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Abstract—In rodent navigational studies, spatial responses
have been identified in both the hippocampal subregion CA1
and the subiculum (SUB), but these two brain regions appear
to encode spatial features differently. Place fields of SUB place
cells are larger and less specific than CA1. Additionally, SUB
neurons exhibit stronger directional modulation for heading and
axes of travel. Based on neural and behavioral data recorded
as rats perform a navigational task on a “triple-T” maze,
we present a spiking neural network modeling framework to
replicate response properties observed in the CA1 and SUB. The
parameters of Spike Timing Dependent Plasticity and homeo-
static scaling (STDP-H) were evolved such that the response
of the two different SNNs resembled recordings from CA1 and
SUB when rats traversed the triple-T maze. Our results suggest
that positional input may be more influential in forming CA1
place cells, while the SUB appears to integrate both allocentric
positional information and self-motion cues to encode “kinds of
places”. Furthermore, our results predict that the different spatial
responses in these regions may be due in part to different STDP-
H learning parameters. The framework presented here could be
used as an automated parameter tuning system for replicating
responses in other brain regions.

I. INTRODUCTION

Rodents flexibly and reliably navigate in the world by using

a variety of available spatial information. Effective spatial nav-

igation is supported by localizing oneself in the environment,

knowing the current direction of movement, and inferring

about the progress along routes leading to the destination.

Several regions in the rodent brain have been identified as

important for spatial navigation, including the hippocampal

sub-region CA1 and the subiculum (SUB). Lesions of both

regions cause deficits in navigational abilities and a loss of

accurate localization ability [1]. On the single cell level, place

cells have been identified in both regions [2], [3]. Place cells

were shown to signal the allocentric position of the animal

during navigational tasks. These cells fire selectively in spe-

cific locations in the environment, and the population ensemble

activity can be used to decode the animal’s movement [4].

However, compared to CA1, SUB place cells showed larger,

less specific place fields [5], and exhibit more directional

modulation for activity within those fields [3], [6].

A number of computational models have been proposed

to explain the emergence of CA1 place cells [7]–[9], but

fewer computational studies concern the spatial representations

in SUB neurons. As biologically detailed models, Spiking

Neural Networks (SNNs) have been used to investigate sensory

processing in the brain [10] and to model brain activities

[11]. Different methods of optimizing SNNs have also been

proposed, such as unsupervised learning with spike timing

dependent plasticity (STDP) [12] and evolving the structure

of the network [11]. Our method is unique that we evolve the

synaptic learning rule in SNNs to map recorded behavioral

data to neuronal data.

In this paper, we extend the method of evolving SNNs

introduced in [13] to replicate neural dynamics of CA1 and

SUB neurons. We use datasets recorded from the CA1 and

SUB while rats performed a complex navigational task on a

triple-T maze (Fig. 1) [14]. Neural circuits of both regions

are modeled with SNNs optimized by evolving spike tim-

ing dependent plasticity with homeostatic scaling (STDP-H)

parameters using evolutionary algorithms (EAs). In the SNN

models, behavioral variables including the allocentric position

of the animal and self-motion related variables such as the

head direction and linear/angular velocity of the animal serve

as the input to the network, and a recurrently connected group

of excitatory spiking neurons is tuned to replicate the CA1 and

SUB neural activity. Our results suggest that the same spiking

neural network modeling framework can be used to model

different brain regions related to spatial navigation. In addition,

analysis of the connection weights and results from ablation

studies are suggestive of how CA1 and SUB integrate sensory

information differently to form spatial representations. The

CA1 region fires sparsely and less actively with higher spatial

information, whereas the SUB is more active and directionally

selective. These differences are captured in the connection

weights and the evolved STDP-H parameters of these regions.
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Fig. 1: Schematic drawing of the navigational task. The rat

would start from the bottom (indicated by a green dot), take

one of the four internal routes (i.e., Routes 1-4) to get to a

reward site, and return to the starting point via one of the

two return routes (i.e., Routes 5-6). The rats demonstrated

remarkable navigation ability and working memory capacity

by visiting all four reward sites with minimal repeats.

II. METHODS

We took a unique modeling approach of evolving hyper-

parameters in spiking neural networks. Spiking neural net-

works are preferable in this study as they accurately cap-

tured the nature of our datasets, which included spike trains

that were distributed into spatial bins and processed with a

smoothing function [6]. We processed the spike trains in our

spiking models following the same procedure to ensure a direct

comparison with the recorded data. The models were opti-

mized with an approach combining evolutionary algorithms

(EAs) and unsupervised learning using STDP and homeostatic

synaptic scaling (STDP-H) [13]. The EAs searched for opti-

mal hyper-parameters for the STDP-H learning rule, without

directly updating the connection weights in the network. To

ensure the reliability of our modeling and parameter search

process, we carried out 5 independent evolutionary runs for

each modeled region, each with a population size of 15

individual networks that underwent 50 generations of EA.

All simulations were performed with the CARLsim 4 spik-

ing neural network simulator [15]. CARLsim 4 includes a

parameter tuning interface (PTI) that links to an evolutionary

computation library called ECJ [16].

A. Network Model

The network model contained 1282 neurons in total: 640

excitatory neurons modeled as regular spiking (RS) Izhike-

vich spiking neurons, 160 inhibitory neurons modeled as fast

spiking (FS) Izhikevich spiking neurons [17], and 482 input

neurons modeled as Poisson spike generators. The input layer

contained four types of behavioral inputs: 450 neurons for

allocentric position (Pos), 12 neurons for angular velocity

(AV), 12 neurons for linear velocity (LV), and 8 neurons for

head direction (HD). Each input group was connected to both

the excitatory and inhibitory groups. The inhibitory neuron

group provided feed-forward inhibition to the excitatory neu-

ron group, while the excitatory neuron group had recurrent

excitatory connections within its own group. Neuron groups

were sparsely connected with a probability of 0.1 (Fig. 2).

Fig. 2: Network architecture. This network contains four input

neuron groups, representing four types of behavioral variables:

angular velocity (AV), linear velocity (LV), head direction

(HD), and allocentric position (Pos) of the rat. The input

neuron groups are connected to an excitatory neuron group

and an inhibitory neuron group. Neurons within and between

groups have a connection probability of 0.1.

Input streams to the SNNs represented the kinds of in-

formation processed by connected regions. For example the

hippocampal sub-region CA3 provides positional information

[18], the medial entorhinal cortex (MEC) provides velocity

related information [19], and the anterior thalamic nucleus

(ATN) provides movement and head direction related infor-

mation [20], [21] to CA1 and SUB. We created the tuning

curves for each type of input streams following the same

fashion as in [13]. Parameter values were set to allow the

tuning curves to cover the entire value range in our datasets

and elicit varying neuronal responses. The analog response

from the tuning curves was converted into spike trains using

a Poisson spike generator.

B. Evolutionary Computation

Instead of directly evolving the connection weights, we

employed a “learning to learn” paradigm and evolved a total

of 20 hyper-parameters in our network. The hyper-parameters

in the network fell into 3 categories: (1) Parameters of the

STDP learning rule, which included the amplitude param-

eters A+ and A−, and the time decay constants τ+ and

τ−. Optimal values for these parameters were searched for

the Excitatory-STDP that projected into both the excitatory

(EE) and inhibitory (EI) neuron groups, and the Inhibitory-

STDP that projected into the excitatory (IE) neuron group.

(2) Parameters of the homeostatic synaptic scaling rule that

were applied to the excitatory and inhibitory neuron groups,

which included the target firing rate Rtarget and the time scale
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parameter T . (3) The maximum connection weights for the

inter-group connections (i.e., Inp → Exc, Inp → Inh, Exc →

Exc, Inh → Exc).

Models were optimized through 50 generations of EA. In

the first generation, the EA initialized 15 networks, each of

which went through a training and testing phase and obtained

a fitness score. Parameters of the best performing 3 networks

were then used to generate a new generation of 15 network

individuals using the (μ, λ) Evolutionary Strategy (ES) [16].

C. Training and Testing of the Model

We used a subset of the data in [14], which included 5430

trials from 32 recording sessions for CA1, and 5908 trials from

49 recordings for SUB. Each trial contained neuronal activity

recorded from one brain region and behavioral variables of the

animal as it traversed one of the six routes of the maze shown

in Fig. 1. For both CA1 and SUB datasets, we shuffled the

data based on trials and split them in half to create a pool of

training data and a pool of testing data.

In each EA generation, a population of networks with dif-

ferent hyper-parameters went through a training and a testing

phase, and the fitness scores of the networks were evaluated

by the EA to generate the hyper-parameters for the next

generation. The training and testing datasets each consisting

of 600 trials (i.e., 100 trials for each route) were re-sampled

every generation from the training and testing data pools

respectively. In the training phase, behavioral data were fed

into the network and STDP-H learned associations between

neurons and stabilized network activity. STDP updated the

connection weights based on the temporal distance of pre-

and post-synaptic spikes, and homeostatic scaling modified

the weights in a multiplicative manner based on the post-

synaptic firing rate [22]. During testing, we disabled synaptic

plasticity and froze the connection weights. We presented the

network with different behavioral data from the testing data

pool while recording neural activity. To determine how well

the simulated neurons resembled the experimentally observed

neurons, a Pearson correlation coefficient, ρ, was computed

between the mean firing rate of excitatory neuron activity in

the SNN and experimentally observed neurons. Using a greedy

approach, we determined a match between a simulated neuron

and an experimentally observed neuron based on the highest

correlation value and each neuron could only be matched once.

After all experimentally observed neurons found a match, a

fitness value of the network was calculated by summing the ρ

values of all matched neuron pairs:

y =

N∑
i

ρ(R̄i
real, R̄

i
match)− L (1)

where L was a penalty for unrealistically high firing rates,

which only applied when the maximum mean firing rate of

one of the excitatory neurons Rexc exceeded the threshold

firing rate Rt = 100 Hz:

L =

{
max(R̄exc)−Rt , if max(R̄exc) > Rt

0 , otherwise
, (2)

Although only a subset of neurons in the excitatory neuron

group were matched to the recorded neurons, the entire neuron

group was intended to model a larger population of CA1 and

SUB neurons. Neurons that were not explicitly matched to

the recorded neurons were expected to have similar response

properties as those that were explicitly matched.

D. Positional Reconstruction Matrix

Population analysis of the neuronal activity was conducted

by comparing the positional reconstruction matrices of the

simulated neurons in the models and experimentally observed

neurons in our datasets [23] . We concatenated the neuronal

activity in every positional bin of all six routes and computed

mean firing rate vectors for every neuron based on odd and

even trials. We obtained mean rate matrices Rodd ∈ R
n×m

and Reven ∈ R
n×m for the entire neuron population, where n

represented the number of neurons in the population, and m

represented the number of positional bins in the maze. Each

column in the matrix represented the population activity in

a specific positional bin. We then computed the positional

reconstruction matrix based on the columns of the odd trial

ensemble rate matrix and the even trial one:

M = ρ(Rodd, Reven), M ∈ R
m×m (3)

where ρ(·) computes the Pearson correlation coefficient.

Comparing the positional reconstruction matrix of simulated

neurons and experimentally recorded neurons allowed us to

gauge how well the response properties of simulated neurons

resembled those of recorded neurons. A similarity score was

obtained by converting the matrices into column vectors and

correlating the two vectors:

g = ρ(Msimulated,Mrecorded), g ∈ R
1×1 (4)

Different from the fitness function (Equation 1), this mea-

surement took into account neurons that were not explicitly

matched to the recorded neurons, and thus also tested whether

the learned response properties generalized to the entire sim-

ulated neuron population.

III. RESULTS

A. Evolved Networks Captured Properties of Both Regions

SNN models were optimized such that a subset of the

excitatory neurons had firing patterns aligned with those of

experimentally recorded neurons (295 neurons in the CA1

dataset, and 382 neurons in the SUB dataset). As described

in Section II-C, fitness function of the network was defined

to be the sum of pairwise correlation values of all simulated-

recorded neuron pairs, with a penalty for high firing rates of

the simulated neurons (Equation 1). The highest fitness scores

that could be achieved by the CA1 and SUB models were 295

and 382 respectively.
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We conducted 5 evolutionary runs for each model. With a

population of 15 individual networks, the best fitness score in

the first generation averaged to be 140.44 for the CA1 model

and 136.83 for the SUB model. As shown in Fig. 3, by 50

generations, the networks achieved an averaged fitness score

of 186.97 for the CA1 model, and 213.48 for the SUB model,

corresponding to a mean Pearson’s ρ value of 0.63 and 0.56

respectively (normalized to the number of recorded neurons in

each brain region). The fitness scores were comparable to those

reported in [13]. These scores showed that the firing patterns

of experimentally observed neurons were captured by a subset

of neurons in the excitatory neuron group. The networks also

showed a generalization ability, as excitatory neurons that were

not explicitly matched to the recorded neurons also showed

response properties similar to those observed in CA1 and SUB.

Similar to rodent recordings [6], [14], we observed spatially

selective place cell responses in the simulated CA1 and

directionally modulated responses along maze axes in the

simulated SUB (Fig. 4). Simulated neurons in the CA1 model

were mostly quiet in other positions, and had lower firing rates

than the simulated SUB. Simulated neurons in the SUB had

higher firing rates and responded to multiple locations. As has

been observed in the rat, some of the SUB neurons encoded

analogous spaces and were sensitive to the direction of travel.

Fig. 3: Best-so-far fitness scores over 50 generations for the

CA1 and SUB models. Solid lines show the mean and shaded

areas show the standard deviation of 5 runs. At generation 50,

the CA1 model reached a mean fitness score of 186.97 and

the SUB model had a mean score of 213.48, corresponding to

a mean Pearson’s ρ value of 0.63 and 0.56 respectively.

After training, the distribution of weights reflected the

function of the brain region. Fig. 5 shows the histogram of

connection weights from the input variables to the excitatory

neuron groups. In the CA1 model (Fig. 5, top row), connection

weights showed a U-shape distribution pattern. The weight

values clustered at the limiting values (i.e. 0 and maximum

weight), with more values near 0 for AV, LV, and HD, and

more values near the maximum weight for Pos. This reflects

Fig. 4: Examples of representative excitatory neurons in the

CA1 and SUB models. Each firing rate map is labeled with

the maximum firing rate of the neuron. Model units exhibit

differential spatial representations: CA1 model units show

single place fields, while the SUB model units respond to

multiple locations that are analogous with respect to maze

structures. The first and third SUB units show examples of

analogy cells, and the second SUB unit shows an example of

an axis-tuned cell. Arrows denote the direction of travel.

the place encoding observed in this region. In contrast, a large

proportion of connection weights in the SUB model (Fig. 5,

bottom row) clustered near the maximum weight, with all four

types of input variables showing a similar distribution. The

responsiveness of SUB neurons, on average, to a broader set

of positional, directional, and self-motion input types may be

key to generation of firing fields in multiple locations that

are analogous in terms of the direction of travel and location

within topologically similar routes

Interestingly, the STDP parameters evolved to support these

differential responses. Fig. 6 shows the evolved STDP curves

for the two modeled brain regions. Compared to the SUB

model, the CA1 model showed stronger long-term-depression

(LTD) for E-STDP on both excitatory and inhibitory neurons,

and weaker long-term-potentiation (LTP) for E-STDP on the

inhibitory neurons. For the other evolved hyper-parameters,

the maximum weight for the Inh → Exc connection in the

CA1 model is stronger than that in the SUB model (CA1:

0.54 ± 0.05, SUB: 0.16 ± 0.11, Wilcoxon’s rank sum test,

p < 0.01). The CA1 model also showed a trend of hav-

ing smaller values for the time scale parameter T (CA1:

0.78 ± 0.35 s, SUB: 4.5 ± 3.29 s, Wilcoxon’s rank sum test,

p = 0.056) and the mean firing rate for the excitatory group

(CA1: 2.28±0.36 Hz, SUB: 5.19±2.38 Hz, Wilcoxon’s rank

sum test, p = 0.056).

To make a quantitative comparison between the spatial

representations emerged from the two modeled regions, we

conducted spatial analyses on the excitatory neurons of both

modeled region (Table I). These analyses were developed

to interpret neural correlates of rodent navigation. We com-

puted spatial information per spike [24], spatial sparsity [25],

spatial selectivity [25], and spatial coherence [26]. As the

excitatory neuron group was intended to model a larger

population of neurons in the corresponding brain region, we
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Fig. 5: Histograms of the connection weights from the input groups to the excitatory neuron groups. Weight values range from

0 to the maximum weight value, which was evolved by the EA. CA1 weights show more weights near 0 for AV, LV, and HD,

and more weights near the maximum weight for Pos. In the SUB model, weight values of all four types of input all cluster

near the maximum weight value.

Fig. 6: Visualization of STDP curves used in the evolved and trained CA1 and SUB models. Solid lines show the mean,

and shaded areas show the standard deviation of 5 evolutionary runs. CA1 model had slightly stronger LTD on the EE and

EI connections, and weaker LTP on the EI connections. The I-STDP curve in both models had similar amplitude and time

constant.

analyzed neurons from the entire group instead of only those

explicitly matched to the experimentally observed neurons.

Consistent with the experimentally observed neurons and other

neurophysiological studies [3], SUB neurons showed higher

firing rates, lower spatial information per spike, lower spatial

selectivity, and lower spatial coherence than CA1 neurons

(Wilcoxon’s rank sum test, p < 0.01).

B. Population Vector Analysis

We conducted population vector analyses with positional

reconstruction matrices to test whether the spatial representa-

tions of these simulated brain regions are similar to the rodent.

The population activity in both models closely resembled

that of the experimentally observed neurons. Computed with

Equation 4, CA1 model units obtained a similarity score

of 0.76 ± 0.01 and SUB model units obtained a score of

0.69± 0.01 (i.e., mean ± standard deviation).

Fig. 7 visualizes the positional reconstruction matrix for

each model from a representative evolutionary run. Each value

of the positional reconstruction matrix depicted the similarity

of population activity in one location versus the activity in

another location. Values on the diagonal line described the

correlation of activity in the same location between odd and

even trials. Both CA1 and SUB simulated neurons showed

high correlation values on the diagonal line (median correla-

tion value for CA1 averaged over 5 runs: 0.94±0.01, for SUB:

0.96±0.01), indicating that simulated neurons in both models

reliably encoded locations. The two matrices also showed

distinctive differences in off-diagonal values. Comparing the

grids highlighted in red on both matrices, the SUB matrix had

high correlation values around the diagonal in the grids while

the CA1 matrix didn’t show this pattern, indicating that the

SUB model units had a stronger head-direction tuning. Ad-

ditionally, for the grids highlighted in green, the SUB matrix
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TABLE I: Spatial analyses on the model units (mean ± standard deviation) in the five evolutionary runs (sim) and the

experimentally recorded neurons (recorded). Values in bold fonts showed greater values in comparison between CA1 and SUB

neurons (Wilcoxon’s rank sum test, p < 0.01).

SpatialMetrics CA1 (sim) SUB (sim) CA1 (recorded) SUB (recorded)

meanFR (Hz) 0.85 ± 0.87 2.16 ± 2.00 0.88 ± 1.42 3.62 ± 4.23

maxFR (Hz) 27.66 ± 18.78 41.75 ± 33.35 31.57 ± 14.91 38.86 ± 21.35

spatialIfo (bits) 2.87 ± 1.04 1.92 ± 0.69 2.97 ± 1.19 1.56 ± 1.21
sparsity 0.12 ± 0.08 0.20 ± 0.10 0.12 ± 0.13 0.35 ± 0.25

selectivity 64.53 ± 74.53 27.29 ± 21.47 63.76 ± 50.79 31.18 ± 38.84
spatialCoherence 0.83 ± 0.05 0.81 ± 0.05 0.48 ± 0.12 0.49 ± 0.14

Fig. 7: Positional reconstruction matrices of the simulated CA1

and SUB populations. Mean activity of the even trials are

correlated against that of the odd trials. Position bins for each

route are shown on the axes. At each position bin, the color

represents the correlation value. High values on the diagonal

lines indicate that position along the route is inferred from

population activity of the neurons. Grids highlighted in red

and green show stronger head-direction and analogous tuning

of SUB ensemble compared to CA1.

showed a square region of higher correlation values near the

top left of the grids, which correspond to a higher correlation

of population activity on the longer segments between Routes

5 and 6. These location pairs were spatially separated but

shared the same head direction and analogous maze structure

in the environment. These results indicate that the simulated

SUB neurons had stronger head direction tuning and encoded

analogous spaces more profoundly than the simulated CA1

neurons, which is consistent with the differences observed in

the rodent CA1 and SUB [14].

C. Control Experiments

To verify the necessity of evolutionary algorithms and STDP

learning in the optimization process, we ran the models in two

additional conditions; one in which there was STDP but no

EA, and another in which there was no STDP and no EA.

In both conditions, we had 5 runs for each model, with each

run including 15 individual networks initialized with random

hyper-parameters. Similar to the fully evolved and trained

models, models in the control experiments were evaluated

with a fitness function (Equation 1), and the best performing

network individual in each run was selected for population

vector analysis.

In both these control cases, the performance of the SNNs

was worse than evolving STDP-H parameters for 50 genera-

tions. In the “STDP no EA” condition, where each of the 15

networks went through the same training and testing procedure

as the fully evolved models did but did not go through the

evolutionary process, the CA1 model obtained an average

similarity score of 0.46 ± 0.29 and the SUB model obtained

an average similarity score of 0.60 ± 0.03. In the “no STDP

no EA” condition, where each of the 15 networks was tested

without being trained with STDP, the CA1 model obtained an

average similarity score of 0.26 ± 0.36, and the SUB model

obtained an average similarity score of 0.12± 0.28.

Taken together, these results show that STDP greatly im-

proved the performance of the network, and that having multi-

ple generations of evolutionary computation was necessary for

finding the hyper-parameters that allow for higher resemblance

of simulated neuronal activity to that of the modeled brain

region. These control experiments suggest that parameter

tuning through the evolutionary process and synaptic plasticity

through STDP-H were necessary to replicate these brain

regions. Similar results were reported when modeling the

retrosplenial cortex (RSC) using this methodology [13].

D. Ablation Studies

To examine the effect of removing input streams on each

modeled brain region, we conducted ablation studies using

the fully evolved and trained networks. The ablation studies

included lesions of connections from each of the input streams

to both the excitatory and inhibitory neuron groups. Lesion

models were created by loading the trained networks and

removing the inter-group connections corresponding to the

input stream(s). The lesion models were presented with the

same input variables as the non-lesioned models, and the

network activity was recorded. Population vector analysis was

then performed on the lesion models to assess the impact of

lesions of input streams.

Lesions had differential effects on model performance that

reflect the spatial encoding of CA1 and SUB (Fig. 8). In

the CA1 model, lesions of the positional input (Pos) had a

strong impact on the performance of the network, while lesions

of one of the three idiothetic inputs (AV, HD, and LV) did

not have a strong effect on performance. Lesions of all three

idiothetic inputs together (AV HD LV) had a stronger impact

than individual lesions, but were weaker than lesions of Pos

alone. Additionally, lesions of the head direction and positional

inputs together (HD Pos) brought the similarity score down
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Fig. 8: Ablation studies: similarity scores of the unlesioned and lesioned models. Bars show the mean values and the error

bars show standard deviation of scores obtained by 5 instances of each model. Lesions of the positional input (Pos) in the

CA1 model had the strongest impact on the network performance compared to lesions of other single input streams. In the

SUB model, lesions of all four types of input had a similar level of impact on the network performance.

to near 0. In contrast, lesions of any input stream to the SUB

had a moderate impact on network performance. Similar to the

CA1 model, lesions of the head direction and positional inputs

together (HD Pos) in the SUB model greatly decreased the

similarity score. Taken together, these ablation studies further

support that the CA1 is more place specific and the SUB is

more driven by inputs related to action or movement.

IV. DISCUSSION

The spiking neural network modeling framework presented

here captured the differing spatial responses of hippocampal

CA1 and the SUB through unsupervised learning, via STDP-

H, and evolutionary algorithms (EAs). The resulting networks

show highly place-specific responses in CA1 neurons and

the emergence of pattern recurrence in the spatially specific

firing of SUB neurons. These differing functional responses

were reflected in the STDP-H parameters and the weight

distributions of the simulated spiking neural networks (SNNs).

Moreover, the present simulations make testable experimental

predictions for the plasticity and connectivity in these brain

areas.

The evolutionary algorithm automated the design of SNNs

by indirect encoding of network learning parameters. This

approach had been shown in a previous study to successfully

replicate neural dynamics observed in the retrosplenial cortex

(RSC) as rodents traverse a W-shaped maze [13]. In the present

work, we extended the approach to model two other regions

that are important to spatial navigation: hippocampal CA1

and the SUB. Using data recorded in the two brain regions

when rats performed the same navigational task in the same

environment allowed us to compare our two models directly.

With the same input representations, the EAs selected dif-

ferent STDP-H learning parameters for the two SNN models,

which led to different connection weight distributions. STDP-

H parameters in the CA1 models had more LTD than in SUB,

which led to a strong pruning effect in the CA1 excitatory

group. In contrast, synapses connecting the AV, LV, and HD

input groups with the SUB excitatory groups had larger con-

nection weights than in the CA1 model, suggesting stronger

vestibular inputs to the SUB model, which is consistent with

neurophysiological observations [20], [27].

Different distributions of connection weights in turn al-

lowed for divergent spatial representations to emerge in the

network models. These spatial representations, as analyzed

through firing rate distributions, firing rate map visualizations,

classic spatial metrics including spatial information, sparsity,

selectivity, and spatial coherence, were consistent with those

observed in the experimentally recorded neurons. The network

models, though simplified in terms of the types of input

information and network sizes, generated neural dynamics

resembling those observed in the real neural circuits. It should

be noted that although only a subset of simulated neurons were

optimized to match with recorded neurons, all neurons in the

simulated neuron groups were included in the analyses and

showed consistent response properties within the group. This

suggests that our modeling approach allowed for generaliza-

tion of learned firing patterns to unobserved data.

Results of the control experiments underscore the impor-

tance of combining both STDP and evolutionary computation

in the modeling framework. By evolving the learning param-

eters, the search space is dramatically reduced, as compared

to directly evolving weights or using a method such as back-

propagation. This study further suggests a functional role for

STDP-H. The result is a viable SNN that can be used for a

range of simulation studies. The success in modeling CA1,

SUB and RSC [13] suggests that the approach may be a
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general-purpose means to building SNNs.

In the ablation studies, we removed one or more input

streams from the fully evolved and trained networks. Lesions

of positional input to the CA1 model had a stronger impact on

the network performance than the other three input streams,

suggesting that spatial representations in CA1 are more reliant

on the CA3 input to CA1 than self-motion signals. In the SUB

model, lesions of any one of the four input streams had a

similar level of impact on the network performance, suggesting

that the SUB model utilized different input information more

equally.

In addition to showing single place fields as CA1 neurons

do, SUB neurons often encode multiple locations that share

certain spatial features in a triple-T maze environment [14].

These representations may require an integration of idiothetic

information as well as positional information. In both models,

a significant drop in the similarity score was observed when

two or more input streams were lesioned together, suggesting

a conjunctive coding of multiple input variables in the CA1

and SUB models, which coincides with the evidence that CA1

and SUB neurons are encoding multiple types of signals [28],

[29].

The presented modeling approach could be extended to

include multiple brain regions to investigate how they interact.

In future studies, we will integrate findings in this work and

link together the CA1 and SUB models. As neurophysiological

studies suggest, SUB receives a strong input from CA1, and

SUB also sends backward projections to CA1 [20], [30]. Fol-

lowing these findings, we can investigate how the interaction

between the two regions work together during navigation by

connecting the two models and examining how information is

integrated between these brain regions.
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