=1

with probability one. Further,

lim 726@ < limsup 6% < 0.

n—oo N n—o00
Thus, there exists a subsequence indexed by the set K* such that limgex- 6% = 0,
with probability one.
Now if |K| is finite, then there exists & and K < oo such that for all £ > K, we
have #* = &. Notice that, if limpecx- ¥ = Z, uniform convergence of the sequence
{f*} and Lemma 4.2 ensure that

(4.10a) Jim fH(2%) = lim f*7H(ab) = f(2)
(4.10D) Jim fH(2) = lim f57N(@) = f(2).

Further, since the incumbent is not updated in iterations k > K, we must have from
the update rule in (3.9) that

FEE®) = f25(@) > AN = @) = 408 forall k> K.
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20 H. GANGAMMANAVAR AND M. BANSAL
Using (4.10), we have

lim (f*(2*) = f*(2)) =y Jim (718 = 71 (@),
v

ke~

Noting that v € (0,1), the above inequality reduces to f(Z) — f(&) > 0. Further,
using (4.9) in the limit as ¥ — oo and the fact that ¥ = & for all k > K, we
have f(z) — f(2) < 0. Therefore, we have f(Z) — f(2#) = 0. Hence, limpcic- 6% =
f(&@) — f(&) = 0, with probability one. d

Equipped with the results in lemmas 4.2 and 4.3, we state the main theorem
which establishes the existence of a subsequence of the incumbent sequence generated
by the algorithm for which every accumulation point is an optimal solution to (1.1).

THEOREM 4.4. Let {a*}2° | and {#F}3° | be the sequence candidate and incum-
bent solutions generated by the DRSD algorithm. There exists a subsequence {2*}pex
for which every accumulation point is an optimal solution of 2-DRLP (1.1), with
probability one.

Proof. Let * € X be an optimal solution of (1.1). Consider a subsequence
indexed by K such that limgex 2 = Z. Compactness of X' ensures the existence of
accumulation point T € X and therefore,

(4.11) F) < ().
From Theorem 3.1, we have for all k,z € X

M) < T+ QMa) < ¢Ta+ max Ep[Q(z, )] = ¢*(x).
Peypk

Thus, using the uniform convergence of {g*} (Proposition 4.1) we have

(4.12) limsup f*(z*) < lim (%) = f(z¥)
keK! kex

for all subsequences indexed by K’ C {1,2,...}, with probability one. Recall that,
5]@ _ fkfl(mlc) _ fkfl(‘,%lcfl) < fkfl(x*) _ fkfl(i_kfl) for all k > 1.

The inequality in the above follows from the optimality of z* with respect to f*~!(z).
Taking limit over K, we have

fm ot < fim (£ @) — )
< limsup f*71(") — Hmint 1@ < f@7) - £(3).

keKx

The last inequality follows from (4.12) and limgex f*~1(2%"1) = f(z) (Lemma
4.2). From Lemma 4.3, there exists a subsequence indexed by K* C K such that
limpex- 6% = 0. Therefore, if {#*}rex- — T, we have

f@) = f(z) 2 0.

Using (4.11) and the above inequality, we conclude that Z is an optimal solution with
probability one. 0

Thi. 1SCript 15 f ly.
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5. Computational Experiment. In this section, we evaluate the effectiveness
and efficiency of the DRSD method in solving 2-DRLPs. For our preliminary exper-
iments, we consider 2-DRLPs with moment-based ambiguity set Bom for the first
two moments (¢ = 2). We also consider 2-DRLPs with Wasserstein ambiguity set Py,
with ¢ and ¢, distance metrics.

We report results from the computational experiments conducted on four well-
known SP test problems: the capacity expansion planning (CEP) [26], the power gen-
eration planning (PGP) [26], multilocation transshipment (RETAIL) [23], and cargo
flight scheduling (STORM) [33]. In Table 1, we provide the number of variables (#Var)

TABLE 1
Details of CEP, PGP, RETAIL, and STORM Test Problems, and Computational Results for the SD
Algorithm

Stage 1 Stage II SD Results
Problem
#Var  #Cons | #Var  #Cons #RV  [Q] #Iter ObjEst Time
PGP 4 2 16 73 576 | 215(%8) 446(£2.4) 0.43(£0.04)
CEP 8 5 15 73 216 | 153(£7)  343886(£12783)  0.18(0.02)
RETAIL 7 0| 70 22 7 10 | 721(x44) 154(£1.92) 4.20(£0.76)
STORM 121 185 1259 528 117 108 238(£17) 15173494(+657272) 2.83(£0.21)

and constraints (#Cons) in the first- and second-stage of the test problems. Notice
that the PGP and CEP have relatively smaller supports (216 and 576, respectively),
while RETAIL and STORM have a support size of 10" and 108!, respectively. In the
table, we also provide computational results from solving the risk-neutral versions of
these problems using the SD algorithm [41]. For these results, we report the number
of iterations (#Iter), objective function estimate (ObjEst) at termination, and total
time (in seconds) taken by the SD algorithm. We refer the readers interested in a
computational comparison between SD and an external sampling-based approach for
risk-neutral 2-SLPs to [41] and [20].

Following the rule of thumb adopted in experiments involving sampling-based
SP, we conduct 30 independent replications for each problem instance. The choice
of 30 replications is the same as in previous experiments with SD (see [20] and [41],
for example). Each replication uses a different seed for the random number gen-
erator. The algorithms are implemented in the C programming language, and the
experiments are conducted on a 64-bit Intel core i7 - 4770 CPU at 3.4GHz x 8 ma-
chine with 32 GB memory. All linear programs, i.e., master problem, subproblems,
and distribution separation problem, are solved using CPLEX 12.10 callable subrou-
tines. For DRSD, we use 7 = 0.001 and v = 0.2 in our experiments. We add one
new observation to the sample in every iteration and therefore, 8% = % is used
for the updates in (3.6). The source code for the DR L-shaped, DRSD algorithms,
and the reformulation techniques are available under the GNU general public license
at https://github.com/SMU-SODA /distributionallyRobust.git. The repository also
includes the test problems in SMPS file format.

5.1. Results for 2-DRLPs with Moment-based Ambiguity Set. The first
set of experiments concerns the 2-DRLP problems with a moment-based ambiguity
set Pmom for which we use an external sampling-based approach as a benchmark for
comparison with DRSD. The external sampling-based instances involve constructing
approximate problems of the form (4.1) with a pre-determined number of observations
N € {100, 250,500, 1000}. The resulting instances are solved using the DR L-Shaped
method. For a fair comparison, the DRSD method is run for a maximum of N itera-
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TABLE 2
Computational Results for 2-DRLP Instances with Moment-based Ambiguity Set

N DRSD Algorithm DR L-Shaped Algorithm
#lter ObjEst Time #lter ObjEst Time
PGP
100 | 100 (+0) 460.89 (£3.76) 0.04 (£0.00) | 18 (+0.9) 457.61 (£3.28)  0.052 (£0.00)
250 | 250 (£0) 466.91 (+£2.52) 0.13 (£0.00) | 20 (0.7) 462.92 (£2.28)  0.077 (£0.00)
500 | 500 (£0) 471.40 (£3.49) 0.32 (£0.00) | 20 (£0.6) 464.70 (£1.95)  0.096 (£0.00)
1000 | 504 (+687)  463.19 (+16.28) 0.35 (£0.70) | 20 (+0.8) 466.10 (£1.78)  0.121 (£0.00)
CEP
100 | 100 (£0) 658831 (£14453)  0.04 (£0.00) | 3 (£0.2) 658817 (£14457) 0.015 (&0.00)
250 | 250 (£0) 680795 (£10524)  0.12 (£0.00) 2 (£0.2) 680736 (+£10511) 0.024 (£0.00)
500 | 256 (£0) 683300 (£5955) 0.30 (£0.00) | 20 (£0.6) 683252 (£5949)  0.028 (+0.00)
1000 | 256 (£0) 683300 (£5955) 0.30 (£0.00) 2 (£0) 679665 (£4926)  0.028 (£0.00)
RETAIL
100 | 100 (+0) 326.21 (£15.35) 0.07 (£0.00) 46 (1) 327.26 (£14.79)  0.370 (£0.01)
250 | 250 (£0)  365.00 (£19.03)  0.27 (£0.01) | 45 (£2)  365.54 (£19.45)  0.839 (£0.03)
500 | 500 (£0) 387.98 (£17.10) 0.86 (£0.02) 45 (£1) 388.84 (£17.48)  1.587 (+0.05)
1000 | 625 (£31)  396.67 (£15.99)  1.13 (£0.12) | 45 (£1) 40171 (£14.38)  3.176 (£0.09)
STORM
100 | 100 (£0) 15755337 (£12314)  0.74 (£0.02) |12 (£0.51) 15742456 (£12192) 0.434 (£0.02)
250 | 250 (£0) 15795815 (+8493)  4.66 (£0.13) |11 (£0.52) 15781725 (+£8754) 1.008 (£0.05)
500 | 500 (£0) 15811923 (+5233) 20.54 (+0.51) |12 (£0.59) 15797020 (£5346) 2.117 (£+0.10)
1000 | 516 (£108) 15786865 (£9155) 30.44 (£15.28) | 12 (£0.52) 15806575 (£3772) 4.318 (£0.19)

tions to have an estimate based upon a sample of size not greater than N. Specifically,
it terminates when conditions in Step 5 of Algorithm 3.1 are satisfied. We compare
the solution quality provided by these methods along with the computational time.
The results from the experiments are presented in Table 2.

Table 2 shows the number of iterations, objective function estimate f*(#*) at
termination, and solution time (in seconds) averaged over 30 replications. The val-
ues in the parenthesis are the half-widths of the corresponding confidence intervals.
Similar to SD, the number of iterations for DRSD is also equal to the number of
observations used to approximate the ambiguity set. To begin, observe the increase
in the objective function estimates of distributionally robust variants when compared
to the risk-neutral results from SD in Table 1.

The objective function estimate obtained using the DRSD is comparable to the
objective function estimate obtained using the DR L-shaped method. Notice that for
instances with NV = 1000, DRSD took less than 1000 iterations because the termi-
nation conditions were satisfied. The same is true for CEP instances with N = 500.
This shows the potential ability of DRSD to dynamically determine the number of
observations by assessing the progress made during the algorithm. For instance, the
DRSD objective function estimate for STORM that is based upon a sample of size 516
(on average) is within 0.1% and 0.12% of the objective function value estimate pro-
vided by the DR L-shaped method for N = 500 and N = 1000, respectively. These
results show that the optimal objective function estimate obtained from DRSD are
comparable to those obtained using an external sampling-based approach.

The results for small scale instances (PGP and CEP) show that both DRSD and
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the DR L-shaped method take a fraction of a second, but the computational time
for DRSD is higher than the DR L-shaped method for all N. We attribute this
behavior to two reasons. (i) The computational effort to solve all the subproblems
in each iteration does not increase significantly with N as they are easy to solve.
This observation is in-line with our computational experience with the SD method
for 2-SLPs (see [20]). (ii) The DRSD takes a larger number of iterations, resulting
in an increased number of master and distribution separation problems solved. It is
important to note that, while the computational time for the DR L-shaped method
on an individual instance may be lower, the iterative procedure necessary to identify
a sufficient sample size may require solving several instances with increasing sample
size. This may result in a significantly higher cumulative computational time.

On the other hand, for large-scale problems (RETAIL and STORM), we observe a
noticeable increase in the computational time for the DR L-shaped method with an
increase in N. A significant portion of this time is spent solving the subproblems.
Since the DRSD solves only two subproblems in each iteration, the time taken to solve
the subproblems is significantly less in comparison to the DR L-shaped method where
all subproblems corresponding to unique observations are solved in each iteration.
Notice that for RETAIL, the average number of iterations taken by DRSD is at least
8.2 times the average number of iterations taken by DR L-shaped for any N. This
increases the computational time spent for solving the master and distributional sepa-
ration problems. However, the reduction in the overall computational time is a direct
consequence of solving only two subproblems in each iteration. The results for STORM
also show similar behavior in terms of computational time associated with solving
master and subproblems. However, the overall increase in the computational time is
due to a significant computational expense (~ 78%) in naively solving the distribution
separation problem. This computational time associated with solving the distribution
separation problem can be reduced by using column-generation procedures that take
advantage of the problem structure. Such an implementation is not undertaken for
our current experiments and is a fruitful future research avenue.

5.2. Results for 2-DRLPs with /;-type Wasserstein Ambiguity Set. For
the Wasserstein distance-based ambiguity sets, we benchmark against the reformation
techniques proposed by [49]. Specifically, in [49], it has been shown that a 2-DRLP
(1.1) with Wasserstein ambiguity set can be reformulated as a two-stage robust opti-
mization problem. This reformulation is given by

N
1 X
. T _
6 (e o 5" ma Qo) —ll ull}H},
where {@w1,...,wn,} is a finite set of observations obtained using true distribution.

Notice that the reformulation (5.1) can be written as the following semi-infinite pro-
gram:

N,

' . 1 N

min C T € -— E Unp

z€X,n>0 " Ny 4 "
n=

st Q(z,w) —llw —Wh|l <vpy, ne{l,...,Ns},we Q.

For problem instances with ¢1-type Wasserstein ambiguity set, we solve the foregoing
program using a Benders decomposition approach.

For ¢1-norm, the reformulation in (5.1) admits the application of Benders decom-
position algorithm. To address the semi-infinite nature of the linear program, [19]
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TABLE 3
Computational Results for 2-DRLP Instances with Wasserstein-1 Ambiguity Set

DRSD Algorithm Reformulation Approach [49]
Problem | N
ObjEst Time ObjEst Time
100 447.04 (£3.34) 0.05 (£0.00) 444.85 (+3.26) 0.94 (£0.07)
e | 20 454.06 (£2.64) 0.25 (£0.04) 449.85 (£2.23) 7.02 (£0.63)
500 457.48 (£2.76) 1.79 (£0.26) 451.57 (£1.92) 27.73 (£1.81)

100 | 338295.71 (+14430.81)  0.25 (+£0.01) | 338295.71 (+14430.81)  0.32 (+0.02)
250 | 355054.48 (+£11823.37) 3.12 (40.09) | 355054.48 (+11823.37)  2.29 (40.08)

1 500 | 3s6757.34 (£6917.77)  13.24 (£0.26) | 356757.34 (£6917.77)  10.90 (£0.15)
100 157.09 (+4.00) 0.53 (+0.04) 153.67 (+3.89) 9.41 (+0.67)
cerars | 250 155.32 (£3.39) 7.75 (4+0.22) 154.06 (+£3.40) 331.15 (+13.89)
500 155.20 (£2.39) 72.02 (4+2.05) 154.62 (£2.38) 2189.66 (+65.97)
100 | 15504501.91 (£11397)  0.64 (+£0.04) | 15498236.10 (+11445)  21.51 (£1.09)
sqopy | 290 | 1550862320 (£7481)  8.86 (£0.19) | 15501074.50 (£7571)  333.22 (&11.80)

500 | 15507815.12 (£5059)  83.33 (4+2.55) - -

consider a special case where the sample space ) is defined by a bounded hyper-
rectangle and derive a finite subset of the sample space (without loss of optimality)
using extreme points of the hyper-rectangle. Since the test problems used in our
experiments do not impose any restrictions on {2, we adopt a sampling-based dis-
cretization of the ambiguity set to tackle (5.1). Such a discretization satisfies the
result in Proposition 2.3 and therefore, provides a suitable benchmark for DRSD.
We use the reformulation corresponding to ambiguity set defined by the finite set of
observations, i.e. :={wy,...,wn}, Ny=N,and w; =w; fori =1,...,N.

In this second set of experiments, we consider N = 100, 150, and 500 observations.
We use an external sampling approach to construct the instances of reformulation and
solve these instances using the Benders decomposition method. We run the DRSD
algorithm for the same number of iterations (N) to have the same set of observations
for approximating the ambiguity set (recall that we run replications of both algorithms
with the same seed for random number generation). The results of this experiment
are shown in Table 3 for ¢ = 0.05. The table shows the average objective function
estimates and computational time (in seconds) computed across 30 replications along
with half widths of the corresponding confidence interval.

The results indicate that the estimates of the objective function obtained from
the DRSD algorithm and the reformulation approach are comparable. For all the
test problems, the computational time for both approaches increases with N. We
attribute this to the increase in the size of the master problem. While the additional
effort associated with solving distribution separation problems also contributes to
the increased computation time in DRSD, the number of subproblems solved in each
iteration of Benders decomposition increases with V. In any case, DRSD outperforms
Benders decomposition applied to the reformulation across all test problems. Since we
ran out of memory when solving the instances of STORM with N = 500 using Benders
decomposition, we do not report its results.

5.3. Results for 2-DRLPs with /. -type Wasserstein Ambiguity Set. In
contrast to the case of problems with ¢;-type Wasserstein ambiguity sets, a problem
with £.-type Wasserstein ambiguity set (5.1) further reduces to a linear program
(refer to Theorem 1 of [47]). We use this approach to benchmark the performance of
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Computational Results for 2-DRLP Instances with Wasserstein-oo Ambiguity Set

Problem | N DRSD Algorithm Reformulation Approach [47]
ObjEst Time ObjEst Time
100 448.94 (£3.64) 0.05 (40.00) 447.10 (£3.26) 0.00 (£0.00)
pep 250 455.04 (£2.49) 0.24 (+0.04) 450.79 (£2.03) 0.06 (£0.00)
500 458.40 (£2.94) 1.58 (£0.16) 451.31 (£1.23) 0.21 (£0.01)
100 | 338291.53 (£14434.11)  0.25 (£0.01) | 338307.14 (£14431.53)  0.00 (<£0.00)
CEP 250 355061.07 (+11823.37) 3.13 (£0.08) 355066.83 (+11823.82) 0.06 (£0.01)
500 356763.93 (£6917.77) 12.65 (+0.28) 356769.76 (£6918.07) 0.22 (£0.02)
100 156.40 (+4.24) 0.44 (£0.02) 153.49 (4+3.89) 0.18 (£0.01)
S 155.12 (4+3.43) 7.89 (40.16) 153.86 (£3.40) 0.59 (£0.02)
500 155.12 (£2.39) 60.39 (£0.91) 154.42 (£2.38) 1.36 (£0.03)
100 | 15504413.45 (£11396.84) 0.56 (£0.01) | 15502082.05 (£11445.84) 20.25 (£0.27)
croy | 250 | 15508768.42 (£7477.52)  8.65 (£0.20) | 15504919.06 (£7571.13)  81.22 (+1.30)
500 | 15507936.99 (£5058.71) 63.10 (+0.87) | 15503343.24 (+£5140.36) 220.65 (£2.57)

DRSD for /.-type Wasserstein ambiguity sets. As in the previous set of experiments,
we use the empirical distribution with N observations as reference distribution for the
ambiguity sets. We generate the observations using an external sampling approach
and set up the linear programming reformulation. We solve this reformulation using
an off-the-shelf solver (CPLEX 12.10). We summarize the results for N = 100, 250,
and 500 in Table 4.

For all the problems, the estimates of the objective function obtained from DRSD
and the reformulation linear program are comparable. The results show that for
instances test problems PGP, CEP, and RETAIL, the linear programming reformulation
outperforms the DRSD algorithm. However, for larger problem STORM, the advantages
of sequential sampling become prevalent resulting in a nearly 3.5 times decrease in
the overall computational time for N = 500, for instance.

Remark 5.1. Overall, the computational experiments with all three ambiguity
sets illustrate the advantages of the sequential sampling approach of DRSD to tackle
large-scale 2-DRLP problems. Before we end this section, we note that the external
sampling-based benchmark instances are set up and solved for a given N. Since we
are dealing with sampling-based approximations, identifying a suitable N a priori is
not a trivial task. A procedure to tackle this task involves solving several instances
with progressively increasing sample sizes (see for e.g., [6] for risk-neutral SP). The
overall computational cost of identifying a high-quality solution is the cumulative cost
associated with individual instances. The DRSD method, and the sequential sampling
idea in general, mitigates the need for such an iterative process.

6. Conclusions and Future Work. We presented a new decomposition ap-
proach for solving two-stage distributionally robust linear programs (2-DRLPs) with
a general ambiguity set defined using probability distributions with continuous or
discrete sample space. Since this approach extended the stochastic decomposition ap-
proach of Higle and Sen [24] for 2-DRLPs with a singleton ambiguity set, we referred
to it as Distributionally Robust Stochastic Decomposition (DRSD) method. The
DRSD method is a sequential sampling-based approach that allows sampling within
the optimization step where we solved second-stage subproblem(s) associated with
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only the current observation in each iteration. While the design of DRSD accommo-
dates general ambiguity sets, we provided its asymptotic convergence analysis for a
family of ambiguity sets that includes the well-known moment-based and Wasserstein
metric-based ambiguity sets. Furthermore, we performed computational experiments
to evaluate the efficiency and effectiveness of solving distributionally robust variants
of four well-known stochastic programming test problems that have supports of size
ranging from 216 to 108, Based on our results, we observed that the objective func-
tion estimates obtained using the DRSD and the external sampling-based approaches
are statistically comparable. These DRSD estimates are obtained while providing
computational improvements on most problem instances. Such a computational edge
will enable the application of DRO to critical applications that result in large-scale
problem instances.

The preliminary computational experiments are encouraging. However, there are
two components of the algorithm that require careful deliberation. Since DRSD is
a randomized algorithm that simultaneously deals with the approximation of ambi-
guity sets and recourse function values, the deterministic stopping criteria are not
applicable. Therefore, the development of reliable stopping criteria is a potential fu-
ture research direction. Statistical approaches, similar to those developed in a series
of papers for SD [26, 27, 41], could provide initial direction to address this issue.
Another future research direction is to incorporate more efficient algorithms to solve
the distribution separation problems. For example, instead of resolving distribution
separation problem in every iteration, we can utilize a column generation procedure.
Finally, we will explore a proximal point algorithm design to that will allow us to
maintain a fixed-sized master problem.

Appendix A. Proofs. In this appendix, we provide the proofs for the propo-
sitions related to the asymptotic behavior of the approximate ambiguity sets defined
in §2.1 and the recourse function approximation presented in §2.2.

Proof. (Proposition 2.1) For P = (p(w)),eqr-1 € PE-1 it is easy to verify that

mom’
P = (p'(w))weqr = OF(P) satisfies the support constraint, viz., Y. cou p'(w) = 1.
Now consider for i =1,...,q, we have

YW= Y P wiw) +p (W)i(")

weNk weQF—T wHwk

=08 D p@iw) + 0w (WF) + (1 - )i (w")

weNk—1 wAtwk

= 05T @) + (- 0 (w) = B (1 - 09 (k) = B

weNk—1

This implies that ©(P) ¢ B~

mom*

Using Proposition 4 in [45], there exists a positive constant x such that
0< H(g’pfnomvmmom) < X”bk — b”

Here, b = (b;)?_, and b* = (b¥)Z_,, and || - || denotes the Euclidean norm. Since
the approximate ambiguity sets are constructed using independent and identically
distributed samples of @, using law of large numbers, we have b¥ — b; for all i =
1,...,q. This completes the proof. 0

Proof. (Proposition 2.3) Consider approximate ambiguity sets &]?3@‘1 and ‘JA3§V of
the form given in (2.8b). Let P = (p(w)),eqr—1 € ‘i\?’jfl, and let the reconstructed
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probability distribution be denoted by P’. We can easily check that P’ = ©F(P) is
indeed a probability distribution. With P’ = (p'(w))ueqr fixed, it suffices now to
show that the polyhedron

Zw’eﬂk n/(w7w/) = p/((.U) Yw € Qk,
(A1) E(P”Pk) ={ne RQk xQF Zwer 0 (w,w') = ﬁk(wl) Vo € Qk’

2 (wwnearxan [w — w7 (w,w') <€

is non-empty. Since P € PF1, there exist n(w,w’) for all (w,w’) € Q*~1 x QF~1 such

that the constraints in the description of the approximate ambiguity set in (2.8b) are

satisfied. We show that £ is non-empty by analyzing two possibilities,

1. We encounter a previously seen observation, i.e., w® € QF~! and QF = QF-L
Let n(w,w’) = 0*n(w,w’) for w,w’ € Q¥ and w # ' # WF; and 7' (WF,Wk) =
0Fn(wk, wk) 4 (1 —6%). We verify the feasibility of this choice by checking the three
sets of constraints in (A.1). For all w € QF

S e = 3w o ww)

w’ €Nk w’ €QF\{wk}

= Z 0 n(w,w’) + 0Fn(w, wk) + 1,k (1 — %)
w €QF—1\{wk}

= 9’“( > n(w,w/)> + 1y r (1= 0F) = 0Fp(w) + 1 i (1 — 0F) = p/ (w).
w/'€Nk—1

For all ' € QF, we have

dofww)= Y 7w+ W)
weNk weQF\{wk}
= Z Gkn(wvw/) + ekn(wka w/) + lw’:wk(l - ek)
weQF—1\{wk}
05 D 0 (w,0) + Lo (1= 6F) = 059" (') + Ly (1 = 6%) = pF(W).
weNk—1

And finally,

> v = (@)
(w,w’) ek x Ok
= > 0¥ [|w — w'[ln(w, ) + [l — ¥y’ (W*, ")
(w,w ekt x k-1
wHw #£wk

B 9k< > o — oJ’II??(cu,oJ’)) <fre<e

(w,w")EQF—1xQk—1

Since all the three constraints are satisfied, the chosen values for 7 is an element
of the polyhedron £, and therefore, £ # ().

2. We encounter a new observation, i.e., w® ¢ Q*~1. Let n/(w,w) = 0*n(w,w’) for
w,w' € QL (WF W) = 0 for W € QF Ly (w,wF) = 0 for w € QF1) and
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n'(w*, w*) = (1 — 6%). Let us again verify the three sets of constraints defining
(A.1) with this choice for 7.

S @)= Y nwe) o weh)

w'eNk w'€QF\{wk}
= Y )+ L (1 - 0F) = 0%p(w) + L (1 - 6%) = p/(w);
w/er—l
S rwe) = S nww) W)
weNk weQF\{wk}
= Z Hk’l](wyw/) + 1w':wk(1 - ek) = Hkﬁk_l + +1w’:wk(1 - Hk) = ﬁk(w/);
w/er—l
and finally,

> = (w, )
(w,w’)EQF xQF
= > 0" |w — o' [In(w, W) + l|lo* = I (W, W)
(w,w’)eQF—1xQk—1

+ ) flw =Wkl (@, o)+ Dl =l (W, 0') < BFe<e
weNk w’ €Nk

Therefore, the value of i’ variables satisfies the constraints and & # (). This implies
that ©F(P) € k.
Next, let us consider a distribution @ € 3% . Then,

dy(Q, P*) < dy(Q, P*) + dy(P*, P*) < e + dy(P*, P¥).

The above inequality is a consequence of the triangle inequality of Wasserstein dis-
tance. Since Q € BX | we have d,,(Q, P*) < e. Under compactness assumption for €2,
we have Ep-[exp(||@]|*)] < co. Therefore, for d > 2, Theorem 2 in [18] guarantees

= —cké?) if§>1
kopry < 5] < J Cexp(—ckd?) i
Prob[dw(P ,P ) > 5] > { C eXp(—Ckéa) if § <1
for all k > 1. This implies that the limy_,oc dy(P¥, P*) = 0, almost surely. Conse-
quently, we obtain that dy(Q, P*) < € (or equivalently @ € By) as k — oo, almost
surely. This completes the proof. ]

Proof. (Proposition 2.5) Recall that X x € is a compact set because of Assump-
tions (A1) and (A4), and {Q*} is a sequence of continuous (piecewise linear and
convex) functions. Further, the construction of the set of dual vertices satisfies
m° = {0} € ... C II*F C II**!' C ... C D which ensures that 0 < Q(z,w) <
Q" (z,w) < Qz,w) for all (v,w) € (X,Q) and k > 1. Since {Q*} increases
monotonically and is bounded by a finite function @ (due to (A2)), this sequence
pointwise converges to some function £(z,w) < Q(z,w). Once again due to (A2),
we know that the set of dual vertices D is finite and since II* C II¥*! C D, the set
limy,_, o0 IT? := I (C D) is also a finite set. Clearly,

é(z,w) = khj& Q*(z,w) =max {rn'[r(w) - T(w)z] | 7 € II}
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is the optimal value of a LP. Note that the right-hand side is a pointwise maximum of
affine function and hence, is a continuous function. The compactness of X x 2, and
continuity, monotonicity and pointwise convergence of {Q*} to ¢ guarantees that the
sequence uniformly converges to £ (implied by a slight modification of Theorem 7.13
in [39]). a0
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