
1

Dynamic Reliability Management of Multi-Gateway
IoT Edge Computing Systems

Kazim Ergun, Student Member, IEEE, Raid Ayoub, Member, IEEE, Pietro Mercati, Member, IEEE,
and Tajana Rosing, Fellow, IEEE

Abstract—The emerging paradigm of edge computing envisions
to overcome the shortcomings of cloud-centric Internet of Things
(IoT) by providing data processing and storage capabilities closer
to the source of data. Accordingly, IoT edge devices, with the
increasing demand of computation workloads on them, are prone
to failures more than ever. Hard failures in hardware due to aging
and reliability degradation are particularly important since they
are irrecoverable, requiring maintenance for the replacement of
defective parts, at high costs. In this paper, we propose a novel
dynamic reliability management (DRM) technique for multi-
gateway IoT edge computing systems to mitigate degradation and
defer early hard failures. Taking advantage of the edge computing
architecture, we utilize gateways for computation offloading with
the primary goal of maximizing the battery lifetime of edge de-
vices, while satisfying the Quality of Service (QoS) and reliability
requirements. We present a two-level management scheme, which
work together to (i) choose the offloading rates of edge devices,
(ii) assign edge devices to gateways, and (iii) decide multi-hop
data flow routes and rates in the network. The offloading rates are
selected by a hierarchical multi-timescale distributed controller.
We assign edge devices by solving a bottleneck generalized
assignment problem (BGAP) and compute optimal flows in a
fully-distributed fashion, leveraging the subgradient method. Our
results, based on real measurements and trace-driven simulation
demonstrate that the proposed scheme can achieve a similar
battery lifetime and better QoS compared to the state-of-the-
art approaches while satisfying reliability requirements, where
other approaches fail by a large margin.

Index Terms—Edge computing, computation offloading, con-
strained devices, device management, optimization and control.

I. INTRODUCTION

The Internet of Things (IoT) comprises billions of intercon-

nected heterogeneous devices that have the ability to sense,

communicate, compute, and actuate. IoT continues to rapidly

develop as it is adopted progressively across industries, in

governments, and in consumers’ daily lives. The number of

interconnected IoT devices has already exceeded 10 billion

and by 2025 it is expected to reach 40 billion [1]. A significant

portion of spending on the IoT ($746 billion in 2019 [2]) is

associated with maintenance and technical diagnostics due to

system failures, which motivates our work.

Kazim Ergun is with the Department of Electrical and Computer Engineer-
ing, University of California San Diego, La Jolla, CA 92093 USA (e-mail:
kergun@ucsd.edu)

Raid Ayoub and Pietro Mercati are are with the Strategic CAD Lab, Intel
Corporation, Hilsboro, OR 97124 USA

Tajana Rosing is with the Department of Computer Science and Engineer-
ing, University of California San Diego, La Jolla, CA 92093 USA

Copyright (c) 2022 IEEE. Personal use of this material is permitted.
However, permission to use this material for any other purposes must be
obtained from the IEEE by sending a request to pubs-permissions@ieee.org.

1 1.5 2 2.5 3 3.5 4
20

30

40

50

60

70

0 0.5 1 1.5 2 2.5 3
0

0.2

0.4

0.6

0.8

1

Fig. 1: (a) Device temperature as a function of power dissipation at
different ambient temperatures (b) Device reliability over time

An IoT system, as any electronic or mechanical system, is

prone to failures. Cisco estimated that for every 100k devices

that operate in IoT smart homes, around $6.7M/year are spent

for problems related to system failures [3]. The sources of

these failures are: user errors, communication problems, power

issues, soft and hard errors in hardware. The majority of the

errors result in a transient failure and are recoverable without

the need of physical human intervention. However, in the case

of hard errors, the devices age, degrade, and eventually fail,

requiring maintenance for the replacement of defective parts at

high costs. In this work, we devote our attention to mitigating

reliability degradation in IoT devices to defer hard failures.

Reliability degradation of electronic circuits worsens as

the technology scales due to intensified effects of various

mechanisms such as Time-Dependent Dielectric Breakdown

(TDDB), Bias Temperature Instability (BTI), and Hot Carrier

Injection (HCI) [4], [5], [6]. Degradation is mainly induced

by temperature stress, which depends on power dissipated for

running workloads and environmental conditions, e.g., ambient

temperature. To illustrate this cause-and-effect chain, in Fig. 1a

we depict the steady-state temperature of a device as a function

of its power dissipation at various ambient temperatures. Also,

Fig. 1b shows the reliability over time of the same device

as a function of its temperature. The values are based on

our measurements in Section VIII. (for temperature) and a

reliability model fitted to hypothetical worst-case and best-

case temperatures. As observed from the plots, an increase in

power dissipation leads to heating of the device, which in turn

accelerates reliability degradation.

Recently, due to the shortcomings of traditional cloud-

centric IoT (e.g., latency, energy, privacy, cost) [7], [8], Edge

Computing [9] is emerging as a promising solution, where

data processing is pushed to the edge of the IoT network

(as shown in Fig. 2). Since IoT devices at the edge are now

capable and powerful enough, Edge Computing envisions to

perform data processing and storage on them locally, close

This article has been accepted for publication in IEEE Internet of Things Journal. This is the author's version which has not been fully edited and
content may change prior to final publication. Citation information: DOI 10.1109/JIOT.2022.3185082

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Univ of Calif San Diego. Downloaded on August 08,2022 at 18:10:54 UTC from IEEE Xplore. Restrictions apply.

2

GatewaysEdge Devices Fog Cloud

Raspberry Pi

NXP IoT Gateway

Intel Galileo

Arduino

W
ire

le
ss

 C
on

ne
ct

iv
ity

Computation Capability
Communication Cost & Latency

WiFi

5G

LAN

EthernetBluetooth

LoRa

ZigBee

WLAN

Fig. 2: IoT network architecture

to the source of data. Accordingly, these edge devices will

run heavy workloads, dissipate more power than ever, and

heat up, with no active cooling. They operate in diverse

and sometimes harsh environments, thus, are often subject to

external (due to ambient temperature) as well as internal (due

to power dissipation) temperature stress, bringing reliability

concerns. Fortunately, this stress can be controlled by runtime

management techniques to achieve a desired reliability over

time [10]. Curbing power dissipation, in particular, helps by

lowering the device temperatures and reducing the effect of

temperature-driven failure mechanisms [5].

The Edge Computing architecture utilizes gateways to en-

able application-specific connectivity between edge and fog

devices (Fig. 2) [7]. The term “fog” refers to its cloud-like

properties, but closer to the “ground”, i.e., closer to the users or

the source of data. Being cloud-like is what differentiates fog

computing from edge computing; fog devices (e.g., servers)

are also in physical proximity to the users, but are still

powerful like cloud. The edge refer to low-power IoT devices,

or smart objects, mobile phones. As we illustrate in Fig. 2, our

definition places edge devices right at the bottom of the net-

work hierarchy and the fog devices very close to the cloud. The

gateways have limited computational capabilities compared to

fog devices (e.g., high-end servers), but still more capable

than low-power sensors, smart objects, and microcontrollers

at the edge. A portion of the computation assigned to edge

devices can be offloaded to IoT gateways. However, the edge

devices cannot independently carry out offloading because

the computation resources and communication bandwidth of

the gateways are limited, and have to be shared between

numerous devices. The offloading amount should be selected

in consideration with the Quality of Service (QoS), the energy

consumption and reliability of every edge device, and the

resources available at the gateway. Several prior works [11],

[12], [13] proposed different computation offloading and re-

source allocation techniques for cooperative operation in the

Edge Computing setting, but none considered the reliability of

edge devices in their approaches. As edge devices undertake

bigger workloads, thermal stress and reliability issues cannot

be neglected.

For typical edge computing systems, as studied by prior

work [14], [15], [11], [16], improving the energy efficiency

of devices while delivering a minimum QoS is the main

goal since many edge devices are battery-operated or have

limited energy sources [17]. To reduce the number of main-

tenances performed for battery and component replacement,

battery lifetime should be maximized and a certain reliabil-

ity condition (e.g. minimum MTTF requirement) should be

satisfied for the edge device. On the other hand, the level of

user’s satisfaction, described by QoS, mostly improves with

increased computation. For example, processing data at high

sampling rates, making inference from high-resolution data

yield better predictions for machine learning tasks, which

would improve QoS. A dynamic and scalable management

mechanism is needed to control edge devices such that they

satisfy the reliability and QoS requirements in the most energy

efficient manner. The necessity for a dynamic solution is due

to following reasons: (i) the QoS requirements fluctuate at

runtime, (ii) the relative remaining energy of edge devices

vary over time, and (iii) the communication bandwidth and

the available resources at the gateways can change because of

unpredictable environments and other workloads respectively.

The edge computing system should quickly adapt to these

variations.
In addition to above argumentation, IoT systems usually in-

corporate many gateways, which provides a degree of freedom

to the problem at hand. Edge devices have multiple gateway

options to connect and offload computation. It is of great

importance to avoid inefficient system operation by properly

assigning edge devices to gateways. For example, there may be

cases where some gateways are congested with offloaded data

despite other gateways being underutilized. This unbalanced

employment of gateway resources would lead to suboptimal

system performance, thus, the load on the gateways should

be distributed evenly. There needs to be a mechanism that

intelligently assign edge devices to gateways. Furthermore,

offloaded data can be relayed in multiple hops through many

edge devices on the path to the gateways. The exact routes

from each edge device to their corresponding gateway should

also be determined.
Ideally, the gateways must be self-organizing and self-

supported [13], with no or minimum dependency on the

cloud [7]. In other words, the gateways should handle the

management of the system and provide control decisions to the

edge devices. This means that a light-weight, low-overhead,

dynamic, and scalable solution at the gateways is required for

the management to be responsive to dynamic variations in the

system and handle large number of edge devices distributed

over the network. However, the problem of managing the

reliability of edge devices poses high complexity due to its

size and nonlinearity; it is infeasible to solve it with compute-

intensive methods on resource-constrained gateways.
In this paper, we present a novel multi-gateway DRM

technique for IoT edge devices, taking advantage of the Edge

Computing architecture where a portion of the edge devices’

computation can be offloaded to the IoT gateways. The goal

of the management is to satisfy the QoS and reliability

requirements while maximizing the remaining energies of the

device batteries.
The contributions of this paper are as follows:
• To the best of our knowledge, we are the first to ad-

This article has been accepted for publication in IEEE Internet of Things Journal. This is the author's version which has not been fully edited and
content may change prior to final publication. Citation information: DOI 10.1109/JIOT.2022.3185082

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Univ of Calif San Diego. Downloaded on August 08,2022 at 18:10:54 UTC from IEEE Xplore. Restrictions apply.

3

dress the reliability management problem in a networked

multi-gateway edge computing setting. Unlike the DRM

techniques for stand-alone devices, our approach exploits

both individual (dynamic voltage and frequency scaling)

and network-level (offloading and routing) controls to

mitigate reliability degradation.

• We propose a two-level interconnected management

scheme, namely the Intra-Gateway Management and

the Inter-Gateway Management, which work together to

(i) choose the offloading rates of edge devices, (ii) assign

edge devices to gateways, and (iii) decide multi-hop data

flow routes and rates in the network.

• For Intra-Gateway Management, we formulate a finite

horizon nonlinear optimal control problem for finding

the best offloading rates for a local network with a

single gateway and its associated edge devices. We then

propose a hierarchical multi-timescale distributed con-

troller solution to deal with the high complexity of the

problem. We decompose the problem into low-overhead

sub-problems that are solved by leveraging a cascade

of linear controllers that act on different time scales,

distributed over the edge devices and the gateway.

• For Inter-Gateway Management, we construct a routing

problem to jointly decide which gateway to offload and

which network path to use for communicating data. The

solution is linearized and distributed among all edge

devices and gateways in the overall network via dual

decomposition and subgradient methods.

• Using real measurements to drive trace-driven simula-

tions, we demonstrate that our proposed scheme can

achieve a similar battery lifetime and better QoS com-

pared to the state-of-the-art approaches while satisfying

reliability requirements, where other approaches fail by a

large margin.

II. RELATED WORK

A. Edge Computing in IoT Systems

The IoT contains a large number of battery-powered hetero-

geneous devices, connected in networks with multiple layers,

which should satisfy different service quality requirements in

an energy-efficient and reliable manner. Many recent efforts

have addressed these challenges in IoT, proposing computation

offloading, efficient resource allocation, and QoS management

solutions. The definition of QoS in IoT depends on the

service it provides, where the service can be described as

data acquisition and communication, information processing,

or decision making [18]. The majority of previous works

dealt with traditional QoS attributes such as service delay and

throughput. In [19], the authors present a delay-minimizing

collaboration and offloading policy for fog-capable devices

that aims to reduce the service delay. They use queueing

theory based analytical models to evaluate service delay in

IoT edge-fog-cloud architectures and decide on when to of-

fload a task to upper layers. To deal with the uncertainty

of task arrivals, a recent study in [20] uses a two-timescale

Lyapunov optimization algorithm and makes delay-optimal

decisions only based on the system’s current state. Such works

neglect the other QoS attributes like energy consumption, cost,

information accuracy, availability of network resources, etc.,

which are critical, especially in edge-oriented IoT.

Most IoT edge devices are powered with batteries, thus

many works aim at balancing the tradeoff between power

consumption and delay performance. The authors in [14]

and [21] characterize the computation and communication

energy and performance of data processing applications across

edge devices and servers, then identify where to run the

application. In [22], both single-user and multi-user versions

of the same problem, in a mobile-edge computing (MEC)

setting, are formulated as a non-convex optimization problem.

The shortcoming of these approaches is that they only support

two operation modes: entirely offloading the computation or

entirely processing it locally. In this regard, a scheme for

partitioning the input data of a task among sensor nodes was

employed to minimize energy consumption while satisfying

a completion time requirement in [15]. Similar problems for

partitioning and offloading workloads to fog/cloud were solved

by game-theoretic approaches [23], multi-objective optimiza-

tion [24], heuristic algorithms [16], and primal decomposi-

tion [25]. However, the offload target (fog/cloud server) is

assumed to be very powerful and fast, or to have unlimited

resources. Moreover, only one edge/mobile device is consid-

ered, without accounting for resource contention between the

network devices.

In the Edge Computing architecture, there are limited

resources (bandwidth, gateway’s processing power) shared

between multiple devices. Therefore, the operation of one

edge device has an effect on all the other devices in the

same network. In [26], the problem of QoS management for

IoT edge devices under bandwidth, battery, and processing

constraints is addressed. The suggested approach is to partition

an application and quantize its input data rate into discrete

levels that correspond to different amounts of offloading and

QoS. Then, the optimal levels that maximize the overall QoS

of the system is computed with dynamic programming. The

study in [13] denominates these distinct levels as ‘operation

modes’ and advances the prior work in terms of execution time

and memory overhead. Finally, task allocation [27] and task

scheduling [12] schemes were proposed to determine where

and in which order to execute tasks. In contrast to other works,

reference [12] considers the mobility and the ability to perform

approximate computing of edge devices.

Prior work on computation offloading for edge computing

examined either the allocation of distinct tasks or different

stages of applications to edge devices and gateways [27],

[24], [12], [28]. These problems are commonly formulated as

Integer Linear Programming (ILP) problems and solved with

heuristics to find the best allocation of application stages/tasks,

from a finite set of options, e.g., a few discrete offloading

levels. The application tasks that are selected by the afore-

mentioned techniques can be used as an input to our problem.

Assuming prior allocation, we find the optimal rate of input
data to be processed locally at the edge and to be offloaded

to the gateway. Different from previous studies, we have a

control-theoretic approach; we treat the selection of processing

and offloading rates as an optimal control problem.

This article has been accepted for publication in IEEE Internet of Things Journal. This is the author's version which has not been fully edited and
content may change prior to final publication. Citation information: DOI 10.1109/JIOT.2022.3185082

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Univ of Calif San Diego. Downloaded on August 08,2022 at 18:10:54 UTC from IEEE Xplore. Restrictions apply.

4

Our previous work [29] is the first to address the reliability

management problem in a networked edge computing system.

The problem setting assumes a single-gateway to which edge

devices are connected in a star topology, and the proposed

solution only controls the offloading rates of edge devices.

This paper extends and improves [29] by introducing a two-

level management scheme that additionally assigns edge de-

vices to gateways and orchestrates the routing of larger multi-

gateway networks, connected in mesh topology. Previously,

the management of multi-gateway systems was studied in [30]

to improve the service quality of IoT applications under

limited network bandwidth. The authors present a trade-based

approach in which gateways negotiate and trade edge devices

based on battery lifetime and available processing resources.

Although the outline of the problem is similar to ours, the

specifics of their problem setting and modeling are principally

different. They do not consider reliability and solve a multiple

knapsack problem over discrete levels for offloading rates,

service quality, processing power, and bandwidth.

B. Dynamic Reliability Management

The term reliability, especially in networks, is associated

with many different types of failures. Almost all of the

literature on network reliability focuses on communication

link reliability, that is, the situations where the connection

between two nodes in the network fails. In some papers, node

failures are also included, but they can be mostly categorized

into three groups: soft errors (causing random bit flips) [31],

software reliability issues [32], or batteries running out of

energy [33], [34]. For example, in [32], software failures, mes-

sage congestion, VM failures on IoT devices are considered,

and the failures are modeled as a Poisson process with an

average failure rate. There are also some hardware failures

discussed in various works (such as [35]), but they consist

of superficial models of sensor faults; short faults, constant

faults, and noise faults. These types of failures are transient

and can be more easily fixed, whereas hard failures are not

recoverable. In [36], the authors propose dynamic updates on

a reliability function of hard failures, but the failure rate is

still modeled as a constant. In comparison, our temperature

dependent models, where the failure rates change over time,

can capture the dynamic degradation in reliability.

The thermal and reliability aspects of IoT devices are

mostly neglected in previous IoT-related work. As IoT de-

vices become more powerful, thermal and reliability issues

cannot be ignored and should be taken into consideration in

the management strategies. Extensive literature exists for the

reliability degradation phenomena on system-on-chips (SoCs).

The considered failure mechanisms include TDDB, BTI, and

HCI, which all limit device lifetime [10], [37], [6]. In these

works, physical-level models are built to quantify the reliabil-

ity degradation due to voltage and temperature stress, which

are influenced by the environmental conditions and workload

variations. Based on the reliability models, a management

algorithm optimizes performance while satisfying reliability

constraints. The trade-off between performance and reliability

can be adjusted during runtime by power/voltage scaling [5],

Gateway
G3

Gateway
G2

Gateway
G1

Gateway
G4

Gateway
G5

ED1

ED4

ED3

ED2

ED5

ED6

ED7

ED8 ED9

ED10

ED11 ED12ED13

ED14

WiFi, BLE, LPWAN…

Fig. 3: Multi-gateway IoT network

[10], [37], [6], task scheduling [38], or both [39]. In [40], a

task allocation scheme is presented for multi-processor SoCs

which maximizes the time to failure of an SoC subject to

performance constraints. The authors in [39] implement the

above-mentioned mechanisms on a mobile device, showing as

much as a one-year improvement on lifetime with dynamic

reliability management.

Despite the impressive results on individual devices, reli-

ability management for networks of IoT devices is an open

problem. The recent paper in [17] briefly discussed reliability

in the context of IoT and acknowledged that IoT devices

can profit from voltage scaling with respect to power and

energy. In [29], we showed that the reliability of edge devices

can be improved without sacrificing network performance or

battery lifetime. To the best of our knowledge, we are the

first to propose reliability management for multi-gateway edge

computing, which leverages both individual controls (volt-

age/frequency scaling) and network-level mitigation strategies,

such as computation offloading and routing.

In summary, none of the of the related works is applicable

to our problem because they either (i) neglect reliability, or

some QoS attributes such as energy consumption, availability

of network resources, which are critical in edge-oriented IoT,

(ii) assume the offload target (fog/cloud server) to be very

powerful and fast, or to have unlimited resources, (iii) con-

sider one edge/mobile device, without accounting for resource

contention between the network devices, (iv) formulate the

problem as task allocation with a few discrete offloading

levels, (v) study only single-gateway IoT systems.

III. SYSTEM MODEL

The envisioned IoT network architecture has multiple layers

comprising edge devices, gateways, fog, and cloud servers as

illustrated in Fig. 2. The IoT edge devices sense information

from physical phenomena and send preprocessed data to a

gateway node, which aggregates the streams of sensed data in

real time, processes, and sends them to the central servers, e.g.,

fog, cloudlets, or cloud servers for storage or further analysis.

For the edge computing setting, we focus on the management

in the first two layers: the edge and the gateway layer.

A. Network Architecture

We consider an IoT network composed of N edge devices

ED = {ED1, ED2, ..., EDN} and M gateways G =

This article has been accepted for publication in IEEE Internet of Things Journal. This is the author's version which has not been fully edited and
content may change prior to final publication. Citation information: DOI 10.1109/JIOT.2022.3185082

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Univ of Calif San Diego. Downloaded on August 08,2022 at 18:10:54 UTC from IEEE Xplore. Restrictions apply.

5

TransceiverSensor
Battery

Energy
Source

Povr

Processing
Unit

Psen Ppu Prf

Fig. 4: IoT device model

{G1, G2, ..., GM}. Each gateway Gj has a subset of Nj < N
associated edge devices, which together form a local network
as shown in Fig. 3. We denote Oj as the set of edge devices

connected to gateway j, with cardinality |Oj | = Nj . The

notation EDi ∈ Oj implies that edge device i is in the local

network of Gj . It should be noted that this association is

not permanent; the edge devices are assumed to be able to

dynamically change the gateway to which they are connected.

The gateway can either directly relay the processed data from

the edge devices to upper network layers, or it can help with

computation and process a portion of the raw data offloaded

from the edge devices.

In the local network, edge devices share the limited re-

sources of gateway’s computation power and communica-

tion bandwidth. They communicate with WiFi (IEEE 802.11)

or low-power, low-bandwidth wireless technologies such as

BLE (Bluetooth Low Energy), ZigBee (IEEE 802.15.4), and

LPWAN (Low-Power Wide-Area Network). The bandwidth

BWj is the total available bandwidth of the local network

associated with gateway Gj , where the wireless medium

is shared between the edge devices and the gateway. It is

assumed to be varying because of the possible changes in

the communication medium and interference from external

sources. We assume a mesh topology within a network, where

connection is allowed between every edge device depending

on the maximum distance they can transmit. Let Si denote

the set of neighboring devices to which node i can send

packets to. Then, Si = {j : di,j < dmax}, where di,j
is the distance between devices i and j and dmax is the

distance of transmission with maximum power. The notation

j ∈ Si is used to show that j is a neighbor of i and they

can communicate. The devices can have mobility, in which

case the neighbors change depending on the locations of the

devices. The location of all devices are assumed to be known,

either by GPS or other localization methods.

B. Device Models

As depicted in Fig. 4, each IoT device is equipped with:

(i) sensors, (ii) a processing unit, (iii) a transceiver, and

(iv) an energy source. The sensors sense physical phenomena

and sample input data, the processing unit (e.g. CPU, GPU,

FPGA) performs computation, and the transceiver carries out

the communication between the edge devices and the gateway.

We assume that both the edge devices and the gateway abide

by similar device models but with different parameters. The

main distinction between them is edge devices being more

resource-constrained, that is, lower communication, storage,

and computation capabilities. In the following, we describe

the power, temperature, reliability, and battery models of the

devices.

Power Model. The overall power consumption Povr of the

edge device includes the sensing power Psen of the sensors,

the computation power Ppu of the processing unit, and the

communication power Prf of the transceiver.

Povr = Psen + Ppu + Prf (1)

The power consumption Ppu of a processing unit can be

modeled through Equation (2) as the sum two contributions:

leakage power Plea (also called as static power) and dynamic

power Pdyn. The dynamic power is resulted from the logic

gate switching and is dependent on the operating frequency

f . The leakage power is affected by temperature T and it can

account as much as 50% of the total power consumption in

current CMOS technologies [41].

Ppu = Pdyn+Plea = αCeffV 2
ddf+Vdd(bTT

2e
k
T +Igate) (2)

Here, α and Ceff are the activity factor and the effective

switching capacitance. The coefficient bT is a technology

dependent constant, k is the Boltzmann constant, and Igate is

the gate leakage current which can be assumed constant. Since

the clock frequency f depends linearly on voltage Vdd [42], a

simplified model that accounts for both dynamic and leakage

power can be given as Ppu = af3 + bf .

The communication power consumption is determined by

the rate of the bits transmitted over the wireless channel. The

energy consumption of a IEEE 802.11n or IEEE 802.15.4

wireless node is dominated by the transmit or receive modes,

and their costs are approximately the same. The commu-

nication cost is characterized by the empirical transmission

power model [43] and the required power P rf to transmit L
bits/second is governed by:

Prf = ρ1(d)
L

g
+ ρ2 (3)

where ρ1(d) ≥ 0 denotes the energy coefficient monotonically

increasing in distance d; the most common such function is

ρ1(d) = Cf + Csd
β where Cf ,Cs are given constants de-

pending on channel attenuation as well as specific modulation

techniques and β is a constant dependent on the medium. g
denotes channel state and ρ2 is the static power consumed by

RF circuits. Finally, the sensing power consumption can be

simply modeled as a linear function of the sampling rate of

the sensor.

Psen = csλ (4)

where λ is the sampling rate, or the output traffic rate of the

sensor.

Battery Model. Not just the net amount, but the way in

which the power is consumed, that is, the current-extraction

patterns and the employed current levels play a significant

role in battery depletion [44]. Therefore, it is inaccurate to

assume linear energy depletion with respect to the power

consumed/current drawn, a dynamic battery model is needed

to realistically capture the influence of power consumption on

the battery. We use Temperature Dependent Kinetic Battery
Model (T-KiBaM) [45], a dynamic model which can describe

the nonlinear characteristics of available battery capacity. It

is able to accurately characterize the two important effects

This article has been accepted for publication in IEEE Internet of Things Journal. This is the author's version which has not been fully edited and
content may change prior to final publication. Citation information: DOI 10.1109/JIOT.2022.3185082

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Univ of Calif San Diego. Downloaded on August 08,2022 at 18:10:54 UTC from IEEE Xplore. Restrictions apply.

6

(rate capacity effect, and recovery effect) that make battery

performance nonlinear [44]. The effective capacity of a battery

drops for higher discharge rates. This effect is termed as

rate capacity effect. If there are idle periods in discharging,

the battery can partially recover the capacity lost in previous

discharge periods. This effect is known as recovery effect.
It was shown in [46] that using battery models that capture

these effects results in more accurate optimization and control

algorithms, and hence better network management techniques.

T-KiBaM models the batteries with two tanks, respectively

the Bound Charge Tank (BCT) and the Available Charge

Tank (ACT). The ACT holds the electrical charge that can

be immediately supplied to the load, while the BCT holds the

secondary charge flowing towards the ACT. In this way, T-

KiBaM successfully models the recovery and rate capacity ef-

fects. The flow rate between the two tanks is regulated by their

height difference and the temperature. The battery is denoted

empty when its ACT depletes. Let Povr = Ppu + Prf + Psen

be the overall power drawn from the battery under supply

voltage Vdd and qA, qB denote the total charge in ACT and

BCT respectively. Then, Equation (5) gives the system of

differential equations that describes T-KiBaM. At any time

instant, qA + qB is the total available charge in the battery.

Parameters κ and c are predefined constants that can be

obtained using the battery data-sheets or through experimental

measurements [45].⎧⎪⎨
⎪⎩

dqA
dt

= −κ(1− c)qA + (κc)qB − Povr

Vdd

dqB
dt

= κ(1− c)qA − (κc)qB

(5)

Temperature Model. Temperature of a device depends

on the power dissipated and ambient temperature. We define

the power consumption vector of the edge device, Ped =
[Ppu, Prf]

T , only including the computation and communica-

tion terms. Accordingly, let the heat sources be the PU and RF

and let Ted(k) represent the vector of temperatures observed

by thermal sensors at time instant k. The heat sources are

assumed to have one thermal sensor measuring its temperature.

Then, temperature Ted(k + 1) at time instant k + 1 can be

predicted given the current temperature Ted(k) and power

Ped(k) at time k. The discrete-time state-space model of

the device’s thermal behavior is expressed in the following

equation [47].

Ted(k+1) = AT · Ted(k) +BT ·Ped(k) +CT · Tamb(k) (6)

AT and BT are defined as the state and the input matrices

respectively. Tamb is the ambient temperature and CT is a

vector of coefficients which weighs the impact of ambient

temperature on device’s internal temperature. Deriving the

model (i.e. matrices A,B,C) of Equation (6) by only accessing

power and temperature is a blind identification problem. To

solve this problem, we use a numerical algorithm for subspace

system identification (N4SID [48]) and derive the model from

measured power and temperature traces.

Reliability Model. The main degradation mechanisms af-

fecting integrated circuits are Time Dependent Dielectric

Breakdown (TDDB), Negative Bias Temperature Instability

(NBTI), Hot Carrier Injection (HCI), Electromigration (EM),

and Thermal Cycling (TC) [10]. Models have been developed

for MTTF for each degradation phenomenon, which show a

strong (exponential) dependence on temperature. For example,

the MTTF for TDDB is described by Equation (7).

MTTFTDDB = A0exp − γEoxexp
Ea

kBT
(7)

A0 is a constant determined empirically, Eox is the electric

field across the dielectric, γ is the field acceleration parameter,

Ea is the activation energy, and kB is the Boltzmann constant.

The MTTF for NBTI is:

MTTFNBTI = A0(
1

V
)γvexp

Ea

kBT
(8)

where γv is the voltage acceleration factor and V is the applied

voltage. The MTTF for HCI is described by the Eyting model,

expressed in Equation (9) for N-channel devices.

MTTFHCI = BI−Cmat

sub exp
Ea

kBT
(9)

Here, Isub is the peak substrate current during stressing, Cmat

is a material dependent constant and B is a scale factor,

function of technological parameters.

Similar to power and temperature models, for reliability

models we divide the device into structures – PU & RF – and

apply the analytic models to each structure as an aggregate. To

obtain the overall MTTF of an edge device, we combine the

effects of different failure mechanisms, across these different

structures. A standard model used by the industry is the

sum-of-failure-rates (SOFR) model [10], which makes the

assumption that the device is a series failure system, in other

words, the first instance of any structure failing due to any

failure mechanism causes the entire device to fail. Hence:

MTTFed =
1∑ns

i=1

∑nm

j=1
1

MTTFij

(10)

where MTTFij is the MTTF of the ith structure due to the jth

failure mechanism. The variables ns and nm are the number

of structures and mechanisms, respectively.

MTTF for each degradation mechanism is related to a

reliability function as expressed by Equation (11), where

reliability R(t) is the function depicting the probability of not

having failures before a given time t, defined in the interval

[0, 1]. Compared to MTTF, reliability is a function of time, so

it is more suited for the purpose of dynamic management [39].

MTTF =

∫ ∞

0

R(t)dt (11)

The reliability function R(t), in general, is expressed as

a monotonically decreasing exponential function of time and

temperature [5].

R(t) = γ1exp(− Ea

kBT
)exp(−γ2t) (12)

where γ1, γ2 are the constants depending on the respective

mechanism. The expression in Equation (12) is only rep-

resentative of static systems because it assumes a constant

temperature applied from time t = 0. The workloads and

This article has been accepted for publication in IEEE Internet of Things Journal. This is the author's version which has not been fully edited and
content may change prior to final publication. Citation information: DOI 10.1109/JIOT.2022.3185082

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Univ of Calif San Diego. Downloaded on August 08,2022 at 18:10:54 UTC from IEEE Xplore. Restrictions apply.

7

In
pu

t filtering

Pre-Processing Feature Extraction Decision Making
smoothing

segmentation clustering

DWT

PCASIFT

classification

forecasting detection

MFCC

O
ut

pu
t

Traditional

Deep Learning

Input
Convolution + ReLU Convolution + ReLU

Pooling

Pooling

Flatten
Fully

Connected

SoftmaxFeature Learning

Classification

Fig. 5: Segmented machine learning applications

temperature vary over time, so is the degradation process.

Therefore, we introduce equivalent degradation time to char-

acterize the reliability degradation effect under such varying

conditions. Given the reliability degradation of a device under

temperature T1 for duration t1, the equivalent degradation

under temperature T2 is described as follows:

ΔR(teqv,1, T2) = ΔR(t1, T1) (13)

The equivalent degradation time teqv,1 can be computed using

Equation (12). To elaborate, assume a scenario where a device

worked subsequently under temperature T1 and T2, with

durations t1 and t2, respectively. Then, the degradation of the

device at time t1 + t2 equals that of the device which worked

under temperature T2 for time (0, teqv,1 + t2), and can be

computed as ΔR(teqv,1 + t2, T2).

To capture the dynamics of reliability under varying tem-

perature, we discretize the time and calculate reliability at

each time step as shown in the following. We leverage the

equivalent degradation time to calculate the degradation at

each discrete time step. The temperature is assumed to be

constant between time steps.

ΔR(teqv,k−1, Tk−1,k) = R0 −Rd(k − 1) = ΔR|t=tk−1

Rd(k) = R(teqv,k−1 + tk−1,k, Tk−1,k) (14)

In Equation (14), k indicates the kth time instant and Tk−1,k

is the temperature experienced by the device between the time

instants k − 1 and k. Similarly, tk−1,k is the time passed

between the time instants k − 1 and k. Rd is the dynamic

reliability and R0 is the reliability of a device at time t = 0.

Similar to the system MTTF expression in Equation (10),

multiple reliability functions can be combined into a single

one when considering the effect of multiple mechanisms and

structures together as a series failure system.

Rd,ed(k) =

ns∏
i=1

nm∏
j=1

Rd,ij(k) (15)

The variables ns and nm are the number of structures and

failure mechanisms, respectively. Rd,ij is the reliability of the

ith structure modeled by the jth failure mechanism.

Edge Device Gatewayt0 t1 t2

Input Data

Fig. 6: Data partitioning and offloading over time

C. Application Model

We consider the cooperative computing setting in which

edge devices can execute applications with the help of gate-

ways. In the following, we elaborate the application model and

describe the operation of the edge devices and the gateways.

In many IoT edge computing systems, the application is not

entirely executed on a single device, instead, it is segmented

into tasks and distributed over computing hierarchy, consisting

of the cloud, the fog, and the edge [9]. As illustrated in

Fig. 5, traditional machine learning (ML) approaches and

deep neural networks (DNN) are examples of commonly used

applications in IoT systems that can be segmented and mapped

to different IoT devices. Several works considering general

ML applications [13], [49], [50] and DNNs [51], [52] exist,

though, the segmentation of applications and the distribution

process are beyond the scope of this paper. In our work,

we assume that this segmentation and distribution process is

governed by an external management mechanism, such as [27].

Therefore, the edge devices in our network are dynamically

being assigned different tasks.

The tasks can be executed either locally at the edge devices

or remotely on the gateways via computation offloading. In

particular, the input data of the tasks can be partitioned and

offloaded (communicated) to the gateways, as illustrated in

Fig. 6. In the case of offloading, both the edge device and

the gateway execute the same task, but at different times and

on different partitions of the data. As a concrete example, let

us consider a system that runs a feature extraction algorithm.

The application code is assumed to be already present on both

devices. Therefore, the features can be extracted from “raw”

sensor data at the edge devices, then the processed features

are communicated to the gateway. Another option is to send

the raw data directly to the gateway and extract the features

there. Input data partition comes into play at this stage. For

example, the sensor of the edge may be device generating

10kB of data every 5 seconds, i.e., at a rate of 2kB/s. If it sends

the first 6kB chunk of this data to the gateway and process

(extract features) the next 4kB locally at the edge devices, then

the offloading rate and local processing rates are 1.2kB/s and

0.8kB/s, respectively.

It is worth noting that sometimes an application (e.g. geo-

distributed MapReduce [53]) can be breakable into tasks which

do not exhibit dependencies across partitions of its input [15].

Provided this condition, the edge device and the gateways can

also be assumed to be able to run different tasks. To character-

ize a task τm, we consider three attributes: {IPCm, αm, Dm}.

Here, IPCm is the average instruction per cycle required to

run the task, αm is the activity factor, and Dm represents

the deadline. According to the delay requirements of the

This article has been accepted for publication in IEEE Internet of Things Journal. This is the author's version which has not been fully edited and
content may change prior to final publication. Citation information: DOI 10.1109/JIOT.2022.3185082

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Univ of Calif San Diego. Downloaded on August 08,2022 at 18:10:54 UTC from IEEE Xplore. Restrictions apply.

8

Sampling
Sensor

Input Data
DRM

Ba
tt

er
y

Po
w

er

Te
m

pe
ra

tu
re

Re
lia

bi
lit

y

q Ped

Ted Red

λ

Task
τ

PU

RF

Processing Rate
μ

Offloading Rate
L

Communication
Rate
L+r

Wireless
Channel

Bandwidth
BW

Edge Device

Legend

Data flow

Control variable

External variable
Forwarding

r

Fig. 7: Structure of the edge device

application, the tasks can be categorized into delay-sensitive
and delay-tolerant (i.e., best-effort) ones [18]. The delay-

sensitive tasks are required to be served in a timely fashion,

and have hard deadline constraints usually from milliseconds

to tens of milliseconds. In contrast, delay-tolerant tasks, such

as data-based applications as in personal health analytics and

ML model training are tolerant to certain delays. Hence,

we consider soft deadlines for delay-tolerant tasks and hard

deadlines for delay-sensitive tasks.

D. Network Operation

IoT traffic can be roughly categorized into periodic and

event-based modes of communication [54]. Some applications

will always be event-driven, but still periodicity can ensue.

For example, motion detection sensors in smart homes activate

roughly at the same time every day, when leaving for work and

returning home, in a predictable, periodic manner. In addition,

many IoT devices from other fields of application such as

smart grids, environmental monitoring etc. often intrinsically

generate and communicate data in a periodic fashion. In our

work, we assume that the input traffic generated by sensors of

EDi is periodic with a period Ti and a deterministic arrival

rate λi. Depending on the tasks and QoS requirements, the

data arrival rate can differ.

The operation of an edge device is illustrated in Fig. 7, with

local data processing at its processing unit (PU) and network

communication for data offloading and data forwarding at

its transceiver (RF). The rate at which the input traffic is

routed to the gateways through RF is Li, denoted as the

offloading rate. There is also incoming external data from

other edge devices to be relayed, since mesh network topology

is assumed. We use ri to denote the total forwarding rate.

The computation intensity (processing rate), μi(fi, τm), is

deterministic and dependent on the edge device’s operating

clock frequency and the running task (related by its IPCm).

Both the PU processing rates μi and RF communication

rates Li are controllable variables that are regulated by our

proposed DRM controller. We assume the communication of

task outputs is negligible, but the proposed models can be

extended to account for it.

Data from the edge devices is communicated to the gate-

ways wirelessly. Each edge device is assigned to a single

gateway and all of its data should be forwarded to only that

gateway. However, since the network topology is mesh, de-

vices can cooperate to distribute and relay data in a multi-hop

fashion. Our proposed inter-gateway management framework

chooses the target gateways and data forwarding routes for

Network
Edge

Device 1

Edge
Device 2

Edge
Device P

...

L1

L2

LP

Wireless
Channel

M/D/c
Queue

Processing
Rate
μG

Gateway

∑ Li QG

Fig. 8: Local network operation

every edge device in the network. The gateways receive the

superposition of offloaded periodic traffics from a number of

unsynchronized edge devices (Fig. 8). According to the Palm-

Khintchine theorem, this aggregated traffic for each gateway

can be approximated with a Poisson process with the arrival

rate
∑

EDi∈Oj
Li, that is, the sum of offloading rates of the

associated edge devices [54]. The computing resources of

a gateway is adequate for processing data for several tasks

from multiple edge devices simultaneously. We assume that

there are c homogeneous computation cores in a gateway’s

SoC, working with a deterministic processing rate μG,j . Also,

unlike the edge devices, memory resources of the gateways

are sufficient to be able to hold a queue of incoming data.

Therefore, the gateways employ a queueing structure of type

M/D/c [55], denoted QG,j . The discrete queue dynamics at

the input of the gateways are as follows:

QG,j(k + 1) = [QG,j(k) +
∑

Li(k)− μG,j(k)]
+ (16)

where QG,j(k) denotes the queue length of gateway j at time

instant k, in bits, and [x]+ = max(x, 0). μG,j is the total

computation resources available at the gateway, in bits per

unit time. We assume that the amount of μG,j can dynamically

change depending on the overall network operation and we do

not have control over it.

For delay-tolerant tasks, it is enough to finitely maintain

the queue lengths in Equation (16). This assures that all

arrived tasks are served within finite time. However, for delay-

sensitive tasks, we need to provide a delay guarantee. We

introduce a delay aware virtual queue based on the ε-persistent

queue technique [56] to ensure that the tasks are finished with

a delay lower than Dm.

Delay-Aware Virtual Queue. In order to guarantee the max-

imum delay Dm,i for task m associated with edge device i,
offloaded to gateway j, we employ a delay-aware virtual queue

ZG,j whose equation is shown below:

ZG,j(k + 1) =

{
0, when QG,j(k) ≤ μG,j(k)
[ZG,j(k)− μG,j(k) + εG,j]

+, o.w

where εG,j is a pre-specified constant based on the delay

constraint. ZG,j(k) has the same service process as QG,j(k)
but has an additional constant arriving process εG,j whenever

the actual queue backlog QG(k) is larger than μG,j(k). This

ensures that the virtual queue grows only when there exists

data in the original queue that have not been served. Therefore,

if there is data from a task staying in the waiting queue

for a long time, the queue length of ZG,j(k) will continue

to grow. Any algorithm that maintains bounded ZG,j(k) and

QG,j(k) values also ensures persistent service with bounded

worst-case delay. This maximum delay can be expressed in

This article has been accepted for publication in IEEE Internet of Things Journal. This is the author's version which has not been fully edited and
content may change prior to final publication. Citation information: DOI 10.1109/JIOT.2022.3185082

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Univ of Calif San Diego. Downloaded on August 08,2022 at 18:10:54 UTC from IEEE Xplore. Restrictions apply.

9

terms of the maximum queue lengths Qmax
G,j and Zmax

G,j . For

a time slot k, if the system can be controlled to ensure that

QG,j(k) < Qmax
G,j and ZG,j(k) < Zmax

G,j , then any task is

fulfilled with a maximum delay Wmax defined as follows:

Wmax = [(Qmax
G,j + Zmax

G,j)/εG,j] (17)

Given the above property, we can choose the appropriate εG,j

for each task to ensure that it can not exceed its maximum

delay Dm,i (i.e. Wmax < Dm,i). The original queue QG

exists in the form of a buffer structure in the system. The

received data packets wait in this buffer until they can be

served by the gateway. On the other hand, the virtual queue

dynamics are implemented by the tracking the original queue

and increasing/decreasing the virtual length accordingly.

To summarize, the edge devices produce input traffic via

sensors, run different tasks, and process data. As a result of

on-board computation, they dissipate a certain power, consume

battery energy, heat up, degrade, and hence lose reliability.

We provide all the associated device and application models.

The edge devices can be connected and offload computation

to any of the gateways in the network. The operation of one

edge device has an effect on all other devices in the same

network, which is formulated by the queueing model. We use

the described system model in our problem formulation.

IV. PROBLEM FORMULATION

In the following, we formalize our problem based on the

network and device models presented. The goal of this section

is to express the problem in a mathematical framework and

relate it to a family of problems from optimization and control

fields. We next provide the methods and the tools to solve it

in Section V. Table I provides the list of symbols that are used

in problem formulation, in the order of appearance throughout

the paper.

The target for the above-mentioned multi-gateway system

is to have an energy-efficient and reliable operation without

sacrificing performance. To achieve this objective, we define

three interdependent problems:

(i) choosing the data offloading rates of edge devices,

(ii) assigning edge devices to gateways, and

(iii) deciding multi-hop data flow routes and rates in the

network.

We treat problem (i) individually whereas problems (ii) and

(iii) are combined. The reason for this particular choice of

partitioning is clarified in Section V.

First, we formulate the problem of finding the optimal

offloading rates for a local network with a gateway and its

associated edge devices. This is called the Intra-Gateway
Problem since it can be solved by single gateway and the

solution depends only on the local network. Then, considering

the complete multi-gateway network with all edge devices, we

construct a routing problem to jointly decide which gateway

to offload and which network path to use for communicating

data. This is called the Inter-Gateway Problem as it requires

global effort from all the devices in the complete network

covering multiple gateways.

TABLE I: Nomenclature

Symbol Definition
ED Edge device
G Gateway
N Number of edge devices
M Number of gateways
Si Set of neighboring devices to node i
BW Local network bandwidth
Povr Overall power consumption of an edge device
f Device operating frequency
qA Total charge in battery Available Charge Tank
qB Total charge in battery Bound Charge Tank
Ted Vector of temperatures of an edge device
Tamb Ambient temperature

MTTFed Mean time to failure of an edge device
Rd,ed Dynamic reliability of an edge device
λ Input traffic data rate i
L Data offloading rate
r Data forwarding rate
μ Data processing rate
μG Gateway processing rate
QG Gateway queue length
ZG Gateway virtual queue length

A. Intra-Gateway Problem

The gateways G are only responsible for the edge devices

ED in their own local network, i.e, if EDi ∈ Oj . Therefore,

the Intra-Gateway Problem can be formulated separately for

each local network. The goal is to maximize the remaining

energy in the batteries of edge devices under QoS and reli-

ability constraints. We assume that the gateway can have its

energy supplied by the grid and reliability is less of a concern

due to available preventative measures (i.e., access to cooling

and effortless maintenance).

Cost Function: The cost function of the control problem

is the sum of battery energies of all edge devices in the local

network. We define the following objective for finite horizon

optimal control of j-th local network:

min
(μ,L)

Tf−1∑
k=0

−‖1T q(k)‖2 =

Tf−1∑
k=0

Nj∑
i=1

−‖1T qi(k)‖2 (18)

where (μ,L) � (μ1(k), ..., μP (k), L1(k), ..., LP (k))
Tf−1
k=0 .

The vector qi(k) = [qi,A(k), qi,B(k)]
T is the battery charge

vector and q denotes the combined vector of all edge devices.

Constraints: There are three QoS requirements that should

be satisfied at any time instant k and a terminal reliability

constraint that should be satisfied at the final time instant Tf :

1) The maximum task delay Dm,i should be met for every

edge device i and task m. Then, the delay experienced

at the gateway queue should be less than Dm,i, which is

ensured if the length of gateway queue is smaller than a

value Qmax
G,j , i.e., QG,j(k) < Qmax

G,j .

2) Bandwidth utilization should not exceed BWj . The band-

width utilization of an edge device i is Li, hence the

corresponding constraint is
∑P

i=1 Li(k) ≤ BWj .

3) Depending on the application, there is a certain data

arrival and service rate at each edge device determined by

QoS requirements. We define this target rate as λtarget
i .

The sum of data processed locally and offloaded should

be equal to the target, i.e., μi(k) + Li(k) = λtarget
i (k).

This article has been accepted for publication in IEEE Internet of Things Journal. This is the author's version which has not been fully edited and
content may change prior to final publication. Citation information: DOI 10.1109/JIOT.2022.3185082

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Univ of Calif San Diego. Downloaded on August 08,2022 at 18:10:54 UTC from IEEE Xplore. Restrictions apply.

10

4) The dynamic reliability Rsys
d,i (Equation 15) of each

device at the end of the horizon should be at least the

target reliability Rtarget, i.e, Rsys
d,i (Tf) ≥ Rtarget

Control Variables: The two performance-related state vari-

ables to be controlled for each edge device are: (i) PU pro-

cessing rate μi(f) and (ii) RF communication (offloading) rate

Li. Then, the control variables include the required change in

the operating frequency Δfi and change in the communication

rate ΔLi.

All in all, we define the following discrete-time finite

horizon optimal control problem:

min
Δf,ΔL

Tf−1∑
k=0

Nj∑
i=1

−‖1T qi(k)‖2 (19)

s.t. i = 1, ..., Nj k = 0, ..., Tf−1

qA,i(k+1) = AqqA,i(k) +BqqB,i(k)− Povr,i(k)

Vdd

qB,i(k+1) = CqqA,i(k) +DqqB,i(k)

Povr,i(k)=aif
3
i (k)+bifi(k)+cs,iλi(k)+ρ1

Li(k)+ri(k)

g
+ρ2

Ted,i(k+1) = ATTed,i(k) +BTPed,i(k) + CTTamb,i(k)

QG,j(k+1) = [QG,j(k) +
∑P

i=1
Li(k)− μG,j(k)]

+

ZG,j(k+1) = [ZG,j(k)− μG,j(k) + εG,j]
+

μi(k+1) = μi(k) + diΔfi

Li(k+1) = Li(k) + ΔLi

QG,j(k) < Qmax
G,j

ZG,j(k) < Zmax
G,j∑P

i=1
Li(k) ≤ BWj

μi(k) + Li(k) = λtarget
i (k)

Rd,i(Tf) ≥ Rtarget

|Δfi| ≤ Δfmax, |ΔLi| ≤ ΔLmax

where we discretized the battery dynamic equations from

Equation (5) with state variables qA,i and qB,i, represent-

ing the charge level of edge device i at time instant k.

Overall power consumption Povr,i is expressed in terms of

processing, communication, and sensing rates. On the other

hand, Ped,i = [Ppu,i, Prf,i]
T , a vector of PU and RF power

consumption, is used in the temperature dynamics equation

to compute Ted,i = [Tpu,i, Trf,i]
T . We define μi and Li as

state variables which are controlled by the inputs Δfi and

ΔLi: respectively the change in the operating frequency and

the change in the offloading rate. By doing this and imposing

magnitude constraints on the new control variables, we ensure

a smooth transition in both processing and offloading rates.

B. Inter-Gateway Problem

The solution to the Intra-Gateway Problem finds the of-

floading rates for every edge device, but it does not specify

how the offloaded data should be communicated to gateways.

As the network is assumed to have mesh topology, data can

be forwarded in multiple hops through many edge devices

on the path. The exact routes from each edge device to

Gateway 1 Gateway 2

Edge
Devices

Commodity 1

Commodity 2
Commodity 3

Commodity 4

Fig. 9: Multicommodity flow multiple sink routing

the gateways should be determined. Also, the Intra-Gateway
Problem is formulated for a fixed set of edge devices in the

local networks. However, as stated in Section III.D, edge

devices have multiple choices for which gateway to offload

data. These choices should be made considering the state of

the system. We construct the Inter-Gateway Problem whose

solution gives the edge device to gateway assignments, as well

as the routing between them.

The desired joint problem can be composed into a single

network routing problem with multicommodity flows and mul-

tiple sinks. The goal is to find the maximum lifetime routing.

From the Intra-Gateway Problem’s solution, we obtain Li,

the rate at which data is generated at edge device i. We

consider the data from different edge devices as different

commodities. This data needs to be communicated to any of the

gateways in the network, resulting in the multicommodity flow

multiple sink routing problem. We assume that in general, each

commodity should only be communicated to a single gateway,

that is, data from one edge device cannot be distributed to

multiple gateways. For example, if the data is sequential (e.g.,

time-series data), then it should be received at one gateway

in the same order to be processed correctly. If the data is

distributed to many gateways and not received as a whole at

a single gateway, the task cannot be carried out. The packet

transmission is thus unicast. An alternative solution for when

this assumption does not hold is discussed in Section VII-A.

An example solution for our problem setting is illustrated in

Fig. 9 for a network with two gateways.

For notational convenience in the routing problem, consider

the network nodes numbered from 1 to N denote the edge

devices and N+1 to N+M denote the gateways. In other

words, i ∈ VED and j ∈ VG for the edge devices and

gateways respectively, where VED = {1, ..., N} and VG =
{N+1, ..., N+M}. Let rikl denote the rate of data flow from

edge device k to any node l ∈ Sk, carrying edge device i’s
commodity. The aggregate data rate for the unidirectional link

from edge device k to l is denoted by rkl and is equal to∑N
i=1 r

i
kl. For simplicity of notation, we stack up all rkl into

a single vector and denote network flow as r = {rikl}, Then,

the lifetime of edge device i under flow r is given by

MTTFed,i = γcexp
Ea

kBTed,i(r)
(20)

We define lifetime in terms of mean time to failure, where

Equation (20) is a generalized form of MTTF definitions in

This article has been accepted for publication in IEEE Internet of Things Journal. This is the author's version which has not been fully edited and
content may change prior to final publication. Citation information: DOI 10.1109/JIOT.2022.3185082

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Univ of Calif San Diego. Downloaded on August 08,2022 at 18:10:54 UTC from IEEE Xplore. Restrictions apply.

11

Equations (7), (8), (9) and coefficient γc encompasses the

multiplicative terms in the respective formulas. Temperature

T (r) is a function of network flow as it alters according to

device power dissipation (Equation (6)), which in turn relates

to data flow through Equation (3).

We assume that a network fails with the first node’s failure

as a common definition. This definition is one of the most

prevalent in literature [33] and was used in many recent

works [57], [58]. In this case, network MTTF under flow r is

the minimum of any node in the network, i.e.

MTTFnet(r) = min
i∈N

MTTFed,i(r) (21)

Our goal is to find a solution for the flow r = {rikl}
that maximizes the network lifetime. Hence, we formulate the

following problem.

maximize
r,Xassign

min
i∈VED

MTTFed,i(r) (22)

subject to
∑
l∈Sk

(rikl − rilk) = Li, ∀i, k ∈ VED, i = k

∑
l∈Sk

(rikl − rilk) = 0, ∀i, k ∈ VED, i �= k

rikl ≥ 0, ∀i, k ∈ VED, ∀l ∈ Sk∑
k∈VED

rikl = Li, ∀i ∈ VED, ∀{l ∈ VG | xil = 1}

M∑
j=1

xij = 1, ∀i ∈ {1, ..., N}

xij ∈ {0, 1}, ∀i ∈ {1, ..., N}, ∀j ∈ {1, ...,M}
The optimization variables are rikl and xij . Xassign is the

assignment matrix in which elements xij assume value 1 if

edge device i is assigned to gateway j and 0 otherwise. The

matrix Xassign ∈ R
NxM has only one element equal to 1

for each row. This is because data from one edge device

cannot be distributed to multiple gateways so each commodity

should only be communicating to a single gateway. The first

two constraints are the flow conservation equations at each

node. The difference between incoming and outgoing flows

for each commodity is equal to the data generation rate. We

express the condition on commodities that restrict them to be

communicated to a single gateway by the fourth constraint.

The summation of all outgoing flows towards the l-th gateway

for the i-th commodity should be Li.

V. PROPOSED APPROACH: OVERVIEW

In this section, we first present the general solution frame-

work and briefly describe its operation. Subsequently, we

break down and analyze the proposed solution in further

detail. Fig. 10 depicts an overview of the proposed two-level

management scheme. The overall management methodology

is an interplay between Intra-Gateway Management and Inter-
Gateway Management components:

• Intra-Gateway Management is responsible for choosing

the local processing and offloading rates of edge devices.

Each gateway runs it separately for the edge devices in

their own local networks.

Global Network State
Mean Time to

FailureQueue Lengths Bandwidths

Inter-Gateway Management

Intra-Gateway Management

Gateway Assignment Routing

Restructure Local Networks

Assignments Flows

……

Computation Offloading

Offloading Rates Processing Rates

Local Network

Device States
TemperatureBattery Reliability Tasks Input

Traffic

Application
QoS

Constraints

Of
flo

ad
in

g
Ra

te
s

Fo
rw

ar
di

ng
 R

at
es

Fig. 10: Overall architecture of the proposed management scheme

• Inter-Gateway Management assigns edge devices to gate-

ways and decides multi-hop data flow routes and rates in

the network. It is carried out with collaborative effort

from all devices.

The two components work together in a cyclical fashion;

one computes its solution based on the other’s output. Inter-
Gateway Management takes as input the data offloading rates

set by Intra-Gateway Management. On the other hand, Intra-
Gateway Management determines optimal offloading rates

in accordance with the gateway assignments and the data

forwarding rates of edge devices.

At the beginning of system operation, the gateways are

evenly matched with the closest edge devices and they estab-

lish single-hop connections. M disconnected local networks

are formed with an average of N/M edge devices per gateway.

Based on the initial assignments, optimal offloading rates for

edge devices are calculated via Intra-Gateway Management
separately at each local network. Inter-Gateway Management
then uses these offloading rates to make gateway assignment

and routing decisions. It assigns edge devices to gateways

primarily based on fairness such that each gateway receives

similar amounts of offloaded data. At this stage, the initial

topology of the network is changed and edge devices have

new gateway pairs. The topology is not restricted to single-hop

connections, so data can be forwarded in multiple hops through

many edge devices on the path. Inter-Gateway Management
lastly adjusts communication paths and data flow rates on the

communications links.

After the initialization phase, both management components

continue to work in tandem. Inter-Gateway Management’s

This article has been accepted for publication in IEEE Internet of Things Journal. This is the author's version which has not been fully edited and
content may change prior to final publication. Citation information: DOI 10.1109/JIOT.2022.3185082

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Univ of Calif San Diego. Downloaded on August 08,2022 at 18:10:54 UTC from IEEE Xplore. Restrictions apply.

12

routing introduces additional communication load to some

edge devices due to multi-hop communication, which was

not assumed at the system start. Intra-Gateway Management
accordingly adjusts processing and offloading rates to com-

pensate for the additional data forwarding load on the edge

devices. The edge computing system is already dynamic due

to variable workloads and resources, fluctuating temperatures,

etc., so the solution is continuously updated at certain intervals.

The gateway assignments, data flow rates and paths are also

not fixed. Inter-Gateway Management updates the solution

under the following conditions:

1) Periodically, at regular intervals,

2) If the bandwidth allocation of any local network is over

90% for a certain time,

3) If the queue length of any gateway is at Qmax for a

certain number of consecutive tasks.

The normal operation of Inter-Gateway Management is

through periodic updates, but irregular interventions may be

needed under the given circumstances. If there is persistently

not enough bandwidth left or the gateway queue is full at a

local network, then the corresponding gateway sends an emer-
gency signal to the Inter-Gateway Management component.

A reassign & reroute signal is sent back to gateways that is

further forwarded to edge devices. Since gateway assignment

is based on fairness, it balances out bandwidth and queue

utilizations across local networks.

If there is a failure in the execution of Inter-Gateway
Management, the Intra-Gateway Management can continue

working since the gateways already know their edge device

assignments. Intra-Gateway Management is a local manage-

ment scheme, meaning that it does not need to receive external

inputs to operate. Each gateway only needs to know their new

assignments whenever a there is a restructuring in the network.

There are N different Intra-Gateway Management instances

running at the same time on different gateways separately.

On the other hand, if any of the Intra-Gateway Manage-
ment schemes fails, then the Inter-Gateway Management can

continue operating as well. It can still decide on gateway

assignments and routing. However, the failed Inter-Gateway
Management will not be able to produce optimal offloading

rate values, so the performance of the overall management may

decrease. The common point in both management mechanisms

is that they do not fully rely on a single device to run. There

are distributed components that run at edge devices, which

significantly reduces the single-point failure phenomena that

centralized systems have.

VI. INTRA-GATEWAY MANAGEMENT

We consider two approaches: centralized Model Predictive

Control (MPC) and our distributed solution for the control

of the local networks. First, we analyze the centralized MPC

and discuss its limitations for practical implementations in

large networks. It requires to communicate and use the full

knowledge of the entire local network, which is not a scalable

approach. Thus, we use it as a benchmark to represent the ideal

performance. We then decompose the full control problem into

subproblems with coordination by leveraging a hierarchy of

linear controllers that act on different time scales, distributed

over the edge devices and the gateway.

A. Centralized MPC

Our problem in Equation (19) can be converted to the stan-

dard MPC form using the following discrete-time prediction

model:

x(k + 1) = Ax(k) + Bu(k) + Cw(k) (23)

with state x(k) = [qA,1(k), qB,1(k), Ted,1(k), μ1(k), L1(k), ...,
qA,Nj

(k), qB,Nj
(k), Ted,Nj

(k), μP (k), LNj
(k), QG(k)]

T and

control input u(k) = [Δf1(k),ΔL1(k), ...,ΔfNj
(k),ΔLNj

(k)]T .

Disturbance vector includes the ambient temperatures of

edge devices and gateway’s processing rate, which are

uncontrollable: w(k) = [Tamb,1(k), ..., Tamb,Nj (k), μG(k)]
T .

For a local network with Nj edge devices, the state, input,

and disturbance vectors are of sizes 5Nj+1, 2Nj , and

Nj+1 respectively. QoS and reliability constraints can be

represented as Dx(k) ≤ 0 and Eu(k) = 0 in matrix form.

At decision instant k, the controller samples the state of the

system x(k) and solves the centralized optimization problem

PrC(x(k)) of the following form to find the control action.

min
u(k)

Tp−1∑
l=0

Nj∑
i=1

d(x(k + l|k), x̂) (24)

s.t. i = 1, ..., Nj j = 0, ..., Tp − 1

x(k + l + 1|k) = Ax(k + l|k) + Bu(k + l|k)
Dx(k + l|k) ≤ 0

Eu(k + l|k) = 0

The double index notation (k+l|k) in (24) denotes a prediction

for l steps ahead from time k. d(x, x̂) denotes a distance metric.

The problem is solved for a prediction horizon of Tp. For

centralized MPC, we first set k = 0 and find a solution to

PrC(x(k)), then apply control u∗(k|k) to the system. Next,

k is incremented and the previous steps are repeated until the

final horizon Tf .

The centralized MPC approach requires communication of

states from all nodes to a central entity (gateway), which then

sends an individual control signal to each of the edge devices.

The gateways should solve a problem with (5Nj+1)×Tp states

and produce a control sequence of size 2Nj×Tp at each time

step. Hence, as the network size grows, the computation time

required to solve the optimization problem becomes very large.

The problem is also a Nonlinear MPC problem because of the

nonlinear relationship between the control variables and the

objective and constraints, which further exacerbates the com-

putational complexity. The numerical solution of the NMPC

optimal control problems is typically based on direct optimal

control methods using Newton-type optimization schemes.

Even the computational complexity of very low-complexity

implementations of NMPC are at least O(T (n2
x+nxnu)) [59],

with T = Tp being the prediction horizon and nx = 5Nj + 1
and nu = 2Nj respectively the state and input dimensions for

our problem. Finally, the centralized approach is inflexible, in

the sense that adding new devices to the network requires

the controller to drastically update its model. To address

This article has been accepted for publication in IEEE Internet of Things Journal. This is the author's version which has not been fully edited and
content may change prior to final publication. Citation information: DOI 10.1109/JIOT.2022.3185082

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Univ of Calif San Diego. Downloaded on August 08,2022 at 18:10:54 UTC from IEEE Xplore. Restrictions apply.

13

these issues, we distribute the computation among the network

devices.

B. Proposed Controller Methodology

We decompose the central Nonlinear MPC problem

PrC(x(k)) into a set of local subproblems Prp(xp(k)), p ∈
{1, ..., P} for the edge devices and a light-weight central

subproblem PrG(xG(k)) for the gateway. The goal of this

decomposition is twofold: first, to ensure that the central

subproblem is computationally much less intensive and smaller

in size than the overall problem (has fewer state variables

and constraints, and linear unlike PrC(x(k))), and second,

to ensure that the coupling between local subproblems are

minimal and solvable in tolerable time in constrained edge

devices.

Handling the Size. In our problem, it is redundant to search

for an optimal solution over a space of size (5N+1)×Tp as in

Equation (24). The reason is that if the overall system consists

of subsystems whose time constants are far from each other

(e.g. temperature Ted,i and performance {μi, Li}), then the

fast varying subsystem (performance) will arrive at its steady-

state before the slow subsystem (temperature) has deviated

significantly. Leveraging this, we can employ different control

periods for the slow and fast subsystems. If the control period

of the slow subsystem is longer than the settling time of the

fast subsystem, the fast subsystem can always enter its steady-

state. Thus, the control loops for them are decoupled and can

be designed independently. We decrease the overall problem

size by employing larger control periods for slower changing

subsystems and separating their control loops.

Handling the Nonlinearity. The “causal chain” of Fre-
quency→DissipatedPower →Temperature can be split into

two parts. The first part, as expressed by Equation (2), is highly

nonlinear while the power-to-temperature model in Equation

(6) is linear. We separate the linear and nonlinear parts to keep

the MPC model in the central subproblem linear, minimizing

its complexity.

Handling the Couplings. Since the states of any edge device

pair {μi,Ted,i} and {μj ,Ted,j}, i �= j are already decoupled,

a natural way to decompose the problem is to associate

local subproblems with only these states to each edge device.

The state for communication rates, Li, are coupled through

the gateway queue structure (16) and bandwidth constraints.

The battery states qA,i and qB,i are coupled through the

objective function (18) that aims at maximizing the battery

remaining energy in the edge devices. Therefore, a complete

decentralization is not possible and coordination between edge

devices is needed. We associate a central subproblem with

the coupled states {Li, qA,i, qB,i} to be solved at the gateway

using MPC.

C. Proposed Controller Architecture

In the following section, we describe the structure of our

proposed controller. Fig. 11 shows our hierarchical multi-
timescale control approach. The lower level controllers at

each edge device manage the local, ‘decoupled’ variables,

whereas the top-level controller at the gateway coordinates the

Edge Devices

Gateway

Reliability
Controller

Thermal
Controller

Performance
Controller

Top-Level Controller

Reliability
Controller

Thermal
Controller

Performance
Controller...

Local DRM 1 Local DRM N
Rtarget

Tref

Pref PrefLref Lrefq q

∆f , ∆L ∆f , ∆L

λtarget λtarget

Long Intervals (LI) Medium Intervals (MI) Short Intervals (SI)

1

1

1 1 1

11

1

Rtarget
N

Tref
N

NN N

N N

NTamb,1 Tamb,N

Fig. 11: Controller block diagram

control decisions among the controllers at the lower level. The

overall system consists of subsystems whose control variables

operate at different time scales. Leveraging this, we apply three

different time scales: Long Intervals (LI), in the order of hours

that targets slow reliability changes, Medium Intervals (MI),

in the order of seconds for temperature variations, and Short

Intervals (SI), in the order of milliseconds for performance-

related decisions. In this multi-timescale approach, the faster-

varying subsystems arrive at their steady-state before the

slower subsystems, which minimizes violations; thus, it leads

to a minimal loss in control quality with a significant reduc-

tion in complexity [60]. The proposed controller architecture

consists of the following four components.

1) Edge Reliability Controller: Estimates the reliability

degradation of the edge devices at the beginning of each LI.

Based on the current reliability value and the target reliability

constraint Rtarget, it computes a reference temperature T ref
ed ,

which is used as a constraint by the Edge Thermal Controller.

2) Edge Thermal Controller: Computes the maximum

reference power dissipation value P ref
ed , which would ensure

that, at the end of the LI timescale, the average temperature

experienced in the whole LI is less than T ref
ed . Then, it modifies

these maximum values based on the target input data rate to

obtain a lower, energy optimal power reference, which is sent

to the Gateway Top-Level Controller.

3) Gateway Top-Level Controller: Calculates the reference

optimal communication rates Lref for each edge device (at

each MI timescale) that maximizes their remaining battery

energies and satisfy the delay requirements of their respective

tasks, while abiding by the bandwidth limit BW .

4) Edge Performance Controller: Computes the edge

device computation and communication rates by applying

controls Δf and ΔL at each SI time scale.

D. Edge Reliability Controller

Leveraging the equivalent degradation time technique in

Equation (14), the Edge Reliability Controller calculates the

reliability degradation of the edge device at each LI, using the

averaged temperature over the previous LI. Then, it selects the

reference temperature T ref
ed for the next LI by solving the con-

vex optimization problem in Equation (25). The computation

of convex optimization introduces a negligible overhead since

the controller activates by intervals in the order of days.

This article has been accepted for publication in IEEE Internet of Things Journal. This is the author's version which has not been fully edited and
content may change prior to final publication. Citation information: DOI 10.1109/JIOT.2022.3185082

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Univ of Calif San Diego. Downloaded on August 08,2022 at 18:10:54 UTC from IEEE Xplore. Restrictions apply.

14

min
T target
ed

‖R(teqv + trem, T ref
ed)‖ (25)

s.t. R(teqv + trem, T target
ed) ≥ Rtarget

R(teqv, T
target
ed) = Rd,ed(kLI)

Rd,ed(kLI) indicates the dynamic reliability at the long in-

terval kLI and trem is the remaining time from the current

LI until tlife. The result of the optimization, T target
ed , is the

temperature which would satisfy the reliability target Rtarget

at the desired lifetime tlife, given the device operates at that

temperature for the remaining of its lifetime. The constraint on

reliability is met if the average LI temperature TLI
ed is below

T ed
target at the end of the LI.

Within an LI, if the difference between target temperature

and average temperature, i.e., T target
ed − T avg

ed , is non-zero at

any given time instant, then the system has either not fully

exploited the available reliability margin (if positive) or it has

violated the reliability constraint for the current LI so far (if

negative). Therefore, we introduce a new variable T ref
ed to keep

track of under/over-utilization of the reliability margin and

adjust the system accordingly.

T avg
ed (kMI) =

(kMI−1) · T avg
ed (kMI−1) + TLI

ed (kMI)

kMI
(26)

T ref
ed (kMI) =

tLI · T target
ed − kMI · T avg

sys (kMI)

tLI − kMI
(27)

In the above equations, kMI indicates the kth MI inside an

LI and tLI is the duration of an LI (measured in number

of MIs). If the system is being over-utilized, then T ref
ed will

be lower than T target
ed , accommodating for the extra thermal

stress experienced until that point. This way, the Edge Thermal
Controller can reduce the thermal stress for the remaining part

of the current LI using T ref
ed as a reference.

E. Edge Thermal Controller

Within a long interval, the Edge Thermal Controller de-

termines the power Ped(kMI) at each MI time step kMI ,

which would ensure that the temperature Ted experienced in

the whole LI on average is less than T ref
ed . We recast the

temperature state-space model in Equation (6) as follows:

Ted(kMI + 1) = AT · Ted(kMI) +BT · uT (kMI) (28)

uT (kMI) = Ped(kMI) + CT /BT · Tamb(kMI) (29)

Then, the state feedback uT (kMI) is calculated as We apply

the state-feedback control law [61] for a linear system. Then,

the input uT (kMI) is calculated as:

uT (kMI) = KT (T
ref
ed − Ted(kMI)) (30)

where KT is the feedback gain which is determined us-

ing pole placement technique. The ambient temperature

Tamb is assumed to be known since it can be monitored

with temperature sensors. Hence, we retrieve Ped(kMI) =
[Ppu(kMI), Prf (kMI)]

T using the following equation.

Ped(kMI) = KT (T
ref
ed − Ted(kMI))− CT /BT · Tamb(kMI)

(31)

0 0.5 1 1.5 2 2.5 3 3.5 4
0

0.5

1

1.5

2

2.5

3

3.5

4

Fig. 12: Average power as functions of computation and communi-
cation rates

If an edge device dissipates the resulting power Ped at each

time step kMI , then it can very closely meet the reliability

target Rtarget. However, to meet the QoS requirements on

data rate λtarget, the edge device may need to consume more

power than Ped. Or, if λtarget is a relatively small rate, then

consuming Ped would be ‘excess’. Therefore, to compute the

reference power values P ref
ed to be sent to the Gateway Top-

Level Controller, we do a slight modification (trimming) on

the power values Ped obtained by Equation (31) concerning

the power scaling of the components Ppu and Prf .

Algorithm 1: Power Reference Trimming

Input: λtarget,Ppu(kMI),Prf (kMI)

Output: P ref
ed

1 Calculate Ppu for μ = λtarget

2 Calculate Prf for L = λtarget

3 if Ppu|μ=λ < Prf |L=λ then
4 if Ppu|μ=λ < Ppu(kMI) then
5 P ref

ed = [Ppu|μ=λ, 0]
T

6 else
7 Calculate {μref | Ppu|μ=μref = Ppu(kMI)}
8 Lref = λtarget − μref

9 P ref
ed = [Ppu(kMI), Prf |L=Lref]T

10 else
11 if Prf |μ=λ < Prf (kMI) then
12 P ref

ed = [0, Prf |μ=λ]
T

13 else
14 Calculate {Lref | Prf |L=Lref = Prf (kMI)}
15 μref = λtarget − Lref

16 P ref
ed = [Ppu|μ=μref , Prf (kMI)]

T

P ref
ed Trimming. Up until a certain rate, processing data on

the PU consumes less power than communicating the data,

as shown in Fig. 12. However, it is more energy efficient

to communicate data for higher rates since PU power con-

sumption scales superlinearly with processing rate while RF

power consumption scales linearly with communication rate.

For a given λtarget, we use Algorithm 2 to find a tighter, more

energy efficient power reference than what we have obtained

in Equation (31) for the Gateway Top-Level Controller’s
problem. First, the algorithm calculates the required power

This article has been accepted for publication in IEEE Internet of Things Journal. This is the author's version which has not been fully edited and
content may change prior to final publication. Citation information: DOI 10.1109/JIOT.2022.3185082

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Univ of Calif San Diego. Downloaded on August 08,2022 at 18:10:54 UTC from IEEE Xplore. Restrictions apply.

15

consumption for processing or communicating data at rate

λtarget. If processing power Ppu is the smaller of the two, then

it is further compared with the value obtained from Equation

(31). All needed power can be allocated to the PU if the

required processing rate results in a power which is lower

than what the thermal constraints allow (Line 5). Otherwise,

we calculate the corresponding maximum allowed processing

rate (μref) and allocate the RF power consumption such that

the rest of the data is communicated at rate Lref (Lines 7-9).

If initially processing power Prf is found to be smaller, then

same procedures are done for the RF (Lines 10-16).

F. Gateway Top-Level Controller

The goal of the Gateway Top-Level Controller is to maxi-

mize the remaining battery energies of the edge devices while

assuring that the task delay requirements are satisfied and the

bandwidth limit is not exceeded. It solves a standard quadratic

programming (QP) form MPC with a linear system model.

min
Ped

Tp−1∑
kMI=0

−‖1T q(kMI)‖2Y + ‖Ped(kMI)− Pref
ed ‖2Z (32)

s.t. kMI = 0, ..., Tp

qA,i(kMI+1) = AqqA,i(kMI)+BqqA,i(kMI)−1TPed,i(kMI)

Vdd

qB,i(kMI+1) = CqqA,i(kMI)+DqqB,i(kMI)

QG(kMI+1) = [QG(kMI)+
∑

vTPed,i(kMI)−μG(kMI)]
+

ZG,j(kMI+1) = [ZG,j(kMI)− μG,j(kMI) + εG,j]
+

QG(kMI) ≤ Qmax

ZG(kMI) ≤ Zmax∑
vTPed,i(kMI) ≤ BW

where we used the fact that [0 g/ρ]·Ped = L and rewritten the

communication rate variables L in terms of power variables

Ped with vT = [0 g/ρ]. q = [qA, qB]
T and Ped are the

combined vectors of all edge devices for battery states and

power states respectively. Y and Z are matrices that weigh

the importance of the elements in the cost function. Since

the power reference vector P ref
ed is constructed in the Edge

Thermal Controller to yield an energy efficient reference,

the two terms in the cost function are not conflicting. At

each sampling time kMI , the solver yields the optimal so-

lution Ped(kMI) within the MPC prediction horizon Tp that

minimizes the cost function and meets the constraints. After

converting power values to communication rate values, the

respective communication rate references Lref
i for each edge

device are sent to the Edge Performance Controllers.

G. Edge Performance Controller

The two performance-related state variables controlled by

the Edge Performance Controller are: (i) PU processing rate

μ(f) and (ii) RF communication (offloading) rate L. Then,

the control variables include the required change in the op-

erating frequency Δf and change in the communication rate

ΔL. The Edge Performance Controller receives the reference

communication rates Lref (kMI) from the Gateway Central
Controller at each MI. Based on this, it adjusts Δf(kSI) and

ΔL(kSI) such that the sum of data processed locally and data

offloaded amount to the data arrival rate λtarget(kMI). They

are computed using a similar state-feedback control law as in

the Edge Thermal Controller.

Δf(kSI)=KP,1[(λtarget(kMI)−Lref (kMI))−f(kSI)] (33)

ΔL(kSI)=KP,2(Lref (kMI)−L(kSI)) (34)

VII. INTER-GATEWAY MANAGEMENT

The optimization problem posed in Section IV-B is Mixed-

Integer Programming (MIP). The majority of MIP problems

are NP-hard, exact solutions result in poor scalability, and

therefore encouraging the use of efficient heuristics to ap-

proximate the optimum within finite time. We observe that

Equation (22) can be precisely decomposed into its integer

and continuous variables. We propose a two-step solution that

separates and individually handles these variables:

(i) Determine the sink for each commodity, i.e., find the set

of devices EDi ∈ Oj for each gateway. The result of this

step imposes constraints for the next step; the amount

of data absorbed by the gateways for all commodities

rikl, l ∈ VG.

(ii) Solve the resulting optimization problem over a convex

set of continuous variables to find the optimal r = {rikl},

given the constraints from the previous step.

The first step is essentially a combinatorial problem with the

goal of identifying the best edge device to gateway assignment

over a finite set of options. The second step consists of only

continuous variables, it can be further converted to Linear

Programming (LP) for which we explain the procedure below

in detail.

A. Gateway Assignment

In Section IV-B we assumed that in general, each com-

modity should only be communicated to a single gateway,

that is, data from one edge device cannot be distributed to

multiple gateways. A gateway assignment step is necessary as

a result of this assumption. However, in some circumstances, it

may be admissible to forward any commodity to any gateway.

For example, if the gateways are interconnected via Ethernet,

they can reshare the offloaded data over Gbps-speed wired

connections with minimal delay. Or, if any of the gateways can

carry out the same type of tasks with the received data, there is

no need to try forwarding data exclusively to a particular one.

For such cases, our approach offers natural way of separating

the overall problem; if the network allows for communication

to any gateway,it is sufficient to solve only step (ii), bypassing

the gateway assignment step.

We assign edge devices to gateways primarily based on

fairness: each gateway should receive similar amounts of of-

floaded data and in proportion to their available computational

resources. The bandwidth is limited at each local network

(per gateway). Furthermore, we try to allocate less data to

the gateways with higher queue utilization and assign edge

This article has been accepted for publication in IEEE Internet of Things Journal. This is the author's version which has not been fully edited and
content may change prior to final publication. Citation information: DOI 10.1109/JIOT.2022.3185082

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Univ of Calif San Diego. Downloaded on August 08,2022 at 18:10:54 UTC from IEEE Xplore. Restrictions apply.

16

devices to closer gateways in terms of physical distance. The

gateway assignment problem is formulated as follows:

maximize
Xassign

min
j∈VG

N∑
i=1

cijxij (35)

subject to

N∑
i=1

Lixij ≤ BWj , ∀j ∈ {1, ...,M}
M∑
j=1

xij = 1, ∀i ∈ {1, ..., N}

xij ∈ {0, 1}, ∀i ∈ {1, ..., N}, ∀j ∈ {1, ...,M}
where Xassign is the assignment matrix in which elements

xij assume value 1 if edge device i is assigned to gateway

j and 0 otherwise. This is a problem from the class of

bottleneck generalized assignment problems (BGAP) [62] and

many heuristic and exact solution procedures exist [63], [64],

[65]. The GAP is a well-known integer programming problem

involving the assignment of a number of jobs to a number

of agents such that each job is performed by a unique agent,

capacity limitations on the agents are not exceeded, and the

total cost of the assignments is minimized. The bottleneck (or

minimax) version of this problem is where the objective is to

minimize the maximum of the costs of the assignments that are

made. In our problem, there are N commodities (tasks) that are

assigned to M gateways (agents). The offloading rates Li of the

corresponding commodities are the number of resource units

consumed. cij is the cost of gateway j to consume commodity

of edge device i, which we define as a decreasing function of

queue utilizations Qi and distance dij .

We use the approximate algorithm in [64] that heuristically

searches for a solution to BGAP. The algorithm is centralized.

All edge devices communicate the values of their offloading

rates to a head gateway. Then, the problem is solved to find the

optimal assignments and the results are communicated back to

the edge devices.

B. Routing

The gateway assignment step specifies the amount of data

to be absorbed by the gateways for all commodities. The

remainder of the overall problem is then a multicommodity

flow multiple sink routing problem with known commodity-to-

sink assignments. From this point, we solely need to deal with

continuous functions defined on a set of continuous variables,

that is, the flow rates.

The MTTF function itself is non-linear and non-convex,

still, the optimization problem can be linearized in a few steps.

We first start by taking the natural logarithm of the objective

function.

logMTTFed,i(r) = log γc +
Ea

kBTed,i(r)
(36)

Maximizing the minimum of logMTTFed,i is an equivalent

problem to our original problem. The decision variable, flow

rate vector r, is related to MTTF through temperature function

T (r). From Equation (6), temperature is a function of power

dissipation. On the other hand, power is a function of data

flow rates through Equation (3). Both relations are linear,

but the temperature equation is time-dependent. To have a

time-invariant approximation for device temperature, we use

the state-space formulation and find the time step tss where

temperature reaches a steady-state. We unroll the list of

linear equations until time step t = tss and calculate two

coefficients k1 and k2 of power P and ambient temperature

Tamb respectively. The time-invariant temperature equation

used in our problem formulation is as follows:

Ted,i(r) = k1Ped,i(r) + k2Tamb,i + k3 (37)

This can be explicitly written as Ted(r) =∑
l∈Sk

Ekl

∑N
i=1 r

i
kl in summation form where E is a

matrix. The entries Ekl are constants depending on the pair

of nodes k and l, while the bias terms in (37) are omitted

without loss of generality. We also do not show the constant

term log γc in the following derivation to further simplify

notation. Then, logMTTFed,i

∑
l∈Sk

Ekl

∑N
i=1 r

i
kl =

Ea

kB
.

Altogether, the problem in Equation (22)–excluding the

gateway assignment component– can be rewritten as

maximize MTTF (38)

subject to
∑
l∈Sk

(rikl − rilk) = Li, i = k ∀i, k ∈ VED

∑
l∈Sk

(rikl − rilk) = 0, i �= k ∀i, k ∈ VED

rikl ≥ 0, ∀i, k ∈ VED, ∀l ∈ Sk∑
k∈VED

rikl = Li, ∀i ∈ VED, ∀{l | EDi ∈ Ol}

MTTF
∑
l∈Sk

Ekl

N∑
i=1

rikl ≤
Ea

kB
, ∀i, k ∈ VED

The last set of inequality constraints combined with the new

objective variable ensures that the minimum MTTF of all

nodes in the network is maximized. We convert this problem

into an equivalent linear programming formulation by change

of variables y = 1/MTTF .

minimize y (39)

subject to
∑
l∈Sk

(rikl − rilk) = Li, i = k ∀i, k ∈ VED

∑
l∈Sk

(rikl − rilk) = 0, i �= k ∀i, k ∈ VED

rikl ≥ 0, ∀i, k ∈ VED, ∀l ∈ Sk∑
k∈VED

rikl = Li, ∀i ∈ VED, ∀{l | EDi ∈ Ol}

∑
l∈Sk

Ekl

N∑
i=1

rikl ≤ y
Ea

kB
, ∀i, k ∈ VED

We can interpret the above problem as minimizing the upper

bound q on the inverse of the mean time to failure of all nodes

in the network. Following a similar rationale as discussed

in Section VI-A, we propose to solve this problem in a

distributed manner. A centralized solution is not desirable due

This article has been accepted for publication in IEEE Internet of Things Journal. This is the author's version which has not been fully edited and
content may change prior to final publication. Citation information: DOI 10.1109/JIOT.2022.3185082

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Univ of Calif San Diego. Downloaded on August 08,2022 at 18:10:54 UTC from IEEE Xplore. Restrictions apply.

17

to lacking scalability and flexibility. Therefore, we decompose

the problem into subproblems with dual decomposition, then

solve them distributedly at each node using the subgradient

method.

Distributed Algorithm. We first convert the problem in

Equation (38) into a completely decomposable form by in-

troducing additional variables. The objective function y is

replaced by
∑

i∈VED
y2i , similar to the technique presented

in [66]. Under this new objective function, network lifetime

optimization is reformulated as a quadratic programming prob-

lem.

minimize
∑

i∈VED

y2i (40)

subject to
∑
l∈Sk

(rikl − rilk) = Li, i = k ∀i, k ∈ VED

∑
l∈Sk

(rikl − rilk) = 0, i �= k ∀i, k ∈ VED

rikl ≥ 0, ∀i, k ∈ VED, ∀l ∈ Sk∑
k∈VED

rikl = Li, ∀i ∈ VED, ∀{l | EDi ∈ Ol}

∑
l∈Sk

Ekl

N∑
i=1

rikl ≤ yk
Ea

kB
, ∀i, k ∈ VED

yi = yj , ∀i ∈ VED, ∀j ∈ Si

Here, we have local variables yi’s for each node and con-

straints that enforce them to be equal. The objective func-

tion is quadratic and thus strictly convex in the yi’s. We

need to find a flow r minimizing this objective, such that
1
yi

≤ MTTFed,i(r), which can be done using the dual

decomposition approach.

We construct the dual problem by introducing Lagrange

multipliers υi for the flow conservation constraints and νij
for the lifetime equality constraints. This results in Partial
Lagrangian given by (41), where the linear equality constraints

(temperature constraints) are not relaxed as they can be

satisfied locally at each node. We also do not include the

single gateway communication constraint
∑

k∈VED
rikl = Li.

Instead, we manually set the flows rikl = 0 for all i, k ∈ VED

and all l ∈ VG such that EDi /∈ Ol. This ensures there are

no flows to other gateways and all the flow is restricted to be

communicated to the assigned one.

L(y, r, υ, ν) =
∑

i∈VED

y2i

+
∑

k∈VED

N∑
i=1
i=k

υi
k

{ ∑
l∈Sk

(rikl − rilk)− Li

}

+
∑

k∈VED

N∑
i=1
i �=k

υi
k

{ ∑
l∈Sk

(rikl − rilk)
}

+
∑

i∈VED

∑
j∈Si

νij(yi − yj)

=−
∑

k∈VED

N∑
i=1
i=k

υi
kLi +

∑
k∈VED

{
y2k

+ yk
∑
l∈Sk

(νkl − νlk) +

N∑
i=1

∑
l∈Sk

rikl(υ
i
k − υi

l)
}

(41)

The dual function is given by

g(υ, ν) =

inf
r,y

{
L(y, r, υ, ν)

∣∣∣∣∣
0 ≤ rikl, ∀i ∈ VED, ∀l ∈ Sk∑
l∈Sk

Ekl

N∑
i=1

rikl ≤ yk
Ea

kB
, ∀i, k ∈ VED

}

(42)

From the expression of the Lagrangian, it is clear that the

dual function can be evaluated separately in the variables

corresponding to each node k ∈ VED. The variables local

to node k are yk and rikl, l ∈ Sk. We use the subgradient

method [67], [68] to solve dual problem in a distributed

manner.

Subgradient Method: It is an iterative optimization algo-

rithm for minimizing nondifferentiable convex functions. At

each iteration t, the nodes only use the local information

available Ekl and the Lagrange multipliers υk(t), νkl(t) to

solve the following convex quadratic program with variables

yk(t), r
i
kl(t) for k ∈ VED, l ∈ Sk.

minimize y2k(t) + yk(t)
∑
l∈Sk

(νkl(t)− νlk(t)) (43)

+
N∑
i=1

∑
l∈Sk

rikl(t)(υ
i
k(t)− υi

l(t))

subject to
∑
l∈Sk

Ekl

N∑
i=1

rikl(t) ≤ yk(t)
Ea

kB

rikl(t) ≥ 0, ∀i ∈ VED, ∀l ∈ Sk

The optimal values of the above problem are then used to

evaluate the subgradient components of −g for given (υ,ν)

pair at iteration t. The subgradients are given by

fik(t) =

{
Li −

∑
l∈Sk

(rikl(t)− rilk(t)), i = k
−∑

l∈Sk
(rikl(t)− rilk(t)), i �= k

This article has been accepted for publication in IEEE Internet of Things Journal. This is the author's version which has not been fully edited and
content may change prior to final publication. Citation information: DOI 10.1109/JIOT.2022.3185082

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Univ of Calif San Diego. Downloaded on August 08,2022 at 18:10:54 UTC from IEEE Xplore. Restrictions apply.

18

Gateway 1

Reliability
Controller

Thermal
Controller

Performance
Controller

Top-Level Controller

Reliability
Controller

Thermal
Controller

Performance
Controller...

Local DRM 1 Local DRM N
Rtarget

Tref

Pref PrefLref Lrefq q

∆f ∆L ∆f ∆L

λtarget λtarget

1

1

1 1 1

11

1

Rtarget
N

Tref
N

NN N

N N

NTamb,1 Tamb,N

Gateway M

Reliability
Controller

Thermal
Controller

Performance
Controller

Top-Level Controller

Reliability
Controller

Thermal
Controller

Performance
Controller...

Local DRM 1 Local DRM N
Rtarget

Tref

Pref PrefLref Lrefq q

∆f ∆L ∆f ∆L

λtarget λtarget

1

1

1 1 1

11

1

Rtarget
N

Tref
N

NN N

N N

NTamb,1 Tamb,N

11

1

1

1

1

11

1

M

M

M

M

M M

M

M

M

1 M

Quadratic
Program

Subgradient
Update

Local Flow Control 1

Quadratic
Program

Subgradient
Update

Local Flow Control N1

Quadratic
Program

Subgradient
Update

Local Flow Control 1

Quadratic
Program

Subgradient
Update

Local Flow Control NM

yk, rkl, uk, vkl yk, rkl, uk, vkl yk, rkl, uk, vkl

Inter-Gateway Manager
In

tr
a-

Ga
te

w
ay

 M
an

ag
er

Reroute Signal Reroute SignalEmergency Signal Emergency Signal

Routing

Fig. 13: Framework block diagram

hkl(t) = yl(t)− yk(t)

Finally, the Lagrange multipliers υk(t) and νkl(t) are up-

dated using the subgradients based on the following equations:

υi
k(t+ 1) = υi

k(t)− β(t)f i
k(t) (44)

νkl(t+ 1) = νk(t)− β(t)hkl(t) (45)

where β(t) is a positive scalar step-size. After solving prob-

lem (43) and updating the Lagrange multipliers, each node

exchanges the updated values of yk, rkl, υk, and νkl with

their neighbors l ∈ Sk.

VIII. EVALUATION

A. Experimental Setup

To illustrate the effectiveness of our solution, we conduct

experiments on realistic edge computing scenarios. In our

simulations, we use real power and temperature measurements

collected from actual IoT devices. The experiments are real-

ized on MATLAB. Fig. 13 shows the block diagram of the

simulation infrastructure. Some important model parameters

used in the simulation are summarized in Table

TABLE II: Model Parameters

Parameters Value Parameters Value

a 1.59× 10−11 g 0.12× 107

b 8.62× 10−7 SI 0.1 s
Cf 0.22 MI 1 s
Cs 1× 10−4 LI 86, 400 s

β 3.2 T ref 45◦C
ρ2 0.064 W εG 10

Hardware: The target edge devices are Raspberry Pi 2

with ARM Cortex-A7 CPU and the gateway is a Raspberry

Pi 4 Model B with Arm Cortex-A72 CPU. The gateway (Pi

4) exhibits around ten times more instructions per second

compared to edge devices (Pi 2) [69]. We measure the CPU

and WiFi power consumption and temperature of the edge

devices by running various applications under different am-

bient temperatures, then fit the models in Section III. The

maximum power consumptions of PU and RF components are

Pmax
pu = 2.16W and Pmax

rf = 1.44W respectvely. We use the

T-KiBaM [45] as our battery model to realistically capture the

discharge characteristics of the batteries. For reliability analy-

sis, we calibrate the parameters of the model in Equation (12)

by selecting a worst-case, a nominal, and a best-case device

operation temperature throughout its lifetime. These values are

selected to be 70◦C, 45◦C, and 20◦C respectively. We test

our proposed technique with trace driven network simulations,

following the characteristics of the modeled platform.

Environment: The reliability heavily depends on the tem-

perature of the environment that the device operates, so we

consider various ambient temperature conditions. We use the

temperature dataset from [70], which contains hourly ambient

temperature measurements of 36 cities for 5 years from 2012

to 2017. To demonstrate the effect of ambient temperature,

we simulate scenarios in very hot (e.g., Phoenix) and cold

(e.g., Toronto) locations. Moreover, we consider the effects

of the device being placed in different places by selecting

the temperature as Tamb ± U(−10,+10) , where U is a

uniform distribution. For example, a device placed in a closed

container, when airflow around the device is restricted, so its

heat is trapped, and the container is in the sun, will have much

higher ambient temperature than a device placed under a shade

in open air.

Application Scenario: Tasks assigned to the edge devices

can be any segment of an application’s pipeline. For example,

traditional ML applications can be hierarchically segmented

into filtering, feature extraction, and classification tasks. Or,

neural networks (NN) can be inherently segmented into layers

that have different jobs (e.g., convolutional layers for feature

extraction in CNNs). In our experiments, we consider the

ML classification and regression tasks characterized for edge

computing settings in [14] with their corresponding power

consumptions. These classification and regression tasks can

either run on the edge devices or the gateway. In the simula-

tions we assign tasks in a randomized fashion, to immediately

run one after another. The task sizes are sampled from an

exponential distribution, where the mean size is 5 MB. Task

are completed when all the data belong to a task is processed

either by edge device or gateway. We randomly pick delay-

sensitive or delay-tolerant tasks from the whole set of tasks.

For delay-sensitive tasks, the task deadlines Dm are assigned

randomly from a uniform distribution, U(0.2, 2) seconds. The

offloaded data for a given task should not wait in the gateway

queues longer than the assigned deadline.

This article has been accepted for publication in IEEE Internet of Things Journal. This is the author's version which has not been fully edited and
content may change prior to final publication. Citation information: DOI 10.1109/JIOT.2022.3185082

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Univ of Calif San Diego. Downloaded on August 08,2022 at 18:10:54 UTC from IEEE Xplore. Restrictions apply.

19

We conduct experiments based on a practical scenario of

human activity recognition (HAR) [71], implemented on edge

devices [50]. The task is to infer the label for one of five

everyday activities (e.g. walking, running, cleaning, etc.) at

the edge device using data gathered from three IMU sensors

mounted at the chest, ankle and wrist, along with a heart rate

monitor. The input rates from sensors to the classification task

change due to (i) varying number of inference requests per sec-

ond (QoS requirement), (ii) differing sampling rates of sensors

based on desired signal quality [50]. We randomly assign the

data input rate λtarget for a given task and choose it from a

uniform distribution, U(0, 1) Mbps. Furthermore, we assume

that each gateway can allocate μG = 3 Mbps processing rate

for the offloaded data, deterministically, constant throughout

the experiments.

Topology: In the following, we first present results on an

example of local network with a single gateway and solely

demonstrate the performance of the Intra-Gateway Manage-
ment piece of our approach. We then consider a large-scale

example with multiple gateways for thorough evaluation. For

both scenarios, we set the bandwidth limit to be BW = 5
Mbps for each local network (per gateway).

B. Local Network - Single Gateway Results

We perform simulations on a network with single gateway

and 8 edge devices randomly distributed over a field of

50m x 50m, with dmax = 25. We compare our Intra-Gateway
Management approach with the following techniques:

• No ERC-ETC is our solution without the Edge Reliability
Controller (ERC) and Edge Thermal Controller (ETC).

• All Edge is the naive approach which assigns all the

computation to the edge devices with no offloading to

the gateway.

• Round Robin is a method where the edge devices take

turn offloading data.

• Samie (the name of the author) is the work presented

in [11]. At each iteration of the algorithm, it finds the

edge devices with the lowest and the second lowest

battery life. Then, if their lifetimes can be extended by

increasing offloading, the edge devices are allocated more

communication bandwidth.

• Pagliari (the name of the author) [21] makes the decision

for offloading based on a combined metric of energy

consumption and execution time demands of the tasks.

Reliability and Temperature: We first analyze the reliability

gains of adopting our solution. The target reliability for the

edge devices is empirically selected to be 0.85 at tlife of

3 years (36 months). Values ranging from 0.6 to 0.9 are

commonly selected as the cut-off levels for 3 to 5 years of

target lifetime [39]. Fig. 14 shows the time it takes for the edge

device with the minimum reliability in the network to violate

the target reliability of 0.85. The results are presented relative

to the target lifetime of 36 months. Our approach reaches the

target reliability at 37.7 months, whereas all other approaches

fail much sooner, falling short by as much as 20 months, 7

months being the best. Fig. 15 shows the reliability curve and

temperature vs time for the edge device with the minimum

-6.3

-20.3
-18.6

 -7.5 -6.9

1.6

Proposed No ERC-ETC All Edge Round-Robin Samie Pagliari
-25

-20

-15

-10

-5

0

5

Fig. 14: The relative time until edge device violates the reliability
target of 0.85 (positive is better)

0 6 12 18 24 30 36
0.7

0.75

0.8

0.85

0.9

0.95

1

0 6 12 18 24 30 36
35
40
45
50
55
60
65
70
75

Fig. 15: Reliability curve and the long time temperature behaviour
of the device and the controller

reliability for our approach. The target reliability is met very

closely at 3 years. As seen from the plots, the Edge Thermal
Controller outputs a lower reference temperature when the

average internal temperature of the device increases due to

the varying ambient temperature.

Energy Savings: Fig. 16 presents the minimum remaining

battery energy in the network. The values are plotted relative

to the All Edge approach which consumes the most energy out

of all methods. Our approach shows similar quality in terms

of energy efficiency compared to the relative approaches while

meeting the reliability requirements. Samie [11] displays good

results because their algorithm is tuned for energy savings, at

each iteration of their algorithm, it specifically tries to improve

the energy consumption of the device with the lowest battery

energy. However, Samie’s approach violated reliability target

by more than 15 months as can be seen in Fig. 14.

Quality of Service: As described in Section IV, there are

three QoS constraints: input data rate, network bandwidth, and

Proposed No ERC-ETC All Edge Round-Robin Samie Pagliari
100

101

102

103

104

Fig. 16: Minimum battery charge in the network

This article has been accepted for publication in IEEE Internet of Things Journal. This is the author's version which has not been fully edited and
content may change prior to final publication. Citation information: DOI 10.1109/JIOT.2022.3185082

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Univ of Calif San Diego. Downloaded on August 08,2022 at 18:10:54 UTC from IEEE Xplore. Restrictions apply.

20

task deadlines. The proposed controller satisfies all of them

for a single local network. There are no violations due to the

strict constraints in the MPC controller employed. A detailed

evaluation is carried out for multi-gateway networks in the

following subsection.

C. Multi-Gateway Network Results

We further evaluate our proposed solution including both

the Intra-Gateway Management and the Inter-Gateway Man-
agement components on multi-gateway networks. The exper-

iments are repeated for different number of gateways: 2, 3,

4, and for different number of edge devices: 12, 36. Network

devices are assumed to be randomly distributed over a field

of 100m x 100m, with dmax = 50. All other parameters

and variables are kept the same as for the local network

simulations.

None of the comparisons in the previous section were

proposed for multi-gateway systems, so we modified them by

adding routing and gateway selection capabilities. We select

three baseline methods: All Edge, Fixed + Samie, and Fixed +
Pagliari. The prefix label Fixed means that the routes are static

and the topology is fixed. We assign N/M edge devices to

their closest gateways and the assignments do not change over

the simulation horizon. We pick Samie [11] and Pagliari [21]

for further evaluation as the former was the approach providing

the best battery lifetime and the latter was the best reliability

comparison. For more elaborate testing, we also implement

them on top of our Intra-Gateway Management solution for

routing and gateway assignment, denoted by IG. This helps

us single out and show the contribution of Intra-Gateway
Management when compared with the Fixed versions of the

same methods. The evaluated approaches are summarized

below.

• All Edge assigns all the computation to the edge devices

with no offloading to the gateways, only the output of the

compute processes are communicated to the gateways.

• Fixed + Samie is Samie’s approach with fixed topology.

• Fixed + Pagliari is Pagliari’s with fixed topology.

• IG + Samie is Samie’s approach with our routing and

gateway selection method added.

• IG + Pagliari is Pagliari’s approach with our routing and

gateway selection method added.

Reliability: Similar to the local network simulations, the

target reliability for edge devices is selected to be 0.85 at

36 months. In other words, the degradation in the reliability

of edge devices should not exceed 0.15 to achieve desirable

MTTF. Fig. 17a illustrates how long it takes for the edge

devices to degrade below this desired value. The results are

given for a network of 12 edge devices, but only the minimum

lifetime amongst those is plotted. The target reliability is

reached in 39.2, 43.2, and 46.5 months with our approach

for 2, 3, and 4 gateways respectively. All approaches follow

the same trend with an improvement in lifetime for increasing

number of gateways. When there are more gateways, offloaded

data needs to travel less, either in terms of the number of

routing hops or the actual physical distance. Moreover, edge

devices can offload more data because bandwidth occupation

2 3 4
of Gateways

0

10

20

30

40

50

(a) 12 edge devices

2 3 4
of Gateways

0

10

20

30

40

50

(b) 36 edge devices

Fig. 17: The lifetime until reliability target violation

and queue lengths at the gateways are reduced. The proposed

approach delays reliability violation by 5.8 months compared

to the closest approach (IG+Pagliari) for 2 gateways to as

much as 7.4 months for 4 gateways. Except the proposed

approach, all approaches fail to meet the target time of

36 months for the configuration with 2 gateways. We also

observe that introducing Inter-Gateway Management to other

approaches improves lifetime. For example, Pagliari approach

gains 2.3 months with IG over fixed gateway assignment and

routing.

For the network with 36 edge devices, as shown in Fig. 17b,

edge devices degrade at higher rates and reliability target is

violated sooner. The bandwidth gets occupied much faster,

queues are filled up, and edge devices can offload much less

data to the gateways. As a result, all approaches tend to

behave more like the All Edge approach, because most of

the processing should be done at the edge devices in the

lack of offloading opportunities. In this case, the performance

gap between the proposed approach and others is widened,

displaying at least 7.4 months difference for 2 gateways.

Energy Savings: The primary goal in this work is to reduce

maintenance costs of IoT systems by means of reliability man-

agement. Maintenance costs arise as a result hardware faults,

which require repair, component replacement, or complete

node replacement. The hardware faults can be attributed to

power outages caused by battery depletion and failures due

to reliability degradation. Therefore, as in [72], maintenance

cost for a network can be formulated as a function of both

energy depletion and reliability degradation. It should be noted

that one may maximize the time it takes for the batteries to

deplete by simply choosing to offload if the communication

power consumption is lower than computation for a given

task and input data rate. This does not necessarily improve

device lifetime or maintenance cost as these decisions can

induce higher reliability degradation on the device. Also if

there are energy harvesting sources available, then metrics

such as battery lifetime do not carry significance as much.

We are interested in an evaluation criteria that covers both

This article has been accepted for publication in IEEE Internet of Things Journal. This is the author's version which has not been fully edited and
content may change prior to final publication. Citation information: DOI 10.1109/JIOT.2022.3185082

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Univ of Calif San Diego. Downloaded on August 08,2022 at 18:10:54 UTC from IEEE Xplore. Restrictions apply.

21

2 3 4
of Gateways

0

1

2

3

4

5

6

7

(a) 12 edge devices

2 3 4
of Gateways

0

1

2

3

4

5

6

7

(b) 36 edge devices

Fig. 18: Energy savings over reliability degradation

energy savings and reliability degradation. In particular, we

want to answer the question: “The energy savings come at the

cost of how much degradation in reliability?”. Intuitively, the

amount of loss in reliability should decrease with increasing

energy savings. However, it is not only the amount of energy

saved that influences reliability; the timing of savings are

critical as well. If the device has high power dissipation

during times when its temperature is high (due to ambient

conditions), then the effect of this on its reliability will be

detrimental. Ideally, energy savings should come when the

ambient conditions are severe, and power dissipation should

occur when device is cooler. This arrangement would lead up

to the least amount of loss in reliability.

In Fig. 18a, we evaluate and show energy savings over

degradation in reliability for each approach with a network

of 12 devices. The results improve with energy savings and

inversely proportional to degradation. We find energy savings

relative to the baseline approach All Edge where edge devices

do all the computation. For example, energy saving value 1.2

means the battery lifetime is 20% improved over running all

the workloads on the edge, without any offloading. Reliability

degradation is calculated in the standard way used throughout

the paper. It can be seen from the plots that the proposed

approach provides high energy savings while preserving relia-

bility, up to 49.0% improvement over the closest approach for

3 gateways. This can be attributed to the fact that our approach

offloads computation to both reduce thermal stress and save

energy, i.e., the savings come at the right time and in the

right amount. The difference between All Edge and the others

is evident with higher number of gateways since offloading

becomes much more efficient compared to local processing.

The same procedure is repeated for a network with 36 edge

devices and the results are depicted in Fig. 18b. Similar to our

reliability results, the improvements decrease when there are

TABLE III: Quality of Service

Deadline Misses [%]
Gateway Utilization [%]

G1 G2 G3 Avg
Proposed 0.0 90.6 94.1 92.2 92.3

Fixed + Samie 22.1 62.0 99.9 91.3 84.4
Fixed + Pagliari 7.7 54.5 67.5 66.7 62.9

IG + Samie 8.2 96.4 99.1 98.5 98.0
IG + Pagliari 3.8 80.6 87.1 84.0 83.9

more edge devices in the network. For example, the proposed

approach is 6.48x better than All Edge for the network with

12 edge devices and 2 gateways whereas the gain is 5.32x for

36 edge devices. Deploying more gateways per edge device

can extend the lifetime of the edge devices and reduce their

energy consumption.

Quality of Service: All approaches satisfy the bandwidth

constraints since each are strictly forced not to exceed them.

We report task deadline miss ratios and gateway utilization

values in Table III. The experiments are simulated for a

network of 36 edge devices and 3 gateways. Averaged deadline

misses and gateway utilization are given over all devices.

We define gateway utilization as the percentage of time the

gateway is busy. A gateway is assumed busy unless there is

no data waiting in its input queue to be serviced. Deadlines

are missed if data of a certain task waits in the gateway queue

longer than the task deadline.

Our proposed approach does not miss any deadlines because

the queueing dynamics and maximum deadline constraints

were explicitly considered in the solution. As a naive approach,

the tasks can always be executed completely on edge devices

at the desired input rates. This would also yield zero deadline

misses, but perform the worst in terms of reliability and energy

as shown above. The proposed approach offloads data to

preserve energy and reliability whenever it is possible to do so

without violating deadlines. In such cases when gateway queue

lengths grow and execution times approach maximum deadline

values, operation is switched to complete local processing to

avoid any misses. Other approaches are not deadline-aware and

produce misses from 3.8% (IG + Pagliari) up to 22.1% (Fixed
+ Samie). Fixed routing and gateway assignments particularly

increase deadline misses since it is not possible to reassign

edge devices to different gateways when queues are filled up.

Pagliari [21] approach considers task execution times which

improves its performance in comparison to Samie [11].

We explicitly report individual gateway utilization values

along with their average to show the variation between

different gateways in the network. For all approaches the

gateways are highly utilized since there is a large number

of edge devices per single gateway. It is favorable to utilize

the gateways whenever appropriate by offloading data since it

reduces the excessive load on the edge devices. Our approach

has the second highest average utilization with 92.3% after

IG + Samie with 98.0%. Samie approach iteratively increases

offloading and uses more gateway resources if communication

is more energy efficient than computation for a given task

and data rate combination. This usually results in completely

utilizing the gateways until no available resources left, which

also leads to deadline misses. In comparison, the proposed

approach is more conservative with the gateway use and avoids

This article has been accepted for publication in IEEE Internet of Things Journal. This is the author's version which has not been fully edited and
content may change prior to final publication. Citation information: DOI 10.1109/JIOT.2022.3185082

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Univ of Calif San Diego. Downloaded on August 08,2022 at 18:10:54 UTC from IEEE Xplore. Restrictions apply.

22

any adverse overutilization outcome.
The balance of utilization across gateways is an important

criteria for QoS as well. For Fixed + Samie, some gateways are

overloaded (99.9% and 91.3% utilization) with offloaded data

despite other gateways being underutilized (62.0% utilization).

Such an unbalanced employment of gateway resources would

lead to suboptimal QoS; the load on the gateways should

be distributed evenly. Our approach and the other approaches

assisted by Inter-Gateway Management exhibit low utilization

variation between different gateways. The maximum deviation

is ±3.5%, ±2.7%, and ±6.5% for Proposed, IG + Samie, and

IG + Pagliari respectively. Gateway assignments are based on

fairness under Inter-Gateway Management, hence, it balances

out bandwidth and gateway utilizations across local networks.
Delay-Sensitive Tasks. For the above experiments, we

picked delay-sensitive or delay-tolerant tasks randomly from

the whole set of tasks. The existence of delay-tolerant tasks

helps edge devices to more flexibly offload data as long

queue wait times are not a problem for them. Intuitively, it

is favorable to serve delay-sensitive tasks at the edge devices

whereas offload the delay-tolerant tasks. We conduct further

experiments, separately for delay-tolerant and delay-sensitive

tasks, to elaborate on this intuition. The experiments are

simulated for a network of 36 edge devices and 3 gateways

similar to the previous Quality of Service experiments, but

we only report results for our proposed approach. For delay-

sensitive tasks, we assign the task deadlines Dm randomly

from a uniform distribution, U(0.2, 2) seconds.

TABLE IV: Quality of Service for Different Task Types

Deadline Misses [%]
Gateway Utilization [%]

G1 G2 G3 Avg
Delay-Tolerant 0.0 98.6 97.4 97.4 97.8
Delay-Sensitive 0.0 82.6 86.9 85.4 85.0

Table IV presents the deadline miss and gateway utilization

results for the two task types. For both, we have 0.0% deadline

misses because the tasks can always be executed completely

on edge devices at the desired input rates as a naive approach.

On the other hand, gateways are utilized more for the delay-

tolerant tasks compared to delay-sensitive tasks, with averages

97.8% and 85.0%, respectively. If the queue is already filled

and the wait times are higher than task deadlines, then the

data of delay-sensitive tasks are processed at the edge device

instead of being offloaded.
Packet Loss. Throughout our experiments, the assumption

was that the communication is perfectly reliable. Therefore,

every packet transmission is assumed successful, i.e., no

packet drops. This might not be true in realistic communication

scenarios. Here, we consider a more practical scenario, with

probabilistic packet losses where retransmissions are handled

with a mechanism like TCP. For simplicity, we set a link era-

sure probability, that is, the probability of losing the complete

data that belong to a task, instead of specifying a bit error

rate or a packet error rate. Then, data offloading for a task

fails with probability pe. When failure occurs, the complete

task data needs to be communicated again. For example, if

the task size is 5 Mb and data rate is 1 Mbps, then the

offloading of this task is delayed by 5Mb
1Mbps = 5sec in case of

a failure. We run simulations for various failure probabilities

and report corresponding deadline misses in Table V. Only

delay-sensitive tasks are used for these experiments with the

aforementioned specifications.

TABLE V: Quality of Service Under Packet Loss

pe 0.0 0.1 0.2 0.3 0.4 0.5
Deadline Misses [%] 0.0 3.3 6.8 17.2 34.5 72.1

As seen from the table, deadline misses are not 0.0% as we

impose transmission failures. This is expected as our algorithm

does not account for the possible connection errors. When the

transmission fails for a task, the queue fills up due to other

offloading edge devices until the retransmission starts. Since

the proposed method does not include the retransmission delay

in the overall delay calculation, we start observing deadline

misses.

Low-Capability Edge Devices. According to our edge device

model and task input rate specifications, the tasks can always

be executed completely on edge devices at the desired input

rates. In other words, the edge devices can support up to 1

Mbps data processing rate, which is the maximum λtarget

value we set for our tasks. As a result of this assumption,

deadline misses can be avoided with the naive approach of

processing everything on the edge devices with no offloading.

Though, it should be noted that this approach severely de-

grades edge device reliability and consumes excessive energy.

We now assume low-capability edge devices that have lower

processing data rates than the maximum task input rate. Let

us randomly assign the data input rate λtarget for a given task

and choose it from a uniform distribution, U(0, 1) Mbps as

before, but limit the edge device processing rate μ. Below

table shows deadline misses for various limits μlim on edge

device processing rates. Only delay-sensitive tasks are used

for these experiments with the aforementioned specifications.

TABLE VI: Quality of Service Under Packet Loss

μlim [Mbps] - 0.9 0.8 0.7 0.6 0.5
Deadline Misses [%] 0.0 0.0 2.6 4.1 5.8 10.8

The proposed approach can still meet the deadlines perfectly

when the edge devices are only capable of processing data

with rate 0.9 Mbps. However, deadline misses increase with

decreasing μlim as edge devices necessarily need to offload

more data.

Communication & Computation Overhead: We evalu-

ate the overhead of the communication for Intra-Gateway
Management and Inter-Gateway Management on the actual

data communication between edge devices and gateways.

Let Mngmt Data be the total amount of data exchanged for

management and Task Data be the total amount of task-related

data offloaded by the edge devices to gateways. Then, the

overhead in the occupied communication bandwidth is defined

as:
Mngmt Data

Task Data
× 100% (46)

We simulate and log all data exchanges within network de-

vices, then sum the values to find the total amounts for both

This article has been accepted for publication in IEEE Internet of Things Journal. This is the author's version which has not been fully edited and
content may change prior to final publication. Citation information: DOI 10.1109/JIOT.2022.3185082

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Univ of Calif San Diego. Downloaded on August 08,2022 at 18:10:54 UTC from IEEE Xplore. Restrictions apply.

23

management-related and task-related data. The experiment is

done for the same network as previous subsection, consisting

of 36 edge devices and 3 gateways. Data exchanges for

management is found to be introducing 2.8% overhead in

communication bandwidth. We also measure the overhead in

the number of messages communicated, computed as follows:

Mngmt Msgs

Task Msgs
× 100% (47)

where Mngmt Msgs is the total number of messages ex-

changed for management and Task Msgs is the total number

of task-related messages communicated. Here we assume that

data for each task is sent in a single message, but in practice

it should be packetized. Thus, we essentially measure the

number of times a new connection (e.g., a TCP flow) is estab-

lished between two devices. Results show that the overhead

in the number of exchanged messages is 11.2%. Management

messages are small because they contain a few values whereas

task-related messages is large in volume. Therefore, if the

task-related messages are packetized, then they overwhelm the

management messages in count.

The Intra-Gateway Management requires the communica-

tion of power consumption and battery energy values from

edge devices to gateways. Then, the gateways communi-

cate back offloading rate values to the edge devices. This

needs to be repeated every medium interval (MI). A total

of 5N real numbers are communicated per MI seconds. For

Inter-Gateway Management, the subgradient method is fully-

distributed and iteratively converges to the solution. Each edge

device exchanges the updated values of optimization variable,

decision variable, and Lagrange multipliers of the subproblems

they are solving with their neighbors. A node is then needs

to communicate 3N+M+1 real numbers per neighbor. In

the initial run of the distributed algorithm, it converges to

the optimal point after 5000 iterations for a network with 36

edge devices. However, an optimal solution is not necessarily

needed as Intra-Gateway Management carries out further op-

timizations. The subgradient method can be terminated within

5% of the optimal value around 1000 iterations. Moreover, the

algorithm converges in much fewer iterations, lower than 100,

when initialized from the previous solution.

We also discuss the computation overhead of our solution.

For Intra-Gateway Management, each edge device runs reli-

ability, thermal, and performance controllers. The Edge Reli-
ability Controller solves a convex optimization problem. The

computation of convex optimization introduces a negligible

overhead since the controller activates by intervals in the order

of days. The Edge Thermal Controller and Edge Performance
Controller are simply linear state-feedback controllers that can

be implemented with a single floating-point dot-product per

iteration. The Gateway Top-Level Controller solves a standard

quadratic programming (QP) form MPC with a linear system

model at intervals in the order of a few seconds. For similar

scale QP problems to ours, commercial solvers can compute

the solution under a millisecond [73]. Finally, we have two

separate algorithms under Inter-Gateway Management: routing

and gateway assignment. Since the routing algorithm is a dis-

tributed implementation of a linear programming problem, its

computation involves solving only a very small scale convex

optimization at each edge device. This incurs a latency in the

order of only microseconds. We use a centralized approximate

algorithm that heuristically searches for a solution to gateway

assignment. This can be computed under a second in modern

processors in gateway devices [64]. It should be noted that

the frequency of Inter-Gateway Management updates are much

lower in comparison.

IX. DISCUSSION

The inherent assumption in our method is that network

Mean Time to Failure (MTTF) is the minimum of any node

in the network, meaning that the network lifetime is the time

until the first node dies. This definition is one of the most

prevelant in literature and was used in many recent works [12],

[74], [75]. Therefore, we consider the device-level reliability

optimization or requirements, and try to keep the reliability of

the most degraded device at high levels. Intuitively, this would

be ideal for networks where all nodes are equally critical for

the system to operate. However, there are interactions between

devices and there might be dependencies in data, or between

different devices. Furthermore, the devices are heterogeneous.

There might be redundancy of devices such as backups, hence

a single edge device failure may not result in the failure

of operation of the entire network. Other edge devices with

sensors of the same or even different types can substitute

their work, such that the fault goes undetectable. When all

aspects are considered, we need more sophisticated system-

level reliability models.

A possible future direction is to incorporate different net-

work reliability models in our management approach. Differ-

ent from single device, network-level reliability modeling can

be examined by graph-based models. For example, a simple

model is formulized by the serial reliability expression as

described in our paper. Commonly used analytical models for

networks include Fault Tree [76], Binary Decision Diagram

(BDD) [77], Reliability Block Diagram (RBD) [78], graph

transformation [79], or state-space methods such as Markov

Chains [80] and Petri Nets [81] — see [82] for a comprehen-

sive survey. The first step in assessing the impact of individual

device reliability and failure mechanisms is to determine the

conditions for network failure. Furthermore, it is crucial to

analyze how these conditions change depending on the IoT

application. One can then identify the reliability bottlenecks

in the application and reconfigure the management algorithm

to adapt. There are strategies that rank the devices’ importance

within an application and their criticality towards ensuing the

network failure condition, based on certain metrics such as

Birnbaum’s measure [83]. Using techniques such as in [76],

[84], we can evaluate the system reliability, determine the

criticality of IoT devices, and construct system-level models

that reflect inter-dependencies between devices.

X. CONCLUSION

In this paper, we introduced a dynamic management scheme

for IoT edge computing systems. The goal of our approach is

This article has been accepted for publication in IEEE Internet of Things Journal. This is the author's version which has not been fully edited and
content may change prior to final publication. Citation information: DOI 10.1109/JIOT.2022.3185082

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Univ of Calif San Diego. Downloaded on August 08,2022 at 18:10:54 UTC from IEEE Xplore. Restrictions apply.

24

to satisfy the Quality of Service (QoS) and reliability require-

ments of the system while maximizing the remaining energy

of the edge device batteries. We considered a multi-gateway

network and proposed a scheme with two interconnected

components: Intra-Gateway Management and Inter-Gateway
Management. Together, they control the offloading rates of

edge devices, carry out gateway assignments, and orchestrate

the routing within the network. Each of the problems are

handled in a distributed fashion, resulting in a light-weight

and scalable solution. The results indicate that our approach

improves the lifetime of a network with 36 edge devices by

5.8 months compared to the closest approach for 2 gateways to

as much as 7.4 months for 4 gateways. We also evaluated the

energy savings and QoS for various network configurations.

Experiments demonstrated similar energy savings compared to

the state-of-the-art approaches while preserving reliability, but

fewer task deadline misses.

We propose to extend this work for ML-specific applica-

tions in future work. Our computation offloading framework,

handled by the Intra-Gateway Management, finds the best

data offloading rates from an edge device to a gateway,

given the workload characteristics. However, the algorithm is

application-agnostic, meaning, it does not exploit the appli-

cation structure. Many machine learning models have proper

structures that can be broken up into sequential parts. For

example, neural networks can be split to run the first few

layers at the edge and the rest in the cloud. Features can

be extracted at the edge and then be communicated over the

internet, which significantly reduces communication costs. For

future work, similar to what we proposed in this paper, we

will optimize computation offloading and additionally find

the optimal machine learning workload distribution between

edge and cloud. The primary QoS metric for machine learning

applications is the learning accuracy. Therefore, we propose to

optimize the model accuracy high while minimizing training

costs.

ACKNOWLEDGEMENTS

This work was partially supported by SRC task #2805.001,

NSF grants #1911095, #1826967, #1730158 and #1527034,

and by KACST.

REFERENCES

[1] International Data Corporation, “IoT Growth De-
mands Rethink of Long-Term Storage Strategies,”
https://www.idc.com/getdoc.jsp?containerId=prAP46737220, 2020,
[Online].

[2] ——, “The Growth in Connected IoT Devices,”
https://www.idc.com/getdoc.jsp?containerId=prUS45213219, 2019,
[Online].

[3] Cisco Jasper, “The hidden costs of delivering iiot
services: Industrial monitoring & heavy equipment,” 2016.
[Online]. Available: https://www.cisco.com/c/dam/m/en ca/never-
better/manufacture/pdfs/hidden-costs-of-delivering-iiot-services-white-
paper.pdf

[4] J. W. McPherson, “Reliability challenges for 45nm and beyond,” in 2006
43rd ACM/IEEE design automation conference. IEEE, 2006.

[5] T. S. Rosing, K. Mihic, and G. De Micheli, “Power and reliability man-
agement of socs,” IEEE Transactions on Very Large Scale Integration
(VLSI) Systems, vol. 15, no. 4, pp. 391–403, 2007.

[6] C. Zhuo, D. Sylvester, and D. Blaauw, “Process Variation and
Temperature-Aware Reliability Management,” in Proceedings of the
Conference on Design, Automation and Test in Europe. European
Design and Automation Association, 2010.

[7] B. Zhang, N. Mor, J. Kolb, D. S. Chan, K. Lutz, E. Allman,
J. Wawrzynek, E. Lee, and J. Kubiatowicz, “The cloud is not enough:
Saving iot from the cloud,” in 7th {USENIX} Workshop on Hot Topics
in Cloud Computing (HotCloud 15), 2015.

[8] P. Hu, S. Dhelim, H. Ning, and T. Qiu, “Survey on fog computing:
architecture, key technologies, applications and open issues,” Journal of
network and computer applications, vol. 98, 2017.

[9] W. Shi, J. Cao, Q. Zhang, Y. Li, and L. Xu, “Edge computing: Vision
and challenges,” IEEE internet of things journal, 2016.

[10] J. Srinivasan, S. V. Adve, P. Bose, and J. A. Rivers, “The Case
for Lifetime Reliability-Aware Microprocessors,” in ACM SIGARCH
Computer Architecture News, vol. 32, no. 2, 2004.

[11] F. Samie, V. Tsoutsouras, L. Bauer, S. Xydis, D. Soudris, and J. Henkel,
“Computation offloading and resource allocation for low-power iot edge
devices,” in IEEE World Forum on Internet of Things (WF-IoT), 2016.

[12] K. Cao, G. Xu, J. Zhou, T. Wei, M. Chen, and S. Hu, “Qos-adaptive
approximate real-time computation for mobility-aware iot lifetime opti-
mization,” IEEE Transactions on Computer-Aided Design of Integrated
Circuits and Systems, vol. 38, no. 10, 2018.

[13] F. Samie, V. Tsoutsouras, D. Masouros, L. Bauer, D. Soudris, and
J. Henkel, “Fast operation mode selection for highly efficient iot edge
devices,” IEEE Transactions on Computer-Aided Design of Integrated
Circuits and Systems, vol. 39, no. 3, 2019.

[14] W. Cui, Y. Kim, and T. S. Rosing, “Cross-Platform Machine Learning
Characterization for Task Allocation in IoT Ecosystems,” in Computing
and Communication Workshop and Conference (CCWC). IEEE, 2017.

[15] Z. Sheng, C. Mahapatra, V. C. Leung, M. Chen, and P. K. Sahu, “Energy
efficient cooperative computing in mobile wireless sensor networks,”
IEEE Transactions on Cloud Computing, vol. 6, 2015.

[16] J. Kwak, Y. Kim, J. Lee, and S. Chong, “Dream: Dynamic resource
and task allocation for energy minimization in mobile cloud systems,”
Journal on Selected Areas in Communications, 2015.

[17] J. Henkel, S. Pagani, H. Amrouch, L. Bauer, and F. Samie, “Ultra-
low power and dependability for iot devices (invited paper),” in Design,
Automation & Test in Europe Conference & Exhibition (DATE), 2017.

[18] L. Li, S. Li, and S. Zhao, “Qos-aware scheduling of services-oriented
internet of things,” IEEE Transactions on Industrial Informatics, 2014.

[19] A. Yousefpour, G. Ishigaki, R. Gour, and J. P. Jue, “On reducing iot
service delay via fog offloading,” Internet of Things Journal, 2018.

[20] R. Li, Z. Zhou, X. Chen, and Q. Ling, “Resource price-aware offloading
for edge-cloud collaboration: A two-timescale online control approach,”
IEEE Transactions on Cloud Computing, 2019.

[21] D. J. Pagliari, R. Chiaro, C. Yukai, V. Sara, M. Enrico, and P. Massimo,
“Input-dependent edge-cloud mapping of recurrent neural networks
inference,” in ACM/IEEE Design Automation Conference (DAC), 2020.

[22] S. Sardellitti, G. Scutari, and S. Barbarossa, “Joint optimization of radio
and computational resources for multicell mobile-edge computing,”
IEEE Transactions on Signal and Information Processing over Networks,
vol. 1, no. 2, pp. 89–103, 2015.

[23] Y. Wang, X. Lin, and M. Pedram, “A nested two stage game-based
optimization framework in mobile cloud computing system,” in Inter-
national Symposium on Service-Oriented System Engineering. IEEE,
2013.

[24] L. Liu, Z. Chang, X. Guo, S. Mao, and T. Ristaniemi, “Multiobjec-
tive optimization for computation offloading in fog computing,” IEEE
Internet of Things Journal, vol. 5, no. 1, pp. 283–294, 2017.

[25] R. Deng, R. Lu, C. Lai, T. H. Luan, and H. Liang, “Optimal workload
allocation in fog-cloud computing toward balanced delay and power
consumption,” IEEE internet of things journal, 2016.

[26] F. Samie, V. Tsoutsouras, S. Xydis, L. Bauer, D. Soudris, and J. Henkel,
“Distributed qos management for internet of things under resource con-
straints,” in International Conference on Hardware/Software Codesign
and System Synthesis, 2016.

[27] M. Katsaragakis, D. Masouros, V. Tsoutsouras, F. Samie, L. Bauer,
J. Henkel, and D. Soudris, “Dmrm: Distributed market-based resource
management of edge computing systems,” in Design, Automation & Test
in Europe Conference & Exhibition (DATE). IEEE, 2019.

[28] F. Samie, L. Bauer, and J. Henkel, “Hierarchical classification for
constrained iot devices: A case study on human activity recognition,”
IEEE Internet of Things Journal, vol. 7, no. 9, pp. 8287–8295, 2020.

[29] K. Ergun, R. Ayoub, P. Mercati, D. Liu, and T. Rosing, “Energy and qos-
aware dynamic reliability management of iot edge computing systems,”

This article has been accepted for publication in IEEE Internet of Things Journal. This is the author's version which has not been fully edited and
content may change prior to final publication. Citation information: DOI 10.1109/JIOT.2022.3185082

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Univ of Calif San Diego. Downloaded on August 08,2022 at 18:10:54 UTC from IEEE Xplore. Restrictions apply.

25

in Asia and South Pacific Design Automation Conference (ASP-DAC).
IEEE, 2021.

[30] F. Samie, V. Tsoutsouras, L. Bauer, S. Xydis, D. Soudris, and J. Henkel,
“Distributed trade-based edge device management in multi-gateway iot,”
ACM Transactions on Cyber-Physical Systems, 2018.

[31] S. Baskar and V. Dhulipala, “Comparative analysis on fault tolerant
techniques for memory cells in wireless sensor devices,” Asian Journal
of Research in Social Sciences and Humanities, vol. 6, no. cs1, pp.
519–528, 2016.

[32] J. Yao and N. Ansari, “Fog resource provisioning in reliability-aware
iot networks,” IEEE Internet of Things Journal, vol. 6, no. 5, pp. 8262–
8269, 2019.

[33] I. Dietrich and F. Dressler, “On the lifetime of wireless sensor networks,”
ACM Transactions on Sensor Networks (TOSN), vol. 5, 2009.

[34] J.-H. Chang and L. Tassiulas, “Maximum lifetime routing in wireless
sensor networks,” IEEE/ACM Transactions on networking, 2004.

[35] Y. Peng, W. Qiao, L. Qu, and J. Wang, “Sensor fault detection and
isolation for a wireless sensor network-based remote wind turbine con-
dition monitoring system,” IEEE Transactions on Industry Applications,
vol. 54, no. 2, pp. 1072–1079, 2017.

[36] K. Okafor, “Dynamic reliability modeling of cyber-physical edge com-
puting network,” International Journal of Computers and Applications,
vol. 43, no. 7, pp. 612–622, 2021.

[37] E. Karl, D. Blaauw, D. Sylvester, and T. Mudge, “Reliability Model-
ing and Management in Dynamic Microprocessor-Based Systems,” in
Design Automation Conference, 2006.

[38] A. K. Coskun, T. S. Rosing, and K. Whisnant, “Temperature Aware Task
Scheduling in MPSoCs,” in 2007 Design, Automation & Test in Europe
Conference & Exhibition. IEEE, 2007, pp. 1–6.

[39] P. Mercati, F. Paterna, A. Bartolini, L. Benini, and T. Š. Rosing,
“Warm: Workload-Aware Reliability Management in Linux/Android,”
IEEE Transactions on Computer-Aided Design of Integrated Circuits
and Systems, vol. 36, no. 9, 2016.

[40] L. Huang, F. Yuan, and Q. Xu, “Lifetime reliability-aware task allocation
and scheduling for mpsoc platforms,” in Design, Automation & Test in
Europe Conference & Exhibition, 2009.

[41] H. Wang, L. Hu, X. Guo, Y. Nie, and H. Tang, “Compact piecewise lin-
ear model based temperature control of multi-core systems considering
leakage power,” IEEE Transactions on Industrial Informatics, 2019.

[42] G. Singla, G. Kaur, A. K. Unver, and U. Y. Ogras, “Predictive dynamic
thermal and power management for heterogeneous mobile platforms,” in
Design, Automation & Test in Europe Conference & Exhibition (DATE).
IEEE, 2015, pp. 960–965.

[43] M. Abo-Zahhad, M. Farrag, A. Ali, and O. Amin, “An energy consump-
tion model for wireless sensor networks,” in International Conference
on Energy Aware Computing Systems & Applications. IEEE, 2015.

[44] M. R. Jongerden and B. R. Haverkort, “Which battery model to use?”
IET software, vol. 3, no. 6, pp. 445–457, 2009.

[45] L. M. Rodrigues, C. Montez, R. Moraes, P. Portugal, and F. Vasques,
“A temperature-dependent battery model for wireless sensor networks,”
Sensors, vol. 17, no. 2, 2017.

[46] C. G. Cassandras, T. Wang, and S. Pourazarm, “Optimal routing and
energy allocation for lifetime maximization of wireless sensor networks
with nonideal batteries,” IEEE Transactions on Control of Network
Systems, vol. 1, no. 1, pp. 86–98, March 2014.

[47] F. Beneventi, A. Bartolini, A. Tilli, and L. Benini, “An Effective Gray-
Box Identification Procedure for Multicore Thermal Modeling,” IEEE
Transactions on Computers, vol. 63, no. 5, 2012.

[48] P. Van Overschee and B. De Moor, “N4sid: Subspace algorithms
for the identification of combined deterministic-stochastic systems,”
Automatica, vol. 30, no. 1, pp. 75–93, 1994.

[49] T. N. Gia, M. Jiang, A.-M. Rahmani, T. Westerlund, P. Liljeberg, and
H. Tenhunen, “Fog computing in healthcare internet of things: A case
study on ecg feature extraction,” in International conference on computer
and information technology; ubiquitous computing and communications;
dependable, autonomic and secure computing; pervasive intelligence
and computing. IEEE, 2015.

[50] A. Thomas, Y. Guo, Y. Kim, B. Aksanli, A. Kumar, and T. S. Rosing,
“Hierarchical and distributed machine learning inference beyond the
edge,” in 2019 IEEE 16th International Conference on Networking,
Sensing and Control (ICNSC), 2019.

[51] S. Teerapittayanon, B. McDanel, and H.-T. Kung, “Distributed deep neu-
ral networks over the cloud, the edge and end devices,” in International
Conference on Distributed Computing Systems (ICDCS). IEEE, 2017.

[52] Z. Zhao, K. M. Barijough, and A. Gerstlauer, “Deepthings: Distributed
adaptive deep learning inference on resource-constrained iot edge

clusters,” IEEE Transactions on Computer-Aided Design of Integrated
Circuits and Systems, 2018.

[53] B. Heintz, A. Chandra, R. K. Sitaraman, and J. Weissman, “End-to-
end optimization for geo-distributed mapreduce,” IEEE Transactions on
Cloud Computing, vol. 4, no. 3, pp. 293–306, 2014.

[54] F. Metzger, T. Hoßfeld, A. Bauer, S. Kounev, and P. E. Heegaard,
“Modeling of aggregated iot traffic and its application to an iot cloud,”
Proceedings of the IEEE, vol. 107, no. 4, pp. 679–694, 2019.

[55] L. Kleinrock, Queueing systems, volume 2: Computer applications.
Wiley, 1976.

[56] M. J. Neely, “Opportunistic scheduling with worst case delay guarantees
in single and multi-hop networks,” in INFOCOM. IEEE, 2011.

[57] O. Iova, F. Theoleyre, and T. Noel, “Using multiparent routing in rpl to
increase the stability and the lifetime of the network,” Ad Hoc Networks,
2015.

[58] H. Sharma, A. Haque, and Z. A. Jaffery, “Maximization of wireless sen-
sor network lifetime using solar energy harvesting for smart agriculture
monitoring,” Ad Hoc Networks, vol. 94, p. 101966, 2019.

[59] G. Torrisi, “Low-complexity numerical methods for nonlinear model
predictive control,” Ph.D. dissertation, ETH Zurich, 2017.

[60] J. Lunze, Feedback control of large scale systems. Prentice Hall, 1992.
[61] G. F. Franklin, J. D. Powell, M. L. Workman et al., Digital control of

dynamic systems. Addison-wesley Reading, MA, 1998, vol. 3.
[62] J. Mazzola and A. Neebe, “Bottleneck generalized assignment prob-

lems,” Engineering Costs and Production Economics, 1988.
[63] J. B. Mazzola and A. W. Neebe, “An algorithm for the bottleneck

generalized assignment problem,” Computers & operations research,
1993.

[64] S. Martello and P. Toth, “The bottleneck generalized assignment prob-
lem,” European journal of operational research, 1995.

[65] Y. Fu, J. Sun, K. Lai, and J. W. Leung, “A robust optimization solution to
bottleneck generalized assignment problem under uncertainty,” Annals
of Operations Research, vol. 233, no. 1, pp. 123–133, 2015.

[66] R. Madan and S. Lall, “Distributed algorithms for maximum lifetime
routing in wireless sensor networks,” IEEE Transactions on wireless
communications, vol. 5, no. 8, pp. 2185–2193, 2006.

[67] D. P. Bertsekas and J. N. Tsitsiklis, Parallel and distributed computation:
numerical methods. Prentice-Hall, Inc., 1989.

[68] S. Boyd, L. Xiao, and A. Mutapcic, “Subgradient methods,” lecture notes
of EE392o, Stanford University, Autumn Quarter, 2003.

[69] MagPi, “The official Raspberry Pi Magazine,”
https://magpi.raspberrypi.org/, 2019, [Online].

[70] Kaggle, “Historical Hourly Weather Data,”
https://www.kaggle.com/selfishgene/historical-hourly-weather-data,
2017, [Online].

[71] A. Reiss and D. Stricker, “Introducing a new benchmarked dataset for
activity monitoring,” in 2012 16th International Symposium on Wearable
Computers. IEEE, 2012.

[72] X. Yu, K. Ergun, L. Cherkasova, and T. Š. Rosing, “Optimizing sensor
deployment and maintenance costs for large-scale environmental mon-
itoring,” IEEE Transactions on Computer-Aided Design of Integrated
Circuits and Systems, vol. 39, no. 11, pp. 3918–3930, 2020.

[73] “ODYS QP Solver,” https://www.odys.it/qp-solver-for-embedded-
optimization/, [Online].

[74] V. Valls, G. Iosifidis, and T. Salonidis, “Maximum lifetime analytics in
iot networks,” in IEEE INFOCOM 2019-IEEE Conference on Computer
Communications. IEEE, 2019, pp. 1369–1377.

[75] T. P. Raptis, A. Passarella, and M. Conti, “Maximizing industrial iot
network lifetime under latency constraints through edge data distribu-
tion,” in 2018 IEEE Industrial Cyber-Physical Systems (ICPS). IEEE,
2018, pp. 708–713.

[76] I. Silva, R. Leandro, D. Macedo, and L. A. Guedes, “A dependability
evaluation tool for the internet of things,” Computers & Electrical
Engineering, vol. 39, no. 7, pp. 2005–2018, 2013.

[77] A. Shrestha, L. Xing, Y. Sun, and V. M. Vokkarane, “Infrastructure com-
munication reliability of wireless sensor networks considering common-
cause failures,” International Journal of Performability Engineering,
vol. 8, no. 2, p. 141, 2012.

[78] S. Sinche, O. Polo, D. Raposo, M. Femandes, F. Boavida, A. Rodrigues,
V. Pereira, and J. S. Silva, “Assessing redundancy models for iot
reliability,” in 2018 IEEE 19th International Symposium on” A World of
Wireless, Mobile and Multimedia Networks”(WoWMoM). IEEE, 2018,
pp. 14–15.

[79] H. M. AboElFotoh, S. S. Iyengar, and K. Chakrabarty, “Computing
reliability and message delay for cooperative wireless distributed sensor
networks subject to random failures,” IEEE transactions on reliability,
vol. 54, no. 1, pp. 145–155, 2005.

This article has been accepted for publication in IEEE Internet of Things Journal. This is the author's version which has not been fully edited and
content may change prior to final publication. Citation information: DOI 10.1109/JIOT.2022.3185082

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Univ of Calif San Diego. Downloaded on August 08,2022 at 18:10:54 UTC from IEEE Xplore. Restrictions apply.

26

[80] D. Macedo, L. A. Guedes, and I. Silva, “A dependability evaluation
for internet of things incorporating redundancy aspects,” in Proceedings
of the 11th IEEE international conference on networking, sensing and
control. IEEE, 2014, pp. 417–422.

[81] D. Bruneo, A. Puliafito, and M. Scarpa, “Energy control in dependable
wireless sensor networks: a modelling perspective,” Proceedings of
the Institution of Mechanical Engineers, Part O: Journal of Risk and
Reliability, vol. 225, no. 4, pp. 424–434, 2011.

[82] L. Xing, “Reliability in internet of things: Current status and future
perspectives,” IEEE Internet of Things Journal, vol. 7, no. 8, pp. 6704–
6721, 2020.

[83] Z. W. Birnbaum and S. C. Saunders, “A new family of life distributions,”
Journal of applied probability, vol. 6, no. 2, pp. 319–327, 1969.

[84] M. L. Fairbairn, I. Bate, and J. A. Stankovic, “Improving the dependabil-
ity of sensornets,” in 2013 IEEE international conference on distributed
computing in sensor systems. IEEE, 2013, pp. 274–282.

This article has been accepted for publication in IEEE Internet of Things Journal. This is the author's version which has not been fully edited and
content may change prior to final publication. Citation information: DOI 10.1109/JIOT.2022.3185082

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Univ of Calif San Diego. Downloaded on August 08,2022 at 18:10:54 UTC from IEEE Xplore. Restrictions apply.

