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Abstract: The emergence of low-cost air quality sensors as viable tools for the monitoring of air
quality at population and individual levels necessitates the evaluation of these instruments. The
Flow air quality tracker, a product of Plume Labs, is one such sensor. To evaluate these sensors,
we assessed 34 of them in a controlled laboratory setting by exposing them to PM;y and PM; 5 and
compared the response with Plantower A003 measurements. The overall coefficient of determination
(R2) of measured PM, 5 was 0.76 and of PMjyj it was 0.73, but the Flows’ accuracy improved after
each introduction of incense. Overall, these findings suggest that the Flow can be a useful air quality
monitoring tool in air pollution areas with higher concentrations, when incorporated into other
monitoring frameworks and when used in aggregate. The broader environmental implications of
this work are that it is possible for individuals and groups to monitor their individual exposure to
particulate matter pollution.
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1. Introduction

Once the exclusive purview of governmental organizations, air quality monitoring
is becoming increasingly individualized and commercialized through the creation and
marketing of personal air quality sensors. These sensors can measure a number of ambient
air pollutants, including those monitored and regulated by the Environmental Protection
Agency (EPA) [1]. The EPA’s stationary monitors are strategically sited, based on factors
including the location of population centers and pollution point sources to assess compli-
ance with the National Ambient Air Quality Standards (NAAQS), which include carbon
monoxide (CO), lead (Pb), nitrogen dioxide (NO,), ozone (O3), sulfur dioxide (SO;), and
particulate matter (PM;9 and PM; 5) [2]. This environmental pollution evaluation paradigm
may be shifting because of the ability to collect data without relying on a network of
stationary monitors. Novel, mobile sensors allow us to measure an individual’s mobile
breathing microenvironment [3], enabled by relatively portable, low-cost sensors.

To evaluate the utility of low-cost sensors, validation procedures, such as those used by
JovasSevi¢-Stojanovic et al. (2015), are needed, and have been executed by a number of other
researchers [4]. The authors compared two particulate matter sensors, a high-quality scien-
tific monitor (GRIMM Model 1.108 monitor) and a low-cost monitor (Dylos 1700 (Dylos
Corporation, Riverside, CA, USA), by testing both monitors in an indoor environment and
an outdoor environment and found strong agreement between the two monitors. Lowther
et al. (2019) reviewed particulate matter sensor types (optical vs. electric vs. gravimet-
ric) and evaluated the different PM assessment techniques associated with these sensor
types [5]. The majority of these sensors measured particle mass rather than particle number,
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particle size distribution, or particle surface area—the standardization of measurement
approaches is a matter that still needs to be addressed by the air quality measurement
community, especially with regard to indoor air quality. Regarding the practical utility of
these low-cost of sensors, Lowther et al. (2019) state that these types of sensors may be
used in city environments, where the internet infrastructure exists to support their use. In
their evaluation of five different low-cost optical air quality sensors relative to lab-based
instruments, Bulot et al. (2020) were able to identify events of pollutant introduction in
laboratory conditions [6]. The sensitivity of these sensors depended on the model of the
sensor, demonstrating the variation that different models of similar devices can introduce.
The portability of low-cost sensors makes it possible to evaluate spatially variable indoor
air quality [5], which can represent the majority of one’s daily ambient air environment.
Studies have found that time spent indoors can range between 65% [7] and 91% [8] of
subjects’ time each day.

Though these evaluations provide encouraging findings for the development and
deployment of low-cost sensors, Castell et al. (2017) asserted that low-cost sensor data
may have use in aggregate, but are not directly comparable to those sensors used towards
regulatory ends, as these low-cost sensors lack accuracy on an individual level [9]. Given
the potential for low-accuracy monitoring by low-cost sensors, Kumar et al. (2015) asked
whether collecting data using these tools is worthwhile [10]—as sensors continue to advance
in their accuracy and precision, this concern may be increasingly lessened.

The ability to conduct low-cost air quality monitoring may be particularly valuable
for socially and economically vulnerable populations in the United States, who may be
differentially affected by under-investigated air-quality issues [11], leading to environmen-
tal injustice. As per the Environmental Protection Agency, Environmental Justice is “the
fair treatment and meaningful involvement of all people, regardless of race, color, national
origin, or income with respect to the development, implementation, and enforcement of
environmental laws, regulations, and policies” [12]. The capability of portable sensors
to assess pollution locally may be why these sensors have been embraced in environ-
mental justice research, a capacity upon which proponents of these sensors’ validation
have remarked [4,9,10]. Hall et al. (2014) suggest that low-cost sensors can play a role in
monitoring air-quality holistically through their capacity to increase monitoring’s spatial
coverage and potential for improving pollution characterization [13]. Plume Labs” Flow
device offers the ability to measure air quality wherever one goes with the sensor, making
it particularly useful for environmental justice projects given its low cost, small size, and
attractive design [14].

One organization that conducts validation evaluations of low-cost sensors is the South
Coast Air Quality Management District (AQMD), a state agency that monitors the air
quality in Southern California and makes recommendations for air pollution control [15].
South Coast AQMD has evaluated the validity and reliability of a number of these types of
sensors, including Air Quality Egg, Purple Air, and AeroQual [15]. Plume Lab’s Flow2 low-
cost sensor was recently evaluated by South Coast AQMD. They found preliminarily that
there was an R? for PM, 5 measurement between 0.02 and 0.15 between three Flow 2 units
and a Federal Equivalent Monitor T640 (FEM T640) over the course of an hour of laboratory
monitoring (Using the Federal Equivalent Monitor GRIMM (FEM GRIMM) PMj 5 values,
the R? for PM; 5 measurement between 0.02 and 0.22 among three Flow 2 units) [16].
Correlation using the Flow 2s and FEM T640 was poorer when the 5 min observation
periods were conducted (0.01 < R? < 0.09) and stronger using 24 h of observation R?
(0.02 < R? < 0.72). This suggests that the longer the duration, the stronger the association
between Flow 2s and FEMs—this finding may be attributed to the design of the Flow, which
auto-calibrates through algorithm processes executed through the device’s firmware [17].
Through this process, the more air quality environments to which the device is exposed,
the better the sensor’s measurement of pollutants. South Coast AQMD’s analysis featured
data from three Flow 2 sensors [16], an approach that many other evaluation studies have
used; yet, we do not know whether increasing the number of sensors and aggregating their
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measurements would produce similar evidence of the correlation between low-cost air
quality sensors and high-precision sensors, by virtue of an increased number of personal,
mobile sensors that may be required for air-quality monitoring field campaigns.

The purpose of this paper is to present our findings comparing the average PMj 5 and
PM;y measurements of 34 Flow devices to the PM;g and PM; 5 concentrations simultane-
ously measured with a previously calibrated and validated sensor (Plantower A003) inside
a chamber [18,19].

2. Materials and Methods
2.1. Low-Cost Sensors Evaluated

Low-cost (~150 USD/sensor) and commercially available to the public, Flow devices
measure ambient air quality. Air pollutants (NO,, VOCs, PM;, and PM; 5) are measured
by drawing ambient air into the device by a small, internal electric fan through the holes
in the body of the device [20]. Once the air sample enters the device, a heated membrane
measures the amount of energy needed to maintain the temperature required by the
membrane to disintegrate NO, and VOCs. Particulate matter is measured as the amount of
laser-produced light that is diffracted when the laser collides with airborne fine particulate
taken into the device [21]. Both approaches quantify the concentrations of these pollutants.
A Flow device and a smartphone or tablet must be paired through a Bluetooth connection.
For the device to properly collect time-stamped sensor air-quality and spatial data, Wi-
Fi/mobile data and GPS connectivity with a companion device are also required. The
manufacturer recommends that the sensors be exposed to a variety of indoor and outdoor
air environments of high- and low-air-pollutant concentration exposures to allow for
autocalibration over the course of a week [17]. The manufacturer did not provide a range
of measurement. We did not zero the sensor before use, as it would undo this calibration
process and it is not expected of the typical user. Once the sensor is fully charged, which
takes 2.5 h, the Flow’s charge will last 24 h [22].

A previously validated and calibrated sensor [18] (Plantower A003) was used as an
instrument to which the Flows could be compared. The Plantower A003 also uses a fan
to pull air into a chamber where laser-produced light is diffracted by airborne particulate
matter. Those collisions that occur at a 90° angle are then able to be measured by a
photodiode detector [23,24]. Plantower A003 has demonstrated high precision (PM; 5
measurement precision error = 7% and PM;y measurement precision error = 9%) and
overall PM; 5 accuracy (87%) in the measurement of incense [18].

2.2. Chamber Experiments

PM, 5 and PM;( were generated in a controlled laboratory setting at Johns Hopkins
University. In this setting, 34 charged and mobile device-paired Flow devices were co-
located in an air-tight chamber (1.5 m x 1 m) with the Plantower A003 sensor. Our initial
fleet of sensors was numbered 35 but one (Sensor 12) was excluded before the experiment
because of a defect in the base of the sensor that made dock-charging infeasible. Incense was
introduced into the chamber at 1:35 p.m. (experimental minute 11), 2:14 p.m. (experimental
minute 50), and 2:38 p.m. (experimental minute 74) (Figures 1 and 2). Data was collected
from the Plantower A003 device every 30 s and output in Excel format. Flow devices
collected PM;y and PM; 5 data every minute. Included in the observation period were the
10 min prior to the first introduction of incense to provide an initial PM-free baseline and
10 min after the last incense introduction. The chamber is provided with HEPA-filtered
supply and exhaust air in order to be able to modify and test different concentrations.
However, for the experiment described here, both supply and exhaust were turned off in
order to increase the concentration and minimize dilution of the incense PM.
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and Stata/IC 13.1 (StataCorp, College Station, TX, USA).

2.4. Inter-Flow Variation

Two dimensions of variation were evaluated in the data collected for this experi-
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2.4. Inter-Flow Variation

Two dimensions of variation were evaluated in the data collected for this experiment—
among the devices over time and the devices in comparison with the Plantower A003
device. The standard deviation among the devices for each minute of the experiment was
calculated and plotted. As in similar studies [6,18], the coefficient of variation (CV = %)
was evaluated for each minute of the experimental period to understand the variation
among the 32 Flows. For PMg and PM; 5, precision was assessed by calculating the relative
precision error (RPE) between each possible pair of sensors that were functioning over the
course of the experiment for each minute of the experiment (Equation (1)),

sensorl — sensor2 |
average(sensorl, sensor2)

RPE = (| x 100) 1)

RPE was then averaged for the duration of the experiment. These averaged paired
values were then averaged by sensor to produce an overall RPE precision estimate for
each sensor.

2.5. Flow and Plantower A003 Comparison

To understand how the average Flow measurements compared with that of the Plan-
tower A003, the accuracy (Acc) of the Flows was evaluated by determining the absolute
difference between the average Flow (sensor) and reference (Plantower A003) values, cal-
culated using a method used by Levy Zamora et al. (2018) [18]. This value was then
multiplied by 100 and then subtracted from 100 to generate an accuracy percentage value
for each minute (Equation (2)). This value was then averaged to find the overall accuracy of
each device. As some executions of the equation produced negative infinity values, these
accuracy values were designated as non-numbers (NaNs) and processed as such.

ref. — sensor

Acc = (100 — (| of

| % 100)) 2

We then aggregated the accuracy across sensors for each minute to determine whether
some periods of the experiment were more successfully measured than others. To evaluate
the correlation between the Flow fleet and the Plantower A003, we produced a linear
regression to examine the association between the Flows” averaged minute-by-minute
measurements and Plantower A003 datasets for each minute of the experimental period,
yielding a Coefficient of Determination (R?) for the relationship between the Flows’ minute-
by-minute average and that of the Plantower A003. We also produced scatter plots to
visually assess correlation.

3. Results

Two devices, sensors 18 and 31, failed to measure changes in particulate matter. The
minute-by-minute plots of the 32 remaining Flow devices and the Plantower A003 device,
which has been well-studied, are presented for PM, 5 (Figure 1) and PM;q (Figure 2).

These graphs present data for each of the sensors for the duration of the experiment, as
well as an average of the Flow device measurements for each minute of the experiment. A
separate graph displays the standard deviations of both the PM;y and PM; 5 measurements
(Figure 3), which show the variability of the standard deviation by minute averaged
across the 32 Flow devices. The Flows” mean PM; 5 measurement over the course of the
experiment was 20.15 pg/m? (vs. Plantower measurement 99.51 pg/m3). The Flows’ mean
PM;jy measurement over the course of the experiment was 54.21 ug/ m? (vs. Plantower
measurement 145.41 pg/m3).
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Table 1. Cont.

Overall Precision Evaluation Overall Precision PM7 Overall Precision PM3 5
Sensor 21 49.73 50.29
Sensor 22 46.47 48.40
Sensor 23 49.68 50.33
Sensor 24 46.08 45.96
Sensor 25 45.89 49.65
Sensor 26 86.52 126.75
Sensor 27 45.96 60.82
Sensor 28 44.83 55.13
Sensor 29 47.59 48.61
Sensor 30 81.80 85.63
Sensor 32 54.47 53.87
Sensor 33 62.59 75.63
Sensor 34 70.46 87.40
Sensor 35 59.68 74.48

The highest device RPE measured exceeded 100% and the lowest performing device
had an overall precision in the 40% range for both PM; 5 and PM;y measurements. When
measuring PM; 5, 22 devices (68.75%) had RPEs in the 40s-50s% range, 6 devices (18.75%)
had RPEs in the 60s—70s% range and 4 devices (12.5%) had RPEs in the 80s-100s% range.
When measuring PMyg, 26 devices (81.25%) had RPEs in the 40s-505% range, 3 devices
(9.38%) had a precision in the 60s-70s% range and 3 devices (9.38%) had RPEs in the
80s-100s% range. The mean bias of the average Flow vs. Plantower A003 for PM; 5
measurements over the course of the experiment was 79.36 nug/m?. The mean bias of the
average Flow vs. Plantower A003 for PM;g measurements over the course of the experiment
was 91.20 ug/m3.

Regression analysis of the Plantower A003 and the average of the 32 Flows yielded a
coefficient of determination (R?) of 0.73 for PM;( and a coefficient of determination (R?)
of 0.76 for PM, 5. These results differ from those of South Coast AQMD [16], which used
three Flow 2s that were analyzed individually as opposed to 32 Flows that were analyzed
in aggregate.

4. Discussion

Analysis of the data of 32 Flow devices demonstrated differences in the measured
concentrations of PMjy and PM; 5, both among the devices and in comparison with the
Plantower A003 sensor. Among the Flow measurements, there was consistency in variation
among devices in the context of PM; 5 measurement before and after incense introduction.
The average standard deviation among sensors for PM; 5 and PM;g were 8.87 pg/ m? and
16.67 ug/ m3, respectively (Table 2).

For PM;y measurements, however, this consistency was lacking, and became especially
apparent when the incense was introduced to the test chamber during the experimental
period. The CVs for PM;g and PM; 5 were 0.52 and 0.76, respectively, demonstrating a fair
amount of variation in the measurement of each particulate matter fraction. Though each
of the Flows records a measurement every minute, the specific second during which data
are collected (and is time-stamped) varies. This is unlikely to be a problem for many of the
measurements. However, if a Flow measurement were taken at the very beginning or end
of a minute, then those reading may be more like those of either the preceding or following
minute—variation among the Flows PM measurements may be due in part to this aspect of
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the Flow device’s function and may account for the peaks that appear in Figures 1-3 before
our recorded instances of incense introduction.

In our evaluation of inter-device performance, we found variation in the overall
precision (RPE) of each device in our fleet (Table 1). A few devices (4/32) performed with
an overall PM; 5 concentration measurement precision of over 80%. The majority of the
sensors, however, had an overall RPE in the 40s-50s% range over a PM, 5 concentration
range of 1 to 300 ug/m?>. Importantly, though there were different RPE measurements for
each pollutant within each device, there was generally similar performance between PM;g
and PM; 5, meaning a sensor that measured PM;g well also measured PMj 5 just as well.
The likely explanation for this trend is that the same device within the sensor measures
both PM;y and PM; 5. Understanding the overall RPE of devices is important when one
deploys Flows for investigations that require device co-location; device co-location is often
a necessary step in field studies when they are deployed to different locations to test and
ensure adequate calibration and also to evaluate what part of the difference between sites
is due to site concentration differences vs. due to sensor measuring difference [25,26].

We detected significant differences between the average measurement of the Flow
devices and the Plantower A003 one minute after incense was introduced into the testing
chamber (experimental minutes 12, 51, and 75). These differences, though substantial in
some cases (Figures 1 and 2), demonstrate a response to incense on the same timeline. In
spite of the responsiveness of the sensors to particulate matter stimuli, there is relatively
low accuracy when comparing the Flow average to the Plantower A003 sensor (Table 2).

Table 2. Preliminary Analysis.

PMjy PM; 5
Flow Average Standard Deviation 16.67 pg/ m3 8.87 ug/ m?
Flow Standard Deviation Minimum 4.20 ug/ m3 2.77 ug/ m3
Flow Standard Deviation Maximum 53.96 ug/m? 20.82 pg/m?
Flow Coefficient of Variation 0.52 0.76
Overall Accuracy (Flow Sensors vs ~38059% —i372%
Linear Regression R? 0.73 0.76

In the immediate aftermath of the three incense introductions, average accuracy
improved markedly (PM; 5: 21%, 47%, and 11%; PM1g: 29%, 76%, and 21%). This poor total
accuracy is largely attributable to the accuracy measurements that were calculated using
Flow measurements that occurred during the first 10 min of the experimental period prior to
incense introduction, which was demonstrated in high fluctuations in overall accuracy. The
reason for the poor performance initially was the Flow’s measurement of particulate matter
when clean filtered air was flowing through the chamber, which may be a product of the
“learning” in which sensors engage as they are exposed to new environments. The overall
accuracy of sensors dramatically improved with time and concentration increase compared
with the initial assessment (i.e., Sensor 5 improved from —18,845% to 95% over the duration
of the experimental period). In spite of this improvement, overall accuracy was relatively
low; accuracy may be better assessed during known peak exposures, as demonstrated by
the accuracy improvements in the five minutes after each of the incense introductions.

The inverted U-shaped trend produced in the PM; 5 and PM;j accuracy assessments
during this period may suggest several different phenomena at work. The sensors may
still be “learning” how to recognize high exposures well. The “learning” environments
to which the sensors were exposed prior to this testing period were not extremely low or
extremely high, consisting of generally low-to-moderate exposures. Some sensors may learn
more quickly than others, which could also contribute to the variation in the measurements
observed. Though there are substantial differences among Flows and between average Flow
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and Plantower A003 measurements, the Flows more effectively measured high particulate
matter concentrations than at baseline, “clean” environments. Further, the sensors’ ability to
measure changes in particulate matter concentration is reflected in the R> and demonstrated
visually through the PM;o and PMj 5 time series, which capture the overall temporal trends.

The strengths in our approach include the number of Flow devices we were able to test
and co-locate for this validation experiment, which made our analysis more robust. Further,
we were granted access to a low-cost, high-precision sensor to evaluate the accuracy of the
Flow devices. This equipment also allowed us to effectively test the Flow devices against
each other to determine the RPE and accuracy of each device.

Limitations of our approach include the short duration of this study (1.5 h), due largely
to the amount of time needed to set up the Flow sensors, and the limited amount of instru-
ment “burn-in” time that the Flows had, meaning that they were exposed to relatively few
environments in a short period of time (i.e., indoor lab environment, indoor basement for a
few days, car travel) vs. the recommended seven days [27] before this validation test began
due to time and resource limitations. An experiment that assessed differences between
largely “degreened” and not “degreened” sensors is needed to understand the effect of
the self-learning in the measurement capacity of the sensors. This type of varied exposure
is key to the device’s calibration, which relies on the device’s experience of ambient air
environments [20]. This may have made it difficult for the Flow to recognize the lowest
and highest concentrations of particulate matter that the Plantower A003 device was able
to measure and the pronounced lack of concordance between the Flows and the Plantower
AQ03 instrument during the first 10 min of the observational period. Extending and envi-
ronmentally diversifying the “burn-in” period may improve the accuracy and precision of
Flow readings across environments. The Flow devices’ pre-validation test environment
was relatively consistent between the activation of the devices and the experiment.

As Castell et al. (2017) suggest regarding the utility of low-cost air quality sensors,
Flows may have enhanced utility when their data is assessed in aggregate and in concen-
tration when used as instruments in field campaigns [9]. Even if this mass deployment
of sensors is not possible for an individual user, our analysis has demonstrated the Flow
device’s ability to measure spikes in particulate matter pollution that are corroborated
a previously evaluated robust sensor; being able to detect these spikes may be useful in
protecting one’s respiratory health. Our analysis builds upon the preliminary evaluations
already conducted [16] for the second generation of this sensor, which is presently being
used in air quality, community health, and environmental justice research.

5. Conclusions

Flow sensors could be useful air quality monitoring tools in high-PM, 5 and -PMjg
areas, such as cities, when incorporated into other monitoring frameworks, such as EPA
monitoring networks, and when used in aggregate, with a number of sensors used as part
of an air quality measurement campaign. The broader environmental implications of this
work are that it is possible for individuals and groups to monitor their individual exposure
to particulate matter pollution.
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