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Fig. 1. We decompose a solid mesh into a set of components and utilize the convex hulls of the components (shown in different colors) to represent the original

shape. Compared to prior works, we can better capture the fine-grained structures of the input shape with fewer components. See handles of the oven and the

cabinet, slots of the toaster, and the spout of the kettle (zoom in for details). The high-quality decomposition enables delicate object interaction in downstream

applications (e.g., a robot opens the drawer by grabbing the handles).

Approximate convex decomposition aims to decompose a 3D shape into
a set of almost convex components, whose convex hulls can then be used
to represent the input shape. It thus enables efficient geometry processing
algorithms specifically designed for convex shapes and has been widely
used in game engines, physics simulations, and animation. While prior
works can capture the global structure of input shapes, they may fail to
preserve fine-grained details (e.g., filling a toaster’s slots), which are critical
for retaining the functionality of objects in interactive environments. In this
paper, we propose a novel method that addresses the limitations of existing
approaches from three perspectives: (a) We introduce a novel collision-
aware concavity metric that examines the distance between a shape and
its convex hull from both the boundary and the interior. The proposed
concavity preserves collision conditions and is more robust to detect various
approximation errors. (b) We decompose shapes by directly cutting meshes
with 3D planes. It ensures generated convex hulls are intersection-free and
avoids voxelization errors. (c) Instead of using a one-step greedy strategy,
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we propose employing a multi-step tree search to determine the cutting
planes, which leads to a globally better solution and avoids unnecessary
cuttings. Through extensive evaluation on a large-scale articulated object
dataset, we show that our method generates decompositions closer to the
original shape with fewer components. It thus supports delicate and efficient
object interaction in downstream applications.
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1 INTRODUCTION

With the development of 3D depth sensors, VR/AR, and physics
simulation, large-scale detailed 3D models have become more com-
mon. In addition to employing data structures such as octrees and
bounding volume hierarchies (BVH) to accelerate specific geome-
try processing algorithms, another common strategy for handling
complex 3D models is to decompose them into simpler compo-
nents. In particular, convex decomposition has aroused great in-
terest. Many fundamental geometry problems in rendering and
physics simulation are non-trivial and computationally expensive
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to solve for general shapes. However, if input shapes are convex
polyhedra, many of them can be formulated as convex optimiza-
tion problems, and efficient algorithms can be specifically designed.
Examples include determining whether a 3D point lies inside or
outside of a mesh [Snoeyink 2017], checking whether two meshes
intersect [Bergen 1999; Liu et al. 2008; Mirtich 1998], and calculating
the minimum distance between two meshes [Gilbert et al. 1988].

Decomposing a 3D solid shape into a minimum number of exact
convex components is the exact convex decomposition (ECD) problem,
which has proven to be NP-hard [Chazelle et al. 1997; O’Rourke
and Supowit 1983]. Although many suboptimal heuristics [Chazelle
1981] have been proposed, they usually output a large number of
small components, preventing them from practical applications.
Instead, the approximate convex decomposition (ACD) problem [Lien
and Amato 2007] proposes to lift the strict convexity constraint
and only requires the decomposed components to be approximately
convex. Since ACD approaches [Lien and Amato 2007; Mamou and
Ghorbel 2009; Mamou et al. 2016; Thul et al. 2018] typically generate
a much smaller number of components, whose convex hulls can then
be used to approximate the original shape and speed up downstream
applications, ACD works have recently received more attention. For
example, V-HACD [Mamou et al. 2016] is currently one of the most
popular open-source ACD methods and has been adopted by a wide
range of game engines and physics simulation SDKs.
Existing ACD methods share a similar overall pipeline. In order

to quantify the decomposition quality, they first define a concavity
metric to measure the similarity between a decomposed component
and its convex hull. They then design a heuristic cost function to
decompose the 3D meshes greedily. There are three major short-
comings of existing ACD methods: (a) Concavity metric: Prior
works mainly utilize two types of metrics: boundary-distance-based
concavity [Ghosh et al. 2013; Lien and Amato 2004, 2007, 2008; Liu
et al. 2016; Mamou and Ghorbel 2009], which measures the distance
between the boundary surfaces of the shape and its convex hull;
and volume-based concavity [Attene et al. 2008; Mamou et al. 2016;
Thul et al. 2018], which calculates the volume difference between
the solid shape and its convex hull. However, both metrics may fail
to preserve the collision conditions in some cases, which means
some positions in the space are unlikely to collide shape, but col-
lide with the decomposition results. The insensitivity of existing
concavity metrics to changes in collision conditions can be fatal
for preserving object functionality. For example, they might cause
an algorithm to stuff the slots of a toaster. (b) Component rep-

resentation: There are two common strategies for representing
components and decomposing shapes. The first one is to decom-
pose shapes by grouping the triangle faces [Lien and Amato 2007;
Liu et al. 2016; Mamou and Ghorbel 2009], which results in zig-zag
boundaries of the components and intersecting convex hulls. In
contrast, V-HACD [Mamou et al. 2016] first voxelizes the input
mesh and then decomposes the voxels. However, the voxelization
introduces discretization artifacts, which even makes the algorithm
unable to recognize already convex shapes. (c) One-step greedy

search: Most previous works [Mamou et al. 2016; Thul et al. 2018]
decompose the shapes by recursively performing locally optimal
actions. They often take short-sighted actions and end up gener-
ating more components. Furthermore, considering only one step

may lead to various corner cases, which requires different heuristic
terms [Mamou et al. 2016] as workarounds.

In this paper, we introduce a novel approximate convex decompo-
sition method for 3D meshes, which effectively addresses the limita-
tions of existing approaches from three corresponding perspectives:
(a) We propose a novel collision-aware concavity metric that ex-
amines the component from both the boundary surface and shape
interior by sampling points and calculating Hausdorff distance. The
proposed concavity encourages preserving the collision conditions
by penalizing the inclusion of regions that are far away from the
original shape. We also propose an efficient way to calculate the
concavity to speed up the decomposition. (b) We decompose shapes
by directly cutting 3D solid meshes with 3D planes, which results
in flat boundaries between components. It ensures intersection-free
convex hulls and avoids the defects caused by voxelization. We also
provide a lightweight mesh cutting implementation, which is 100x
faster than off-the-shelf libraries. (c) We propose utilizing the Monte
Carlo tree search to determine cutting planes, which simulates and
searches multiple future actions before each cutting. Compared
to the one-step greedy search, we are more likely to find cutting
planes that lead to a better global solution and avoid unnecessary
cuttings. In addition, by considering multiple steps, we no longer
need various heuristic terms to prevent corner cases.
We evaluate our method on the V-HACD benchmark [Mamou

et al. 2016] and PartNet Mobility [Xiang et al. 2020], a large-scale
articulated object dataset. We show that our method better pre-
serves the collision conditions and accurately approximates the
fine-grained structures (e.g., drawer handles, kettle spouts, inner
rings of scissors, and toaster slots) with fewer convex components.
Our decomposition results thus enable delicate and fast object inter-
action in downstream applications. See Figure 1 for some examples.
Our code is available at https://github.com/SarahWeiii/CoACD.

2 RELATED WORK

2.1 Application of Convex Shapes

Many efficient geometric algorithms require convex shapes as input.
For example, collision detection between shapes is the cornerstone
in physics simulation, virtual reality, game engines, and animations.
Fast and precise collision detection algorithms have been specially
designed for convex shapes [Bergen 1999; Gilbert et al. 1988; Liu et al.
2008; Mirtich 1998; Weller 2013]. Point location, which checks if a
point is within a shape, is an important task in rendering and simula-
tion. It can also be accelerated if input shapes are convex [Snoeyink
2017]. Moreover, by abstracting a 3D shape with a set of convex
components, many downstream applications are developed, such
as skeleton extraction [Lien et al. 2006], tetrahedral mesh genera-
tion [Joe 1994], mesh deformation [Jacobson et al. 2011; Liu et al.
2021; Wang et al. 2015; Wicke et al. 2007; Xian et al. 2012], and
real-time animation [Müller et al. 2013].

2.2 Convex Decomposition

The problem of exact convex decomposition (ECD) was proved to
be NP-hard [Chazelle et al. 1997; O’Rourke and Supowit 1983], and
many suboptimal heuristic algorithms have been proposed [Ba-
jaj and Dey 1992; Bajaj and Pascucci 1996; Chazelle 1984, 1981;
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Hershberger and Snoeyink 1998; Joe 1994]. However, ECD works
typically outputs a substantial amount of components and slows
down practical applications. People thus turned to approximate con-

vex decomposition (ACD) [Lien and Amato 2004, 2007], which lifts
the strict convexity constraint and only requires the decomposed
components to be almost convex.
ACD works first define a concavity metric, which measures the

difference between a shape and its convex hull. They then iteratively
decompose a 3D shape through top-down partition or bottom-up
clustering, until the concavity of each decomposed component is
within a pre-defined threshold. There are mainly three families of
concavity metrics:
Boundary-distance-based: Lien and Amato [2004, 2007, 2008]
propose to measure the distance between the shape boundary and
its convex hull by mimicking the process of inflating a balloon.
FACD [Ghosh et al. 2013] further extends this idea by introduc-
ing a relative concavity to enhance the details of local structures.
CoRise[Liu et al. 2016] utilizes the shortest geodesic paths on the
mesh surface and calculates the distance between the points on the
path and edges of the convex hull. HACD [Mamou and Ghorbel
2009] projects the mesh vertices to the convex hull surface along nor-
mal directions and then measures the distance between the vertices
and their projection. Most boundary-distance-based concavities in-
volve intricate geometric processing and are inefficient to calculate
for 3D shapes. Moreover, only requiring a small distance between
the shape boundary and its convex hull is not enough to guarantee
plausible decomposition.
Volume-based: There are also many works utilizing the volume
difference between the shape and its convex hull as the concav-
ity metric. Attene et al. [2008] tetrahedralizes the input mesh and
hierarchically cluster the tets using the volume-based concavity. V-
HACD [Mamou et al. 2016] first voxelizes the input mesh and then
greedily decomposes the voxels with axis-aligned cutting planes
and volume-based concavity. Due to its open-source code and good
performance in general cases, V-HACD is currently one of the most
widely used convex decomposition algorithms. Thul et al. [2018]
also utilizes the volume-based metric and extends the task from a
single static mesh to temporal coherent animated meshes. While
computationally efficient, many unreasonable decompositions may
not be penalized using volume differences alone. For example, it’s
easy for V-HACD to stuff the slots of a toaster since the relative
volume difference may be small.
Visibility-based: Liu et al. [2010]; Ren et al. [2011] count the pairs
of surface points that are mutually visible within the inner volume
of the shape, and utilize the ratio of visible pairs as the concavity
metric. However, it may be biased by the positions of the concave
parts and inefficient to calculate for complex shapes.

Recently, many learning-based methods [Chen et al. 2020; Deng
et al. 2020] also attempted to represent 3D meshes with assemblies
of convex polyhedra. However, they generate convex components
based on a global embedding feature of the shape and may thus fail
to preserve many input structures. Their poor generalizability on
novel shapes also prevents them from extensive practical use.

Algorithm 1: Approximate Convex Decomposition

Input: A 2-manifold solid mesh S, a concavity threshold 𝜖
Output: Approximate convex decomposition D

1 Q ← {S} // processing queue

2 D ← ∅ // decomposition results

3 while Q is not empty do

4 𝐶 ← 𝑄.𝑑𝑒𝑞𝑢𝑒𝑢𝑒 ()
5 if �Concavity(𝐶) < 𝜖 then // Section 4

6 D .𝑒𝑛𝑞𝑢𝑒𝑢𝑒 (𝐶)
7 else

8 P ← MCTS(𝐶) // search for cutting plane, Section 6

9 P ← Refine(𝐶,P) // Section 6.5

10 𝐶𝐿,𝐶𝑅 ← Cut(𝐶,P) // Section 5

11 Q .𝑒𝑛𝑞𝑢𝑒𝑢𝑒 (𝐶𝐿,𝐶𝑅)
12 D ← Merge(D, 𝜖) // Section 6.5

2.3 Shape Abstraction

Another related direction is shape abstraction. Unlike convex de-
composition, which accurately approximates original shapes, shape
abstraction extracts the global structure and pays less attention
to low-level details. Existing approaches utilize conventional op-
timization or deep learning to abstract a 3D shape into a set of
primitives, such as cuboids [Calderon and Boubekeur 2017; Gadelha
et al. 2020; Mo et al. 2019; Smirnov et al. 2020; Sun et al. 2019;
Tulsiani et al. 2017; Zou et al. 2017], superquadrics [Paschalidou
et al. 2020, 2019], sphere-trees [Bradshaw and O’Sullivan 2004],
sphere-meshes [Gadelha et al. 2020; Thiery et al. 2013], generalized
cylinders [Zhou et al. 2015], and their combination [Li et al. 2019].
Althoughmost geometric primitives are convex, shape abstraction is
hard to capture fine-grained structures due to the low-dimensional
expressibility of the primitives.

3 PROBLEM DEFINITION AND METHOD OVERVIEW

We aim to decompose a solid shape S (represented by a 2-manifold
mesh) into a set of almost convex polyhedra {S𝑖 }, such that the solid
shape determined by the union

⋃ {S𝑖 } is equivalent to the original
shape S, and there is no intersection between the components S𝑖
except for the boundary. We utilize a concavity metric to measure
the difference between each component and its convex hull. Our
objective is to minimize the number of components while ensuring
the concavity of each component is within a pre-defined threshold 𝜖 .
After decomposition, the convex hulls of the generated components
can be used to approximate the original shape S. By adjusting the
threshold 𝜖 , users can balance the number of components and the
level of detail of the decomposition. We assume that the input is
a 2-manifold solid mesh and we can convert imperfect input (e.g.,
non-watertight or non-manifold meshes) by pre-processing with an
off-the-shelf manifold conversion algorithm [Huang et al. 2018].
As shown in Algorithm 1, we utilize a divide-and-conquer strat-

egy to recursively decompose the solid shape. For each component
whose concavity is greater than the threshold 𝜖 , we search for the
best cutting plane and use it to split the component into two (lines 8
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Fig. 2. From left to right: a spherical shell with a small opening, a solid

sphere with a deep hole, and a solid sphere indicating the convex hull

of the left two shapes. Both Hi (S) and Hb (S) are necessary to measure

the difference between a shape and its convex hull. In the blue example,

Hi (S) � Hb (S) , while in the green example,Hb (S) � Hi (S) . The purple
polygons surrounding the cross-sections indicate the boundary surface of

the convex hull.

to 10). The cutting process is recursively applied until all the com-
ponents satisfy the concavity constraint. At last, a post-processing
step is applied in order to merge the generated components and
further reduce the number of components (line 12).

Our high-level pipeline is similar to V-HACD, and the differences
mainly come from three aspects. First, we introduce a novel collision-
aware concavity metric that is more sensitive to detect various
approximation errors and leads to a more reasonable and robust
decomposition. Also, we propose an efficient way to calculate the
concavity (Section 4). Second, without voxelizing the input mesh and
splitting the voxels, we directly decompose the shapes by cutting
meshes with 3D planes, which avoids the discretization errors and
supports more precise and efficient decomposition (Section 5). Third,
instead of greedily searching for the locally optimal decompose
actions with one-step results, we propose leveraging multi-step tree
search to achieve globally better decomposition (Section 6).

4 COLLISION-AWARE CONCAVITY METRIC

4.1 Concavity Definition

ACD works utilize concavity to measure the difference between a
solid shape S and its convex hull CH(S), which can be used to
quantify the quality of the decomposed components. The ideal con-
cavity should be able to recognize all unreasonable approximations
and penalize them with a high cost. It should also be efficient to
calculate, as numerous concavity calculations are needed during the
decomposition process.
There is no consensus on the definition of the concavity among

existing ACD works. Some of them [Ghosh et al. 2013; Lien and
Amato 2004, 2007, 2008; Liu et al. 2016; Mamou and Ghorbel 2009]
focus on the distance between the boundary surfaces of S and
CH(S), while other works [Attene et al. 2008; Mamou et al. 2016;
Thul et al. 2018] utilize the volume difference betweenS and CH(S)
as the concavity. Please refer to Section 2.2 for more details.
A reasonable decomposition should preserve the collision con-

ditions of the input shape, which means any position in the space
that is unlikely to collide with the input shape (i.e., far away from

Fig. 3. Failure cases of the boundary-distance-based methods (from

HACD [Mamou and Ghorbel 2009]). Focusing only on the boundary dis-

tance between the shape and its convex hull, HACD may fail to handle the

hollow structures and fill the interior space.

the input shape), should not collide with the convex decomposition
results as well. Otherwise, both the structure and functionality of
the input shape can be greatly affected. A good concavity metric
should thus be sensitive to detect the approximation errors that sig-
nificantly change the collision conditions. However, we argue that
both the boundary-distance-based and the volume-based metrics
may fail to do so and lead to undesirable decomposition results:

• Boundary-distance-based metrics alone are insufficient for preserv-

ing collision conditions. As shown in Figure 2, if S is a hollow
spherical shell (blue example), the boundary distance between S
and CH(S) may be quite small, and the algorithm may thus fill
the interior space and approximate S with a solid convex hull.
However, it is inappropriate to do so if we want to exploit the free
space inside S. In fact, such shell-like structures are quite com-
mon in applications. For example, in physical simulators, a teapot
needs to hold water, and it’s inappropriate to approximate the
body of the teapot with a solid convex hull. Otherwise, the water
particles collide with the interior of the teapot. Figure 3 shows
some failure cases of the boundary-distance-based concavity.

• Volume-based metrics alone are insufficient for preserving collision

conditions. In some cases, the volume difference between S and
CH(S) may be very small, but significant differences may exist
at the boundary of S and CH(S). For example, in Figure 2, if S is
a solid sphere with a deep hole (green one), the relative volume of
the deep hole is small. However, it is inappropriate to approximate
S with its convex hull, which fills the hole. Figure 4 shows com-
mon failure cases of the volume-based concavity, where V-HACD
tends to utilize thin planar components to close the holes.

The failure cases of existing concavity metrics are fatal to the
functionality of the objects in downstream applications. For example,
suppose we use the decomposition results shown in Figure 4 in a
simulator. In that case, robots can no longer grasp the scissors by
the circles, can no longer use the kettle to pour water, and can no
longer interact with the water dispenser on the refrigerator.

However, it’s non-trivial to directly combine the existing boundary-
distance-based metrics and volume-based metrics since they have
different geometric meanings and scales. On the other hand, many
existing boundary-distance-based metrics involve intricate geome-
try processing and are cumbersome to calculate.

To overcome the limitations of existing approaches, we propose a
novel collision-aware concavitymetric that examines the decomposed
component from both the boundary and the interior with a unified
metric. To introduce the metric, we first review the definition of the
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Fig. 4. Failure cases of the volume-based methods (from V-HACD [Mamou

et al. 2016]). Focusing on the volume difference, V-HACD may fill holes

when the relative volume of the errors is not too large (e.g., thin planar

structures). The red rectangles highlight the error-prone regions.

Hausdorff distance for two point sets:

H(𝐴, 𝐵) = max{sup
𝑎∈𝐴

𝑑 (𝑎, 𝐵), sup
𝑏∈𝐵

𝑑 (𝑏,𝐴)} (1)

where 𝐴 and 𝐵 are two point sets, 𝑑 (𝑥,𝑌 ) = inf𝑦∈𝑌 𝑑 (𝑥,𝑦) and
𝑑 (𝑥,𝑦) indicates the Euclidean distance between the two points.

As shown in Figure 5, we sample two pairs of point sets tomeasure
the distance between a solid shape S and its convex hull CH(S).
Specifically, by sampling the points from the two boundary surfaces,
we define Hb (S) as:

Hb (S) = H(Sample(𝜕S), Sample(𝜕 CH(S))) (2)

where Sample() indicates the point set sampling operation, and 𝜕
denotes the boundary surface of a solid shape. Similarly, by sampling
points from the interior of the shapes, we define Hi (S) as:

Hi (S) = H(Sample(IntS), Sample(Int CH(S))) (3)

where Int denotes the interior of a solid shape.
The concavity of a solid shape S is then proposed to be:

Concavity(S) = max(Hb (S),Hi (S)) (4)

By measuring the distance from both the boundary surface and the
interior, the proposed concavity can better capture shape differences
and well address failure cases of the prior concavity metrics.

We argue that both terms in Equation 4 are necessary and comple-
mentary for measuring the shape difference. Only using Hb (S) may
fail to handle the shell-like structures. Taking the spherical shell (the

Fig. 5. The figure illustrates how to calculate the concavity for “Blender’s

Suzanne” and “Utah teapot”. The first and third columns show the input

shapes and their sampled point clouds, while the second and fourth columns

show the convex hulls and their sampled point clouds. From top to bottom:

manifold meshes, point clouds sampled from the boundary surfaces (for

calculatingHb (S)), and point clouds sampled from the interior of the shapes

(for calculating Hi (S)). The teapot is hollow since its inside is connected to

the outside world through the spout. In each dotted square, the red points

indicate the pair of points that achieves Hi (S) or Hb (S) .

blue one shown in Figure 2) as an example, Hb (S) only measures
the radius of the small opening on the boundary surface, which is
quite small. In contrast, Hi (S) recognizes the large difference from
the interior and penalizes it with the inner radius of the shell. On
the other hand, only using Hi (S) may fail to capture the difference
between boundary surfaces. For the solid sphere with a deep hole
(the green one shown in Figure 2), Hi (S) only measures the radius
of the hole, no matter how deep the hole is. Instead, Hb (S) is able to
measure the depth of the hole, which better captures the difference.

A notable property of the proposed concavity metric is its collision
awareness. Our concavity encourages decompositions to preserve
the collision conditions by penalizing the distances between points
in CH(S) − S (i.e., the extra volume introduced by the convex
hull) and the original shape S. Therefore, our metric is sensitive to
detecting approximation errors that significantly alter the collision
conditions, no matter they are fine-grained structures with small
volume or thin planar structures. Instead of calculating an overall
average difference, the proposed concavity focuses on the worst
case (i.e., the farthest point pair). This is because that in many
applications (e.g., robot simulation), we need a guarantee about
the worst case to avoid fatal approximations to certain parts of the
shape, even though the approximation may look good overall.
Moreover, by using our proposed metric, it’s more intuitive for

users to set and adjust the concavity threshold 𝜖 , since one can
interpret the threshold as the degree to which the original shape
becomes thicker. In contrast, the volume-based concavity may not
have such an intuitive interpretation, and the change caused by
adjusting the volume difference threshold may be less predictable.
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4.2 Efficient Concavity Calculation

Besides recognizing all implausible approximations, a good concav-
ity metric should also be efficient to calculate. Our proposed metric
samples points from the shape and its convex hull, and then calcu-
lates Hausdorff distance between the point sets, which avoids intri-
cate geometry processing required by existing boundary-distance-
based metrics. The nearest neighbor calculation in Hausdorff dis-
tance can be accelerated by approximation approaches and parallel
computation [Arya et al. 1998; Blanco and Rai 2014]. Moreover,
when calculating Hb (S), we exploit point-to-triangle-face distances
to improve the precision further and reduce the number of samples.
That being said, calculating accurate Hi (S) can still be time-

consuming. The calculation of Hb (S) only needs sampled points
from the boundary surfaces, while the calculation of Hi (S) needs
much more sampled points from the interiors of the shapes to
achieve high precision. See Figure 5 for differences between the
sampled points. To further accelerate the concavity calculation, we
propose a surrogate term Rv (S) for Hi (S):

Rv (S) = 3

√
3(Vol(CH(S)) − Vol(S))

4𝜋
(5)

where Vol(CH(S)) - Vol(S) indicates the volume difference be-
tween the convex hull and the input shape. The geometric interpre-
tation of Rv (S) is the radius of a sphere with volume Vol(CH(S)) -
Vol(S), which is potentially the largest inscribed sphere within the
difference of CH(S) and S. Rv (S) serves a similar role as Hi (S) to
recognize the differences within the interior of solid shapes. More-
over, we can actually prove a theoretical guarantee for Rv (S):

Theorem 1. For every solid shape S, we have:
√
2max(Hb (S), Rv (S)) ≥ max(Hb (S),Hi (S))

The theorem indicates that we can use Hb (S) and Rv (S) to bound
the proposed Concavity(S) and still be able to recognize any unrea-
sonable approximations. Please refer to the supplementary materials
for detailed proof. In practice, we find that Rv (S) often overesti-
mates Hi (S). We thus utilize:�Concavity(S) = max(Hb (S), 𝑘 Rv (S)) (6)

where 𝑘 is a coefficient less than 1, as the concavity metric to achieve
a better approximation. It’s much faster to calculate �Concavity(S),
since it avoids sampling points from the interior of the shapes and
the corresponding nearest neighbor calculation.

5 SHAPE DECOMPOSITION BY CUTTING MESHES

As introduced in Section 3, our method recursively decomposes
a shape S into smaller components. There are various ways to
represent a component and different geometry processing strategies
to decompose the shape. We discuss the geometric design in this
section and leave the search strategy to the next section.
In general, prior works mainly take two types of decomposing

strategies. For triangle-grouping-based methods [Liu et al. 2016;
Mamou and Ghorbel 2009], they preserve the triangle faces of the
input mesh, and group the faces by top-down division or bottom-
up clustering. For volume-based methods, like V-HACD, they first
voxelize the input mesh, use voxels to represent the shape, and then

Fig. 6. An example of triangle-grouping-based methods (from HACD). From

left to right: (a) Input triangle mesh. (b) Grouping results of the triangle

faces, where each color indicates a component. There are zig-zag boundaries

between different components. (c) Corresponding convex hulls of each

component, and they intersect with each other.

Fig. 7. Each pair shows an input mesh and its voxelization (64×64×64). Even
the input shapes are already convex, there are noticeable volume differences

between the voxels and their bounding convex hulls, making V-HACD fail

to recognize already convex parts.

divide the voxels. However, both strategies have some apparent lim-
itations. Specifically, triangle-grouping-based methods often output
components with zigzag boundaries (see Figure 6). As a result, the
convex hulls of the decomposed components usually intersect with
each other, which is undesirable in many applications. On the other
hand, although volume-based methods avoid crooked boundaries of
the components, their voxelization pre-processing may introduce
discretization artifacts. More importantly, volume-based methods
may fail to recognize already convex components. As shown in
Figure 7, although the input shapes are already convex, V-HACD
still regards them as non-convex due to the discretization error, and
may try to further divide the voxels. Not only that, but to achieve
high precision, V-HACD would require a large number of voxels
which would slow down the decomposition algorithm.

Instead, we follow [Thul et al.
2018] to utilize triangle meshes to
represent solid components during
decomposition and directly cut the
manifold meshes with 3D planes. As
shown in the left inset, given a mani-
fold mesh and a 3D cutting plane, we
split the mesh into two parts along
the plane surface. Each resulting part

is still a manifold mesh with flat boundaries and can be recursively
decomposed. In this way, we ensure convex hulls of the decomposed
components are intersection-free. Moreover, without voxelization
as pre-preprocessing, we preserve fine-grained details and avoid
over-decomposing convex shapes.
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Fig. 8. We sample𝑚 equally-spaced candidate cutting planes (illustrated

by straight lines here) from each axis-aligned direction. After finding the

best candidate with a tree search, we also refine the plane’s position.

However, existing mesh cutting functions from off-the-shelf com-
putational geometry libraries (e.g., CGAL [Fabri and Pion 2009])
are very heavy and time-consuming, which slows down our decom-
position algorithm. Therefore, we implement a lightweight cutting
function that is about 100x faster than CGAL’s implementation.
Specifically, the implementation mainly includes four steps: (a) Find
triangles that are not intersecting with the cutting plane, and group
them into two sets according towhich side of the plane the triangle is
in. The two triangle sets are later used to form the two parts. (b) Split
each intersecting triangle into two with the cutting plane, and then
add them into the two sets. (c) Add new surfaces (overlapping with
the cutting plane) for the two parts to form solid meshes. To achieve
this, we solve the constrained Delaunay triangulation [Shewchuk
1996], where the intersecting edges serve as boundary constraints.
(d) Remove redundant triangles (if any) introduced in step (c), which
correspond to holes on the newly added surfaces.

6 MONTE CARLO TREE SEARCH FOR CUTTING PLANE

6.1 Search Space

During the decomposition process, for each intermediate component
𝐶 whose �Concavity(𝐶) is greater than the threshold 𝜖 , we find a
cutting plane to split 𝐶 into two parts 𝐶𝐿 and 𝐶𝑅 . Since there are
infinite cutting planes in the 3D space, we follow V-HACD [Mamou
et al. 2016] to restrict the candidate planes to be axis-aligned (parallel
to 𝑥𝑦, 𝑥𝑧, or 𝑦𝑧 planes), and sample 𝑚 equal-spaced candidates
along each direction, as shown in Figure 8. Axis-aligned discretized
candidate planes enable a feasible search space and avoid irregular
cutting results. The found optimal discretized candidate will be
refined in the continuous local neighborhood for a more accurate
cutting. (section 6.5) Also, we optionally perform a PCA [Pearson
1901] for the input shape at the beginning of the decomposition
algorithm to align the cutting plane directions with the principal
axes of the input shape.

6.2 One-Step Greedy vs. Multi-Step Search

Intuitively, prior works [Mamou et al. 2016; Thul et al. 2018] greedily
find a cutting plane from the candidates, which minimizes:

max( �Concavity(𝐶𝐿), �Concavity(𝐶𝑅)) (7)

However, the one-step greedy search may be short-sighted and fail
to find cutting planes that result in better global decomposition,

Fig. 9. Comparison between one-step greedy and multi-step search. (a)

Input shape (a cube without top and bottom). (b) The one-step greedy

algorithm fails to find the proper first cutting plane, since all candidate

cutting planes lead to the same cost (Equation 7) as illustrated by the blue

arrows (Hb). (c) The multi-step search algorithm can instead find the proper

first cutting plane by simulating and searching future cuttings, which leads

to the globally optimal solution (decomposed into exactly four pieces).

Fig. 10. Failure cases of one-step greedy search. First row: V-HACD employs

a greedy search and generates redundant components. Second row: our

method utilizes a multi-step tree search and solves the cases perfectly.

and end up with more decomposed components. Figure 9 shows
such an example, where the optimal solution is to decompose the
input shape into exactly four square parts. However, when only one
step is taken into account, the greedy search tries to cut the shape
from the middle, resulting in more components. Figure 10 compares
decomposition results of some simple primitives. Since V-HACD
utilizes a greedy search, it fails to decompose the cases perfectly.

Moreover, for the one-step greedy search, only using a concavity
metric to find the cutting plane may often produce poor results and
even block the decomposition algorithm. For example, when only
considering one cutting, many candidate planes may lead to the
same concavity deduction (Equation 7), and the cutting plane selec-
tion thus becomes arbitrary in these draw situations. To this end,
prior works [Mamou et al. 2016] introduce various auxiliary heuris-
tic terms (e.g., balance term and symmetry term) for Equation 7 as
a workaround to make the algorithm more robust to various cases.
We instead propose to take multiple steps into account when

searching for a cutting plane. Specifically, we solve a Monte Carlo
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Algorithm 2: Search for Cutting Plane

1 Function MCTS(𝐶, 𝑡, 𝑑):
2 Create root node 𝑣0 with input mesh 𝐶

3 while within 𝑡 iterations do
4 {P1, · · · ,P𝑙 }, 𝑣𝑙 ← TreePolicy (𝑣0 , 𝑑)

5 {P𝑙+1, · · · ,P𝑑 } ← DefaultPolicy (𝑣𝑙 , 𝑑)

6 𝑞 ← Quality({P1, · · · ,P𝑑 }) // Calculate a score

7 Backup(𝑣𝑙 , 𝑞) // Update the score along the tree path

8 𝑣∗ ← argmax
𝑣′ ∈children of 𝑣0

𝑄 (𝑣 ′)

9 return corresponding plane of 𝑣∗

10 Function TreePolicy(𝑣 , 𝑑):
11 S ← ∅ // Selected cutting planes

12 while 𝑑𝑒𝑝𝑡ℎ(𝑣) < 𝑑 do // From the root to the leaf

13 𝑐∗ = argmax
𝑐𝑖 ∈components of 𝑣

Concavity(𝑐𝑖 )

14 if all cutting plane candidates of 𝑐∗ are expanded then

15 𝑣 ← best child of 𝑣 according to the UCB formula

16 S ← S + {corresponding plane of 𝑣}
17 else // Expand a new child for 𝑣

18 Randomly select a untried cutting plane P of 𝑐∗

19 Cut 𝑐∗ into 𝑐∗
𝑙
and 𝑐∗𝑟 with P

20 Create a new child 𝑣 ′ to 𝑣 with P, 𝑐∗
𝑙
and 𝑐∗𝑟

21 return S + {P}, 𝑣 ′

22 return S, 𝑣
23 Function DefaultPolicy(𝑣 , 𝑑):
24 S ← ∅ // Selected cutting planes

25 {𝑐𝑖 } = Copy(components of 𝑣) // Avoid affecting tree nodes

26 for 𝑖 ∈ range(𝑑 − 𝑑𝑒𝑝𝑡ℎ(𝑣)) do
27 𝑐∗ = argmax

𝑐𝑖
Concavity(𝑐𝑖 )

28 for direction in {𝑥𝑦, 𝑥𝑧,𝑦𝑧} do
29 Try to cut 𝑐∗ into 𝑐∗

𝑙
and 𝑐∗𝑟 from middle with a

plane along the 𝑑𝑖𝑟𝑒𝑐𝑡𝑖𝑜𝑛

30 𝑞 ← −max(Concavity(𝑐∗
𝑙
),Concavity(𝑐∗𝑟 ))

31 P ← cutting plane that lead to the largest 𝑞

32 Cut 𝑐∗ into 𝑐∗
𝑙
and 𝑐∗𝑟 with P

33 S ← S + {P}
34 return S
35 Function Backup(𝑣, 𝑞):
36 while 𝑣 is not null do // From the leaf to the root

37 𝑁 (𝑣) ← 𝑁 (𝑣) + 1 // Visit times

38 𝑄 (𝑣) ← max(𝑄 (𝑣), 𝑞) // Value function

39 𝑣 ← parent of 𝑣

tree search (MCTS), which simulates multiple future cuttings, to
find a cutting plane for each intermediate component 𝐶 . This way,
we pay more attention to long-term interests and are more likely
to find cutting planes that lead to global optimal decompositions.

Moreover, we find that by considering multiple steps during the
tree search, we no longer need any other heuristic terms to prevent
various corner cases.

6.3 Search Tree Structure

It’s non-trivial to apply MCTS to our cutting plane search, and
many dedicated designs are involved. Specifically, in our tree search,
each node represents a set of decomposed components {𝑐𝑖 } for 𝐶 ,
and the root node contains a single component {𝐶}. For each node,
we aim to cut the component 𝑐∗ with the largest concavity among
those components associated with the node, and each child node
corresponds to a cutting action for 𝑐∗. Since a cutting plane splits 𝑐∗
into two parts, the number of a child node’s components is equal to
the number of its parent node’s components plus one. Also, since we
sample𝑚 candidate cutting planes from each axis-aligned direction,
each node contains at most 3𝑚 child nodes.
As shown in Algorithm 2, there is only a single root node in

the search tree at the beginning, and 𝑡 iterations of tree search are
performed. In each iteration, we first utilize the TreePolicy() to
select a tree node for expansion by balancing the exploration and
exploitation. We then evaluate the newly expanded tree node with
the DefaultPolicy(). Specifically, for the TreePolicy(), we start
from the root node and select successive child nodes until a node 𝑙
with unexpanded child nodes is reached. During the node selection,
the UCB (Upper Confidence Bound) [Kocsis and Szepesvári 2006]
value is used to balance the exploration (gather more information
about less-visited nodes) and exploitation (choose the optimal node
based on existing information):

Q(𝑛) + 𝑐
√

2 lnN(𝑛′)
N(𝑛) (8)

where 𝑛 indicates the current node, 𝑛′ is its parent node, 𝑄 () is the
value function, 𝑁 () indicates the number of visit times, and 𝑐 is the
exploration parameter. After reaching 𝑙 , we then expand one child
node for 𝑙 by randomly selecting an untried cutting plane P for the
component 𝑐∗ and cutting 𝑐∗ with P (lines 18 to 20).

6.4 Tree Node Evaluation

It’s non-trivial to evaluate the expanded node, and one of the chal-
lenges is to compare decompositions with different number of cut-
tings (nodes at different depths).We thus employ a DefaultPolicy()
to complete one playout, which leads to a fixed number of 𝑑 + 1
components with one-step greedy cuttings. Specifically, the greedy
strategy first tries to cut the component 𝑐∗ with the largest con-
cavity from the middle along three axis-aligned directions (line 29).
By comparing the one-step concavity reduction (Equation 7), the
strategy then keeps the best cutting results from the three trials.
We repeatedly apply this greedy cutting strategy until we get 𝑑 + 1
decomposed components, and then calculate a score for the node.
Please note that, in the tree search, we do not wait until all com-
ponents are almost convex. Because then it could be much more
time-consuming, and most cuttings may be achieved by the default
policy, making the results less relevant to the searched tree nodes.
After applying the TreePolicy() and DefaultPolicy(), we

get 𝑑 cutting planes and 𝑑 + 1 resulting components, where the
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first 𝑙 planes {P1, · · · ,P𝑙 } are associated with a tree path start-
ing from the root node to the leaf node, and the remaining planes
{P𝑙+1, · · · ,P𝑑 } come from DefaultPolicy(). To evaluate the de-
composition (line 6), we not only assess the 𝑑 + 1 decomposed
components after 𝑑 cuttings, but also examine the intermediate re-
sults. In this way, we can differentiate paths leading to similar final
results and pick the path that achieves good results at a earlier stage.
Specifically, the score for the set of cutting planes is calculated as:

Quality({P1, · · · ,P𝑑 }) =
1

𝑑

𝑑∑
𝑖=1

− 𝑖+1
max
𝑗=1

Concavity(𝑐𝑖 𝑗 ) (9)

where 𝑐𝑖 𝑗 represents one of the 𝑖+1 components after the 𝑖th cutting.
At the end of each iteration, we update the scores for all nodes along
the path (line 7).

6.5 Plane Refinement and Component Merging

After completing an MCTS search (𝑡
iterations), we take the optimal cut-
ting plane of the root node (from the
child with the highest score). Since
we sample discretized equally-spaced
planes as candidates, it’s likely that
the searched plane may not be the
optimal one from a continuous space.

As shown in the left inset, we thus locally refine the searched plane.
Specifically, we find the 𝑑 cutting planes {P1, · · · ,P𝑑 } that corre-
spond to the optimal path in the search tree. We finetune the first
plane P1 within a small range using a greedy ternary search, while
other 𝑑−1 cutting planes and the score function (Equation 9) remain
the same. In this way, we can find high-resolution cutting planes
without increasing the complexity of tree search. The refined plane
is then used to cut 𝐶 into two parts. Please note that, in order to
accelerate the tree search, we use Rv as the concavity within the
MCTS. However, outside MCTS, we still use max(Hb (S), 𝑘 Rv (S))
to determine whether a component satisfies the concavity constraint
and whether further cuttings are needed.
Since we recursively split a component into two, it’s possible

that among the set of decomposed components, there exist some
components that could be merged to form a larger component that
is still almost convex. We thus perform a post-processing to merge
the generated components and further reduce the number of com-
ponents. Specifically, we traverse all pairs of adjacent components
and check the �Concavity of the merged component. If it’s within the
threshold 𝜖 , we will replace the two components with the merged
one. We repeat the process until no more components to merge.

7 EVALUATIONS

7.1 Comparing with Existing Methods

We evaluate the methods on the V-HACD dataset [Mamou et al.
2016] and PartNet-Mobility dataset [Xiang et al. 2020]. V-HACD
dataset contains 61 shapes and most shapes are animals or hu-
mans. PartNet-Mobility dataset contains 2,346 shapes covering a
wide range of indoor articulated objects (e.g., cabinets and scis-
sors), which can be used for robotics simulation. Compared to the
V-HACD dataset, shapes in the PartNet-Mobility dataset contain

Table 1. Quantitative comparison on the V-HACD dataset and PartNet-

Mobility dataset. For both HACD and V-HACD, we aim to compare the

number of decomposed components. For Animation, we aim to match the

number of decomposed components and compare the concavity scores. The

runtime is in seconds.
1 Animation is run with a different system configuration.

dataset method # component ↓ concavity ↓ runtime ↓

V-HACD
HACD 57.6 0.118 67.2
Ours 29.6 0.084 201.0

PartNetM
HACD 33.5 0.414 268.9
Ours 7.3 0.204 194.4

dataset method # component ↓ concavity ↓ runtime ↓

V-HACD
V-HACD 60.2 0.067 192.1
Ours 29.8 0.044 201.9

PartNetM
V-HACD 44.6 0.055 206.0
Ours 20.1 0.052 253.4

dataset method # component ↓ concavity ↓ runtime ↓

V-HACD
Animation 34.4 0.069 28.51

Ours 34.5 0.049 229.8

more complex inner structures and delicate details. It also requires
higher quality decomposition to enable fine-grained object inter-
action. Each shape in the PartNet-Mobility dataset may contain
multiple parts and we decompose each part individually.
We compare our proposed method with existing approximate

convex decomposition methods, HACD [Mamou and Ghorbel 2009],
V-HACD [Mamou et al. 2016], and Animation [Thul et al. 2018].
It’s non-trivial to compare different decomposition methods, since
some methods use the concavity threshold as the termination rule,
while other methods take the expected number of components as
input. Moreover, different methods may have different concavity
definitions. As a result, we compare our proposed method with
each of the baseline method separately. Specifically, for comparison
with HACD and V-HACD, we first run their methods by setting
hyper-parameters that encourage as fine-grained decomposition as
possible. After that, we calculate a concavity score for each of their
generated decomposition solution:

Score(S, {CH1, · · · , CH𝑛}) = max
𝑖

�Concavity(S ∩ CH 𝑖 ) (10)

where {CH1, · · · , CH𝑛} indicates the set of generated convex hulls
for the input shape S, and S ∩ CH 𝑖 calculates the intersection be-
tween the input solid shape and the 𝑖th convex hull. We then utilize
that score as the concavity threshold for running our method. In
this way, our method will generate decomposition with finer details,
and we aim to compare the number of decomposed components.

For comparison with Animation, we first run our method with a
fixed concavity threshold of 0.05. We then run Animation for each
shape to generate the same number of components as our results.
After that, we can fairly compare the concavity scores (Equation 10)
of the two methods. Since Animation didn’t release their code due to
commercial reasons, we ask the authors to help us run the method

ACM Trans. Graph., Vol. 41, No. 4, Article 42. Publication date: July 2022.



42:10 • Wei and Liu, et al.

Fig. 11. We compare our method with HACD, Animation, and V-HACD. Please zoom in for the details. The input shapes come from the PartNet-Mobility

dataset. Each shape may consist of multiple parts (e.g., two blades of a scissor), and each part is decomposed individually. The red rectangles on the input

shapes highlight the error-prone regions. The numbers below the results indicate the number of decomposed components. For both HACD and V-HACD,

we set parameters to encourage fine-grained decomposition. For our method, we use a concavity threshold of 0.05. For Animation, we let the number of

decomposed components equal our results.
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Fig. 12. First row: results from a one-step greedy strategy with our proposed

concavity metric. Second row: results from our method with multi-step tree

search. Both methods are tested with the same concavity threshold.

on their machine. We quantitatively compare our method and Ani-
mation only on the V-HACD dataset, since PartNet-Mobility dataset
is too large.
As shown in Table 1, our method outperforms HACD and V-

HACD in terms of the number of components on both datasets with
a large margin. At the same time, the mean concavity scores of our
results are even lower than that of the two methods. As for com-
parison with Animation, both methods generate almost the same
number of components for each shape. However, we achieve lower
concavity scores which indicate the finer decomposition results by
our method. We run methods with a single CPU thread (except for
Animation) and we share similar runtime with HACD and V-HACD.
Animation is more time-efficient, since its implementation has been
carefully optimized with industrial codes.

Figure 11 shows the qualitative comparison on the PartNet-Mobility
dataset, where many shapes need fine-grained decomposition to
enable downstream object interaction. For example, the inside ring
of the scissors should be large enough, so that an agent can grab
them, the slots of the toaster and the spouts of the kettles should
not be filled so that they can work properly. However, decomposi-
tion results from existing methods may fail to preserve the original
shape’s functionality. Among the three baselines, HACD produces
the worst results since it only considers the difference between the
boundary surfaces while ignoring the interior structures. It fills
the inner space for most shapes. V-HACD and Animation produce
better results but still suffer from the hole filling issues to some
extent. Both methods utilize the volume difference as the concavity
metric and may ignore fine-grained structures or introduce some
thin-planar components to fill the holes, since those errors do not
receive a large penalty from the volume-based concavity. Instead, by
leveraging our collision-aware concavity, our method keeps most
structures of the input shapes. Also, the numbers of our decomposed
components are smaller than those of HACD and V-HACD, which
may speed up the downstream applications.

7.2 Ablation studies

One-step greedy vs. multi-step tree search. To examine the
benefit introduced by the multi-step tree search, we construct a
counterpart greedy baseline which utilizes our proposed concavity
metric and directly search for the best one-step cutting plane that

Table 2. Quantitative comparison between a one-step greedy baseline and

our method with multi-step tree search on the V-HACD dataset.

One-Step Greedy Multi-Step Tree Search
# component ↓ runtime ↓ # component ↓ runtime ↓

49.9 271.7 34.5 229.8

leads to the minimum resulting concavity (Equation 7). We compare
the one-step greedy baseline and our proposed method with the
same concavity threshold 0.05. The quantitative results on the V-
HACD dataset are shown in Table 2, where the one-step greedy
baseline generates much more components than our multi-step tree
search version. Moreover, since the multi-step tree search version
reduces the number of rounds (fewer parts) and utilizes a simplified
concavity calculation in the tree search, it is even faster than the
greedy baseline.
As shown in Figure 12, the one-step greedy algorithm may be

short-sighted and generate more components, while the results
with multi-step tree search are more reasonable. For example, when
searching for the first cutting plane of the torus (first from left),
either vertically or horizontally cutting can lead to sub-parts with the
same concavity score, and the greedy algorithm will thus randomly
select the first cutting plane. However, horizontal cuttings will lead
to more components in the final results. Similarly, for the bottle cap
example (first from right), the one-step greedy algorithm will not
cut off the bottom in the first step because it will even increase the
concavity score. However, by leveraging the multi-step tree search,
we can find that cutting off the bottom in the first step can avoid
the bottom being divided into unnecessary parts.

Impact of the concavity threshold 𝜖 . Our method terminates
when the concavities of all decomposed components are less than
a pre-defined threshold 𝜖 . The concavity threshold 𝜖 thus balances
the level of details and the number of decomposed components. As
shown in Figure 13a and Figure 14, when we decrease the concavity
threshold 𝜖 , the algorithm generates more components to preserve
the details and the generated convex hulls are much closer to the
original shape. When we increase the concavity threshold 𝜖 , we
generate fewer components to approximate the global structure of
the original shape and may lose some of the details. The variation
is more significant when the concavity is relatively small.
We also want to point out that compared to the volume-based

concavity, our proposed concavity metric measures the distance.
One can interpret the threshold as the degree to which the original
shape becomes thicker, which may be more intuitive for users to
adjust the threshold and achieve their desired decomposition. In
contrast, the volume-based concavity may not correspond to such
an intuitive interpretation, and the change caused by adjusting the
threshold may be less predictable.

Impact of hyper-parameters in the tree search. We study the
impact of the hyper-parameters in the multi-step tree search by
fixing other hyper-parameters and the concavity threshold. The ab-
lation results are shown in the Figure 13. (i) We sample𝑚 candidate
cutting planes from each axis-aligned direction. By sampling more
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Fig. 13. Ablation studies: (a) the concavity threshold 𝜖 and the post-processing merge, (b) the number of sampled cutting plane candidates from each

axis-aligned direction (i.e.,𝑚), (c) the maximum search depth 𝑑 in each MCTS, (d) the number of iterations in each MCTS (i.e., 𝑡 ). For all figures, the y-axis
represents the number of decomposed component under each setting.

Fig. 14. Comparison of different concavity thresholds. For each example, we show the decomposition results under different concavity thresholds ranging

from 0.02 to 0.2. Users can intuitively balance the level of detail and the number of components by adjusting the concavity threshold 𝜖 .

candidate planes, we achieve more precise cuttings, which are much
closer to the optimal location. As shown in Figure 13b, a larger𝑚
thus leads to fewer components. (ii) We limit the maximum depth of
the search tree to 𝑑 and evaluate each tree node by generating 𝑑 + 1
components. A larger 𝑑 enables the algorithm to analyze cuttings
in further steps and achieve a more precise tree node evaluation.
As shown in Figure 13c, a larger 𝑑 leads to a better performance
generally. Moreover, we find that seeing one step further (i.e., 𝑑 = 2)
introduces the most significant gain. (iii) As shown in Figure 13d,
searching for more iterations leads to better solutions, since a larger
number of iterations 𝑡 means expanding more nodes, exploring
more cutting combinations, and more accurate evaluation for the
tree nodes. However, increasing the three hyper-parameters causes

a longer search time. As a result, there are trade-offs between the
decomposition quality and the runtime.

Refinement, Merging, and Cutting Directions. The cutting
plane refinement aims to find a better position in the continuous
local neighborhood of the searched discretized candidates, thus en-
abling a more precise cutting. As shown in Figure 13b, when the
number of candidate cutting planes increases, the improvement
brought by the refinement becomes smaller due to the narrower
gap between two adjacent candidates.

After decomposition, wemerge components as post-processing to
further reduce the number of components. As shown in Figure 13a,
when the concavity threshold is smaller, the shape is decomposed
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Fig. 15. Comparison of different cutting directions. In each pair, the left one

indicates cutting with a set of random axes, while the right one indicates

cutting with the principal axes computed by PCA.

Fig. 16. Top: We train RL agents to open 49 drawers of 25 cabinets in a

physics simulator. Bottom left: Using decomposition results of V-HACD as

collision shapes. The collision shape of the drawer is highlighted in green,

and the hole of the handle is filled (zoom in for details). Bottom right: Using

our decomposition results as collision shapes. We preserve fine-grained

details of the handle.

into more pieces, and the component merging can reduce more
redundant divisions.

Since we sample cutting planes from three mutually orthogonal
directions as V-HACD, the selection of the cutting directions may
have a great influence on the final results in some cases, as shown in
Figure 15. By specifying a set of good axes or computing principal
axes by PCA, we may generate fewer components.

7.3 Application

An important application of convex decomposition is to provide
collision shapes for physics simulators that perform extensive colli-
sion detection. On the one hand, we aim to approximate the shape
with a small number of convex components, thereby speeding up
the collision detection. On the other hand, we want the decom-
posed components to closely match the original shape, so that the
functionality of the object is not compromised.

In this experiment, we compare two sets of collision shapes gener-
ated by our method and V-HACD. Specifically, we load 25 cabinets
into SAPIEN [Xiang et al. 2020], a physics simulator. We utilize
our method and V-HACD to generate a collision shape (i.e., an as-
sembly of convex components) for each part (e.g., a drawer or a

Table 3. Results of the OpenCabinetDrawer task. We compare using differ-

ent decomposition results as the collision shapes.

V-HACD Ours

Successfully Opened Drawer 49% 80%

body), respectively. As shown in Figure 16, the collision shapes by
our method preserve fine-grained details of the handles, while the
collision shapes by V-HACD fill the holes of the handles even a tiny
threshold is used.
We train SAC [Haarnoja et al. 2018] (a reinforcement learning

algorithm) agents to control a robot arm to open the drawers. Specif-
ically, there are 49 drawers from the 25 cabinets. We train an individ-
ual SAC agent from scratch for each drawer with 106 time steps per
trial. Please refer to [Mu et al. 2021] for other training details. Since
reinforcement learning algorithms are not guaranteed to converge
to the optimum every run, if we open a drawer in 5 trials, we regard
it as a success case. We report the result in Table 3.

By using more accurate collision shapes generated by our method,
the RL agents achieve a much higher success rate. We observe that,
when using our collision shapes, which preserve the fine-grained
details (e.g., holes) of the handles, the robot arm is easier to form a
shape-closure grasp, which is more robust. However, when using
V-HACD’s collision shapes, the robot arm easily slips off the handles,
since they fill the holes.

8 DISCUSSION

We propose a novel approximate convex decomposition method that
differs from prior approaches in three folds: (a) we introduce a novel
collision-aware concavity metric that better examines the shapes
from both the boundary and the interior. It preserves fine-grained
structures of the input shape and enables delicate object interac-
tion in downstream applications. (b) we decompose the shape by
efficiently cutting the meshes. It ensures intersection-free compo-
nents and avoids discretization artifacts. (c) we utilize multi-step
tree search to find globally better cutting planes, leading to fewer
decomposed components.

We currently adopt many simplifications due to the runtime con-
sideration. In the future, we would like to optimize our implementa-
tion further (e.g., utilize parallelization). We may also employ deep
neural networks to help evaluate a decomposition solution more ef-
ficiently and accurately. Moreover, we can explore a smarter way to
pick the cutting directions and set adaptive thresholds for different
parts to reduce the number of decomposed components.
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Fig. 17. Counter example of Case 2. 𝑝∗ must be on the boundary surface of

S.

A PROOF FOR THEOREM 1

In the paper, we propose a surrogate term Rv (S) to accelerate the
computation of Hi (S) and provide a theoretical guarantee:

Theorem 2. For every solid shape S, we have
√
2max(Hb (S), Rv (S)) ≥ max(Hb (S),Hi (S))

Here we give the detailed proof for the theorem. Recall that the
Hausdorff distance for two point sets 𝐴 and 𝐵 is calculated as:

H(𝐴, 𝐵) = max{sup
𝑎∈𝐴

𝑑 (𝑎, 𝐵), sup
𝑏∈𝐵

𝑑 (𝑏,𝐴)} (11)

where 𝑑 (𝑥,𝑌 ) = inf𝑦∈𝑌 𝑑 (𝑥,𝑦) and 𝑑 (𝑥,𝑦) indicates the Eu-
clidean distance between the two points.

When calculating Hi (S), the two point sets are sampled from the
interior of the solid shape S and its convex hull CH(S). We denote
them as 𝑃 and 𝑄 , respectively:

𝑃 = Sample(IntS) (12)

𝑄 = Sample(Int CH(S)) (13)

In our proof, we assume that the interior doesn’t exclude the bound-
ary surface, which is slightly different from the usual definition. Also,
we assume that Sample(𝑇 ) cover all points in 𝑇 (infinite sampled
points).

Since S is contained by CH(S), 𝑑 (𝑝,𝑄) = 0 for all 𝑝 ∈ 𝑃 . We can
thus simplify Hi (S) as:

Hi (S) = sup
𝑞∈𝑄

𝑑 (𝑞, 𝑃) (14)

We know that there exists a pair of points 𝑝∗ ∈ 𝑃 and 𝑞∗ ∈ 𝑄 ,
such that Hi (S) = 𝑑 (𝑞∗, 𝑃) = 𝑑 (𝑝∗, 𝑞∗). We prove the theorem by
enumerating all possible locations of 𝑝∗ and𝑞∗, which can be divided
into four cases.

Case 1: 𝑞∗ lies inside of S.
In this case, Hi (S) = 𝑑 (𝑞∗, 𝑃) = 0, and the theorem holds.

Case 2: 𝑝∗ is not on the boundary surface of S.
This case is impossible. Since 𝑞∗ lies outside of S (not Case 1),

there must exist another point 𝑝 ′ on the boundary surface ofS, such
that 𝑑 (𝑞∗, 𝑝 ′) < 𝑑 (𝑞∗, 𝑝∗), which contradicts 𝑑 (𝑞∗, 𝑃) = 𝑑 (𝑞∗, 𝑝∗).
See Figure 17 for a illustration.

E0

E2

E1
E3

(a)

E0

E2

E1
E3

(b)

Fig. 18. Illustration of the interval space. Blue lines indicate the solid shape

S, and the red lines indicate its convex hull CH(S) . (a) The shaded area

shows the interval space, which consists of four connected regions 𝐸𝑖 . (b) If
𝑝∗ and 𝑞∗ lie in different 𝐸𝑖 , the segment connecting 𝑝∗ and 𝑞∗ will intersect
with the boundary surface of S at another point 𝑝′′, and 𝑑 (𝑝′′, 𝑞∗) <
𝑑 (𝑝∗, 𝑞∗) .

Case 3: 𝑝∗ is on the boundary surface of S and 𝑞∗ is on the

boundary surface of CH(S).
In this case, we have Hi (S) = Hb (S), and the theorem holds.

Case 4: 𝑝∗ is on the boundary surface of S and 𝑞∗ is not on

the boundary surface of CH(S).
𝑞∗ must lie within CH(S) − S, the space outside of S but inside

of CH(S). As shown in Figure 18a, we call the space between S
and CH(S) as the interval space, which may consists of multiple
connected regions 𝐸𝑖 . We denote the connected region containing
both 𝑝∗, 𝑞∗ as 𝐸∗.
Note that (𝑝∗, 𝑞∗) cannot locate on different 𝐸𝑖 . Otherwise, as

shown in Figure 18b, there must exist another point 𝑝 ′′ on the
boundary surface of S, such that 𝑑 (𝑞∗, 𝑝 ′′) < 𝑑 (𝑞∗, 𝑝∗), which con-
tradicts 𝑑 (𝑞∗, 𝑃) = 𝑑 (𝑞∗, 𝑝∗).
Before we talk about the connection between Rv (S) and Hi (S),

we first construct a maximum inscribed sphere within 𝐸∗ cen-
tered at 𝑞∗. We denote this sphere as Φ and its radius as 𝑟 . We know
that:

Vol(CH(S)) − Vol(S) ≥ Vol(𝐸∗) ≥ Vol(Φ) (15)

Combinedwith the definition of Rv (S), we can infer that Rv (S) ≥
𝑟 .

Case 4.1: Φ does not intersect with the boundary surface of

CH(S).
In this case, Φ must intersect with the boundary surface of S

at 𝑝∗. Otherwise, there exist another point 𝑝 ′′′ on the boundary
surface of S, such that 𝑑 (𝑞∗, 𝑝 ′′′) < 𝑑 (𝑞∗, 𝑝∗), which contradicts
𝑑 (𝑞∗, 𝑃) = 𝑑 (𝑞∗, 𝑝∗). As a result, 𝑑 (𝑞∗, 𝑝∗) is equal to the radius 𝑟 .
Since Rv (S) ≥ 𝑟 , we have:

𝑟 = 𝑑 (𝑝∗, 𝑞∗) = Hi (S) ≤ Rv (S) (16)

The theorem holds.

Case 4.2: Φ intersects with the boundary surface of CH(S).
In this case, Hi (S) does not equal to the radius 𝑟 , since the max-

imum inscribed sphere Φ is bounded by the boundary surface of
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(a)
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Fig. 19. (a) An example that the maximum inscribed sphere Φ is bounded

by the boundary surface of CH(S) and Hi (S) does not equal to the radius

𝑟 . (b) Illustration of the proof in Case 4.2.

Table 4. Quantitative comparison on the PartNet-Mobility dataset [Xiang

et al. 2020]. “Better ratio” indicates the percentage of cases where our

method outperforms the baseline.

HACD [Mamou and Ghorbel 2009] V-HACD [Mamou et al. 2016]

# components ↓ concavity ↓ # components ↓ concavity ↓
theirs ours theirs ours theirs ours theirs ours

average 33.5 7.3 0.414 0.204 44.6 20.1 0.055 0.052
median 27 1 0.218 0.117 20 13 0.045 0.041

better ratio - 90.85% - 89.18% - 96.50% - 96.90%

CH(S) and it may fail to touch any point on the boundary surface
of S. Figure 19a shows such an example.

As shown in Figure 19b, we denote one of the intersection point
as 𝑞0. We know that 𝑞0 is on the boundary surface of CH(S) and we
have 𝑑 (𝑞∗, 𝑞0) = 𝑟 . We also find 𝑞0’s nearest point on the boundary
surface of S and denote it as 𝑝0. We denote 𝑑 (𝑝0, 𝑞0) as 𝑠 in the
figure, and we know that 𝑠 ≤ Hb (S). We want to calculate the
distance between 𝑝0 and 𝑞∗, which is denoted as 𝑡 in the figure. To
this end, we find the tangent plane of CH(S) at 𝑞0, which is denoted
as 𝒫 in the figure. Due to the property of convex hulls, 𝑞∗, 𝑞0, and
𝑝0 should lie in the same side of the plane 𝒫. Therefore, within
�𝑞∗𝑞0𝑝0, ∠𝑞∗𝑞0𝑝0 ≤ 90◦, and we thus have:

𝑟2 + 𝑠2 ≥ 𝑡2 (17)

Since 𝑟 ≤ Rv (S) and 𝑠 ≤ Hb (S), we have:

𝑡 ≤
√
𝑟2 + 𝑠2 ≤

√
Rv (S)2 + Hb (S)2 ≤

√
2max(Rv (S),Hb (S))

(18)
Moreover, since 𝑝∗ is 𝑞∗’s nearest point on the boundary surface

of S, we know that Hi (S) = 𝑑 (𝑝∗, 𝑞∗) ≤ 𝑡 . The theorem thus holds.

B DETAILED VERSION OF TABLE 1

We show the complete quantitative comparison (for all objects)
of the V-HACD dataset [Mamou et al. 2016] in Table 5. Since the
PartNet-Mobility dataset [Xiang et al. 2020] contains thousands
of objects, we only report insightful statistics in Table 4. We com-
pare each baseline algorithm with our method separately. For both
HACD [Mamou and Ghorbel 2009] and V-HACD [Mamou et al.
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Fig. 20. The influence of the exploration parameter 𝑐 .

2016], we let our method produce decomposition results with lower
concavity scores and aim to compare the numbers of decomposed
components. For Animation [Thul et al. 2018], we aim to match the
numbers of decomposed components and compare the concavity
scores. In addition to the average and median, we also calculate the
percentage of cases where our method outperforms the baseline
(denoted as “better ratio”).

C DEFAULT VALUE OF HYPER-PARAMETERS

The default value of the hyper-parameters are𝑚 = 20, 𝑡 = 500,𝑑 = 4,
𝑘 = 0.3. We sample 3,000 points per unit area when computing Hb.
The hyper-parameters are consistent across datasets and experi-
ments except for ablating the hyper-parameter. In experiments, all
of our methods include the merging stage unless otherwise noted.

D ABLATION STUDY OF THE EXPLORATION
PARAMETER 𝑐

In the tree search, we use the UCB (Upper Confidence Bound) [Koc-
sis and Szepesvári 2006] term to select a tree node for expansion:

Q(𝑛) + 𝑐
√

2 lnN(𝑛′)
N(𝑛) (19)

where 𝑐 is the parameter balancing the exploration and exploita-
tion. We study the influence of 𝑐 on the V-HACD dataset and report
the results in Figure 20. As shown in the figure, when 𝑐 is set to 0,
the UCB term only uses the existing value function 𝑄 (𝑛) to select a
node, and no exploration occurs. In this case, MCTS almost degen-
erates into a one-step greedy search, and the resulting number of
components increases a lot. In contrast, when 𝑐 is set to a large num-
ber, the UCB term ignores the influence of the quality function, and
the MCTS degrades to an inefficient exhaustive search algorithm,
which also leads to sub-optimal results. Instead, we empirically set 𝑐
to be �Concavity(S)/𝑑 , where �Concavity(S) is the concavity score
of each individual input component, and 𝑑 is the depth of the tree
search. We find that it generates good results in general.

E HOWWELL DOES Rv APPROXIMATES Hi?

In addition to the theoretical proof, we experimentally verify that
Theorem 1 holds for all shapes on both datasets. We empirically set
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Table 5. Quantitative comparison on the V-HACD dataset [Mamou et al. 2016]. “Better ratio” indicates the percentage of cases where our method outperforms

the baseline.

HACD [Mamou and Ghorbel 2009] V-HACD [Mamou et al. 2016] Animation [Thul et al. 2018]

# components ↓ concavity ↓ # components ↓ concavity ↓ # components ↓ concavity ↓
theirs ours theirs ours theirs ours theirs ours theirs ours theirs ours

block 52 2 0.307 0.316 19 18 0.043 0.030 18 18 0.066 0.035
bunny 58 53 0.050 0.033 21 12 0.100 0.078 52 52 0.083 0.051
camel 64 39 0.039 0.023 42 21 0.077 0.050 35 35 0.061 0.050
casting 86 4 0.312 0.267 59 52 0.064 0.037 68 69 0.066 0.056
chair 30 6 0.183 0.091 30 23 0.026 0.017 13 13 0.055 0.045
cow1 66 45 0.038 0.022 33 20 0.062 0.045 27 27 0.059 0.049
cow2 54 68 0.021 0.015 29 25 0.054 0.029 25 25 0.041 0.047
crank 90 12 0.190 0.097 114 12 0.187 0.097 80 80 0.186 0.050
cup 65 10 0.135 0.083 38 23 0.075 0.058 46 47 0.315 0.054

dancer2 34 51 0.015 0.012 49 25 0.024 0.017 7 7 0.040 0.039
deer_bound 55 44 0.040 0.021 69 44 0.037 0.021 35 35 0.044 0.047

dilo 42 45 0.016 0.011 35 29 0.027 0.015 15 15 0.059 0.051
dino 51 70 0.019 0.013 32 30 0.048 0.024 25 25 0.039 0.053

DRAGON_F 90 29 0.085 0.052 76 42 0.064 0.040 52 52 0.061 0.058
drum 17 12 0.059 0.035 6 5 0.100 0.054 16 16 0.068 0.047
egea 34 52 0.032 0.023 6 6 0.102 0.074 26 26 0.048 0.050
eight 42 37 0.019 0.014 26 18 0.033 0.024 17 17 0.041 0.040

elephant 84 52 0.043 0.029 62 43 0.053 0.034 45 45 0.060 0.051
elk 42 46 0.052 0.032 40 28 0.098 0.058 52 52 0.045 0.050

face-YH 125 10 0.240 0.160 240 113 0.039 0.027 82 82 0.067 0.050
feline 91 27 0.086 0.054 87 29 0.079 0.051 54 54 0.051 0.052
fish 26 8 0.081 0.047 17 10 0.072 0.042 13 13 0.044 0.045
foot 30 32 0.018 0.015 6 6 0.040 0.034 5 5 0.041 0.050

genus3 53 31 0.034 0.023 29 16 0.064 0.046 23 23 0.054 0.048
greek_sculpture 83 71 0.029 0.021 47 19 0.059 0.047 30 30 0.054 0.050

Hand1 49 41 0.035 0.024 27 16 0.078 0.051 26 26 0.061 0.048
hand2 49 41 0.038 0.024 27 17 0.077 0.048 25 25 0.060 0.047
helix 37 36 0.016 0.013 32 32 0.027 0.016 21 21 0.040 0.047
helmet 28 3 0.211 0.090 7 5 0.103 0.082 10 10 0.068 0.087
hero 118 13 0.144 0.097 228 51 0.060 0.044 78 78 0.090 0.052
homer 61 66 0.020 0.014 23 17 0.044 0.030 16 16 0.062 0.047
hornbug 114 51 0.059 0.038 120 38 0.076 0.048 67 67 0.059 0.050
horse 55 45 0.033 0.020 32 22 0.055 0.037 24 24 0.061 0.046

maneki-neko 130 1 0.394 0.299 516 278 0.038 0.027 190 191 0.096 0.051
mannequin-devil 50 13 0.085 0.062 8 3 0.190 0.116 36 36 0.100 0.051

mannequin 42 42 0.037 0.022 9 8 0.101 0.062 23 23 0.062 0.052
mask 112 6 0.259 0.178 183 77 0.036 0.026 50 50 0.069 0.060

moaimoai 53 63 0.022 0.016 8 6 0.083 0.066 17 17 0.103 0.048
monk 75 55 0.036 0.024 23 7 0.108 0.078 29 29 0.095 0.051
octopus 81 48 0.058 0.032 96 65 0.041 0.023 54 54 0.065 0.053
pig 46 60 0.022 0.016 13 11 0.074 0.053 18 18 0.046 0.050

pinocchio_b 150 4 0.319 0.249 330 140 0.048 0.032 132 132 0.069 0.050
polygirl 55 15 0.063 0.043 30 17 0.059 0.039 23 23 0.071 0.060
rabbit 36 5 0.118 0.075 11 7 0.076 0.055 15 15 0.048 0.050

rocker-arm 65 26 0.062 0.033 51 23 0.069 0.037 29 29 0.074 0.050
screwdriver 48 38 0.025 0.016 27 26 0.035 0.022 18 18 0.038 0.046
shark_b 84 7 0.098 0.056 336 80 0.013 0.010 16 16 0.040 0.052

Sketched-Brunnen 101 20 0.145 0.090 110 67 0.047 0.033 65 65 0.062 0.050
sledge 30 2 0.277 0.238 24 18 0.060 0.021 18 18 0.034 0.031
squirrel 44 44 0.048 0.034 14 10 0.113 0.079 46 46 0.058 0.053
sword 15 67 0.025 0.016 32 9 0.055 0.040 14 14 0.030 0.049
table 5 15 0.012 0.007 6 9 0.039 0.014 7 7 0.329 0.048
Teapot 83 7 0.240 0.216 61 23 0.152 0.091 63 63 0.085 0.097
test2 27 1 0.651 0.521 15 13 0.058 0.043 21 21 0.075 0.046
test 8 1 0.534 0.534 2 2 0.058 0.029 3 3 0.011 0.013
torus 34 4 0.227 0.132 11 9 0.055 0.038 12 12 0.037 0.048

tstTorusModel3 36 4 0.250 0.179 16 16 0.037 0.024 12 12 0.042 0.042
tstTorusModel 34 4 0.226 0.132 11 9 0.055 0.042 11 11 0.042 0.047

tube1 8 4 0.223 0.031 4 4 0.050 0.031 4 4 0.042 0.032
venus-original 42 44 0.036 0.026 7 6 0.100 0.072 27 27 0.056 0.050

venus 46 52 0.024 0.017 13 10 0.075 0.050 20 20 0.056 0.048

average 57.6 29.6 0.118 0.084 60.2 29.8 0.067 0.044 34.4 34.5 0.069 0.049
median 51 31 0.058 0.033 29 18 0.059 0.040 25 25 0.059 0.050

better ratio - 77.05% - 98.36% - 98.36% - 100.00% - 95.10% - 81.97%
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𝑘 to 0.3 by calculating the average Hi
Rv
. We find that max(Hb, 𝑘 Rv)

approximates max(Hb,Hi) well in practice, with a small absolute or
relative error. Specifically, we compare two metrics on the Part-
NetM dataset (13,536 shapes), and find that for more than 94%
shapes, we have: |max (Hb, 𝑘 Rv) −max (Hb,Hi) | ≤ 0.02 or 0.8 ≤
max (Hb, 𝑘 Rv) /max (Hb,Hi) ≤ 1.2.
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