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Abstract—The emerging paradigm of edge computing envisions
to overcome the shortcomings of cloud-centric Internet of Things
(IoT) by providing data processing and storage capabilities closer
to the source of data. Accordingly, IoT edge devices, with the
increasing demand of computation workloads on them, are prone
to failures more than ever. Hard failures in hardware due to aging
and reliability degradation are particularly important since they
are irrecoverable, requiring maintenance for the replacement of
defective parts, at high costs. In this paper, we propose a novel
dynamic reliability management (DRM) technique for multi-
gateway loT edge computing systems to mitigate degradation and
defer early hard failures. Taking advantage of the edge computing
architecture, we utilize gateways for computation offloading with
the primary goal of maximizing the battery lifetime of edge de-
vices, while satisfying the Quality of Service (QoS) and reliability
requirements. We present a two-level management scheme, which
work together to (i) choose the offloading rates of edge devices,
(i) assign edge devices to gateways, and (iii) decide multi-hop
data flow routes and rates in the network. The offloading rates are
selected by a hierarchical multi-timescale distributed controller.
We assign edge devices by solving a bottleneck generalized
assignment problem (BGAP) and compute optimal flows in a
fully-distributed fashion, leveraging the subgradient method. Our
results, based on real measurements and trace-driven simulation
demonstrate that the proposed scheme can achieve a similar
battery lifetime and better QoS compared to the state-of-the-
art approaches while satisfying reliability requirements, where
other approaches fail by a large margin.

Index Terms—Edge computing, computation offloading, con-
strained devices, device management, optimization and control.

I. INTRODUCTION

The Internet of Things (IoT) comprises billions of intercon-
nected heterogeneous devices that have the ability to sense,
communicate, compute, and actuate. IoT continues to rapidly
develop as it is adopted progressively across industries, in
governments, and in consumers’ daily lives. The number of
interconnected IoT devices has already exceeded 10 billion
and by 2025 it is expected to reach 40 billion [1]. A significant
portion of spending on the IoT ($746 billion in 2019 [2]) is
associated with maintenance and technical diagnostics due to
system failures, which motivates our work.

Kazim Ergun is with the Department of Electrical and Computer Engineer-
ing, University of California San Diego, La Jolla, CA 92093 USA (e-mail:
kergun@ucsd.edu)

Raid Ayoub and Pietro Mercati are are with the Strategic CAD Lab, Intel
Corporation, Hilsboro, OR 97124 USA

Tajana Rosing is with the Department of Computer Science and Engineer-
ing, University of California San Diego, La Jolla, CA 92093 USA

Copyright (c) 2022 IEEE. Personal use of this material is permitted.
However, permission to use this material for any other purposes must be
obtained from the IEEE by sending a request to pubs-permissions @ieee.org.

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See https://www.ieee.or

=2

C

Iy

3

Temperature [°C|
=

)
=]

0
1.5 2 2.5 3 35 4 0 05 1 1.5 2 2.5 3
Power Consumption [W] Time [years]

Fig. 1: (a) Device temperature as a function of power dissipation at
different ambient temperatures (b) Device reliability over time

An IoT system, as any electronic or mechanical system, is
prone to failures. Cisco estimated that for every 100k devices
that operate in IoT smart homes, around $6.7M/year are spent
for problems related to system failures [3]. The sources of
these failures are: user errors, communication problems, power
issues, soft and hard errors in hardware. The majority of the
errors result in a transient failure and are recoverable without
the need of physical human intervention. However, in the case
of hard errors, the devices age, degrade, and eventually fail,
requiring maintenance for the replacement of defective parts at
high costs. In this work, we devote our attention to mitigating
reliability degradation in 10T devices to defer hard failures.

Reliability degradation of electronic circuits worsens as
the technology scales due to intensified effects of various
mechanisms such as Time-Dependent Dielectric Breakdown
(TDDB), Bias Temperature Instability (BTI), and Hot Carrier
Injection (HCI) [4], [5], [6]. Degradation is mainly induced
by temperature stress, which depends on power dissipated for
running workloads and environmental conditions, e.g., ambient
temperature. To illustrate this cause-and-effect chain, in Fig. 1a
we depict the steady-state temperature of a device as a function
of its power dissipation at various ambient temperatures. Also,
Fig. 1b shows the reliability over time of the same device
as a function of its temperature. The values are based on
our measurements in Section VIII. (for temperature) and a
reliability model fitted to hypothetical worst-case and best-
case temperatures. As observed from the plots, an increase in
power dissipation leads to heating of the device, which in turn
accelerates reliability degradation.

Recently, due to the shortcomings of traditional cloud-
centric IoT (e.g., latency, energy, privacy, cost) [7], [8], Edge
Computing [9] is emerging as a promising solution, where
data processing is pushed to the edge of the IoT network
(as shown in Fig. 2). Since IoT devices at the edge are now
capable and powerful enough, Edge Computing envisions to
perform data processing and storage on them locally, close
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Fig. 2: 1oT network architecture

to the source of data. Accordingly, these edge devices will
run heavy workloads, dissipate more power than ever, and
heat up, with no active cooling. They operate in diverse
and sometimes harsh environments, thus, are often subject to
external (due to ambient temperature) as well as internal (due
to power dissipation) temperature stress, bringing reliability
concerns. Fortunately, this stress can be controlled by runtime
management techniques to achieve a desired reliability over
time [10]. Curbing power dissipation, in particular, helps by
lowering the device temperatures and reducing the effect of
temperature-driven failure mechanisms [5].

The Edge Computing architecture utilizes gateways to en-
able application-specific connectivity between edge and fog
devices (Fig. 2) [7]. The term “fog” refers to its cloud-like
properties, but closer to the “ground”, i.e., closer to the users or
the source of data. Being cloud-like is what differentiates fog
computing from edge computing; fog devices (e.g., servers)
are also in physical proximity to the users, but are still
powerful like cloud. The edge refer to low-power IoT devices,
or smart objects, mobile phones. As we illustrate in Fig. 2, our
definition places edge devices right at the bottom of the net-
work hierarchy and the fog devices very close to the cloud. The
gateways have limited computational capabilities compared to
fog devices (e.g., high-end servers), but still more capable
than low-power sensors, smart objects, and microcontrollers
at the edge. A portion of the computation assigned to edge
devices can be offloaded to IoT gateways. However, the edge
devices cannot independently carry out offloading because
the computation resources and communication bandwidth of
the gateways are limited, and have to be shared between
numerous devices. The offloading amount should be selected
in consideration with the Quality of Service (QoS), the energy
consumption and reliability of every edge device, and the
resources available at the gateway. Several prior works [11],
[12], [13] proposed different computation offloading and re-
source allocation techniques for cooperative operation in the
Edge Computing setting, but none considered the reliability of
edge devices in their approaches. As edge devices undertake
bigger workloads, thermal stress and reliability issues cannot
be neglected.

For typical edge computing systems, as studied by prior
work [14], [15], [11], [16], improving the energy efficiency
of devices while delivering a minimum QoS is the main
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goal since many edge devices are battery-operated or have
limited energy sources [17]. To reduce the number of main-
tenances performed for battery and component replacement,
battery lifetime should be maximized and a certain reliabil-
ity condition (e.g. minimum MTTF requirement) should be
satisfied for the edge device. On the other hand, the level of
user’s satisfaction, described by QoS, mostly improves with
increased computation. For example, processing data at high
sampling rates, making inference from high-resolution data
yield better predictions for machine learning tasks, which
would improve QoS. A dynamic and scalable management
mechanism is needed to control edge devices such that they
satisfy the reliability and QoS requirements in the most energy
efficient manner. The necessity for a dynamic solution is due
to following reasons: (i) the QoS requirements fluctuate at
runtime, (ii) the relative remaining energy of edge devices
vary over time, and (iii) the communication bandwidth and
the available resources at the gateways can change because of
unpredictable environments and other workloads respectively.
The edge computing system should quickly adapt to these
variations.

In addition to above argumentation, IoT systems usually in-
corporate many gateways, which provides a degree of freedom
to the problem at hand. Edge devices have multiple gateway
options to connect and offload computation. It is of great
importance to avoid inefficient system operation by properly
assigning edge devices to gateways. For example, there may be
cases where some gateways are congested with offloaded data
despite other gateways being underutilized. This unbalanced
employment of gateway resources would lead to suboptimal
system performance, thus, the load on the gateways should
be distributed evenly. There needs to be a mechanism that
intelligently assign edge devices to gateways. Furthermore,
offloaded data can be relayed in multiple hops through many
edge devices on the path to the gateways. The exact routes
from each edge device to their corresponding gateway should
also be determined.

Ideally, the gateways must be self-organizing and self-
supported [13], with no or minimum dependency on the
cloud [7]. In other words, the gateways should handle the
management of the system and provide control decisions to the
edge devices. This means that a light-weight, low-overhead,
dynamic, and scalable solution at the gateways is required for
the management to be responsive to dynamic variations in the
system and handle large number of edge devices distributed
over the network. However, the problem of managing the
reliability of edge devices poses high complexity due to its
size and nonlinearity; it is infeasible to solve it with compute-
intensive methods on resource-constrained gateways.

In this paper, we present a novel multi-gateway DRM
technique for IoT edge devices, taking advantage of the Edge
Computing architecture where a portion of the edge devices’
computation can be offloaded to the IoT gateways. The goal
of the management is to satisfy the QoS and reliability
requirements while maximizing the remaining energies of the
device batteries.

The contributions of this paper are as follows:

o To the best of our knowledge, we are the first to ad-
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dress the reliability management problem in a networked
multi-gateway edge computing setting. Unlike the DRM
techniques for stand-alone devices, our approach exploits
both individual (dynamic voltage and frequency scaling)
and network-level (offloading and routing) controls to
mitigate reliability degradation.

o We propose a two-level interconnected management
scheme, namely the Intra-Gateway Management and
the Inter-Gateway Management, which work together to
(1) choose the offloading rates of edge devices, (ii) assign
edge devices to gateways, and (iii) decide multi-hop data
flow routes and rates in the network.

o For Intra-Gateway Management, we formulate a finite
horizon nonlinear optimal control problem for finding
the best offloading rates for a local network with a
single gateway and its associated edge devices. We then
propose a hierarchical multi-timescale distributed con-
troller solution to deal with the high complexity of the
problem. We decompose the problem into low-overhead
sub-problems that are solved by leveraging a cascade
of linear controllers that act on different time scales,
distributed over the edge devices and the gateway.

o For Inter-Gateway Management, we construct a routing
problem to jointly decide which gateway to offload and
which network path to use for communicating data. The
solution is linearized and distributed among all edge
devices and gateways in the overall network via dual
decomposition and subgradient methods.

o Using real measurements to drive trace-driven simula-
tions, we demonstrate that our proposed scheme can
achieve a similar battery lifetime and better QoS com-
pared to the state-of-the-art approaches while satisfying
reliability requirements, where other approaches fail by a
large margin.

II. RELATED WORK
A. Edge Computing in loT Systems

The ToT contains a large number of battery-powered hetero-
geneous devices, connected in networks with multiple layers,
which should satisfy different service quality requirements in
an energy-efficient and reliable manner. Many recent efforts
have addressed these challenges in IoT, proposing computation
offloading, efficient resource allocation, and QoS management
solutions. The definition of QoS in IoT depends on the
service it provides, where the service can be described as
data acquisition and communication, information processing,
or decision making [18]. The majority of previous works
dealt with traditional QoS attributes such as service delay and
throughput. In [19], the authors present a delay-minimizing
collaboration and offloading policy for fog-capable devices
that aims to reduce the service delay. They use queueing
theory based analytical models to evaluate service delay in
IoT edge-fog-cloud architectures and decide on when to of-
fload a task to upper layers. To deal with the uncertainty
of task arrivals, a recent study in [20] uses a two-timescale
Lyapunov optimization algorithm and makes delay-optimal
decisions only based on the system’s current state. Such works

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See https://www.ieee.or

neglect the other QoS attributes like energy consumption, cost,
information accuracy, availability of network resources, etc.,
which are critical, especially in edge-oriented IoT.

Most IoT edge devices are powered with batteries, thus
many works aim at balancing the tradeoff between power
consumption and delay performance. The authors in [14]
and [21] characterize the computation and communication
energy and performance of data processing applications across
edge devices and servers, then identify where to run the
application. In [22], both single-user and multi-user versions
of the same problem, in a mobile-edge computing (MEC)
setting, are formulated as a non-convex optimization problem.
The shortcoming of these approaches is that they only support
two operation modes: entirely offloading the computation or
entirely processing it locally. In this regard, a scheme for
partitioning the input data of a task among sensor nodes was
employed to minimize energy consumption while satisfying
a completion time requirement in [15]. Similar problems for
partitioning and offloading workloads to fog/cloud were solved
by game-theoretic approaches [23], multi-objective optimiza-
tion [24], heuristic algorithms [16], and primal decomposi-
tion [25]. However, the offload target (fog/cloud server) is
assumed to be very powerful and fast, or to have unlimited
resources. Moreover, only one edge/mobile device is consid-
ered, without accounting for resource contention between the
network devices.

In the Edge Computing architecture, there are limited
resources (bandwidth, gateway’s processing power) shared
between multiple devices. Therefore, the operation of one
edge device has an effect on all the other devices in the
same network. In [26], the problem of QoS management for
IoT edge devices under bandwidth, battery, and processing
constraints is addressed. The suggested approach is to partition
an application and quantize its input data rate into discrete
levels that correspond to different amounts of offloading and
QoS. Then, the optimal levels that maximize the overall QoS
of the system is computed with dynamic programming. The
study in [13] denominates these distinct levels as ‘operation
modes’ and advances the prior work in terms of execution time
and memory overhead. Finally, task allocation [27] and task
scheduling [12] schemes were proposed to determine where
and in which order to execute tasks. In contrast to other works,
reference [12] considers the mobility and the ability to perform
approximate computing of edge devices.

Prior work on computation offloading for edge computing
examined either the allocation of distinct tasks or different
stages of applications to edge devices and gateways [27],
[24], [12], [28]. These problems are commonly formulated as
Integer Linear Programming (ILP) problems and solved with
heuristics to find the best allocation of application stages/tasks,
from a finite set of options, e.g., a few discrete offloading
levels. The application tasks that are selected by the afore-
mentioned techniques can be used as an input to our problem.
Assuming prior allocation, we find the optimal rate of input
data to be processed locally at the edge and to be offloaded
to the gateway. Different from previous studies, we have a
control-theoretic approach; we treat the selection of processing
and offloading rates as an optimal control problem.
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Our previous work [29] is the first to address the reliability
management problem in a networked edge computing system.
The problem setting assumes a single-gateway to which edge
devices are connected in a star topology, and the proposed
solution only controls the offloading rates of edge devices.
This paper extends and improves [29] by introducing a two-
level management scheme that additionally assigns edge de-
vices to gateways and orchestrates the routing of larger multi-
gateway networks, connected in mesh topology. Previously,
the management of multi-gateway systems was studied in [30]
to improve the service quality of IoT applications under
limited network bandwidth. The authors present a trade-based
approach in which gateways negotiate and trade edge devices
based on battery lifetime and available processing resources.
Although the outline of the problem is similar to ours, the
specifics of their problem setting and modeling are principally
different. They do not consider reliability and solve a multiple
knapsack problem over discrete levels for offloading rates,
service quality, processing power, and bandwidth.

B. Dynamic Reliability Management

The term reliability, especially in networks, is associated
with many different types of failures. Almost all of the
literature on network reliability focuses on communication
link reliability, that is, the situations where the connection
between two nodes in the network fails. In some papers, node
failures are also included, but they can be mostly categorized
into three groups: soft errors (causing random bit flips) [31],
software reliability issues [32], or batteries running out of
energy [33], [34]. For example, in [32], software failures, mes-
sage congestion, VM failures on IoT devices are considered,
and the failures are modeled as a Poisson process with an
average failure rate. There are also some hardware failures
discussed in various works (such as [35]), but they consist
of superficial models of sensor faults; short faults, constant
faults, and noise faults. These types of failures are transient
and can be more easily fixed, whereas hard failures are not
recoverable. In [36], the authors propose dynamic updates on
a reliability function of hard failures, but the failure rate is
still modeled as a constant. In comparison, our temperature
dependent models, where the failure rates change over time,
can capture the dynamic degradation in reliability.

The thermal and reliability aspects of IoT devices are
mostly neglected in previous IoT-related work. As IoT de-
vices become more powerful, thermal and reliability issues
cannot be ignored and should be taken into consideration in
the management strategies. Extensive literature exists for the
reliability degradation phenomena on system-on-chips (SoCs).
The considered failure mechanisms include TDDB, BTI, and
HCI, which all limit device lifetime [10], [37], [6]. In these
works, physical-level models are built to quantify the reliabil-
ity degradation due to voltage and temperature stress, which
are influenced by the environmental conditions and workload
variations. Based on the reliability models, a management
algorithm optimizes performance while satisfying reliability
constraints. The trade-off between performance and reliability
can be adjusted during runtime by power/voltage scaling [5],
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Fig. 3: Multi-gateway IoT network

[10], [37], [6], task scheduling [38], or both [39]. In [40], a
task allocation scheme is presented for multi-processor SoCs
which maximizes the time to failure of an SoC subject to
performance constraints. The authors in [39] implement the
above-mentioned mechanisms on a mobile device, showing as
much as a one-year improvement on lifetime with dynamic
reliability management.

Despite the impressive results on individual devices, reli-
ability management for networks of IoT devices is an open
problem. The recent paper in [17] briefly discussed reliability
in the context of IoT and acknowledged that IoT devices
can profit from voltage scaling with respect to power and
energy. In [29], we showed that the reliability of edge devices
can be improved without sacrificing network performance or
battery lifetime. To the best of our knowledge, we are the
first to propose reliability management for multi-gateway edge
computing, which leverages both individual controls (volt-
age/frequency scaling) and network-level mitigation strategies,
such as computation offloading and routing.

In summary, none of the of the related works is applicable
to our problem because they either (i) neglect reliability, or
some QoS attributes such as energy consumption, availability
of network resources, which are critical in edge-oriented 10T,
(ii) assume the offload target (fog/cloud server) to be very
powerful and fast, or to have unlimited resources, (iii) con-
sider one edge/mobile device, without accounting for resource
contention between the network devices, (iv) formulate the
problem as task allocation with a few discrete offloading
levels, (v) study only single-gateway IoT systems.

III. SYSTEM MODEL

The envisioned IoT network architecture has multiple layers
comprising edge devices, gateways, fog, and cloud servers as
illustrated in Fig. 2. The IoT edge devices sense information
from physical phenomena and send preprocessed data to a
gateway node, which aggregates the streams of sensed data in
real time, processes, and sends them to the central servers, e.g.,
fog, cloudlets, or cloud servers for storage or further analysis.
For the edge computing setting, we focus on the management
in the first two layers: the edge and the gateway layer.

A. Network Architecture

We consider an IoT network composed of N edge devices
ED = {ED,ED,,..,EDyN} and M gateways G =
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{G1,G2,...,Gar}. Each gateway G, has a subset of N; < N
associated edge devices, which together form a local network
as shown in Fig. 3. We denote O; as the set of edge devices
connected to gateway j, with cardinality |O;| = N;. The
notation £'D; € O; implies that edge device 7 is in the local
network of G;. It should be noted that this association is
not permanent; the edge devices are assumed to be able to
dynamically change the gateway to which they are connected.
The gateway can either directly relay the processed data from
the edge devices to upper network layers, or it can help with
computation and process a portion of the raw data offloaded
from the edge devices.

In the local network, edge devices share the limited re-
sources of gateway’s computation power and communica-
tion bandwidth. They communicate with WiFi (IEEE 802.11)
or low-power, low-bandwidth wireless technologies such as
BLE (Bluetooth Low Energy), ZigBee (IEEE 802.15.4), and
LPWAN (Low-Power Wide-Area Network). The bandwidth
BW; is the total available bandwidth of the local network
associated with gateway G;, where the wireless medium
is shared between the edge devices and the gateway. It is
assumed to be varying because of the possible changes in
the communication medium and interference from external
sources. We assume a mesh topology within a network, where
connection is allowed between every edge device depending
on the maximum distance they can transmit. Let S; denote
the set of neighboring devices to which node 7 can send
packets to. Then, S; = {j : di; < dmaa}, Where d;;
is the distance between devices ¢ and j and d,,q. is the
distance of transmission with maximum power. The notation
j € S, is used to show that j is a neighbor of ¢ and they
can communicate. The devices can have mobility, in which
case the neighbors change depending on the locations of the
devices. The location of all devices are assumed to be known,
either by GPS or other localization methods.

B. Device Models

As depicted in Fig. 4, each IoT device is equipped with:
(1) sensors, (ii) a processing unit, (iii) a transceiver, and
(iv) an energy source. The sensors sense physical phenomena
and sample input data, the processing unit (e.g. CPU, GPU,
FPGA) performs computation, and the transceiver carries out
the communication between the edge devices and the gateway.
We assume that both the edge devices and the gateway abide
by similar device models but with different parameters. The
main distinction between them is edge devices being more
resource-constrained, that is, lower communication, storage,
and computation capabilities. In the following, we describe
the power, temperature, reliability, and battery models of the
devices.
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Power Model. The overall power consumption P,,, of the
edge device includes the sensing power Ps., of the sensors,
the computation power P,, of the processing unit, and the
communication power P, of the transceiver.

Povr:Psen+Ppu+Prf (1)

The power consumption F,, of a processing unit can be
modeled through Equation (2) as the sum two contributions:
leakage power P, (also called as static power) and dynamic
power Pg,,. The dynamic power is resulted from the logic
gate switching and is dependent on the operating frequency
f. The leakage power is affected by temperature 7" and it can
account as much as 50% of the total power consumption in
current CMOS technologies [41].

Ppu = den+1:)lea = aceffvfdf“!‘vdd(bTTQe%+Igate) (2)

Here, o and C¢/f are the activity factor and the effective
switching capacitance. The coefficient by is a technology
dependent constant, k is the Boltzmann constant, and 4. is
the gate leakage current which can be assumed constant. Since
the clock frequency f depends linearly on voltage V4 [42], a
simplified model that accounts for both dynamic and leakage
power can be given as P, = af® + bf.

The communication power consumption is determined by
the rate of the bits transmitted over the wireless channel. The
energy consumption of a IEEE 802.11n or IEEE 802.15.4
wireless node is dominated by the transmit or receive modes,
and their costs are approximately the same. The commu-
nication cost is characterized by the empirical transmission
power model [43] and the required power P"/ to transmit L
bits/second is governed by:

L
Pry = pild) +p2 3)

where p1(d) > 0 denotes the energy coefficient monotonically
increasing in distance d; the most common such function is
pi(d) = Cy + C,dP where Cy,Cy are given constants de-
pending on channel attenuation as well as specific modulation
techniques and /3 is a constant dependent on the medium. g
denotes channel state and p5 is the static power consumed by
RF circuits. Finally, the sensing power consumption can be
simply modeled as a linear function of the sampling rate of
the sensor.

P = csA €]

where A is the sampling rate, or the output traffic rate of the
Sensor.

Battery Model. Not just the net amount, but the way in
which the power is consumed, that is, the current-extraction
patterns and the employed current levels play a significant
role in battery depletion [44]. Therefore, it is inaccurate to
assume linear energy depletion with respect to the power
consumed/current drawn, a dynamic battery model is needed
to realistically capture the influence of power consumption on
the battery. We use Temperature Dependent Kinetic Battery
Model (T-KiBaM) [45], a dynamic model which can describe
the nonlinear characteristics of available battery capacity. It
is able to accurately characterize the two important effects
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(rate capacity effect, and recovery effect) that make battery
performance nonlinear [44]. The effective capacity of a battery
drops for higher discharge rates. This effect is termed as
rate capacity effect. If there are idle periods in discharging,
the battery can partially recover the capacity lost in previous
discharge periods. This effect is known as recovery effect.
It was shown in [46] that using battery models that capture
these effects results in more accurate optimization and control
algorithms, and hence better network management techniques.

T-KiBaM models the batteries with two tanks, respectively
the Bound Charge Tank (BCT) and the Available Charge
Tank (ACT). The ACT holds the electrical charge that can
be immediately supplied to the load, while the BCT holds the
secondary charge flowing towards the ACT. In this way, T-
KiBaM successfully models the recovery and rate capacity ef-
fects. The flow rate between the two tanks is regulated by their
height difference and the temperature. The battery is denoted
empty when its ACT depletes. Let P, = Ppy, + Py + Paep
be the overall power drawn from the battery under supply
voltage Vg4 and g4, gp denote the total charge in ACT and
BCT respectively. Then, Equation (5) gives the system of
differential equations that describes T-KiBaM. At any time
instant, g4 + gp is the total available charge in the battery.
Parameters x and c¢ are predefined constants that can be
obtained using the battery data-sheets or through experimental
measurements [45].

d PO’UT‘
T4 — (1~ ¢)ga + (ke)gp — ~2°
dt Via (5)
Y5 _ 51— g ~ (sc)as
dt
Temperature Model. Temperature of a device depends

on the power dissipated and ambient temperature. We define
the power consumption vector of the edge device, P.q =
[Ppu, Pr f]T, only including the computation and communica-
tion terms. Accordingly, let the heat sources be the PU and RF
and let T,4(k) represent the vector of temperatures observed
by thermal sensors at time instant k. The heat sources are
assumed to have one thermal sensor measuring its temperature.
Then, temperature T.4(k + 1) at time instant k + 1 can be
predicted given the current temperature T.,(k) and power
P.y(k) at time k. The discrete-time state-space model of
the device’s thermal behavior is expressed in the following
equation [47].

Ted(k + 1) - AT : Ted(k) + BT : Ped(k) + C’T : Tam,b(k) (6)

A7 and Brp are defined as the state and the input matrices
respectively. Ty.,p is the ambient temperature and C'p is a
vector of coefficients which weighs the impact of ambient
temperature on device’s internal temperature. Deriving the
model (i.e. matrices A,B,C) of Equation (6) by only accessing
power and temperature is a blind identification problem. To
solve this problem, we use a numerical algorithm for subspace
system identification (N4SID [48]) and derive the model from
measured power and temperature traces.

Reliability Model. The main degradation mechanisms af-
fecting integrated circuits are Time Dependent Dielectric
Breakdown (TDDB), Negative Bias Temperature Instability
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(NBTI), Hot Carrier Injection (HCI), Electromigration (EM),
and Thermal Cycling (TC) [10]. Models have been developed
for MTTF for each degradation phenomenon, which show a
strong (exponential) dependence on temperature. For example,
the MTTF for TDDB is described by Equation (7).

Eq

7
ko (N
Ap is a constant determined empirically, E,, is the electric
field across the dielectric, +y is the field acceleration parameter,
E, is the activation energy, and kp is the Boltzmann constant.
The MTTF for NBTI is:

MTTFrppp = Aoexp — vEoexp

1 a
V kT
where 7, is the voltage acceleration factor and V' is the applied

voltage. The MTTF for HCI is described by the Eyting model,
expressed in Equation (9) for N-channel devices.

MTTFNBTIZA()( (8)

)" exp

MTTFycr = BI,S ™ exp ki a )
Here, I, is the peak substrate current during stressing, C', 4+
is a material dependent constant and B is a scale factor,
function of technological parameters.

Similar to power and temperature models, for reliability
models we divide the device into structures — PU & RF — and
apply the analytic models to each structure as an aggregate. To
obtain the overall MTTF of an edge device, we combine the
effects of different failure mechanisms, across these different
structures. A standard model used by the industry is the
sum-of-failure-rates (SOFR) model [10], which makes the
assumption that the device is a series failure system, in other
words, the first instance of any structure failing due to any
failure mechanism causes the entire device to fail. Hence:

1

MTTF.; = (10)

Zns MNm 1
i=12vj=1 MTTF,

where MTTF;; is the MTTF of the i*" structure due to the ;"
failure mechanism. The variables ng and n,, are the number
of structures and mechanisms, respectively.

MTTF for each degradation mechanism is related to a
reliability function as expressed by Equation (11), where
reliability R(¢) is the function depicting the probability of not
having failures before a given time ¢, defined in the interval
[0, 1]. Compared to MTTF, reliability is a function of time, so
it is more suited for the purpose of dynamic management [39].

MTTF = / R(t)dt (11)
0

The reliability function R(t), in general, is expressed as
a monotonically decreasing exponential function of time and
temperature [5].

12)

Eq
R{t) = mexp(— 7 )exp(—721)

where 1, 72 are the constants depending on the respective
mechanism. The expression in Equation (12) is only rep-
resentative of static systems because it assumes a constant
temperature applied from time ¢ = 0. The workloads and
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temperature vary over time, so is the degradation process.
Therefore, we introduce equivalent degradation time to char-
acterize the reliability degradation effect under such varying
conditions. Given the reliability degradation of a device under
temperature 77 for duration t;, the equivalent degradation
under temperature 75 is described as follows:

AR(tequ1,T2) = AR(t1,T1) (13)
The equivalent degradation time t.4,,1 can be computed using
Equation (12). To elaborate, assume a scenario where a device
worked subsequently under temperature 77 and 75, with
durations ¢; and to, respectively. Then, the degradation of the
device at time ¢; + to equals that of the device which worked
under temperature T5 for time (0,%eqy,1 + t2), and can be
computed as AR(teqy 1 + t2, T2).

To capture the dynamics of reliability under varying tem-
perature, we discretize the time and calculate reliability at
each time step as shown in the following. We leverage the
equivalent degradation time to calculate the degradation at
each discrete time step. The temperature is assumed to be
constant between time steps.

AR(tequk—1,Th—1,6) = Ro — Ra(k — 1) = AR|;—, ,
Ri(k) = R(tequo—1 +th—1s Th—1,k) (14)

In Equation (14), k indicates the k'™ time instant and Th—1,k
is the temperature experienced by the device between the time
instants k — 1 and k. Similarly, 1 is the time passed
between the time instants £ — 1 and k. R, is the dynamic
reliability and Ry is the reliability of a device at time ¢ = 0.

Similar to the system MTTF expression in Equation (10),
multiple reliability functions can be combined into a single
one when considering the effect of multiple mechanisms and
structures together as a series failure system.

MNs Mm

Raea(k) = [T TT Rais (k)

i=1j=1

5)

The variables ng and n,, are the number of structures and
failure mechanisms, respectively. Ry ;; is the reliability of the
it" structure modeled by the ;' failure mechanism.
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C. Application Model

We consider the cooperative computing setting in which
edge devices can execute applications with the help of gate-
ways. In the following, we elaborate the application model and
describe the operation of the edge devices and the gateways.

In many IoT edge computing systems, the application is not
entirely executed on a single device, instead, it is segmented
into fasks and distributed over computing hierarchy, consisting
of the cloud, the fog, and the edge [9]. As illustrated in
Fig. 5, traditional machine learning (ML) approaches and
deep neural networks (DNN) are examples of commonly used
applications in IoT systems that can be segmented and mapped
to different IoT devices. Several works considering general
ML applications [13], [49], [50] and DNNs [51], [52] exist,
though, the segmentation of applications and the distribution
process are beyond the scope of this paper. In our work,
we assume that this segmentation and distribution process is
governed by an external management mechanism, such as [27].
Therefore, the edge devices in our network are dynamically
being assigned different tasks.

The tasks can be executed either locally at the edge devices
or remotely on the gateways via computation offloading. In
particular, the input data of the tasks can be partitioned and
offloaded (communicated) to the gateways, as illustrated in
Fig. 6. In the case of offloading, both the edge device and
the gateway execute the same task, but at different times and
on different partitions of the data. As a concrete example, let
us consider a system that runs a feature extraction algorithm.
The application code is assumed to be already present on both
devices. Therefore, the features can be extracted from “raw”
sensor data at the edge devices, then the processed features
are communicated to the gateway. Another option is to send
the raw data directly to the gateway and extract the features
there. Input data partition comes into play at this stage. For
example, the sensor of the edge may be device generating
10kB of data every 5 seconds, i.e., at a rate of 2kB/s. If it sends
the first 6kB chunk of this data to the gateway and process
(extract features) the next 4kB locally at the edge devices, then
the offloading rate and local processing rates are 1.2kB/s and
0.8kB/s, respectively.

It is worth noting that sometimes an application (e.g. geo-
distributed MapReduce [53]) can be breakable into tasks which
do not exhibit dependencies across partitions of its input [15].
Provided this condition, the edge device and the gateways can
also be assumed to be able to run different tasks. To character-
ize a task 7,,, we consider three attributes: {IPC,,, &, D }.
Here, IPC,, is the average instruction per cycle required to
run the task, ., is the activity factor, and D,, represents
the deadline. According to the delay requirements of the
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application, the tasks can be categorized into delay-sensitive
and delay-tolerant (i.e., best-effort) ones [18]. The delay-
sensitive tasks are required to be served in a timely fashion,
and have hard deadline constraints usually from milliseconds
to tens of milliseconds. In contrast, delay-tolerant tasks, such
as data-based applications as in personal health analytics and
ML model training are tolerant to certain delays. Hence,
we consider soft deadlines for delay-tolerant tasks and hard
deadlines for delay-sensitive tasks.

D. Network Operation

IoT traffic can be roughly categorized into periodic and
event-based modes of communication [54]. Some applications
will always be event-driven, but still periodicity can ensue.
For example, motion detection sensors in smart homes activate
roughly at the same time every day, when leaving for work and
returning home, in a predictable, periodic manner. In addition,
many IoT devices from other fields of application such as
smart grids, environmental monitoring etc. often intrinsically
generate and communicate data in a periodic fashion. In our
work, we assume that the input traffic generated by sensors of
ED; is periodic with a period 7; and a deterministic arrival
rate );. Depending on the tasks and QoS requirements, the
data arrival rate can differ.

The operation of an edge device is illustrated in Fig. 7, with
local data processing at its processing unit (PU) and network
communication for data offloading and data forwarding at
its transceiver (RF). The rate at which the input traffic is
routed to the gateways through RF is L;, denoted as the
offloading rate. There is also incoming external data from
other edge devices to be relayed, since mesh network topology
is assumed. We use r; to denote the total forwarding rate.
The computation intensity (processing rate), t;(fi, Tm), is
deterministic and dependent on the edge device’s operating
clock frequency and the running task (related by its I PC\,).
Both the PU processing rates p; and RF communication
rates L; are controllable variables that are regulated by our
proposed DRM controller. We assume the communication of
task outputs is negligible, but the proposed models can be
extended to account for it.

Data from the edge devices is communicated to the gate-
ways wirelessly. Each edge device is assigned to a single
gateway and all of its data should be forwarded to only that
gateway. However, since the network topology is mesh, de-
vices can cooperate to distribute and relay data in a multi-hop
fashion. Our proposed inter-gateway management framework
chooses the target gateways and data forwarding routes for
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Fig. 8: Local network operation

every edge device in the network. The gateways receive the
superposition of offloaded periodic traffics from a number of
unsynchronized edge devices (Fig. 8). According to the Palm-
Khintchine theorem, this aggregated traffic for each gateway
can be approximated with a Poisson process with the arrival
rate » ED, €0, L;, that is, the sum of offloading rates of the
associated edge devices [54]. The computing resources of
a gateway is adequate for processing data for several tasks
from multiple edge devices simultaneously. We assume that
there are ¢ homogeneous computation cores in a gateway’s
SoC, working with a deterministic processing rate pg, ;. Also,
unlike the edge devices, memory resources of the gateways
are sufficient to be able to hold a queue of incoming data.
Therefore, the gateways employ a queueing structure of type
M/D/c [55], denoted Q¢ ;. The discrete queue dynamics at
the input of the gateways are as follows:

Qc.i(k+1) = [Qoy(k) + Y Li(k) — pc.; (k)] "

where Q¢ ;(k) denotes the queue length of gateway j at time
instant k, in bits, and [z]T = max(x,0). pg; is the total
computation resources available at the gateway, in bits per
unit time. We assume that the amount of ;. ; can dynamically
change depending on the overall network operation and we do
not have control over it.

For delay-tolerant tasks, it is enough to finitely maintain
the queue lengths in Equation (16). This assures that all
arrived tasks are served within finite time. However, for delay-
sensitive tasks, we need to provide a delay guarantee. We
introduce a delay aware virtual queue based on the e-persistent
queue technique [56] to ensure that the tasks are finished with
a delay lower than D,,.

Delay-Aware Virtual Queue. In order to guarantee the max-
imum delay D,, ; for task m associated with edge device i,
offloaded to gateway j, we employ a delay-aware virtual queue
Zgq,; whose equation is shown below:

0, when QG,j(k) < ,uG,j(k:)
(Za,j(k) — pa (k) +eqy]T, ow

where €g; is a pre-specified constant based on the delay
constraint. Z¢ j(k) has the same service process as Q¢ ; (k)
but has an additional constant arriving process €, ; whenever
the actual queue backlog Q¢ (k) is larger than pe (k). This
ensures that the virtual queue grows only when there exists
data in the original queue that have not been served. Therefore,
if there is data from a task staying in the waiting queue
for a long time, the queue length of Z¢ ;(k) will continue
to grow. Any algorithm that maintains bounded Z¢ ;(k) and
Q¢ ; (k) values also ensures persistent service with bounded
worst-case delay. This maximum delay can be expressed in

(16)

Zaj(k+1)= {

/)
Authorized licensed use limited to: Univ of Calif San Diego. Downloaded on August 08,2022 at 18:10:54 UTC from IEI?IprIore. Restrictions apply.

ublications/rights/index.html for more information.



This article has been accepted for publication in IEEE Internet of Things Journal. This is the author's version which has not been fully edited and
content may change prior to final publication. Citation information: DOI 10.1109/JI0T.2022.3185082

terms of the maximum queue lengths Q7" and Z7". For
a time slot k, if the system can be controlled to ensure that
Qa,i(k) < Q4" and Zg ;(k) < Zg45", then any task is
fulfilled with a maximum delay W"™%* defined as follows:

Wmaer — [( gu;:c —+ Z&;I)/€G,j] a7

Given the above property, we can choose the appropriate g ;
for each task to ensure that it can not exceed its maximum
delay D,,; (ie. W™ < D, ;). The original queue Q¢
exists in the form of a buffer structure in the system. The
received data packets wait in this buffer until they can be
served by the gateway. On the other hand, the virtual queue
dynamics are implemented by the tracking the original queue
and increasing/decreasing the virtual length accordingly.

To summarize, the edge devices produce input traffic via
sensors, run different tasks, and process data. As a result of
on-board computation, they dissipate a certain power, consume
battery energy, heat up, degrade, and hence lose reliability.
We provide all the associated device and application models.
The edge devices can be connected and offload computation
to any of the gateways in the network. The operation of one
edge device has an effect on all other devices in the same
network, which is formulated by the queueing model. We use
the described system model in our problem formulation.

IV. PROBLEM FORMULATION

In the following, we formalize our problem based on the
network and device models presented. The goal of this section
is to express the problem in a mathematical framework and
relate it to a family of problems from optimization and control
fields. We next provide the methods and the tools to solve it
in Section V. Table I provides the list of symbols that are used
in problem formulation, in the order of appearance throughout
the paper.

The target for the above-mentioned multi-gateway system
is to have an energy-efficient and reliable operation without
sacrificing performance. To achieve this objective, we define
three interdependent problems:

(1) choosing the data offloading rates of edge devices,
(ii) assigning edge devices to gateways, and
(iii) deciding multi-hop data flow routes and rates in the
network.

We treat problem (i) individually whereas problems (ii) and
(iii) are combined. The reason for this particular choice of
partitioning is clarified in Section V.

First, we formulate the problem of finding the optimal
offloading rates for a local network with a gateway and its
associated edge devices. This is called the Intra-Gateway
Problem since it can be solved by single gateway and the
solution depends only on the local network. Then, considering
the complete multi-gateway network with all edge devices, we
construct a routing problem to jointly decide which gateway
to offload and which network path to use for communicating
data. This is called the Inter-Gateway Problem as it requires
global effort from all the devices in the complete network
covering multiple gateways.
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TABLE I: Nomenclature

Symbol Definition
ED Edge device
G Gateway
N Number of edge devices
M Number of gateways
Si Set of neighboring devices to node %
BW Local network bandwidth
Poyr Overall power consumption of an edge device
f Device operating frequency
qa Total charge in battery Available Charge Tank
qB Total charge in battery Bound Charge Tank
Ted Vector of temperatures of an edge device
Tomb Ambient temperature
MTTFeq Mean time to failure of an edge device
Rg.eq Dynamic reliability of an edge device
A Input traffic data rate ¢
L Data offloading rate
I Data forwarding rate
I Data processing rate
na Gateway processing rate
Qg Gateway queue length
Za Gateway virtual queue length

A. Intra-Gateway Problem

The gateways G are only responsible for the edge devices
ED in their own local network, i.e, if £D; € O;. Therefore,
the Intra-Gateway Problem can be formulated separately for
each local network. The goal is to maximize the remaining
energy in the batteries of edge devices under QoS and reli-
ability constraints. We assume that the gateway can have its
energy supplied by the grid and reliability is less of a concern
due to available preventative measures (i.e., access to cooling
and effortless maintenance).

Cost Function: The cost function of the control problem
is the sum of battery energies of all edge devices in the local
network. We define the following objective for finite horizon
optimal control of j-th local network:

Ty—1 T;—1 N;
min > —[1TqR)?= > >~ g ®)|*  (18)
i k=0 i—1

Ty —1

where (p,L) 2 (p1(k), .. pip(k), L1(k), ..., Lp(k))p 2y -
The vector q,;(k) = [g; a(k),q:.5(k)]T is the battery charge
vector and q denotes the combined vector of all edge devices.

Constraints: There are three QoS requirements that should
be satisfied at any time instant k£ and a terminal reliability
constraint that should be satisfied at the final time instant T':

1) The maximum task delay D,, ; should be met for every
edge device ¢ and task m. Then, the delay experienced
at the gateway queue should be less than D,, ;, which is
ensured if the length of gateway queue is smaller than a
value Qi7" ie., Qa,i(k) < QES".

2) Bandwidth utilization should not exceed BW;. The band-
width utilization of an edge device 7 is L;, hence the
corresponding constraint is Zle L;i(k) < BWj.

3) Depending on the application, there is a certain data
arrival and service rate at each edge device determined by
QoS requirements. We define this farget rate as A\.* 9",
The sum of data processed locally and offloaded should
be equal to the rarget, i.e., p;(k) + Li(k) = A9 (k).
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4) The dynamic reliability R;’ (Equation 15) of each
device at the end of the horlzon should be at least the
target reliability Riqrget, i€, R;y;( ') > Rierget

Control Variables: The two performance-related state vari-
ables to be controlled for each edge device are: (i) PU pro-
cessing rate y;(f) and (ii) RF communication (offloading) rate
L;. Then, the control variables include the required change in
the operating frequency A f; and change in the communication
rate AL;.

All in all, we define the following discrete-time finite
horizon optimal control problem:

Ty—1 N;
: T 2
min, Z > —l1"q (k)] (19)
k=0 i=1
s.t. 1= N k=0,. T —1
Povri k
0ask+1) = Agga (k) + Bya o(k) — Z22zi®)
dd
qB,i(k+1) = Cyqa,i(k) + Dygp.i(k)
L;(k i(k
Poora)=as £2 (k). £ (k) s aha (k) 4 py iEIETiR) |

Teqi(k+1) = ArTeq, z( )+ BrPeq z( ) + CrToymp,i(k)

Qac,j(k+1) = [Qq,;(k Z —pa i (F)]F
Zg,;(k+1) = [Zg,;(k) — MG,j(k) + EG,j]+
pi(k+1) = pi(k) + d;iAf;

Li(k+1) = Ly(k) + AL

QG,J( ) Qmax

chj(k) < Zmam

P
Zi:l Li(k) < BW;
pi(k) + Li(k) = A9 (k)
Rd,i(Tf) 2 Rtarget

where we discretized the battery dynamic equations from
Equation (5) with state variables g4 ,; and gp;, represent-
ing the charge level of edge device ¢ at time instant k.
Overall power consumption P, ; is expressed in terms of
processing, communication, and sensing rates. On the other
hand, P.q; = [Ppu.i, Prsi]7, a vector of PU and RF power
consumption, is used in the temperature dynamics equation
to compute Teq,; = [Tpuyi,Trf’i]T. We define p; and L; as
state variables which are controlled by the inputs Af; and
ALj;: respectively the change in the operating frequency and
the change in the offloading rate. By doing this and imposing
magnitude constraints on the new control variables, we ensure
a smooth transition in both processing and offloading rates.

B. Inter-Gateway Problem

The solution to the Intra-Gateway Problem finds the of-
floading rates for every edge device, but it does not specify
how the offloaded data should be communicated to gateways.
As the network is assumed to have mesh topology, data can
be forwarded in multiple hops through many edge devices
on the path. The exact routes from each edge device to
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the gateways should be determined. Also, the Intra-Gateway
Problem is formulated for a fixed set of edge devices in the
local networks. However, as stated in Section IIL.D, edge
devices have multiple choices for which gateway to offload
data. These choices should be made considering the state of
the system. We construct the Inter-Gateway Problem whose
solution gives the edge device to gateway assignments, as well
as the routing between them.

The desired joint problem can be composed into a single
network routing problem with multicommodity flows and mul-
tiple sinks. The goal is to find the maximum lifetime routing.
From the Intra-Gateway Problem’s solution, we obtain L;,
the rate at which data is generated at edge device i. We
consider the data from different edge devices as different
commodities. This data needs to be communicated to any of the
gateways in the network, resulting in the multicommodity flow
multiple sink routing problem. We assume that in general, each
commodity should only be communicated to a single gateway,
that is, data from one edge device cannot be distributed to
multiple gateways. For example, if the data is sequential (e.g.,
time-series data), then it should be received at one gateway
in the same order to be processed correctly. If the data is
distributed to many gateways and not received as a whole at
a single gateway, the task cannot be carried out. The packet
transmission is thus unicast. An alternative solution for when
this assumption does not hold is discussed in Section VII-A.
An example solution for our problem setting is illustrated in
Fig. 9 for a network with two gateways.

For notational convenience in the routing problem, consider
the network nodes numbered from / to N denote the edge
devices and N+/ to N+M denote the gateways. In other
words, ¢ € Vgp and 7 € Vg for the edge devices and
gateways respectively, where Vgp = {1,...,N} and V5 =
{N+1,..,N+M}. Let i, denote the rate of data flow from
edge device k to any node [ € Sy, carrying edge device ¢’s
commodity. The aggregate data rate for the unidirectional link
from edge device k to [ is denoted by ri; and is equal to
Zfil ri,. For simplicity of notation, we stack up all 74, into
a single vector and denote network flow as r = {r},}, Then,
the lifetime of edge device ¢ under flow r is given by

MTTF,q; = (20)

Jeexp kpTeq,:(r)

We define lifetime in terms of mean time to failure, where
Equation (20) is a generalized form of MTTF definitions in
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Equations (7), (8), (9) and coefficient . encompasses the
multiplicative terms in the respective formulas. Temperature
T(r) is a function of network flow as it alters according to
device power dissipation (Equation (6)), which in turn relates
to data flow through Equation (3).

We assume that a network fails with the first node’s failure
as a common definition. This definition is one of the most
prevalent in literature [33] and was used in many recent
works [57], [58]. In this case, network MTTF under flow r is
the minimum of any node in the network, i.e.

MTTFper(x) = min MTTF4,(r) 1)
1€
Our goal is to find a solution for the flow r = {ri;}

that maximizes the network lifetime. Hence, we formulate the
following problem.

maximize min MTTF.q,(r) (22)
rXassign tEVED
subject to Y (rjy — i) = Li, Vi,k € Vgp, i =k

LES

> (riy— i) =0, Vi,k € Vip, i # k

lESK

ri, >0, Vi, k € Vgp, VI € S

Z rlicl =L;, Vi€ Vgp, VWl eV |xy=1}
k€VED

M
> mij=1,Vie{l,..,N}

j=1
z;; € {0,1}, Vie {1,...,N},Vj e {1,..., M}

The optimization variables are r};l and ;5. Xgssign 15 the
assignment matrix in which elements x;; assume value 1 if
edge device ¢ is assigned to gateway j and O otherwise. The
matrix Xgssign € RV*M has only one element equal to 1
for each row. This is because data from one edge device
cannot be distributed to multiple gateways so each commodity
should only be communicating to a single gateway. The first
two constraints are the flow conservation equations at each
node. The difference between incoming and outgoing flows
for each commodity is equal to the data generation rate. We
express the condition on commodities that restrict them to be
communicated to a single gateway by the fourth constraint.
The summation of all outgoing flows towards the [-th gateway
for the i-th commodity should be L;.

V. PROPOSED APPROACH: OVERVIEW

In this section, we first present the general solution frame-
work and briefly describe its operation. Subsequently, we
break down and analyze the proposed solution in further
detail. Fig. 10 depicts an overview of the proposed two-level
management scheme. The overall management methodology
is an interplay between Intra-Gateway Management and Inter-
Gateway Management components:

o Intra-Gateway Management is responsible for choosing
the local processing and offloading rates of edge devices.
Each gateway runs it separately for the edge devices in
their own local networks.
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Fig. 10: Overall architecture of the proposed management scheme

o Inter-Gateway Management assigns edge devices to gate-
ways and decides multi-hop data flow routes and rates in
the network. It is carried out with collaborative effort
from all devices.

The two components work together in a cyclical fashion;
one computes its solution based on the other’s output. Inter-
Gateway Management takes as input the data offloading rates
set by Intra-Gateway Management. On the other hand, Intra-
Gateway Management determines optimal offloading rates
in accordance with the gateway assignments and the data
forwarding rates of edge devices.

At the beginning of system operation, the gateways are
evenly matched with the closest edge devices and they estab-
lish single-hop connections. M disconnected local networks
are formed with an average of N/M edge devices per gateway.
Based on the initial assignments, optimal offloading rates for
edge devices are calculated via Intra-Gateway Management
separately at each local network. Inter-Gateway Management
then uses these offloading rates to make gateway assignment
and routing decisions. It assigns edge devices to gateways
primarily based on fairness such that each gateway receives
similar amounts of offloaded data. At this stage, the initial
topology of the network is changed and edge devices have
new gateway pairs. The topology is not restricted to single-hop
connections, so data can be forwarded in multiple hops through
many edge devices on the path. Inter-Gateway Management
lastly adjusts communication paths and data flow rates on the
communications links.

After the initialization phase, both management components
continue to work in tandem. Inter-Gateway Management’s
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routing introduces additional communication load to some
edge devices due to multi-hop communication, which was
not assumed at the system start. Intra-Gateway Management
accordingly adjusts processing and offloading rates to com-
pensate for the additional data forwarding load on the edge
devices. The edge computing system is already dynamic due
to variable workloads and resources, fluctuating temperatures,
etc., so the solution is continuously updated at certain intervals.

The gateway assignments, data flow rates and paths are also
not fixed. Inter-Gateway Management updates the solution
under the following conditions:

1) Periodically, at regular intervals,

2) If the bandwidth allocation of any local network is over
90% for a certain time,

3) If the queue length of any gateway is at Q™" for a
certain number of consecutive tasks.

The normal operation of Inter-Gateway Management is
through periodic updates, but irregular interventions may be
needed under the given circumstances. If there is persistently
not enough bandwidth left or the gateway queue is full at a
local network, then the corresponding gateway sends an emer-
gency signal to the Inter-Gateway Management component.
A reassign & reroute signal is sent back to gateways that is
further forwarded to edge devices. Since gateway assignment
is based on fairness, it balances out bandwidth and queue
utilizations across local networks.

If there is a failure in the execution of Inter-Gateway
Management, the Intra-Gateway Management can continue
working since the gateways already know their edge device
assignments. Intra-Gateway Management is a local manage-
ment scheme, meaning that it does not need to receive external
inputs to operate. Each gateway only needs to know their new
assignments whenever a there is a restructuring in the network.
There are N different Intra-Gateway Management instances
running at the same time on different gateways separately.
On the other hand, if any of the Intra-Gateway Manage-
ment schemes fails, then the Inter-Gateway Management can
continue operating as well. It can still decide on gateway
assignments and routing. However, the failed Inter-Gateway
Management will not be able to produce optimal offloading
rate values, so the performance of the overall management may
decrease. The common point in both management mechanisms
is that they do not fully rely on a single device to run. There
are distributed components that run at edge devices, which
significantly reduces the single-point failure phenomena that
centralized systems have.

VI. INTRA-GATEWAY MANAGEMENT

We consider two approaches: centralized Model Predictive
Control (MPC) and our distributed solution for the control
of the local networks. First, we analyze the centralized MPC
and discuss its limitations for practical implementations in
large networks. It requires to communicate and use the full
knowledge of the entire local network, which is not a scalable
approach. Thus, we use it as a benchmark to represent the ideal
performance. We then decompose the full control problem into
subproblems with coordination by leveraging a hierarchy of
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linear controllers that act on different time scales, distributed
over the edge devices and the gateway.

A. Centralized MPC

Our problem in Equation (19) can be converted to the stan-
dard MPC form using the following discrete-time prediction
model:

x(k+ 1) = Ax(k) +Bu(k) + Cw(k) (23)

with state x(k) = [ga 1(k), ¢B,1(k), Tea1(k), p1(k), L1 (k), ...,
qan, (k),as,n,(k), Tea,n, (k), pp(k), L, (k), Qe (k)] and

control input u(k) = [Af1(k), AL (k), ..., Afn, (k), ALy, (k)]".

Disturbance vector includes the ambient temperatures of
edge devices and gateway’s processing rate, which are
uncontrollable: W(k) = [Tump,1(k), .., Tams.n, (k), pa (k)]*.
For a local network with N; edge devices, the state, input,
and disturbance vectors are of sizes 5N;+1, 2N;, and
N;+1 respectively. QoS and reliability constraints can be
represented as Dx(k) < 0 and Eu(k) = 0 in matrix form.

At decision instant k, the controller samples the state of the
system x(k) and solves the centralized optimization problem
Pro(x(k)) of the following form to find the control action.

T,—1 N
min d(x(k+1|k),x 24)
min 3 3 dlatl o+ Uk 2) (

st. i=1,.,N; j=0,..,T,-1

x(k + 1+ 1|k) = Ax(k + l|k) + Bu(k + [|k)
Dx(k+1k) <0

Eu(k +1|k) =0

The double index notation (k+I|k) in (24) denotes a prediction
for [ steps ahead from time k. d(x, X) denotes a distance metric.
The problem is solved for a prediction horizon of T},. For
centralized MPC, we first set k¥ = 0 and find a solution to
Pro(x(k)), then apply control u*(k|k) to the system. Next,
k is incremented and the previous steps are repeated until the
final horizon T%.

The centralized MPC approach requires communication of
states from all nodes to a central entity (gateway), which then
sends an individual control signal to each of the edge devices.
The gateways should solve a problem with (5V;+1)xT), states
and produce a control sequence of size 2/N;xT}, at each time
step. Hence, as the network size grows, the computation time
required to solve the optimization problem becomes very large.
The problem is also a Nonlinear MPC problem because of the
nonlinear relationship between the control variables and the
objective and constraints, which further exacerbates the com-
putational complexity. The numerical solution of the NMPC
optimal control problems is typically based on direct optimal
control methods using Newton-type optimization schemes.
Even the computational complexity of very low-complexity
implementations of NMPC are at least O(T(n2 +n,n,)) [59],
with T = T}, being the prediction horizon and n, = 5N; + 1
and n,, = 2N respectively the state and input dimensions for
our problem. Finally, the centralized approach is inflexible, in
the sense that adding new devices to the network requires
the controller to drastically update its model. To address
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these issues, we distribute the computation among the network
devices.

B. Proposed Controller Methodology

We decompose the central Nonlinear MPC problem
Pre(x(k)) into a set of local subproblems Pr,(x,(k)), p €
{1,..., P} for the edge devices and a light-weight central
subproblem Prg(xg(k)) for the gateway. The goal of this
decomposition is twofold: first, to ensure that the central
subproblem is computationally much less intensive and smaller
in size than the overall problem (has fewer state variables
and constraints, and linear unlike Prc(x(k))), and second,
to ensure that the coupling between local subproblems are
minimal and solvable in tolerable time in constrained edge
devices.

Handling the Size. In our problem, it is redundant to search
for an optimal solution over a space of size (5N +1)xT}, as in
Equation (24). The reason is that if the overall system consists
of subsystems whose time constants are far from each other
(e.g. temperature T¢q; and performance {pi, L;}), then the
fast varying subsystem (performance) will arrive at its steady-
state before the slow subsystem (temperature) has deviated
significantly. Leveraging this, we can employ different control
periods for the slow and fast subsystems. If the control period
of the slow subsystem is longer than the settling time of the
fast subsystem, the fast subsystem can always enter its steady-
state. Thus, the control loops for them are decoupled and can
be designed independently. We decrease the overall problem
size by employing larger control periods for slower changing
subsystems and separating their control loops.

Handling the Nonlinearity. The “causal chain” of Fre-
quency — DissipatedPower — Temperature can be split into
two parts. The first part, as expressed by Equation (2), is highly
nonlinear while the power-to-temperature model in Equation
(6) is linear. We separate the linear and nonlinear parts to keep
the MPC model in the central subproblem linear, minimizing
its complexity.

Handling the Couplings. Since the states of any edge device
pair {1, Teq;} and {1, Teq j}, @ # j are already decoupled,
a natural way to decompose the problem is to associate
local subproblems with only these states to each edge device.
The state for communication rates, L;, are coupled through
the gateway queue structure (16) and bandwidth constraints.
The battery states ga; and ¢p; are coupled through the
objective function (18) that aims at maximizing the battery
remaining energy in the edge devices. Therefore, a complete
decentralization is not possible and coordination between edge
devices is needed. We associate a central subproblem with
the coupled states {L;, g4, ¢pB,i} to be solved at the gateway
using MPC.

C. Proposed Controller Architecture

In the following section, we describe the structure of our
proposed controller. Fig. 11 shows our hierarchical multi-
timescale control approach. The lower level controllers at
each edge device manage the local, ‘decoupled’ variables,
whereas the top-level controller at the gateway coordinates the
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control decisions among the controllers at the lower level. The
overall system consists of subsystems whose control variables
operate at different time scales. Leveraging this, we apply three
different time scales: Long Intervals (LI), in the order of hours
that targets slow reliability changes, Medium Intervals (MI),
in the order of seconds for temperature variations, and Short
Intervals (SI), in the order of milliseconds for performance-
related decisions. In this multi-timescale approach, the faster-
varying subsystems arrive at their steady-state before the
slower subsystems, which minimizes violations; thus, it leads
to a minimal loss in control quality with a significant reduc-
tion in complexity [60]. The proposed controller architecture
consists of the following four components.

1) Edge Reliability Controller: Estimates the reliability
degradation of the edge devices at the beginning of each LI.
Based on the current reliability value and the target reliabili}y
constraint Rter9et it computes a reference temperature ng s
which is used as a constraint by the Edge Thermal Controller.

2) Edge Thermal Controller: Computes the maximum
reference power dissipation value P.; !, which would ensure
that, at the end of the LI timescale, the average temperature
experienced in the whole LI is less than 77, ; f . Then, it modifies
these maximum values based on the target input data rate to
obtain a lower, energy optimal power reference, which is sent
to the Gateway Top-Level Controller.

3) Gateway Top-Level Controller: Calculates the reference
optimal communication rates L™/ for each edge device (at
each MI timescale) that maximizes their remaining battery
energies and satisfy the delay requirements of their respective
tasks, while abiding by the bandwidth limit BWW.

4) Edge Performance Controller: Computes the edge
device computation and communication rates by applying
controls Af and AL at each SI time scale.

D. Edge Reliability Controller

Leveraging the equivalent degradation time technique in
Equation (14), the Edge Reliability Controller calculates the
reliability degradation of the edge device at each LI, using the
averaged temperature over the previous LI. Then, it selects the
reference temperature 7. ; 7 for the next LI by solving the con-
vex optimization problem in Equation (25). The computation
of convex optimization introduces a negligible overhead since
the controller activates by intervals in the order of days.
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min ||R(teqv + t'r‘emv TZdef) ||

target
ed
st R(teg + trem, TL5T9) > Rioroet
t t
R(teque:ine ) = Rd,ed(kLI)

(25)

Ra,ca(krr) indicates the dynamic reliability at the long in-
terval kr; and t,¢p, is the remaining time from the current
LI until ¢ .. The result of the optimization, Tetjrgd, is the
temperature which would satisfy the reliability target R?*"9¢¢
at the desired lifetime t;;¢., given the device operates at that
temperature for the remaining of its lifetime. The constraint on
reliability is met if the average LI temperature T/ is below
Tfadrget at the end of the LI.

Within an LI, if the difference between target temperature
and average temperature, i.e., ngrget —T379, is non-zero at
any given time instant, then the system has either not fully
exploited the available reliability margin (if positive) or it has
violated the reliability constraint for the current LI so far (if
negative). Therefore, we introduce a new variable Te’;‘f to keep
track of under/over-utilization of the reliability margin and
adjust the system accordingly.

(karr—=1) - To? (kaar=1) + TH (karr)

T3 (kyr) = Tart (26)
re trr - Tog " — kair - T30 (kar)
105 (kaar) = T . (27)
tor — kmr

In the above equations, kj,; indicates the k'™ MI inside an
LI and ¢ is the duration of an LI (measured in number
of MIs). If the system is being over-utilized, then 77¢/ will
be lower than 759, accommodating for the extra thermal
stress experienced until that point. This way, the Edge Thermal
Controller can reduce the thermal stress for the remaining part

of the current LI using Tg;f as a reference.

E. Edge Thermal Controller

Within a long interval, the Edge Thermal Controller de-
termines the power P.4(kp;;) at each MI time step kpsy,
which would ensure that the temperature 7.4 experienced in
the whole LI on average is less than 77/, We recast the
temperature state-space model in Equation (6) as follows:

Tea(kner +1) = Ap - Teq(knr) + Br - ur(kar)  (28)
up(knrr) = Pea(knr) + Cr/Br - Tomp(karr)  (29)

Then, the state feedback up(kasr) is calculated as We apply
the state-feedback control law [61] for a linear system. Then,
the input ug(kpr) is calculated as:

ur(kar) = KT(Teref — Tea(knrr))

where Kr is the feedback gain which is determined us-
ing pole placement technique. The ambient temperature
Tump 1s assumed to be known since it can be monitored
with temperature sensors. Hence, we retrieve P.q(kpsr) =
[Ppu(knrr), Prp(karr)])” using the following equation.

Ped(kMI) = KT(TZ;f - Ted(kMI)) - C(T/BT : Tamb(kl\/ll)
(€29)

(30)
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Fig. 12: Average power as functions of computation and communi-
cation rates

If an edge device dissipates the resulting power P4 at each
time step kpsy, then it can very closely meet the reliability
target R'“"9¢'. However, to meet the QoS requirements on
data rate \'979¢*_ the edge device may need to consume more
power than P.4. Or, if \'%79¢! is a relatively small rate, then
consuming P, would be ‘excess’. Therefore, to compute the
reference power values P, 7 7 to be sent to the Gateway Top-
Level Controller, we do a slight modification (trimming) on
the power values P, obtained by Equation (31) concerning
the power scaling of the components P, and P, .

Algorithm 1: Power Reference Trimming
Input: )\tm‘get,Ppu(kMI),PTf(kaI)
Output: P;;f

1 Calculate P, for p = Aterget

2 Calculate P,y for L = A\target

3 if Ppulu=x < Pry[r=» then

4 | if Pyylu=x < Ppyu(knr) then
s | L P = Buuluea, 07

6 else

7 Calculate {1"" | Pyu|zpirer = Pypu(kner)}
3 Lref — )\target _ Mref

9 PY = [Poulknar), Prglpopres]”

10 else

11 if Prf‘,u:)\ <Prf(kM[) then
|| P =10,Prylu=n)”

13 else

14 Calculate {L’r'ef ‘ P’I‘f|L:L7"ef = PTf(kMI)}
15 ’uTEf — )\target _ Lref

16 P = [Poulyyures Prp (k)T

P’y I Trimming. Up until a certain rate, processing data on
the PU consumes less power than communicating the data,
as shown in Fig. 12. However, it is more energy efficient
to communicate data for higher rates since PU power con-
sumption scales superlinearly with processing rate while RF
power consumption scales linearly with communication rate.
For a given \*%79¢! we use Algorithm 2 to find a tighter, more
energy efficient power reference than what we have obtained
in Equation (31) for the Gateway Top-Level Controller’s
problem. First, the algorithm calculates the required power
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consumption for processing or communicating data at rate
Atarget. If processing power P, is the smaller of the two, then
it is further compared with the value obtained from Equation
(31). All needed power can be allocated to the PU if the
required processing rate results in a power which is lower
than what the thermal constraints allow (Line 5). Otherwise,
we calculate the corresponding maximum allowed processing
rate (;"°7) and allocate the RF power consumption such that
the rest of the data is communicated at rate L™/ (Lines 7-9).
If initially processing power P, is found to be smaller, then
same procedures are done for the RF (Lines 10-16).

F. Gateway Top-Level Controller

The goal of the Gateway Top-Level Controller is to maxi-
mize the remaining battery energies of the edge devices while
assuring that the task delay requirements are satisfied and the
bandwidth limit is not exceeded. It solves a standard quadratic
programming (QP) form MPC with a linear system model.

T,—1
min > |1 a(karn)| + [PeaCharr) = P 1% (32)
¢ krrr=0
st. kyr =0, ...,Tp
17 P,y (K
qa,i(kpr+1) = AqQA,i(k'MI)‘FBqQA,i(k'MI)_%

qB,i(kamr+1) = Cyqai(kar)+Dygs,i(kar)
Qc(kpr+1) = [Qa(kar)+ Z v Pogi(knrr)—pc (karr)] ™
Ze,j(kpr+1) = [Za j(kvr) — pe,j(kar) + ec ]t

Qc(knr) < QM
Ze(kyr) < ZMe®

Z 0! Pogi(knr) < BW

where we used the fact that [0 g/p]- P.q = L and rewritten the
communication rate variables L in terms of power variables
P.y with vT = [0 g/p]. ¢ = [q4,95]" and P., are the
combined vectors of all edge devices for battery states and
power states respectively. Y and Z are matrices that weigh
the importance of the elements in the cost function. Since
the power reference vector P;'def is constructed in the Edge
Thermal Controller to yield an energy efficient reference,
the two terms in the cost function are not conflicting. At
each sampling time kjs7, the solver yields the optimal so-
lution P.4(karr) within the MPC prediction horizon 7}, that
minimizes the cost function and meets the constraints. After
converting power values to communication rate values, the
respective communication rate references L:ef for each edge
device are sent to the Edge Performance Controllers.

G. Edge Performance Controller

The two performance-related state variables controlled by
the Edge Performance Controller are: (i) PU processing rate
wu(f) and (ii) RF communication (offloading) rate L. Then,
the control variables include the required change in the op-
erating frequency Af and change in the communication rate
AL. The Edge Performance Controller receives the reference
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communication rates L"¢f (kprr) from the Gateway Central
Controller at each MI. Based on this, it adjusts A f(ksy) and
AL(kgr) such that the sum of data processed locally and data
offloaded amount to the data arrival rate \**"9¢!(ky;;). They
are computed using a similar state-feedback control law as in
the Edge Thermal Controller.

Af(kSI):KP,l [(Atarget(kMI)*Lref (k]VII))ff(kSI)} (33)
AL(ksi)=Kpga(Lyes(kar)—L(ksr)) (34)

VII. INTER-GATEWAY MANAGEMENT

The optimization problem posed in Section IV-B is Mixed-
Integer Programming (MIP). The majority of MIP problems
are NP-hard, exact solutions result in poor scalability, and
therefore encouraging the use of efficient heuristics to ap-
proximate the optimum within finite time. We observe that
Equation (22) can be precisely decomposed into its integer
and continuous variables. We propose a two-step solution that
separates and individually handles these variables:

(i) Determine the sink for each commodity, i.e., find the set
of devices FD; € Oj for each gateway. The result of this
step imposes constraints for the next step; the amount
of data absorbed by the gateways for all commodities
T;;l, leVg.

Solve the resulting optimization problem over a convex
set of continuous variables to find the optimal r = {r},},
given the constraints from the previous step.

(i)

The first step is essentially a combinatorial problem with the
goal of identifying the best edge device to gateway assignment
over a finite set of options. The second step consists of only
continuous variables, it can be further converted to Linear
Programming (LP) for which we explain the procedure below
in detail.

A. Gateway Assignment

In Section IV-B we assumed that in general, each com-
modity should only be communicated to a single gateway,
that is, data from one edge device cannot be distributed to
multiple gateways. A gateway assignment step is necessary as
a result of this assumption. However, in some circumstances, it
may be admissible to forward any commodity to any gateway.
For example, if the gateways are interconnected via Ethernet,
they can reshare the offloaded data over Gbps-speed wired
connections with minimal delay. Or, if any of the gateways can
carry out the same type of tasks with the received data, there is
no need to try forwarding data exclusively to a particular one.
For such cases, our approach offers natural way of separating
the overall problem; if the network allows for communication
to any gateway,it is sufficient to solve only step (ii), bypassing
the gateway assignment step.

We assign edge devices to gateways primarily based on
fairness: each gateway should receive similar amounts of of-
floaded data and in proportion to their available computational
resources. The bandwidth is limited at each local network
(per gateway). Furthermore, we try to allocate less data to
the gateways with higher queue utilization and assign edge
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devices to closer gateways in terms of physical distance. The
gateway assignment problem is formulated as follows:

N
maximize min Ciilii 35
assign jGVG; i ( )
N
subject to Y Liz;; < BW;, Vj € {1,..., M}
i=1

M
> @y =1,vie{l,., N}
j=1

Tij € {0, 1}, Vi € {1,...,N},Vj S {1, ,M}

where Xgsign 1S the assignment matrix in which elements
x4; assume value 1 if edge device 7 is assigned to gateway
7 and O otherwise. This is a problem from the class of
bottleneck generalized assignment problems (BGAP) [62] and
many heuristic and exact solution procedures exist [63], [64],
[65]. The GAP is a well-known integer programming problem
involving the assignment of a number of jobs to a number
of agents such that each job is performed by a unique agent,
capacity limitations on the agents are not exceeded, and the
total cost of the assignments is minimized. The bottleneck (or
minimax) version of this problem is where the objective is to
minimize the maximum of the costs of the assignments that are
made. In our problem, there are N commodities (tasks) that are
assigned to M gateways (agents). The offloading rates L; of the
corresponding commodities are the number of resource units
consumed. ¢;; is the cost of gateway j to consume commodity
of edge device ¢, which we define as a decreasing function of
queue utilizations ); and distance d;;.

We use the approximate algorithm in [64] that heuristically
searches for a solution to BGAP. The algorithm is centralized.
All edge devices communicate the values of their offloading
rates to a head gateway. Then, the problem is solved to find the
optimal assignments and the results are communicated back to
the edge devices.

B. Routing

The gateway assignment step specifies the amount of data
to be absorbed by the gateways for all commodities. The
remainder of the overall problem is then a multicommodity
flow multiple sink routing problem with known commodity-to-
sink assignments. From this point, we solely need to deal with
continuous functions defined on a set of continuous variables,
that is, the flow rates.

The MTTF function itself is non-linear and non-convex,
still, the optimization problem can be linearized in a few steps.
We first start by taking the natural logarithm of the objective
function.

E,
log MTTF,q,(r) =log. (36)

+ kpTeqq(r)

Maximizing the minimum of log M T'T'F ; is an equivalent
problem to our original problem. The decision variable, flow
rate vector r, is related to MTTF through temperature function
T'(r). From Equation (6), temperature is a function of power
dissipation. On the other hand, power is a function of data
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flow rates through Equation (3). Both relations are linear,
but the temperature equation is time-dependent. To have a
time-invariant approximation for device temperature, we use
the state-space formulation and find the time step ts; where
temperature reaches a steady-state. We unroll the list of
linear equations until time step ¢ = t,, and calculate two
coefficients k1 and ko of power P and ambient temperature
Tump respectively. The time-invariant temperature equation
used in our problem formulation is as follows:

Ted,i(r) = klped,i(r) + k2Tamb,i + kS (37)

This can be explicitly written as T.q(r) =
> ies, Bkl Zfil ri, in summation form where E is a
matrix. The entries Ej; are constants depending on the pair
of nodes k£ and [, while the bias terms in (37) are omitted
without loss of generality. We also do not show the constant
term log~. in the following derivation to further simplify

. N
notation. Then, log MTTF.q; Zlesk Eu i = kE—;

Altogether, the problem in Equation (22)-excluding the

gateway assignment component— can be rewritten as

maximize MTTF (38)
subject to Z (ri; —rh) = Li, i =k Vi, k € Vgp

leSk

D (ri— i) =0, i £k Vi k€ Vip

LES)

ri, >0, Vi,k € Vgp, VI € Sk

S~ vl =L, Vi€ Vep, V{L| ED; € O}
k€VED

N
- E
7 a .
MTTF Y Ey Zrkl < Vi, k € Vip
€Sy =1
The last set of inequality constraints combined with the new
objective variable ensures that the minimum MTTF of all
nodes in the network is maximized. We convert this problem

into an equivalent linear programming formulation by change
of variables y = 1/MTTF.

minimize vy (39
subject to Z (ri, — 7)) =Li, i =k Vi, k € Vgp

LESK

> (ria =) =0, i #kVi,k € Vap

LES)

Til >0, Vi,k € Vgp, VI € S

> rhy=Li, Vi€ Vgp, Y{I| ED; € O;}

keVED
N E

DB ki <yt Visk € Vep
- B

leSy 1=1

We can interpret the above problem as minimizing the upper
bound ¢ on the inverse of the mean time to failure of all nodes
in the network. Following a similar rationale as discussed
in Section VI-A, we propose to solve this problem in a
distributed manner. A centralized solution is not desirable due
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to lacking scalability and flexibility. Therefore, we decompose
the problem into subproblems with dual decomposition, then
solve them distributedly at each node using the subgradient
method.

Distributed Algorithm. We first convert the problem in
Equation (38) into a completely decomposable form by in-
troducing additional variables. The objective function y is
replaced by ZieVED y?, similar to the technique presented
in [66]. Under this new objective function, network lifetime
optimization is reformulated as a quadratic programming prob-
lem.

>

i€VED

Z(rél - T;k) = L’i7 1=k VZ,k < VED
leSk

Z(Til—rfk)zﬂ, 1 £ kVi,k € Vgp
leSE

r;cl >0, Vi,k € Vgp, Vl € S}

> 1l =L, Vi€ Vgp, Y{l| ED; € O;}

minimize (40)

subject to

keVeED
N E

g Ey E iy < yk—, Vi, k € Vgp
‘ kp

leSk i=1

Yi =y;, Vi € Vgp,Vj € S;

Here, we have local variables y;’s for each node and con-
straints that enforce them to be equal. The objective func-
tion is quadratic and thus strictly convex in the y;’s. We
need to find a flow r minimizing this objective, such that
i < MTTF,q;(r), which can be done using the dual
decomposition approach.

We construct the dual problem by introducing Lagrange
multipliers v; for the flow conservation constraints and v;;
for the lifetime equality constraints. This results in Partial
Lagrangian given by (41), where the linear equality constraints
(temperature constraints) are not relaxed as they can be
satisfied locally at each node. We also do not include the
single gateway communication consﬁraint ZkeVED ri, = L.
Instead, we manually set the flows 7, = 0 for all i,k € Vgp
and all [ € Vi such that ED; ¢ O;. This ensures there are
no flows to other gateways and all the flow is restricted to be
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communicated to the assigned one.

Liy,ro,v)= Y o}

i€VED
N
2 Y ek - L
keVED Zf%} leSk
N
+ 3 Y u{ >k -rin}
keVED ;;%} leSk
+ Z Z vij (i — yj)
1€EVED JES;
N
- Y Yk Y
k€VED if}c k€eVED
N
e > =) + 0> (v — v }
leSE i=11€Sk
(41)
The dual function is given by
9(v.v) =
0< T;cl’ Vi € VED,VZ S Sk
inf { L N .
r’y{ (y,I'>U,V> Z Eklzrlkl Syk%, Vi,k € Vgp }
€Sk 1=1
(42)

From the expression of the Lagrangian, it is clear that the
dual function can be evaluated separately in the variables
corresponding to each node & € Vgp. The variables local
to node k are y; and r,il, l € Si. We use the subgradient
method [67], [68] to solve dual problem in a distributed
manner.

Subgradient Method: It is an iterative optimization algo-
rithm for minimizing nondifferentiable convex functions. At
each iteration ¢, the nodes only use the local information
available Ej; and the Lagrange multipliers vy (t), v (t) to
solve the following convex quadratic program with variables
yk(t), Til(t) for k € Vgp,l € S.

minimize Y2 (t) + yr(t) Z () —vk(t))  (43)
leSk
£33 O - i)
i=11es),
N E
subject to Z Ep Zriz(t) < yk(t)f
1€S i=1 b

T]il(t) >0, Vi e Vgp, VI € S,

The optimal values of the above problem are then used to
evaluate the subgradient components of —g for given (v,v)
pair at iteration ¢. The subgradients are given by

Li = Yes, (ra) —rip(t), i =k

i) = { Y () — (1)), 1 # b
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Fig. 13: Framework block diagram

hy(t) = yi(t) — yk(t)

Finally, the Lagrange multipliers v (t) and vy (t) are up-
dated using the subgradients based on the following equations:

vt +1) = vi(t) — B(t) fi(t) (44)
vri(t +1) = vg(t) — B(t) hia(t) (45)

where ((t) is a positive scalar step-size. After solving prob-
lem (43) and updating the Lagrange multipliers, each node
exchanges the updated values of yi, rx;, vg, and vy with
their neighbors [ € Sj,.

VIII. EVALUATION
A. Experimental Setup

To illustrate the effectiveness of our solution, we conduct
experiments on realistic edge computing scenarios. In our
simulations, we use real power and temperature measurements
collected from actual IoT devices. The experiments are real-
ized on MATLAB. Fig. 13 shows the block diagram of the
simulation infrastructure. Some important model parameters
used in the simulation are summarized in Table

TABLE II: Model Parameters

Parameters Value \ Parameters Value
a 1.59 x 10~ 1T g 0.12 x 107
b 8.62 x 107 SI 0.1s
Cy 0.22 MI 1s
Cs 1x10°% LI 86,400 s
I 3.2 Tref 45°C
P2 0.064 W ec 10

Hardware: The target edge devices are Raspberry Pi 2
with ARM Cortex-A7 CPU and the gateway is a Raspberry
Pi 4 Model B with Arm Cortex-A72 CPU. The gateway (Pi
4) exhibits around ten times more instructions per second
compared to edge devices (Pi 2) [69]. We measure the CPU
and WiFi power consumption and temperature of the edge
devices by running various applications under different am-
bient temperatures, then fit the models in Section III. The
maximum power consumptions of PU and RF components are
Pr = 2.16W and P’*" = 1.44W respectvely. We use the
T-KiBaM [45] as our battery model to realistically capture the
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discharge characteristics of the batteries. For reliability analy-
sis, we calibrate the parameters of the model in Equation (12)
by selecting a worst-case, a nominal, and a best-case device
operation temperature throughout its lifetime. These values are
selected to be 70°C', 45°C', and 20°C' respectively. We test
our proposed technique with trace driven network simulations,
following the characteristics of the modeled platform.

Environment: The reliability heavily depends on the tem-
perature of the environment that the device operates, so we
consider various ambient temperature conditions. We use the
temperature dataset from [70], which contains hourly ambient
temperature measurements of 36 cities for 5 years from 2012
to 2017. To demonstrate the effect of ambient temperature,
we simulate scenarios in very hot (e.g., Phoenix) and cold
(e.g., Toronto) locations. Moreover, we consider the effects
of the device being placed in different places by selecting
the temperature as Ty, = U(—10,+10) , where U is a
uniform distribution. For example, a device placed in a closed
container, when airflow around the device is restricted, so its
heat is trapped, and the container is in the sun, will have much
higher ambient temperature than a device placed under a shade
in open air.

Application Scenario: Tasks assigned to the edge devices
can be any segment of an application’s pipeline. For example,
traditional ML applications can be hierarchically segmented
into filtering, feature extraction, and classification tasks. Or,
neural networks (NN) can be inherently segmented into layers
that have different jobs (e.g., convolutional layers for feature
extraction in CNNs). In our experiments, we consider the
ML classification and regression tasks characterized for edge
computing settings in [14] with their corresponding power
consumptions. These classification and regression tasks can
either run on the edge devices or the gateway. In the simula-
tions we assign tasks in a randomized fashion, to immediately
run one after another. The task sizes are sampled from an
exponential distribution, where the mean size is 5 MB. Task
are completed when all the data belong to a task is processed
either by edge device or gateway. We randomly pick delay-
sensitive or delay-tolerant tasks from the whole set of tasks.
For delay-sensitive tasks, the task deadlines D,, are assigned
randomly from a uniform distribution, U (0.2, 2) seconds. The
offloaded data for a given task should not wait in the gateway
queues longer than the assigned deadline.
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We conduct experiments based on a practical scenario of
human activity recognition (HAR) [71], implemented on edge
devices [50]. The task is to infer the label for one of five
everyday activities (e.g. walking, running, cleaning, etc.) at
the edge device using data gathered from three IMU sensors
mounted at the chest, ankle and wrist, along with a heart rate
monitor. The input rates from sensors to the classification task
change due to (i) varying number of inference requests per sec-
ond (QoS requirement), (ii) differing sampling rates of sensors
based on desired signal quality [50]. We randomly assign the
data input rate \*?79¢" for a given task and choose it from a
uniform distribution, U(0, 1) Mbps. Furthermore, we assume
that each gateway can allocate ug = 3 Mbps processing rate
for the offloaded data, deterministically, constant throughout
the experiments.

Topology: In the following, we first present results on an
example of local network with a single gateway and solely
demonstrate the performance of the Intra-Gateway Manage-
ment piece of our approach. We then consider a large-scale
example with multiple gateways for thorough evaluation. For
both scenarios, we set the bandwidth limit to be BW = 5
Mbps for each local network (per gateway).

B. Local Network - Single Gateway Results

We perform simulations on a network with single gateway
and 8 edge devices randomly distributed over a field of
50m x 50m, with d,,,q, = 25. We compare our Intra-Gateway
Management approach with the following techniques:

e No ERC-ETC is our solution without the Edge Reliability
Controller (ERC) and Edge Thermal Controller (ETC).

o All Edge is the naive approach which assigns all the
computation to the edge devices with no offloading to
the gateway.

e Round Robin is a method where the edge devices take
turn offloading data.

o Samie (the name of the author) is the work presented
in [11]. At each iteration of the algorithm, it finds the
edge devices with the lowest and the second lowest
battery life. Then, if their lifetimes can be extended by
increasing offloading, the edge devices are allocated more
communication bandwidth.

o Pagliari (the name of the author) [21] makes the decision
for offloading based on a combined metric of energy
consumption and execution time demands of the tasks.

Reliability and Temperature: We first analyze the reliability
gains of adopting our solution. The target reliability for the
edge devices is empirically selected to be 0.85 at #;;7. of
3 years (36 months). Values ranging from 0.6 to 0.9 are
commonly selected as the cut-off levels for 3 to 5 years of
target lifetime [39]. Fig. 14 shows the time it takes for the edge
device with the minimum reliability in the network to violate
the target reliability of 0.85. The results are presented relative
to the target lifetime of 36 months. Our approach reaches the
target reliability at 37.7 months, whereas all other approaches
fail much sooner, falling short by as much as 20 months, 7
months being the best. Fig. 15 shows the reliability curve and
temperature vs time for the edge device with the minimum
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Fig. 15: Reliability curve and the long time temperature behaviour
of the device and the controller

reliability for our approach. The target reliability is met very
closely at 3 years. As seen from the plots, the Edge Thermal
Controller outputs a lower reference temperature when the
average internal temperature of the device increases due to
the varying ambient temperature.

Energy Savings: Fig. 16 presents the minimum remaining
battery energy in the network. The values are plotted relative
to the All Edge approach which consumes the most energy out
of all methods. Our approach shows similar quality in terms
of energy efficiency compared to the relative approaches while
meeting the reliability requirements. Samie [11] displays good
results because their algorithm is tuned for energy savings, at
each iteration of their algorithm, it specifically tries to improve
the energy consumption of the device with the lowest battery
energy. However, Samie’s approach violated reliability target
by more than 15 months as can be seen in Fig. 14.

Quality of Service: As described in Section IV, there are
three QoS constraints: input data rate, network bandwidth, and
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Fig. 16: Minimum battery charge in the network
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task deadlines. The proposed controller satisfies all of them
for a single local network. There are no violations due to the
strict constraints in the MPC controller employed. A detailed
evaluation is carried out for multi-gateway networks in the
following subsection.

C. Multi-Gateway Network Results

We further evaluate our proposed solution including both
the Intra-Gateway Management and the Inter-Gateway Man-
agement components on multi-gateway networks. The exper-
iments are repeated for different number of gateways: 2, 3,
4, and for different number of edge devices: 12, 36. Network
devices are assumed to be randomly distributed over a field
of 100m x 100m, with d,,,, = 50. All other parameters
and variables are kept the same as for the local network
simulations.

None of the comparisons in the previous section were
proposed for multi-gateway systems, so we modified them by
adding routing and gateway selection capabilities. We select
three baseline methods: All Edge, Fixed + Samie, and Fixed +
Pagliari. The prefix label Fixed means that the routes are static
and the topology is fixed. We assign N/M edge devices to
their closest gateways and the assignments do not change over
the simulation horizon. We pick Samie [11] and Pagliari [21]
for further evaluation as the former was the approach providing
the best battery lifetime and the latter was the best reliability
comparison. For more elaborate testing, we also implement
them on top of our Intra-Gateway Management solution for
routing and gateway assignment, denoted by /G. This helps
us single out and show the contribution of Intra-Gateway
Management when compared with the Fixed versions of the
same methods. The evaluated approaches are summarized
below.

o All Edge assigns all the computation to the edge devices
with no offloading to the gateways, only the output of the
compute processes are communicated to the gateways.

o Fixed + Samie is Samie’s approach with fixed topology.

o Fixed + Pagliari is Pagliari’s with fixed topology.

e IG + Samie is Samie’s approach with our routing and
gateway selection method added.

e IG + Pagliari is Pagliari’s approach with our routing and
gateway selection method added.

Reliability: Similar to the local network simulations, the
target reliability for edge devices is selected to be 0.85 at
36 months. In other words, the degradation in the reliability
of edge devices should not exceed 0.15 to achieve desirable
MTTE. Fig. 17a illustrates how long it takes for the edge
devices to degrade below this desired value. The results are
given for a network of 12 edge devices, but only the minimum
lifetime amongst those is plotted. The target reliability is
reached in 39.2, 43.2, and 46.5 months with our approach
for 2, 3, and 4 gateways respectively. All approaches follow
the same trend with an improvement in lifetime for increasing
number of gateways. When there are more gateways, offloaded
data needs to travel less, either in terms of the number of
routing hops or the actual physical distance. Moreover, edge
devices can offload more data because bandwidth occupation
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Fig. 17: The lifetime until reliability target violation

and queue lengths at the gateways are reduced. The proposed
approach delays reliability violation by 5.8 months compared
to the closest approach (IG+Pagliari) for 2 gateways to as
much as 7.4 months for 4 gateways. Except the proposed
approach, all approaches fail to meet the target time of
36 months for the configuration with 2 gateways. We also
observe that introducing Inter-Gateway Management to other
approaches improves lifetime. For example, Pagliari approach
gains 2.3 months with /G over fixed gateway assignment and
routing.

For the network with 36 edge devices, as shown in Fig. 17b,
edge devices degrade at higher rates and reliability target is
violated sooner. The bandwidth gets occupied much faster,
queues are filled up, and edge devices can offload much less
data to the gateways. As a result, all approaches tend to
behave more like the All Edge approach, because most of
the processing should be done at the edge devices in the
lack of offloading opportunities. In this case, the performance
gap between the proposed approach and others is widened,
displaying at least 7.4 months difference for 2 gateways.

Energy Savings: The primary goal in this work is to reduce
maintenance costs of IoT systems by means of reliability man-
agement. Maintenance costs arise as a result hardware faults,
which require repair, component replacement, or complete
node replacement. The hardware faults can be attributed to
power outages caused by battery depletion and failures due
to reliability degradation. Therefore, as in [72], maintenance
cost for a network can be formulated as a function of both
energy depletion and reliability degradation. It should be noted
that one may maximize the time it takes for the batteries to
deplete by simply choosing to offload if the communication
power consumption is lower than computation for a given
task and input data rate. This does not necessarily improve
device lifetime or maintenance cost as these decisions can
induce higher reliability degradation on the device. Also if
there are energy harvesting sources available, then metrics
such as battery lifetime do not carry significance as much.

We are interested in an evaluation criteria that covers both
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Fig. 18: Energy savings over reliability degradation

energy savings and reliability degradation. In particular, we
want to answer the question: “The energy savings come at the
cost of how much degradation in reliability?”. Intuitively, the
amount of loss in reliability should decrease with increasing
energy savings. However, it is not only the amount of energy
saved that influences reliability; the timing of savings are
critical as well. If the device has high power dissipation
during times when its temperature is high (due to ambient
conditions), then the effect of this on its reliability will be
detrimental. Ideally, energy savings should come when the
ambient conditions are severe, and power dissipation should
occur when device is cooler. This arrangement would lead up
to the least amount of loss in reliability.

In Fig. 18a, we evaluate and show energy savings over
degradation in reliability for each approach with a network
of 12 devices. The results improve with energy savings and
inversely proportional to degradation. We find energy savings
relative to the baseline approach All Edge where edge devices
do all the computation. For example, energy saving value 1.2
means the battery lifetime is 20% improved over running all
the workloads on the edge, without any offloading. Reliability
degradation is calculated in the standard way used throughout
the paper. It can be seen from the plots that the proposed
approach provides high energy savings while preserving relia-
bility, up to 49.0% improvement over the closest approach for
3 gateways. This can be attributed to the fact that our approach
offloads computation to both reduce thermal stress and save
energy, i.e., the savings come at the right time and in the
right amount. The difference between All Edge and the others
is evident with higher number of gateways since offloading
becomes much more efficient compared to local processing.

The same procedure is repeated for a network with 36 edge
devices and the results are depicted in Fig. 18b. Similar to our
reliability results, the improvements decrease when there are
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TABLE III: Quality of Service
. S Gateway Utilization [%]
Deadline Misses [%] G G Gs Avg
Proposed 0.0 90.6 941 922 923
Fixed + Samie 22.1 62.0 999 913 844
Fixed + Pagliari 7.7 545 67,5 667 629
1G + Samie 8.2 964 99.1 985 98.0
1G + Pagliari 3.8 80.6 87.1 84.0 839

more edge devices in the network. For example, the proposed
approach is 6.48x better than All Edge for the network with
12 edge devices and 2 gateways whereas the gain is 5.32z for
36 edge devices. Deploying more gateways per edge device
can extend the lifetime of the edge devices and reduce their
energy consumption.

Quality of Service: All approaches satisfy the bandwidth
constraints since each are strictly forced not to exceed them.
We report task deadline miss ratios and gateway utilization
values in Table III. The experiments are simulated for a
network of 36 edge devices and 3 gateways. Averaged deadline
misses and gateway utilization are given over all devices.
We define gateway utilization as the percentage of time the
gateway is busy. A gateway is assumed busy unless there is
no data waiting in its input queue to be serviced. Deadlines
are missed if data of a certain task waits in the gateway queue
longer than the task deadline.

Our proposed approach does not miss any deadlines because
the queueing dynamics and maximum deadline constraints
were explicitly considered in the solution. As a naive approach,
the tasks can always be executed completely on edge devices
at the desired input rates. This would also yield zero deadline
misses, but perform the worst in terms of reliability and energy
as shown above. The proposed approach offloads data to
preserve energy and reliability whenever it is possible to do so
without violating deadlines. In such cases when gateway queue
lengths grow and execution times approach maximum deadline
values, operation is switched to complete local processing to
avoid any misses. Other approaches are not deadline-aware and
produce misses from 3.8% (IG + Pagliari) up to 22.1% (Fixed
+ Samie). Fixed routing and gateway assignments particularly
increase deadline misses since it is not possible to reassign
edge devices to different gateways when queues are filled up.
Pagliari [21] approach considers task execution times which
improves its performance in comparison to Samie [11].

We explicitly report individual gateway utilization values
along with their average to show the variation between
different gateways in the network. For all approaches the
gateways are highly utilized since there is a large number
of edge devices per single gateway. It is favorable to utilize
the gateways whenever appropriate by offloading data since it
reduces the excessive load on the edge devices. Our approach
has the second highest average utilization with 92.3% after
IG + Samie with 98.0%. Samie approach iteratively increases
offloading and uses more gateway resources if communication
is more energy efficient than computation for a given task
and data rate combination. This usually results in completely
utilizing the gateways until no available resources left, which
also leads to deadline misses. In comparison, the proposed
approach is more conservative with the gateway use and avoids
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any adverse overutilization outcome.

The balance of utilization across gateways is an important
criteria for QoS as well. For Fixed + Samie, some gateways are
overloaded (99.9% and 91.3% utilization) with offloaded data
despite other gateways being underutilized (62.0% utilization).
Such an unbalanced employment of gateway resources would
lead to suboptimal QoS; the load on the gateways should
be distributed evenly. Our approach and the other approaches
assisted by Inter-Gateway Management exhibit low utilization
variation between different gateways. The maximum deviation
is £3.5%, £2.7%, and £6.5% for Proposed, IG + Samie, and
IG + Pagliari respectively. Gateway assignments are based on
fairness under Inter-Gateway Management, hence, it balances
out bandwidth and gateway utilizations across local networks.

Delay-Sensitive Tasks. For the above experiments, we
picked delay-sensitive or delay-tolerant tasks randomly from
the whole set of tasks. The existence of delay-tolerant tasks
helps edge devices to more flexibly offload data as long
queue wait times are not a problem for them. Intuitively, it
is favorable to serve delay-sensitive tasks at the edge devices
whereas offload the delay-tolerant tasks. We conduct further
experiments, separately for delay-tolerant and delay-sensitive
tasks, to elaborate on this intuition. The experiments are
simulated for a network of 36 edge devices and 3 gateways
similar to the previous Quality of Service experiments, but
we only report results for our proposed approach. For delay-
sensitive tasks, we assign the task deadlines D,, randomly
from a uniform distribution, U(0.2,2) seconds.

TABLE IV: Quality of Service for Different Task Types

> o ili7at1 (¥
Deadline Misses [%] Gateway Ultilization [%]

G Go Gs Avg
Delay-Tolerant 0.0 98.6 974 974 978
Delay-Sensitive 0.0 826 869 854 85.0

Table IV presents the deadline miss and gateway utilization
results for the two task types. For both, we have 0.0% deadline
misses because the tasks can always be executed completely
on edge devices at the desired input rates as a naive approach.
On the other hand, gateways are utilized more for the delay-
tolerant tasks compared to delay-sensitive tasks, with averages
97.8% and 85.0%, respectively. If the queue is already filled
and the wait times are higher than task deadlines, then the
data of delay-sensitive tasks are processed at the edge device
instead of being offloaded.

Packet Loss. Throughout our experiments, the assumption
was that the communication is perfectly reliable. Therefore,
every packet transmission is assumed successful, i.e., no
packet drops. This might not be true in realistic communication
scenarios. Here, we consider a more practical scenario, with
probabilistic packet losses where retransmissions are handled
with a mechanism like TCP. For simplicity, we set a link era-
sure probability, that is, the probability of losing the complete
data that belong to a task, instead of specifying a bit error
rate or a packet error rate. Then, data offloading for a task
fails with probability p.. When failure occurs, the complete
task data needs to be communicated again. For example, if
the task size is 5 Mb and data rate is 1 Mbps, then the

offloading of this task is delayed by 1‘2%25 = 5sec in case of
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a failure. We run simulations for various failure probabilities
and report corresponding deadline misses in Table V. Only
delay-sensitive tasks are used for these experiments with the
aforementioned specifications.

TABLE V: Quality of Service Under Packet Loss

Pe 00 01 02 03 0.4 0.5
Deadline Misses [%] 0.0 33 6.8 172 345 721

As seen from the table, deadline misses are not 0.0% as we
impose transmission failures. This is expected as our algorithm
does not account for the possible connection errors. When the
transmission fails for a task, the queue fills up due to other
offloading edge devices until the retransmission starts. Since
the proposed method does not include the retransmission delay
in the overall delay calculation, we start observing deadline
misses.

Low-Capability Edge Devices. According to our edge device
model and task input rate specifications, the tasks can always
be executed completely on edge devices at the desired input
rates. In other words, the edge devices can support up to 1
Mbps data processing rate, which is the maximum \!@79¢!
value we set for our tasks. As a result of this assumption,
deadline misses can be avoided with the naive approach of
processing everything on the edge devices with no offloading.
Though, it should be noted that this approach severely de-
grades edge device reliability and consumes excessive energy.
We now assume low-capability edge devices that have lower
processing data rates than the maximum task input rate. Let
us randomly assign the data input rate A**"9¢ for a given task
and choose it from a uniform distribution, U(0,1) Mbps as
before, but limit the edge device processing rate p. Below
table shows deadline misses for various limits i, on edge
device processing rates. Only delay-sensitive tasks are used
for these experiments with the aforementioned specifications.

TABLE VI: Quality of Service Under Packet Loss

Wiim [Mbps] - 09 08 07 06 0.5
Deadline Misses [%] 0.0 00 26 41 58 108

The proposed approach can still meet the deadlines perfectly
when the edge devices are only capable of processing data
with rate 0.9 Mbps. However, deadline misses increase with
decreasing (u;,, as edge devices necessarily need to offload
more data.

Communication & Computation Overhead: We evalu-
ate the overhead of the communication for Intra-Gateway
Management and Inter-Gateway Management on the actual
data communication between edge devices and gateways.
Let Mngmt_Data be the total amount of data exchanged for
management and Z7ask_Data be the total amount of task-related
data offloaded by the edge devices to gateways. Then, the
overhead in the occupied communication bandwidth is defined

as:
Mngmt_Data

Task_Data

We simulate and log all data exchanges within network de-
vices, then sum the values to find the total amounts for both

x 100% (46)
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management-related and task-related data. The experiment is
done for the same network as previous subsection, consisting
of 36 edge devices and 3 gateways. Data exchanges for
management is found to be introducing 2.8% overhead in
communication bandwidth. We also measure the overhead in
the number of messages communicated, computed as follows:

Mngmt_Msgs
Task_Msgs

where Mngmt_Msgs is the total number of messages ex-
changed for management and Task_Msgs is the total number
of task-related messages communicated. Here we assume that
data for each task is sent in a single message, but in practice
it should be packetized. Thus, we essentially measure the
number of times a new connection (e.g., a TCP flow) is estab-
lished between two devices. Results show that the overhead
in the number of exchanged messages is 11.2%. Management
messages are small because they contain a few values whereas
task-related messages is large in volume. Therefore, if the
task-related messages are packetized, then they overwhelm the
management messages in count.

The Intra-Gateway Management requires the communica-
tion of power consumption and battery energy values from
edge devices to gateways. Then, the gateways communi-
cate back offloading rate values to the edge devices. This
needs to be repeated every medium interval (MI). A total
of 5NN real numbers are communicated per M I seconds. For
Inter-Gateway Management, the subgradient method is fully-
distributed and iteratively converges to the solution. Each edge
device exchanges the updated values of optimization variable,
decision variable, and Lagrange multipliers of the subproblems
they are solving with their neighbors. A node is then needs
to communicate 3N+M+1 real numbers per neighbor. In
the initial run of the distributed algorithm, it converges to
the optimal point after 5000 iterations for a network with 36
edge devices. However, an optimal solution is not necessarily
needed as Intra-Gateway Management carries out further op-
timizations. The subgradient method can be terminated within
5% of the optimal value around 1000 iterations. Moreover, the
algorithm converges in much fewer iterations, lower than 100,
when initialized from the previous solution.

We also discuss the computation overhead of our solution.
For Intra-Gateway Management, each edge device runs reli-
ability, thermal, and performance controllers. The Edge Reli-
ability Controller solves a convex optimization problem. The
computation of convex optimization introduces a negligible
overhead since the controller activates by intervals in the order
of days. The Edge Thermal Controller and Edge Performance
Controller are simply linear state-feedback controllers that can
be implemented with a single floating-point dot-product per
iteration. The Gateway Top-Level Controller solves a standard
quadratic programming (QP) form MPC with a linear system
model at intervals in the order of a few seconds. For similar
scale QP problems to ours, commercial solvers can compute
the solution under a millisecond [73]. Finally, we have two
separate algorithms under Inter-Gateway Management: routing
and gateway assignment. Since the routing algorithm is a dis-
tributed implementation of a linear programming problem, its

x 100% 47
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computation involves solving only a very small scale convex
optimization at each edge device. This incurs a latency in the
order of only microseconds. We use a centralized approximate
algorithm that heuristically searches for a solution to gateway
assignment. This can be computed under a second in modern
processors in gateway devices [64]. It should be noted that
the frequency of Inter-Gateway Management updates are much
lower in comparison.

I1X. DISCUSSION

The inherent assumption in our method is that network
Mean Time to Failure (MTTF) is the minimum of any node
in the network, meaning that the network lifetime is the time
until the first node dies. This definition is one of the most
prevelant in literature and was used in many recent works [12],
[74], [75]. Therefore, we consider the device-level reliability
optimization or requirements, and try to keep the reliability of
the most degraded device at high levels. Intuitively, this would
be ideal for networks where all nodes are equally critical for
the system to operate. However, there are interactions between
devices and there might be dependencies in data, or between
different devices. Furthermore, the devices are heterogeneous.
There might be redundancy of devices such as backups, hence
a single edge device failure may not result in the failure
of operation of the entire network. Other edge devices with
sensors of the same or even different types can substitute
their work, such that the fault goes undetectable. When all
aspects are considered, we need more sophisticated system-
level reliability models.

A possible future direction is to incorporate different net-
work reliability models in our management approach. Differ-
ent from single device, network-level reliability modeling can
be examined by graph-based models. For example, a simple
model is formulized by the serial reliability expression as
described in our paper. Commonly used analytical models for
networks include Fault Tree [76], Binary Decision Diagram
(BDD) [77], Reliability Block Diagram (RBD) [78], graph
transformation [79], or state-space methods such as Markov
Chains [80] and Petri Nets [81] — see [82] for a comprehen-
sive survey. The first step in assessing the impact of individual
device reliability and failure mechanisms is to determine the
conditions for network failure. Furthermore, it is crucial to
analyze how these conditions change depending on the IoT
application. One can then identify the reliability bottlenecks
in the application and reconfigure the management algorithm
to adapt. There are strategies that rank the devices’ importance
within an application and their criticality towards ensuing the
network failure condition, based on certain metrics such as
Birnbaum’s measure [83]. Using techniques such as in [76],
[84], we can evaluate the system reliability, determine the
criticality of IoT devices, and construct system-level models
that reflect inter-dependencies between devices.

X. CONCLUSION

In this paper, we introduced a dynamic management scheme
for IoT edge computing systems. The goal of our approach is
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to satisfy the Quality of Service (QoS) and reliability require-
ments of the system while maximizing the remaining energy
of the edge device batteries. We considered a multi-gateway
network and proposed a scheme with two interconnected
components: Intra-Gateway Management and Inter-Gateway
Management. Together, they control the offloading rates of
edge devices, carry out gateway assignments, and orchestrate
the routing within the network. Each of the problems are
handled in a distributed fashion, resulting in a light-weight
and scalable solution. The results indicate that our approach
improves the lifetime of a network with 36 edge devices by
5.8 months compared to the closest approach for 2 gateways to
as much as 7.4 months for 4 gateways. We also evaluated the
energy savings and QoS for various network configurations.
Experiments demonstrated similar energy savings compared to
the state-of-the-art approaches while preserving reliability, but
fewer task deadline misses.

We propose to extend this work for ML-specific applica-
tions in future work. Our computation offloading framework,
handled by the Intra-Gateway Management, finds the best
data offloading rates from an edge device to a gateway,
given the workload characteristics. However, the algorithm is
application-agnostic, meaning, it does not exploit the appli-
cation structure. Many machine learning models have proper
structures that can be broken up into sequential parts. For
example, neural networks can be split to run the first few
layers at the edge and the rest in the cloud. Features can
be extracted at the edge and then be communicated over the
internet, which significantly reduces communication costs. For
future work, similar to what we proposed in this paper, we
will optimize computation offloading and additionally find
the optimal machine learning workload distribution between
edge and cloud. The primary QoS metric for machine learning
applications is the learning accuracy. Therefore, we propose to
optimize the model accuracy high while minimizing training
Costs.
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