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Abstract

Most indoor 3D scene reconstruction methods focus on
recovering 3D geometry and scene layout. In this work,
we go beyond this to propose PhotoScene1, a framework
that takes input image(s) of a scene along with approx-
imately aligned CAD geometry (either reconstructed au-
tomatically or manually specified) and builds a photore-
alistic digital twin with high-quality materials and simi-
lar lighting. We model scene materials using procedural
material graphs; such graphs represent photorealistic and
resolution-independent materials. We optimize the param-
eters of these graphs and their texture scale and rotation,
as well as the scene lighting to best match the input image
via a differentiable rendering layer. We evaluate our tech-
nique on objects and layout reconstructions from ScanNet,
SUN RGB-D and stock photographs, and demonstrate that
our method reconstructs high-quality, fully relightable 3D
scenes that can be re-rendered under arbitrary viewpoints,
zooms and lighting.

1. Introduction
A core need in 3D content creation is to recreate indoor

scenes from photographs with a high degree of photoreal-

ism. Such photorealistic “digital twins” can be used in a

variety of applications including augmented reality, photo-

graphic editing and simulations for training in synthetic yet

realistic environments. In recent years, commodity RGBD

sensors have become common and remarkable progress has

been made in reconstructing 3D scene geometry from both

single [14, 47] and multiple photographs [51], as well as

in aligning 3D models to images to build CAD-like scene

reconstructions [5, 22, 23, 36]. But photorealistic applica-

tions require going beyond the above geometry acquisition

to capture material and lighting too — to not only recreate

appearances accurately but also visualize and edit them at

arbitrary resolutions, under novel views and illumination.

Prior works assign material to geometry under the sim-

plifying assumptions of homogeneous material [23] or sin-

1Code: https://github.com/ViLab-UCSD/photoscene
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Figure 1. Given an input photo and a coarsely aligned

3D scene model, PhotoScene automatically infers high-quality

spatially-varying procedural materials and scene illumination to

closely match scene appearance. The reconstructed materials are

resolution-independent (see zoom insets) and ascribed to the full

3D geometry, to create a high-quality photorealistic digital twin

that can be rendered under novel views and lighting.

gle objects [38]. In contrast, we deal with the challenge

of ascribing spatially-varying material to an indoor scene

while reasoning about its complex and global interactions

with arbitrary unknown illumination. One approach to our

problem would be to rely on state-of-the-art inverse render-

ing methods [29, 32] to reconstruct per-pixel material prop-

erties and lighting. However, these methods are limited to

the viewpoint and resolution of the input photograph, and

do not assign materials to regions that are not visible (ei-

ther outside the field of view or occluded by other objects).

Instead, we posit that learned scene priors from inverse ren-

dering are a good initialization, whereafter a judicious com-

bination of expressive material priors and physically-based

differentiable rendering can solve the extremely ill-posed

optimization of spatially-varying material and lighting.

In this paper, we use procedural node graphs as compact

yet expressive priors for scene material properties. Such

graphs are heavily used in the content and design industry

to represent high-quality, resolution-independent materials

with a compact set of optimizable parameters [1, 3]. This

offers a significant advantage: if the parameters of a proce-

dural graph can be estimated from just the observed parts of

the scene in an image, we can use the full graph to ascribe
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materials to the entire scene. Prior work of Shi et al. [43]

estimates procedural materials, but is restricted to fully ob-

served flat material samples imaged under known flash illu-

mination. In contrast, we demonstrate that such procedural

materials can be estimated from partial observations of in-

door scenes under arbitrary, unknown illumination.

We assume as input a coarse 3D model of the scene

with possibly imperfect alignment to the image, obtained

through 3D reconstruction methods [5, 22, 36], or manu-

ally assembled by an artist. We segment the image into

distinct material regions, identify an appropriate procedu-

ral graph (from a library) for each region, then use the 3D

scene geometries and their corresponding texture UV pa-

rameterizations to “unwarp” these pixels into (usually in-

complete) 2D textures. This establishes a fully differen-

tiable pipeline from the parameters of the procedural ma-

terial via a physically-based rendering layer to an image of

the scene, allowing us to backpropagate the rendering error

to optimize the material parameters. In addition, we also

estimate rotation and scale of the UV parameterization and

optimize the parameters of the globally-consistent scene il-

lumination to best match the input photograph.

As shown in Fig. 1 our method can infer spatially-

varying materials and lighting even from a single image.

Transferring these materials to the input geometry produces

a fully relightable 3D scene that can then be rendered un-

der novel viewpoint or lighting. Since procedural materials

are resolution-invariant and tileable, we can render closeup

views that reveal fine material details, without having ob-

served these in the input photograph. This goes significantly

beyond the capabilities of current scene-level inverse ren-

dering methods and allows for the creation of high-quality,

photorealistic replicas of complex indoor scenes.

2. Related Works
Material acquisition and recognition High-quality mate-

rials have been estimated in many prior works, using both

single [4,12,19,30] or multiple [13,15] input images. Most

of the above methods estimate materials for planar samples,

as opposed our inputs that are unconstrained images of com-

plex indoor scenes. While material recognition methods

have been proposed to classify image regions into material

categories [8], they do not yield parametric materials that

could be used for relighting and view synthesis. In recent

years, several methods have been proposed to use procedu-

ral graphs as materials priors and estimate their parameters

to match the appearance of captured images [17, 20, 43]. In

particular, we use MATch [43], a differentiable procedural

material model based on Substance node graphs, to con-

strain our materials to the SVBRDF manifold. However, the

above methods only consider flat material samples captured

under known flash illumination, while our goal is signifi-

cantly more challenging – our inputs are photos of indoor

scenes with complex geometry, lit by unknown spatially-

varying illumination, with scene layout and occlusions lead-

ing to incomplete textures with arbitrary scales and rotation.

Inverse rendering of indoor scenes Our problem may be

seen as an instance of inverse rendering [34, 39], but we

must estimate materials that are amenable for rendering un-

der novel views and lighting, as well as editability. Sev-

eral approaches have been proposed for inverse rendering

for objects [31,33,40,42,44,48], but our focus is on indoor

scenes, which have been considered in both early [7,26,27]

and recent [29, 41] works. A convolutional neural network

with a differentiable rendering layer estimates depths, per-

pixel SVBRDF and spatially-varying lighting in [29] using

a single input image. We use their material and lighting

outputs as our initialization and to aid our differentiable

rendering losses in image space, but go further to assign

procedural materials that can be used for rendering novel

views and estimate lighting that is consistent across views.

Recent work has applied differentiable rendering [28] to re-

cover spatially-varying reflectance and lighting given pho-

tos and 3D geometry [6, 37]. However, these methods esti-

mate per-vertex BRDFs and require high-quality geometry

as input, while our procedural models regularize scene ma-

terials, allowing us to infer them from only coarsely aligned

3D models and to re-render novel viewpoints with material

detail that was not observed in the input photos.

Material transfer from photographs LIME [35] clones

the homogeneous material from a single color image. Ma-

terial Memex [24] and Unsupervised Texture Transfer [50]

exploit correlations between part geometries and materials,

or across patches for material transfer to objects. Photo-

Shape [38] assigns photorealistic materials to 3D objects

through material classifiers trained on a synthetic dataset.

In contrast, we seek material transfer in indoor scenes,

which is significantly harder since image appearances en-

twine material properties with complex light transport. The

material suggestion system of [9] textures synthetic indoor

scenes with high-quality materials, but based on a set of

pre-defined rules for local material and global aesthetics,

whereas we must solve challenging inverse problems in a

differentiable framework to match the appearances of real

images.

Indoor scene 3D reconstruction Many works reconstruct

indoor 3D scene geometry (objects and room layout) from

single images [22, 23, 36] or RGBD scans [5], but either do

not address material and lighting estimation, or use heuris-

tics like median color to assign diffuse textures [23]. Our

work focuses on reconstructing high-quality material and

lighting from input photos and is complementary to ge-

ometric reconstruction methods; indeed, we can leverage

these methods to build our input coarse 3D model. Like

us, Plan2Scene [49] also aims to reconstruct textured 3D

scenes, but is limited to diffuse textures and constrained by
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Figure 2. The PhotoScene framework. From the input photo(s) and 3D scene model, we estimate scene normals and lighting via an

inverse rendering method, and compute material parts and align them to the model UVs and part segments. We model scene materials with

procedural graphs. For each material part, we identify an appropriate graph from a collection and use a differentiable rendering module

to optimize for the graph and UV transformation parameters. We also refine the initial lighting. Assigning the optimized materials and

lighting to the input 3D model gives us our output PhotoScene—a renderable 3D scene that matches the appearance of the input photos.

the quality of the texture synthesis model. In contrast, by

optimizing a procedural material model, we are able to re-

cover high-quality non-Lambertian materials; we also opti-

mize for illumination and hence better match the input im-

age appearance.

3. Proposed Method
Our method starts from an input image (or multiple im-

ages) of an indoor scene and a roughly matching scene re-

construction (automatic or manual). Our goal is to obtain

high-resolution tileable material textures for each object, as

well as a globally consistent lighting for the scene.

The method consists of four high-level stages, as shown

in Fig. 2. We compute an initial estimate of scene normals

and lighting. We also find material parts, and align them be-

tween the input and rendered image, so that each material

part can be optimized separately. Next, we choose a mate-
rial prior for each material part, in the form of a procedu-

ral node graph that produces the material’s textures (albedo,

normal and roughness) given a small set of parameters. Fi-

nally, we optimize the parameters of all materials as well as

the lighting in the scene. Below we describe this in detail.

3.1. Initialization and Alignment
In the initialization step, we obtain estimates of normals

and lighting from the input image(s) that guide the subse-

quent optimization. Next, since the synthetic scene is com-

posed of elements that are not perfectly aligned with the

input photograph(s), we warp the pixels rendered from the

geometry to best fit the scene structure in the input photo-

graph per material part. If there are multiple input images

per scene available, we perform consensus-aware view se-

lection (see the supplementary materials for details).

Pixel-level normals and lighting initialization. We use the

pretrained inverse rendering network (InvRenderNet) from

Li et al. [29] to obtain spatially-varying incoming lighting

estimates Linv and per-pixel normals N inv to guide the mate-

rial optimization in pixel space (Sec. 3.3). We do not use the

estimated albedo and roughness from InvRenderNet, except

as baselines for comparison, as shown in Fig. 12.

Material part mask and mapping. For each material part,

our method requires a mask Mphoto to indicate the region

of interest in the input image, and another mask Mgeo to

indicate the same in the synthetic image. The latter mask

is trivially available by rendering the synthetic geometry.

To obtain Mphoto automatically, we make use of predictions

from MaskFormer [10] as proposals, and find the mapping

by computing maximum intersection over union (IoU) with

respect to Mgeo of all material parts. Semantic and instance

labels (when available) can be used to reduce the proposals.

To obtain more robust results, manually segmented masks

can be taken as Mphoto instead. More details can be found

in the supplementary material.

Geometry/photo alignment and warping. To handle mis-

alignment between material parts in the input image and the

geometry, we compute an affine pixel warp. We obtain pixel

locations x∗
s to sample values from Mgeo of the geometry to

warp to the material mask Mphoto at pixel xt as

x∗
s =

xt−cp

lp
· lg + cg , (1)

where {cg, lg} and {cp, lp} are the centers and sizes of

bounding boxes around the masks. As the affine warp is
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Figure 3. An expressive material prior optimizable with a few pa-

rameters allows recreating photorealistic appearances, in contrast

to heuristics that may rely solely on pixel-space inverse rendering.

imperfect, some pixels will not have a correspondence and

will be dropped. Please see supplementary for details.

At the end of this initialization and alignment step, we

obtain per-material part UVs and corresponding masks in

the input and synthetic images, as well as an initial estimate

of scene lighting and normals.

3.2. Material Prior: Procedural Node Graphs
Modeling spatially-varying materials as 2D textures is

difficult due to the ill-posed nature of the problem: the tex-

tures may not be fully observed in the input image, and they

are lit by uncontrolled illumination. Therefore, a key step

of our method is to constrain materials to lie on a valid

SVBRDF manifold, by specifying a material prior that is

expressive, yet determined by a small number of parame-

ters. This material prior must be differentiable to allow pa-

rameter optimization via backpropagation. This is in con-

trast to a bottom-up approach that might rely on pixel space

outputs from inverse rendering (see Fig. 3 and 12).

We use MATch [43], a material prior based on differen-

tiable procedural node graphs. Their implementation pro-

vides 88 differentiable procedural graphs that model high

quality spatially-varying materials, each with a unique set

of parameters. For our purposes, these graphs are simply

differentiable functions from a parameter vector θ to albedo,

normal and roughness textures Auv , Nuv , Ruv . We add an

additional offset parameter for the albedo output from the

graphs to more easily control the dominant albedo colors.

We select 71 graphs that are representative of indoor scenes

as our graph collection {g1, ..., g71}. We augment this set

with a homogeneous material, used for untextured parts.

Material graph selection. For each material part in

kNN-based Procedural Graph Selection Material Classifier-based Procedural Graph Selection

Optim
ized Material

Optim
ized Material

Figure 4. Graph selection with kNN versus material classifier.
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Figure 5. Given a material part mask, UV, scene normals and light-

ing (top), we construct a fully differentiable pipeline from material

graph (θ) and UV transformation (φ) parameters via a texture-to-

image mapping and differentiable rendering layer to a rendered

image. We optimize for these parameters by comparing this ren-

dering to the input photo.

the image, we need to choose an appropriate procedu-

ral node graph from the library. We address this by

nearest neighbor search using a VGG feature distance.

Specifically, we sample 10 materials from each of the 71

graphs with random parameters, resulting in 710 exemplar

material maps {(A|N |R)1uv, · · · , (A|N |R)710uv }. We ren-

der the part using each exemplar with our differentiable

renderer (Sec. 3.3), resulting in 710 render-graph pairs

{(Ĩ1
rend, g

1), (Ĩ2
rend, g

1), ...(Ĩ710
rend, g

71)}, then select the k
(= 21) most similar renderings to the input using a masked

VGG distance (Eq. 9), which vote for their corresponding

graphs and we pick the graph gkNN with the most votes.

We also experiment with predicting material super

classes (e.g. wood, plastic, etc.) using a pretrained clas-

sifier and then selecting a graph from the class, but find the

kNN search less susceptible to errors (Fig. 4). For small

parts where it is difficult to observe spatial variations, we

use homogeneous materials.

3.3. Material Part Differentiable Rendering
Our framework leverages a material part differentiable

rendering module as a way to predict the appearance of

a part given its texture-space material maps (A|N |R)uv ,

pixel-space geometry N inv, and local lighting Linv. The dif-

ferentiable rendering module can be used for optimization

through back-propagation. We use it to optimize for mate-

rial parameters in Sec. 3.4.

During rendering, we use a spatially-varying grid of in-
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coming light environment maps [29] as our lighting repre-

sentation, which allows the operation of the rendering mod-

ule to remain local; no additional rays need to be traced by

the rendering process, which is crucial for efficiency.

Our differentiable rendering module is shown in Fig. 5.

Our material model is a physically-based microfacet

BRDF [25]. The rendering module takes per-pixel texture

(UV) coordinates, to sample material textures Auv , Nuv ,

Ruv generated from the material prior using parameters θ
as gkNN (θ). The normals need to be rotated into the local

shading frame of a given point on the material part. The

rendering module then uses per-pixel material parameters

A, N , R and spatially-varying local incoming lighting L to

render the image pixels Ĩrend:

A,R = SampleUV (Auv(θ), Ruv(θ)), (2)

N = Rot(SampleUV (Nuv(θ))), (3)

Ĩrend = RenderLayer(A,N,R,L). (4)

As the originally assigned UV coordinates might not have

the optimal scale and orientation to apply the correspond-

ing material, we apply texture transformation parameters φ
(rotation, scale, and translation) to map original coordinates

UV 0 to more appropriate ones UV .

UV = UVTransform(UV 0, φ). (5)

Fig. 9 provides visual examples of the importance of con-

sidering rotation and scale in our differentiable rendering.

3.4. Material and Lighting Optimization

Images conflate lighting, geometry, and materials into an

intensity value. To better disambiguate lighting from mate-

rial, we adopt a two-step process. First, we use our initial

spatially-varying lighting prediction from InvRenderNet to

optimize the materials for each object. Next, we perform

a globally consistent lighting optimization to refine our il-

lumination. Finally, we optimize the materials once more,

this time using our refined lighting. This procedure reduces

the signal leakage between material and lighting.

Material optimization. There is no exact correspondence

between the rendered and reference pixels. Thus, we com-

pute the absolute difference Lstat of the statistics (mean μ
and variance σ2) of the masked pixels of the part of interest

to optimize both material prior parameters θ and UV trans-

formation parameters φ:

Lmean = |μ(Iphoto ·Maln)− μ(Ĩrend ·Maln)|, (6)

Lvar = |σ2(Iphoto ·Maln)− σ2(Ĩrend ·Maln)|, (7)

Lstat = Lmean + Lvar, (8)

where Maln is the resulting aligned mask from the alignment

step.
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Figure 6. Example of lighting optimization result using N = 2
ceiling lights and one environment map lighting. The optimized

lighting is close to original ScanNet images.

Using this statistics loss encourages matching color dis-

tributions but not spatially-varying patterns. To further

match the patterns, we add a masked version of VGG loss

Lvgg [45]. Let C̃l and Cl be the normalized VGG feature

maps of Ĩrend and Iphoto extracted from layer l2, we apply

mask Maln on the sum of upsampled L2 difference of nor-

malized feature maps C̃l and Cl and compute the mask-

weighted average among the pixels x:

Lvgg =
1∑

x
Maln

∑
x

Maln

(∑
l

Up

(
C̃l − Cl

)2)
. (9)

We also try a masked style loss based on the Gram matri-

ces of VGG features [16], but find that it does not provide

significant improvement over Lstat and Lvgg . Therefore, we

use the following loss for material optimization:

Ltotal = αLstat + βLvgg. (10)

Rather than jointly optimizing for material and UV param-

eters, we find that convergence is more stable with alter-

nately searching for UV parameters in a discretized space

and optimizing for material graph parameters. Spatially-

varying roughness parameters are difficult to optimize in a

single view due to limited observations of highlights, so we

replace the roughness output from the graph with a single

mean value during optimization (the final result can still use

the full roughness textures).

Globally consistent lighting optimization. To estimate

globally consistent lighting, we represent indoor lighting

as N area lights and one environment light which may be

observed through the windows. We optimize for RGB in-

tensities for each light source. For scenes without light

source annotations, we uniformly place area lights on the

ceiling every 3 meters of distance. With the materials we

previously optimized, we render images with each single

2The layers used here are relu1 2, relu2 2, relu3 3, relu4 3, relu5 3.
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Photo Pre-Material Refinement Post Material Refinement

Figure 7. Second-round material refinement successfully corrects

the inaccurate reflectance values estimated in the first round.

light source turned on. We compute the RGB intensities by

comparing these renderings with the input view using least

squares. Specifically, with N area lights (including ceiling

lights and lamps) in a room with V input images, we solve

for 3 × (N + 1) RGB coefficients xr, xg, xb ∈ R
N+1 (the

+1 refers to an environment light visible through windows).

We use these coefficients to re-weight the intensities of each

light source. Fig. 6 demonstrates examples of rendering un-

der selected views with each light source and the final com-

bined optimized lighting. We additionally optimize for rel-

ative exposure values under different views, since they may

vary over a video acquired using commodity cameras.

Material reoptimization. With the refined globally-

consistent light sources, we re-optimize the materials to im-

prove our results. We render a new spatially-varying in-

coming lighting grid Lglobal from the synthetic scene with

the optimized light sources and use the same optimization

loss as Sec. 3.3. We only optimize for a homogeneous re-

scaling of the albedo and roughness maps in this round,

as the spatially-varying patterns are already correctly op-

timized by the first iteration. Fig. 7 demonstrates that this

refinement step can rectify inaccurate material parameters

caused by albedo-lighting ambiguities in the inverse ren-

dering network.

4. Experiments

4.1. Datasets

We demonstrate our method on photos and correspond-

ing scene data from several sources and demonstrate its ro-

bustness on images and scene geometry of varying quality.

ScanNet-to-OpenRooms. We use geometry and 3D part

segmentations from OpenRooms [32], corresponding to

multi-view input images from ScanNet [11] videos, with in-

stance segmentation labels as mask proposals for Mphoto.

Photos-to-Manual. For several high-quality real-world

photos, we also manually construct matching scenes using

Blender [2] from a single view and manually segment the

material part masks for demonstration purposes.

SUN-RGBD-to-Total3D. Our method can also be used for

fully automatic material and lighting transfer using a single-
image mesh reconstruction from Total3D [36] applied to

SUN-RGBD [46] inputs. The reconstruction in this case

is coarser than CAD retrieval and with a single material per

Novel View Novel LightingTransfer ResultPhoto (G

Figure 8. Example of material transfer results for different scenes

with ScanNet-to-OpenRooms.

Novel viewPhoto (G Transfer result Novel lighting

Figure 9. Our material and lighting transfer results for two

scenes in Photos-to-Manual dataset. Note how our method is

able to accurately reconstruct the appearance and orientation of

the spatially-varying materials in these scenes.

object. We use MaskFormer [10] to obtain segmentation la-

bels as mask proposals and use object classes for mapping.

We assume all meshes have texture coordinates. If not,

we use Blender’s [2] Smart UV feature to generate them.

4.2. Material and Lighting Transfer

We demonstrate our material and lighting transfer results

in Fig. 8, 9 and 10, where our material prior allows interest-

ing relighting effects such as specular highlights, shadows

and global illumination under novel views and lighting.

Multiview inputs with CAD geometry. We demonstrate

the multi-view setup in Fig. 8 with ScanNet-to-OpenRooms
dataset. We select an optimal view for every single material

to get the best observation as well as to estimate the global

lighting for the entire room. Even though the CAD mod-
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Novel View Novel LightingTransfer Result
Photo (Geometry + 

Panoptic Pred. inset)

Figure 10. Examples of material transfer results with SUN-RGBD-
to-Total3D. Note that these are fully automatic results by using

Total3D to reconstruct 3D meshes and panoptic label predictions

from MaskFormer. Our method is robust to imperfect geometry

and panoptic prediction labels as shown in the inset.

Perturb Graph Parameter Original Result Adjust UV Rotation Adjust UV Scale 

Figure 11. Example of editable variations from originally op-

timized procedural graph materials for ceiling. We can perturb

graph parameters or adjust UV parameters from optimized results

to generate various appearances.

els are neither perfectly aligned nor perfect replicas of real

objects, our method can closely match input appearances.

More results are in supplementary.

Single-image inputs. Our method can even be applied to

single image inputs, as shown in Fig. 1 and 9 with our own

Photos-to-Manual dataset. Our framework allows mate-

rial transfer for unseen portions of coarsely aligned CAD

models from the photo, as shown in the novel view render-

ing. This makes the framework more practical than recent

works [37] that require perfectly aligned geometry and mul-

tiview images to optimize for observed geometry. In the

second row of Fig. 9, both material and orientation of the

carpets with grid patterns are successfully estimated. Lastly,

the estimated materials are high-resolution and photorealis-

tic as shown in the zoom-in views and relighting results.

Automatic 3D reconstruction and masks. Our method

can be fully automatic by using off-the-shelf single image

3D reconstruction and panoptic (or instance) prediction for

initialization. We illustrate this in Fig. 10 with the SUN-
RGBD-to-Total3D dataset. This shows that our method is

robust even when both masks and meshes are imperfect and

not aligned well, which also cannot be achieved in recent

works [37] that need high-quality aligned geometry.

Variations from optimized material. Another advantage

of procedural graph material representation is that it allows

Classifier InvRender Med. Pixel Med.

Ours preferred over 68.19% 65.06% 69.70%

Table 1. User study asking which method produces results more

similar to the reference with ScanNet-to-OpenRooms dataset.

Classifier InvRend. Med. Pixel Med. Ours

RMSE 0.452 0.349 0.337 0.259
SSIM 0.401 0.479 0.497 0.493

LPIPS 0.546 0.510 0.501 0.489

Table 2. Similarity evaluation between baselines rendering results

and reference photo with ScanNet-to-OpenRooms dataset.

further edits from the current parameters. We can adjust

material and UV parameters starting from the current esti-

mation and generate edited results as shown in Fig. 11. Note

that the image becomes brighter by perturbing graph param-

eters under the same lighting which explains materials can

also change the brightness of an image. This demonstrates

the benefit of globally consistent lighting optimization with

material refinement stages, which ensures materials for each

part are consistent under global lighting representation.

4.3. Baseline Comparisons

Material classifier. The most relevant work to ours is

PhotoShape [38], which learns a material classifier from

a dataset of shapes with material assignments. The input

to the network is an image with an aligned material part

mask. Although PhotoShape does not consider lighting or

complex indoor scenes, we compare by mimicking their ap-

proach in our setting. We borrow the material classification

model from [38] and re-train it in a whole scene setting,

with classification of material parts over 886 materials and

material category classification over 9 super-classes. For

each input image associated with a material part mask, we

predict one of 886 material labels. Implementation details

can be found in supplementary materials.

Median of per-pixel material predictions. For this base-

line, we can construct a homogeneous material from per-

pixel predictions of the inverse rendering network [29] by

computing median values of per-pixel albedo and roughness

under selected view for each material in the masked region

and setting the normal to flat.

Median of pixel values. We follow IM2CAD [23] to assign

a homogeneous albedo as the median values of the 3 color

channels independently within the masked region in the se-

lected view for each material, set a fixed roughness value at

0.7 and use a flat normal.

Comparisons and user study. The comparisons of our

results with baselines are shown in Fig. 12 with various

datasets.3 The material classifier can only predict material

3As none of the baselines can estimate global lighting well, we use our

predicted lighting to render baseline images to ensure fair comparison.
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from a predefined dataset, which is not guaranteed to match

the actual appearance in the photo. The median of the in-

verse rendering method can generate appearances close to

the photo, but the albedo color sometimes goes off due to

the issue of albedo-lighting ambiguities. The median of

photo pixels robustly computes the albedo color similar to

the photo, but both the spatially-varying patterns and the

roughness are not estimated. In contrast, our method can

estimate accurate spatially-varying materials which is simi-

lar to the photo as well as the global lighting.

For quantitative evaluations, Table 2 reports similarity

metrics (RMSE, SSIM, LPIPS) between photos and ren-

derings of various methods with 70 randomly sampled

scenes, consisting of 669 material parts, using ScanNet-to-

OpenRooms dataset under uniformly sampled views in Ta-

ble 2. We compute RMSE on the optimized region for each

material, while SSIM and LPIPS are on the entire image.

Note that these similarity metrics are not designed to eval-

uate similarity between misaligned images or to evaluate

spatial variations, so tend to favor homogeneous outputs of

the median-based methods. Nevertheless, PhotoScene out-

performs all baselines on these metrics, except pixel median

in SSIM. Note that the homogeneous albedo from pixel me-

dian may match a photo well on an average, but without

spatial variations or accurate relighting in new views.

To evaluate methods with human perception, we provide

a user study to evaluate the similarity in Table 1 using the

same dataset. We choose 20 random scenes with uniformly

sampled 4 to 12 views and render a set of images under

selected views with our result. We ask users on Amazon

Mechanical Turk to determine which set of images is more

similar to the corresponding photo set. More details can

be found in the supplementary material. About 65 to 70%
users think PhotoScene generates results more similar to the

inputs. Thus, our method outperforms the baselines both

qualitatively and quantitatively.

More analysis. We further conduct an ablation study of

component choice and robustness of using different ways to

obtain material part masks in the supplementary.

Discussion and Limitations. Our algorithm assumes a part

segmentation already exists in the reconstructed geometry,

and our results depend on its quality and granularity. A

finer part segmentation could be achieved by retrieving ob-

jects from a higher quality CAD model collection. Our

graph collection is limited to the set provided by the ex-

isting implementation of MATch [43], though more general

procedural graphs could be added with some effort, pos-

sibly using automatic techniques [21]. Our approach can-

not handle specific patterns such as paintings, which could

be addressed by training a generative model for such ma-

terials [18]. Lastly, we rely on a neural inverse rendering

initialization, where the current state-of-the-art is restricted

to small resolutions, so some high-frequency information
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Figure 12. Qualitative comparison3 with baselines on various

datasets, where our method generates high-quality materials with

spatially-varying patterns that better match the input photograph.

from photos might be lost. This will likely be improved by

future architectures handling higher resolutions. We note a

potential negative impact of spurious edits (Deepfakes) of

indoor scenes, which we discuss further in supplementary.

5. Conclusion
We have presented a novel approach to transfer materi-

als and lighting to indoor scene geometries, such that their

rendered appearance matches one or more input images.

Unlike previous work on material transfer for objects, we

must handle the complex inter-dependence of material with

spatially-varying lighting that encodes distant interactions.

We achieve this through an optimization that constrains the

material to lie on an SVBRDF manifold represented by pro-

cedural graphs, while solving for the material parameters

and globally-consistent lighting with a differentiable ren-

derer that best approximates the image appearances. We

demonstrate high-quality material transfer on several real

scenes from the ScanNet, SUN-RGBD dataset and uncon-

strained photographs of indoor scenes. Since we estimate

tileable materials that can be procedurally generated, the

scenes with transferred material can be viewed from novel

vantage points, or under different illumination conditions,

while maintaining a high degree of photorealism. We be-

lieve our work may have significant benefits for 3D con-

tent generation in artistic editing and mixed reality applica-

tions. Further, our approach can be used to create datasets

for inverse rendering, where geometry is easier to acquire

but ground truth material and lighting are hard to obtain.
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