This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TC.2022.3179226, IEEE

Transactions on Computers

OpenHD: A GPU-Powered Framework
for Hyperdimensional Computing

Jaeyoung Kang, Behnam Khaleghi, Tajana Rosing, and Yeseong Kim

Abstract—Hyperdimensional computing (HDC) has emerged as an alternative lightweight learning solution to deep neural networks. A
key characteristic of HDC is the great extent of parallelism that can facilitate hardware acceleration. However, previous hardware
implementations of HDC seldom focus on GPU designs, which were also inefficient partly due to the complexity of accelerating HDC
on GPUs. In this paper, we present OpenHD, a flexible and high-performance GPU-powered framework for automating the mapping of
general HDC applications including classification and clustering to GPUs. OpenHD takes advantage of memory optimization strategies
specialized for HDC, minimizing the access time to different memory subsystems, and removing redundant operations. We also
propose a novel training method to enable data parallelism in the HDC training. Our evaluation result shows that the proposed training
rapidly achieves the target accuracy, reducing the required training epochs by 4 x. With OpenHD, users can deploy GPU-accelerated
HDC applications without domain expert knowledge. Compared to the state-of-the-art GPU-powered HDC implementation, our
evaluation on NVIDIA Jetson TX2 shows that OpenHD is up to 10.5x and 314 x faster for HDC-based classification and clustering,
respectively. Compared with non-HDC classification and clustering on GPUs, HDC powered by OpenHD, is 11.7x and 53 x faster at

comparable accuracy.

Index Terms—Brain-inspired Hyperdimensional Computing, Machine Learning, Edge Computing

1 INTRODUCTION

He growing demand for real-time data analysis has
Taccelerated the trend of on-device machine learning
(ML) systems. Deep learning (DL) is a popular method to
extract higher-level features but running those workloads
on conventional systems results in high energy consumption
and slow processing speed. Furthermore, mobile devices
need to perform online learning tasks in various environ-
ments, but data can be easily corrupted or vulnerable to
noise.

The limitations lead researchers to seek alternative
computing methodologies for lightweight learning. Brain-
inspired hyperdimensional computing (HDC) is such an
alternative solution based on a long-term memory model,
Sparse Distributed Memory (SDM) [1], which emulates hu-
man cognition with vector operations in a high-dimensional
space. A key difference from the conventional computing
method using boolean and numbers is that the HDC works
based on a vector type, called hypervector. A hypervector
includes the pattern of information encoded with tens of
thousands of dimensions. For example, when having mul-
tiple items in a dataset to learn, in HDC, we first encode
each item with different hypervectors. We then can perform
various cognitive operations with hypervector arithmetic,
e.g., adding multiple hypervectors to memorize them and
learning its dominant pattern with a single hypervector.

Researchers have been presented diverse learning ap-
plications based on the HDC method with high accuracy
and efficiency, e.g.,, DNA sequencing [2], language recog-
nition [3], robotics [4], activity identification and voice

e | Kang, B. Khaleghi, and T. Rosing are with the University of California
San Diego.

e Y. Kim is with Daegu Gyeongbuk Institute of Science and Technology.

recognition [5], multimodal sensor fusion [6], and bio-signal
processing [7]. Several companies are also actively study-
ing HDC to implement more generalizeable learning, e.g.,
Google [8], IBM [9], and Numenta [10].

Compared to the conventional DL, HDC shows several
advantages: (i) the algorithm is highly parallelizable [11], (ii)
it can perform training and inference with the lightweight
computation, and (iii) the hypervector representation is ro-
bust against the noise [12]. However, since HDC deals with
large hypervectors, the conventional CPU-centric architec-
ture is not a suitable system to run such computation. HDC
is easily parallelizable and can benefit from hardware accel-
erators. Earlier work has shown new hardware accelerator
designs such as ASIC [3], [11], [13], and in-memory com-
puting accelerator [14]. These works have shown promising
speedup and energy efficiency over the CPU-based HDC.

Nevertheless, the hardware designs are not commonly
available and need a relatively long period to synthesize
and fabricate after deriving the new applications. HDC
applications require flexibility, e.g., hypervector lengths,
precision of operations, and encoding algorithm, which
are infeasible in ASIC [11] and PIM [15] implementations.
It is also essential to support high-precision numbers as
the state-of-the-art HDC algorithms benefit from floating-
point encoding to improve accuracy [16], [17], [18] which
significantly reduces FPGAs efficiency. Besides, GPU can
offer programmability with high parallelism. Even though
GPU generally shows high power consumption, the off-the-
shelf low-power embedded GPU platform is available in the
market, such as NVIDIA Jetson.

To run the HDC on the GPU, one could integrate HDC
with the parallel computing models oriented to vector pro-
cessing, e.g., TensorFlow. Recent work [11] used TensorFlow
on embedded GPU, but it showed a comparable speed to

0018-9340 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.or{ /%)ublicationsﬁstandards/Eublications/rights/indexhtml for more information.
Authorized licensed use limited to: Univ of Calif San Diego. Downloaded on August 08,2022 at 18:

2:07 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TC.2022.3179226, IEEE

Transactions on Computers

CPU-based implementation. In our experiment, TensorFlow
XLA-based HDC classification running on NVIDIA Jetson
TX2 was only 1.74x faster than CPU, with a low GPU
utilization of at most 40%. It creates a lot of HDC data
transfer between CPU and GPU, which causes a memory
bottleneck. Furthermore, TensorFlow-based HDC often fails
to effectively leverage the memory hierarchy on the GPU
since HDC data are large-sized and have specific memory
access patterns.

Our previous work, XCelHD [19], introduced a way to
optimize HDC classification on GPU, achieving up to 35x
speedup over the TensorFlow-based HDC implementation.
However, it fails to achieve optimal performance when
data characteristics, device architecture or HDC algorithm
change. A hand-optimizing kernel requires a lot of effort
and is not flexible to data characteristics, HDC algorithm,
and hardware changes. As such, it is critical to find optimal
configurations and parameters by adaptively reacting to
data, hardware, and HDC design rather than relying on a
hand-optimized kernel. To this end, it is essential to develop
a new library specifically designed for HDC, to leverage
the parallel computation pattern in an efficient, flexible, and
automated manner.

In this paper, we present a GPU-powered HDC frame-
work, dubbed OpenHD. Unlike existing HDC accelerators
based on FPGA and ASIC, OpenHD supports various types
of HDC-based algorithms including classification and clus-
tering. The proposed solution offers a software interface ca-
pable of automatically generating optimized CUDA code of
commonly used HDC applications with the JIT compilation
to ease the development and optimizing efforts. OpenHD
adopts various optimization strategies that effectively mit-
igate the low parallelization and memory access issues
of the existing HDC-based applications. Furthermore, we
propose a highly parallel HDC training, called PARTRAIN
that elevates the GPU parallelism by redesigning the HDC
training algorithm. It converts the sequential HD training
process into multiple simultaneous subtasks, each of which
learns partial models with different training samples while
updating the final model based on the partial models. Our
contributions are summarized as follows:

o We present OpenHD for GPUs, which supports vari-
ous HDC-based learning tasks. In this paper, we ap-
ply OpenHD to two representative HDC-based algo-
rithms: classification and clustering. OpenHD efficiently
parallelizes the HDC learning procedure in a GPU-
friendly way while intelligently optimizing memory al-
location/access patterns.

e Our OpenHD framework automatically extracts the HDC-
related parts from a given Python program, maps them to
highly-optimized CUDA code, and compiles them using
JIT compiling. It allows users to implement various GPU-
accelerated applications with HDC philosophy even when
they are unaware of the detailed acceleration mechanism
on the underlying GPU subsystems.

o We propose a novel HDC training method for high par-
allelism. It enables full utilization of hardware resources
and reduces the number of required training epochs by
4x on top of the GPU-accelerated HDC.

o Our strategies specially designed for GPU maximize data
reuse and enhance cache utilization, additionally acceler-

2

ating the prediction (up to 12x) and the encoding step
(up to 1.94x) in HDC with simple parallelization.

e We show that OpenHD achieves comparable accuracy
to the state-of-the-art deep neural network (DNN)-based
classification and clustering (K-means) algorithms run-
ning on the same GPUs, but at much higher speed.

We implemented and evaluated OpenHD with various

datasets using NVIDIA Jetson TX2, which aims to low-

power edge devices. Our evaluation results show that HDC-
based classification has a 9x smaller model and runs 11.7x
faster while offering comparable accuracy to DNN-based

method. HDC-based clustering is 53x faster than the K-

means algorithm with comparable quality. Moreover, our

results indicate that OpenHD is up to 10.5x and 314 x faster
than the state-of-the-art classification and clustering HDC
implementation running on the GPU, respectively.

The rest of the paper is organized as follows: In Section 2,
we elaborate on the basics of HDC with a discussion of
HDC applications. We then describe the software interface
of OpenHD in Section 3 with the usage. Subsequently,
in Section 4, we provide the details of our optimization
strategies for GPU-based HDC. Next, we present experi-
mental results of the OpenHD framework in accelerating the
HDC applications with discussions for the state-of-the-art
ML /HDC methods in Section 5. In Section 6, we introduce
existing works that deal with automated GPU acceleration
and HDC acceleration on various hardware platforms. Fi-
nally, Section 7 concludes the paper with discussion.

2 BACKGROUND
2.1 Preliminaries of HD Computing

Based on the understanding that brain events involve the
simultaneous activity of a massive number of neurons, HDC
models it with vectors in a high-dimensional space [20].
This high-dimensional vector is called hypervector, and HDC
processes data in the unit of hypervectors.

Hypervector: The human memory associates different
information and comprehends the relationship between
them. HDC represents each datum with a hypervector and
measures the correlation with the distance in the high-
dimensional space. For example, let there exist two hyper-
vectors with D-dimensionality, and each has random com-
ponents between +1 and —1, ie., {+1, —1}P. In the vector
space, the two bipolar hypervectors are near-orthogonal.
We can represent two distinct items using the two ran-
domly generated hypervectors. Generally speaking, finding
the relationship and distinguishing information is done by
measuring the similarity between a pair of hypervectors,
5(?1, 2) where Hy and H, are two hypervectors. Ex-
isting works primarily use three different metrics: hamming
distance for binary hypervectors, dot product similarity, and
cosine similarity for non-binary hypervectors [21]. Note that
the hypervector is a holographic representation of infor-
mation in that there is no specific important dimension in
a hypervector. This independence property of hypervector
allows resiliency to corruption in components.

Addition (bundling) /Multiplication (binding): Using the
element-wise addition and multiplication between hyper-
vectors, we can memorize and associate different informa-
tion. The element-wise addition operation, called bundling,

0018-9340 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.or{ /%)ublicationsﬁstandards/Eublications/rights/indexhtml for more information.
Authorized licensed use limited to: Univ of Calif San Diego. Downloaded on August 08,2022 at 18:

2:07 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TC.2022.3179226, IEEE

Transactions on Computers

produces a hypervector that preserves all similarities of
the combined members, mimicking the memorization func-
tionality. The element-wise multiplication, called binding,
results in a hypervector that associates two different hyper-
vectors. The result hypervector represents new information,
which is near-orthogonal (dissimilar) to both of the associ-
ated hypervectors.
Permutation: To process sequential information, the HDC
has an operation called permutation. The permutation op-
eration, which is denoted by p"(H), shuffles components of
with n-bit(s) rotation. The results of the operation creates

a near-orthogonal, ie., §(p"(H), H) ~ 0 for non-zero n.
Also, the results of permutation is reversible, meaning that
p_”(p”(ﬁ)) = H. Hence, the permutation can be utilized
to ordered information. For instance, pl(ﬁl), pQ(ﬁg) and
p3(ﬁg) may represent a sequence of three words.
Flip: To create hypervectors that maintain a certain degree
of similarity, HDC uses the flip operation. Let be a
hypervector randomly sampled. If we flip D/2 elements,
e.g., changing the sign bit of —1 and +1, the result hypervec-
tor is orthogonal to the original hypervector; flipping D /4
elements creates a hypervector which is 50% similar to the
original H in the vector space. Using this property, we can
represent different levels of information ranging from 0% to
100%. We first create a random hypervectors for 0%, which
is denoted by H . Then, for the target level p in percentage,
p, We can represent this by flipping (D/2) x (p/100)
elements of .

With these simple hypervector operations, prior research
has shown that it is possible to implement diverse cognitive
tasks. In the following section, we discuss how they solve
the classical ML problems based on HDC.

2.2 ML with HDC

Classification: In [2], [5], [22], [23], [24], the authors employ
HDC to perform classification. It consists of the encoding,
training, and inference stage. The classification was the first
application tested using HDC. Some examples of various
types of classification results are recently published in [5],
[22], [23], [24]. It consists of the encoding, training, and
inference stages.

Encoding maps (encodes) real-world data into the HD
space. There are various encoding methods. One of the
most popular ones is the ID-level method [5], [14], [22], [25].
For a given feature vector, this encoding method represents
each feature value using the flip operation and each feature
position using a randomly generated hypervector. It then
combines the hypervector pair of the feature position and
value using the element-wise multiplication. In particular,

we encode an input data to an input hypervector as
follows:
—
T ="1D; 0LV, (1)

where © indicates an elément—wise multiplication. Here,
1Dy indicates ID hypervectors which assigned to an individ-
ual fth index of feature. We generate level hypervectors LT} m
to capture different values m in fth index of feature. The ID-
level method is more complex but also encompasses all the
steps of random projection (RP) encoding, which means that

3

any implementation that can do ID-level can also implement
the RP [5].
The training stage builds HD model (class hypervectors).
We initialize HD model by combining all hypervectors ﬁf
belonging each class k using the element-wise addition, i.e.,
=2 ﬁf where C'j, indicates class hypervector for
class k. Iterative training is used to achieve higher accuracy.
HDC calibrates class hypervectors based on the prediction
using the current state of class hypervectors. To be specific, it
checks the ground truth label is equivalent to the predicted
class. We can make predictions by selecting a class that has
the maximum similarity between the input hypervector and
class hypervectors. We use either Hamming distance (binary
hypervectors) or cosine similarity (non-binary data). If the
model gives an incorrect prediction, we update the class
hypervectors by subtracting the encoded hypervector from
the wrongly predicted class and adding the pattern again to
the correct target class hypervector to amplify the pattern.
We can apply the learning rate (n € (0, 1]) for scaling the
input hypervector during the update [26]. Here, we define
epoch as an iteration over all data.
The inference stage maps test data into query hypervectors
using the same method in the encoding stage. The class
that shows the maximum similarity to query hypervectors
is selected as the prediction result.
Clustering: Earlier work [27] proposed an HDC-based
clustering algorithm. After mapping raw data to the high-
dimensional space, their algorithm performs clustering by
iterating two stages: similarity computation and cluster cen-
ter update. The algorithm aims to learn the representative
hypervector for each cluster head. A cluster head with the
highest similarity is assigned to each data. For the cluster
center update stage, the element-wise addition among data
that points to the same cluster head is performed. Then,
each component of the hypervector is binarized, and that
hypervector is assigned as a representative hypervector of
the cluster head.

3 OPENHD FRAMEWORK

OpenHD provides a runtime environment to implement
HDC applications seamlessly integrating with GPU for
high efficiency. The OpenHD software interfaces reduce
the user’s need for understanding the GPU details, and
minimizes the need for hand-optimization. It also enables
implementing various machine algorithms of HDC. The ab-
straction layer of OpenHD automates the memory allocation
of GPU memory and execution of the accelerated code.
OpenHD uses Python as the front0end with NumPy-style
syntax. At runtime it automatically generates optimized
CUDA code to accelerate the implemented HDC applica-
tions on the state-of-the-art GPU systems.

Programming interface: To ease the understanding of how
users can implement HDC applications with OpenHD, Fig.
2 shows a Python example code automatically accelerated
on GPU. As shown in the example code, users can create
either hypermatrix, i.e., an array of hypervectors, or hyper-
vectors, and performs hypervector arithmetic operations,
regarding that (i) they are built in the OpenHD Python
library and (ii) will be accelerated automatically on their
system. When the @hd.run decorator is applied to the

0018-9340 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.or{ /%)ublicationsﬁstandards/Eublications/rights/indexhtml for more information.
Authorized licensed use limited to: Univ of Calif San Diego. Downloaded on August 08,2022 at 18:

2:07 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TC.2022.3179226, IEEE

Transactions on Computers

OpenHD Abstraction Layer

(? ® Astor <>
GPU
AOT o
User Code (1) b compilation . Accelerated
— o 0O —— — Python Code
< Wrapper
—
) T — <>
4] y Data Transpil ® . Python
AST pe, Wi
Access [—»| Type [T —_— —_— rapper
DFG Fusion Mutation <
Analysis -) .
& Annotation Split CUDA CUDA-friendly Optimized
Code chunk AST @Memory Manager AST

Fig. 1: Overall execution workflow of OpenHD

hd.init (D=D,
@hd.run
def add_row (F) :
id_base_hx = hd.hypermatrix (F)
id_test = hd.draw_random_hypervector ()
for £ in range (F):
id_base_hx[f] += id_test
id_base_hx[f] += id_test
return id_base_hx, id_test

context=global ())

W O J o Ul W

Fig. 2: Example implementation using OpenHD. @hd. run
decorator passes the entire function component to the ab-
straction layer of OpenHD. add_row adds the hypervector
id_test for each row of hypermatrix id_base_hx.

code (Line 1), the abstraction layer of OpenHD performs
JIT compilation. It generates highly optimized CUDA code
based on HDC characteristics and compiles using the CUDA
compiler installed locally. Also, it finds the optimized pa-
rameters (kernel configuration) required for execution and
binds the execution file to the Python front-end through
PyCUDA [28]. Through this library, users can run GPU-
accelerated HDC applications with less effort in a highly
optimized fashion.

3.1 OpenHD Workflow

Fig. 1 illustrates how the abstraction layer of OpenHD
handles the given Python code. Python code is transformed
into abstract syntax trees (AST) by the built-in library. In
the process of scanning the AST, OpenHD annotates each
node of the AST to identify whether it is a JIT-compatible
tree. Then, we build a data flow graph (DFG) using the
annotated AST (@). One of the goals of the abstraction
layer is to decide the code is to be offloaded or not. In other
words, we need to find code chunks that can be efficiently
handled with the GPU (@). Using the results obtained from
the static analysis of the AST, we can distinguish those two.
First, the code component that needs to be executed on the
CPU is regenerated as python code from a node tree using
Astor library [29] (@). The remaining code is converted
into the optimized CUDA code. OpenHD’s CUDA code
generator takes into account the GPU memory hierarchy
(e.g., global memory, shared memory, constant memory) in
order to maximize performance and efficiency.

The AST of the corresponding Python code fragment
cannot be used as-is for the CUDA code generation (@).
It needs to be converted into a CUDA-understandable
AST. Also, we need to consider the hardware specifications
and input data characteristics to generate optimized code.

0018-9340 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.or{
Authorized licensed use limited to: Univ of Calif San Diego. Downloaded on August 08,2022 at 1

After this step, AST addresses in the annotation nodes
are invalidated. Note that the code fragment that handles
HDC-specific operations such as permutation and shuffle is
substituted with a single HDC operation. Before generating
code, the memory manager of OpenHD (@) considers ac-
cess fusion to minimize global memory access. Furthermore,
we apply data type mutation to save memory allocated to
variables and maximize memory coalescing by analyzing
and managing the minimum data type required by each
variable in OpenHD.

CUDA-compatible AST is transpiled into actual compil-
able code by the transpiler of OpenHD (@). Since the gen-
erated code cannot be executed standalone, the transpiler
adds the required headers and definitions automatically.
Then, the final CUDA code is wrapped with PyCUDA-
based Python code. Finally, the abstraction layer binds the
CPU side code and the GPU code (@). Instead of running
the code generation for all code wrapped with @hd.run
every time, OpenHD caches the generated code for future
reuses. If the same code requests for the JIT compilation,
OpenHD intelligently utilizes previously compiled code.

3.2 Data Type Definition

HDC’s data units are hypervectors. Thus, we defined two
additional built-in data types in OpenHD: hypervector and
hypermatrix. Hypervector is a high-dimensional vector with
arbitrary D dimensionality. Hypermatrix corresponds to the
multiple hypervectors; it can be used to express class hyper-
vectors. HDC uses a fixed dimensionality during application
execution. In OpenHD, users declare it in an initializing
function that applies to the global scope, and it is used
in the subsequent process. The result of an operation like
the similarity computation may not follow the hypervector
or hypermatrix. In OpenHD, users do not need to declare
a variable to store the result explicitly. Instead, variables
reside in GPU memory for later computation, and they can
be copied to the host through the to_numpy () method.

Deploying the hypermatrix/hypervector as built-in data
types creates a serious design challenge — hypervectors
usually have a large data size, incurring both high com-
munication and computation costs on the GPU subsystems.
In the rest of this section, we describe the representative
optimization schemes applied in OpenHD.

3.3 Access Fusion

To improve kernel performance, it is essential to reduce la-
tency by minimizing access to GPU off-chip global memory,
i.e.,, GDDR. The TensorFlow-based implementation assumes

2:07 UTC from IEEE Xplore. Restrictions apply.

/%)ublicationsﬁstandards/Eublications/rights/indexhtml for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TC.2022.3179226, IEEE

Transactions on Computers

D Range Required Bytes (Type)
[T [Hypervector [| [-1,+1] mmmp 1byte (char)

+
[T T T T] 11,411 wep 1byte(char)
[[T Hypervector [| [-2,+2] = 1pbyte (char)

(a) No Mutation Case

D Range Required Bytes (Type)
[T [Hypervector [| [-64,+64] mmmp 1 byte (char)

+
[T (200, +100] mmmp 1 byte (char)

[-164, +164] WP 2 byte (short)

(b) Mutation Case

Fig. 3: The example of data type mutation

a hypervector as a tensor, so each line of code is represented
by a node. Therefore, access to the global memory occurs
every time the line is executed, leading to reduced perfor-
mance. OpenHD uses the NumPy-style syntax for ease of
programmability. If the AST is used as-is, the same problem
may arise. Therefore, in OpenHD, coping with how the user
wrote the code, the global memory access corresponding
to hypervector or hypermatrix fuses through memory access
fusion to reduce the memory access. For example, Line 7-8
of the code in Fig. 2 is fused to a single kernel so that the
two consecutive memory accesses are replaced with a global
memory access and a register access.

Given the CUDA-understandable AST, OpenHD gener-
ates a control flow graph and traverses it. The variable node
that reads or writes occurs is recorded individually, and we
can check a propagable path. For example, if multiple reads
or writes occur in the same variable without dependency,
those nodes can be fused. We reflect changes to the corre-
sponding node in the AST.

3.4 Automated Data Type Mutation

For some GPU-powered embedded devices, the CPU and
GPU may share the same system memory through unified
virtual addressing (UVA), and it is essential to reduce the
memory footprint. In HDC, the operation is performed on a
high-dimensional vector as a unit. If the components of the
hypervector use a data type with a large size, the amount
of memory occupied by a single hypervector will increase
accordingly. To reduce the memory footprint caused by
hypervectors, we applied automated data type mutation op-
timization technique that inferences for the data type of
hypervector components.

Fig. 3 shows how OpenHD tracks the range of the
hypervectors to verify when to mutate the data type, saying
the no mutation case (a) and mutation case (b). The first
hypervector created in the HDC application is {+1, —1}?
where D is the dimensionality of the vector. Thus, it starts
from a vector of char type (1 byte), and the required range
changes as HDC addition or multiplication are performed
in the subsequent process. For example, for a variable of
char type, the minimum required data type may increase
in the order of short (2 byte), int (4 byte), and long (8
byte) during iteration." Therefore, this optimization module
tracks the range of variables along with the dependency

1. It may vary depending on the system environment.

ol Local Model Replacement

[==y | ppe——
| a1 |y | e | |8
m\u---uu%auumuu =
: : 3
TT=TTT e GO =10 [P« T=110 | | &
I £ PR —
- ‘§ Local HDC Model D — = ‘.....
H g . + | (II1=111]
=] |# . @ :
Ememmn [(EEEEINEN
8 Global HDC Model

Input Hypervectors

Iourel], [8007]

Fig. 4: Overview of the proposed parallel training method

graph in kernel units. We hereby track three types: variable
nodes, conditional statement, and the dominator. Finally, the
data type in nodes (the operation inside the kernel, the re-
turn type of the kernel, and the input type of the subsequent
kernel) in the AST is overridden with the inferred one.

3.5 Optimization of Built-in Functions

OpenHD supports HDC’s standardized operations as an
API (see Table 1). It reduces syntax analysis and code
generation time. During the code generation process, these
operations are unnested from AST and compiled in the
ahead-of-time (AOT) as runtime library APlIs.
Permutation/shuffle ~operation accompanies non-
coalesced memory access if source data reside on global
memory. For shuffle operations where many reading
transactions can occur, we place the source hypervector
in the constant memory. Even if a user uses multiple
permutations, the memory access fusion module combines
operations into a single kernel. Thus, it avoids performance
degradation by storing intermediate results in registers.

4 OPENHD OPTIMIZATION TECHNIQUES
4.1 PARTRAIN: Parallel Training for HDC Classification

The iterative training enhances the HDC model accuracy.
In contrast to the HDC encoding, the existing iterative
training process has limited parallelism in nature since it
feds data sequentially. In other words, the hardware can
be underutilized and become a bottleneck of the HDC ap-
plication. We propose PARTRAIN, which enables a parallel
iterative training process and expedites model refinement
by maximizing hardware utilization.

Fig. 4 illustrates the design of PARTRAIN. We spawn
local trainers. Multiple local trainers can be created until
it fills up available hardware resources. Each local trainer
contains two sets of C' hypervectors, where C' is the num-
ber of classes. The first set contains a local HDC model
while the other stores the changes of the local model. We
initialize a local HDC model using single-pass training
and the other set with zeros. PARTRAIN aims to maximize
the data parallelism during the training. We split the data
equally according to the number of local trainers (@). Each
local trainer refines the local HDC model in parallel (@)
and accumulates changes of it to (@). After training
with assigned datapoints, we update the global model by
calculating G = >, D; (@). Note that i indicates ith local

0018-9340 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.or{ /%)ublicationsﬁstandards/Eublications/rights/indexhtml for more information.
Authorized licensed use limited to: Univ of Calif San Diego. Downloaded on August 08,2022 at 18:

2:07 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TC.2022.3179226, IEEE

Transactions on Computers

6
TABLE 1: The OpenHD API examples
Function Semantics
hd.init (D, context) Initialize HDC application with D dimensionality

in designated context (e.g., global ())

hd.hypervector () /
hd.hypermatrix (N)

Declare hypervector or hypermatrix with NV hypervectors.

hd.draw_random_hypervector () /
hd.draw_gaussian_hypervector ()

Generate a random hypervector from uniform distribution or normal distribution

hd.permute (T, N)

Perform HDC permutation to hypervector 7’

hd.shuffle (T, S)

Randomly shuffles hypervector T with seed S

hd.search(C, A) /hd.sim(C, A)

Perform associative search between
class hypervectors C' and hypermatrix or hypervector A

hd.cos (A) / hd.sign ()

Apply element-wise cosine / sign flip on hypermatrix or hypervector A

ENC-Streamer Dataset

Module

e
vaase

[S!reaml]

G TR — sss
‘\/*> < D —»
D ITT=TTH o 4
flip [T T

P B
o} —— (=T
L

7

(T T T--TTH +R)—4
[T T]

Fig. 5: Design of ENC-STREAMER-applied HDC encoding

trainer. The global model a replaces all local HDC models
(®). The whole process is defined as one epoch.

Note that PARTRAIN is different from data-parallel train-
ing used in DNNs wherein gradients are aggregated from
multiple GPUs, which is equivalent to having a larger batch
on a larger GPU. In contrast, PARTRAIN performs local
model updates before the global model aggregation. Hence,
the training result (model) of PARTRAIN is different from
the sequential HDC training as all updates are postponed to
the end of the epoch (even the local models are not being
sequentially updated as opposed to the conventional HDC
algorithm).

4.2 HDC-Based Memory Optimization

OpenHD uses two techniques to optimize memory transac-
tion which is the main challenge in HDC that uses large-
sized hypervectors. ENC-STREAMER optimizes the encod-
ing stage of HDC and L2-RECYCLE optimizes the training
(local trainer in case of PARTRAIN).
HDC Encoding Optimization ENC-STREAMER allocates
data to the proper GPU memory hierarchy to achieve high
efficiency during encoding and inference stages. The encod-
ing is the bottleneck of the HDC application, as it takes up
to 70% of the overall runtime of HDC on CPU [30]. Here we
focus on one of the popular HDC encoding techniques, the
ID-Level encoding, but the same strategy can be applied to a
simpler RP method. A naive way to implement the ID-Level
encoding on GPU is to parallelize over datapoints and each
dimension of input hypervectors.

On top of the parallelization, ENC-STREAMER enhances
memory transactions by leveraging GPU memory hierarchy.

The GPU memory hierarchy includes several memories,
e.g., global memory, shared memory, and constant memory,
which have different characteristics in terms of size and
latency. The execution time varies depending on a data
allocation strategy.

Fig. 5 shows the HDC encoding module with ENC-
STREAMER. We use two streams to overlap the computation
and the memory transfer. Two streams use the same opti-
mization techniques synchronously and runs until all data-
points are covered in an interleaved fashion. Furthermore,
ENC-STREAMER applies an additional caching strategy on
raw features and level hypervectors, which is a frequently
used term as shown in Eq. 1. We cache raw feature values on
the shared memory to enhance memory coalescing. ENC-
STREAMER optimizes access level hypervectors. The access
to the level hypervector is irregular as intensity values in
raw data are random. Since the level hypervector ii$en-
erated using flips in a regular way, we can generate LV in-
place. Hence, ENC-STREAMER stores 0-th level hypervector,
LVyase, on the constant memory as it is used frequently
and unchanged during the entire encoding process. We bit-
pack the base-level hypervector and store it in the constant
memory. Since hypervectors require a large size array, pack-
ing is essential to satisfy the constant memory constraint.
Empirically, packing eight bits (char) showed the best
performance. Each thread takes packed level hypervector
(pink-colored boxes) and encodes the eight components
of the input hypervector (yellow-colored boxes). We use
encoded data for the rest of HDC application runtime, thus
completely eliminating the data movement costs. For the GPUs
with unified virtual addressing, we use a single stream and
use managed memory since raw data requires one read
transaction and does not have to be cached. This mechanism
helps to alleviate the memory capacity limitation that is
critical in embedded GPUs.

HDC Training Optimization Pairwise similarity computa-
tion is the next slowest component of HDC in both classifi-
cation and clustering. Since OpenHD is specialized for non-
binary hypervectors, we use cosine similarity metric which
defined as 6(Z,%) = (Z - 4)/(|Z] - ||17]])- To expose higher
parallelism, we separately compute the numerator and the
denominator, which can be done using parallel reduction
technique on large dimensionality. However, it showed
marginal speedup over the CPU-based implementation.

In addition to parallelization, L2-RECYCLE minimizes

the memory access by identifying invariant calculation results
during the similarity computation. It computes the L2 norm

0018-9340 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.or{ /%)ublicationsﬁstandards/Eublications/rights/indexhtml for more information.
Authorized licensed use limited to: Univ of Calif San Diego. Downloaded on August 08,2022 at 18:

2:07 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TC.2022.3179226, IEEE

Transactions on Computers

Class Hypervectors

7
| D—»
(=11 1]
T eI T=T1TT]
| : : X = H
! : :
7 ¢ [IITT=ITT] u
| -
| 171
! IGIIG: 1531 !
! 1
| Update! A L2-Recycld !
: Modul
i odu-e Yy v
! .
. Cosine
‘I, ,,,,,,, C arat Max index ! i ']f it
Mispredicted | ~OMPArator 571 arch imilarity
Computation
fu
Label

Fig. 6: Design of L2-RECYCLE-applied training module in
HDC-based classification

components only when the corresponding hypervector is
updated. Fig. 6 illustrates the training in HDC classification
with L2-RECYCLE. Since the training procedure computes
the similarity (s[k]) between the k™ class hypervector and
input hypervectors, we pre-compute their L2 norms when
updating them in the training loop. It separately stores L2
norm of class hypervectors. Our strategy removes unnec-
essary computation and minimizes memory access to the
large-sized hypervectors.

5 EVALUATION
5.1 Experimental Setup

To verify the practical value of OpenHD, we implemented
HDC-based classification [5] and clustering algorithms [27].
We evaluated the implementation of the CPU and GPU in
the NVIDIA Jetson TX2 device with Jetpack 4.4.1 SDK. We
set the dynamic voltage and frequency scaling governor.
Comparison to the state-of-the-art ML We first compare
the HDC-based classification and clustering with the opti-
mized DL model generated by AutoKeras [31] and K-means
algorithm [32], in terms of quality, model size, and runtime.
HDC-based Classification We compare the execution time
of our OpenHD-based implementation with the TensorFlow
2-based HDC and the state-of-the-art GPU-powered HDC
classification, XCelHD [19]. Note that we used our Tensor-
Flow 2-based baseline since the existing TensorFlow-based
HDC [11] has higher per-inference energy than ours. For
a fair comparison, we measure the speed of the second
run since OpenHD caches and reuses function chunks once
compiled. We discuss the details about the compilation
overhead in Section 5.6. Next, to show the energy efficiency
of OpenHD, we compare the energy consumption with the
CPU-based HDC classification and clustering implementa-
tion which uses Python with a C++ backend to take full
advantage of the parallel capabilities of SIMD. We included
the communication time, e.g., memory copy time, between
the GPU and the host. For the power consumption mea-
surement, tegrastats utility is used. We set fixed quantization
level @ to 100, and epochs to 20. The hypervector dimen-
sionality, D, is set to 10,000 and 4,000. Also, PARTRAIN-
powered OpenHD is configured with 10 local trainers.

To observe the performance focusing on the actual use-
case of HDC-based classification, we evaluated the im-
plementation on a wide range of following benchmark

7
TABLE 2: Statistics of the datasets
Dataset | Features Classes Training set Test set
CARDIO 21 2 1913 213
UCIHAR 561 12 6213 1554
ISOLET 617 26 6238 1559
FACE 608 2 21441 2494
PAMAP22 75 5 22500 22500

datasets [33], [34]. CARDIO: a medical diagnosis based on
patients” information, UCIHAR: detecting human activity
based on 3-axial linear acceleration and angular velocity
data, ISOLET: recognizing audio of the English alpha-
bet from different people, FACE: classifying images with
faces/non-faces, and PAMAP2: classifying five human ac-
tivities based on a heart rate and inertial measurements.
Attribute information for these datasets is listed in Table
2.

HDC-based Clustering We compare the execution time of
our OpenHD-based implementation and the TensorFlow-
based HDC clustering running on the GPU. We used ten
epochs in our HDC-based clustering algorithm. The clus-
tering phase can be early-terminated as the HDC model
generally converges before ten epochs. However, we fixed
the number of iterations for a fair comparison. We evaluate
the HDC-based clustering using the fundamental cluster-
ing problem suite (FCPS) [35] which addresses general
challenges for clustering. We experiment with a subset of
FCPS, including Hepta (consists of six classes with differ-
ent inner class variances), Tetra (dataset with small inter
class distances), TwoDiamonds (two classes with touching
classes) and WingNut (two classes with inter class density
variation). We also experimented with the Iris [33] pattern
recognition dataset.

5.2 Comparison of HDC to State-of-the-art ML

To compare HDC-based and DNN-based classification, we
run the neural architecture search (N'AS) for the DNN model
with the maximum accuracy using AutoKeras [31]. The
comparison between HDC and the most accurate DNN
model found is done on the NVIDIA Jetson TX2. The HD
model is trained for ten epochs, and the execution time
for the NAS is excluded. For the comparison of HDC-
based clustering, we compare it with the K-means algorithm
running on GPU.

Classification accuracy HDC-based classification has a com-
parable accuracy DNN-based classification. The former of-
fers 95.5% of accuracy on average, while the latter shows
94.7% on average. HDC-based classification accuracy re-
mains stable once sufficient dimension size is reached [36].
Additional dimensionality can be used for better noise re-
silience [20].

Classification model size Fig. 7(a) illustrates the HDC-
based and the DNN-based model size. HDC is on average
9x smaller than the DNN-based models. By decreasing D,
The HDC model can reduce the model size by 20% with an
accuracy drop of less than 1%.

Classification training and inference time As depicted
in Fig. 7(b), HDC-based classification runs 11.7x faster

2. We randomly sampled from the original dataset as it cannot be
fitted to the Jetson TX2 memory.

0018-9340 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.or{ /%)ublicationsﬁstandards/Eublications/rights/indexhtml for more information.
Authorized licensed use limited to: Univ of Calif San Diego. Downloaded on August 08,2022 at 18:

2:07 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TC.2022.3179226, IEEE

Transactions on Computers

—
=3
=3
=3
[
=3
<

10000

1000

Model Size (KB)
=
S
<
(HDC/DNN)

—
e

Model Size Ratio

1 0
CARDIO UCIHAR ISOLET FACE PAMAP2
= HDC =DNN Model Size Ratio (HDC/DNN)

(@)

= HDC = DNN

CARDIO UCIHAR ISOLET
Exec. Time Ratio (HDC/DNN)

=]
=N
s)

A
171.8x

=
n

e e <
SRR AN
Exec. Time Ratio
(HDC/DNN)
Exec. Time (m:
s
84ms
249ms
160ms
33ms
wm p— —
=l =3 wm
S 2
Speedup (x)

<

Tety,, Irjg

EE
-

”“pta

Ty, W
oDy, ”'o,,dlng%t
s

FACE PAMAP2

mExec. Time (ms) A Speedup (x)

(©

Fig. 7: Comparison between OpenHD-based HDC and the state-of-the-art ML method. (a) Model size of DNN-based vs.
HDC-based classification (b) Runtime of DNN-based vs. HDC-based classification (c) K-means vs. HDC-based clustering

PAMAP2
m ParTrain-5

CARDIO
u Single-shot

UCIHAR ISOLET
= Retraining-20 ParTrain-1

FACE

Fig. 8: Accuracy comparison between PARTRAIN and the
conventional HDC training method.

than the DNN-based method on average. While exist-
ing DNN-based applications in embedded devices focus
only on optimization of inference through TensorRT [37]
and TVM [38] libraries, HDC-based solutions enable both
lightweight training and inference in embedded devices.
Clustering accuracy, speed, and efficiency To evaluate HD
Clustering, we set D to 1024, as it gives a comparable
normalized mutual information score to K-means. This is
a significantly smaller hypervector dimensionality as com-
pared to classification, resulting in much smaller model
sizes. The score difference was within 3.1% on average. Fig.
7(b) illustrates the execution time ratio between K-means
and HDC-based clustering running on GPU. HDC-based
clustering is 53 x faster on average compared to K-means,
at nearly the same power consumption.

5.3 Accuracy of PARTRAIN

PARTRAIN enhances data parallelism of HDC-based train-
ing using multiple trainers. Thus, it can look up more
data than the traditional HDC training technique in the
same period. We compared PARTRAIN-enabled HDC clas-
sification to the existing training method. In particular,
two baselines are used: single-pass training (Single Shot)
and iterative training with 20 epochs (Retraining-20). We
also observed PARTRAIN with different epoch settings, with
single (PARTRAIN-1) and five (PARTRAIN-5) iterations. Fig. 8
shows the achieved peak accuracy with different train-
ing settings. PARTRAIN-5 case achieves a similar accuracy
compared to the original HDC with 20 epochs. We can
reduce required epochs by 4. It implies that PARTRAIN can
achieve the target accuracy with fewer epochs. Furthermore,
the overhead of gathering information from local trainers
was negligible, which is less than 5% of the runtime.

5.4 OpenHD Efficiency

5.4.1 Speed Improvements

Classification: Fig. 9 compares the execution time of the
HDC classification implemented with OpenHD, XCelHD

and TensorFlow 2. Compared to the TensorFlow-based
HDC, the encoding speed of XCelHD and OpenHD is
improved by ENC-STREAMER which flexibly maps the data
on the proper CUDA memory hierarchy. OpenHD adds
optimization using data type mutation on top of XCelHD.
Assigning data type reduces the memory footprint of HDC
applications and allows storing more data in the local mem-
ory. Moreover, OpenHD enables efficient use of memory
bandwidth which is significant for large-sized hypervector.
Note that OpenHD efficiently leverages GPGPU memory
hierarchy as encoding API of OpenHD adopts the optimiza-
tion in XCelHD. As shown in Fig. 9(a), OpenHD-powered
HDC encoding is on average 1.37x and 35x faster than the
XCelHD and the TensorFlow 2-based HDC, respectively.

The iterative training stage mainly benefits from the
memory access fusion technique and L2-RECYCLE. In ad-
dition to XCelHD with L2-RECYCLE, OpenHD further op-
timizes the TensorFlow-based HDC training with memory
access fusion. The prediction is based on hd.search being
AOT compilation, which is primarily benefitted by L2-
RECYCLE. Also, during the update of class hypervectors,
operations need to be written line-by-line in code due to
the Python syntax. However, memory access fusion reduces
global memory access overhead. The kernel is generated
automatically according to the maximum number of epochs.
The encoding stage includes the writing operation of the
hypervectors only once. In contrast, we apply operations
to the large-sized hypervector repeatedly. Memory access
fusion greatly impacts the speedup compared to XCelHD,
leading to a larger speedup. Note that more local trainers
can be added on the OpenHD-based HDC since we assign
the proper data type to the hypervector and reduce the
memory footprint. As shown in Fig. 9(b), OpenHD provides
on average 6.8x speedup over XCelHD and 258 x speedup
over TensorFlow-based HDC in the HDC training module.

The inference stage consists of encoding the test set and
similarity computation. Since OpenHD adaptively generates
code, the memory mapping policy is changed according
to the test set configuration. Then the similarity search
operation for hypermatrix is applied by the hd.sim func-
tion. Since the encoding takes up a large portion of the
inference stage, more than 99%, the trend was similar to
the encoding stage (see Fig. 9(a) and (c)). In the case of the
CARDIO dataset, the execution time of OpenHD was slower
than the XCelHD. It is due to the communication overhead
between the Python front-end and CUDA backend, while
both implementations have similar optimizations. For other
cases, OpenHD consistently showed speedup over base-

0018-9340 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.or{ /%)ublicationsﬁstandards/Eublications/rights/indexhtml for more information.
Authorized licensed use limited to: Univ of Calif San Diego. Downloaded on August 08,2022 at 18:

2:07 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TC.2022.3179226, IEEE

1E+6
Z1E+S

E1E+3
S1E+2
Z1E+

1E+0

CARDIO

UCIHAR

D=4000

1E+2

1E+1

Speedup (x)

1E+0

Transactions on Computers

uTF2 GPU = XCelHD = OpenHD ¢ Speedup (TF2/OpenHD) ASpeedup (XCelHD/OpenHD)‘

1E+6
Z1E+S
S1E+
Eips3
=}
S1E+2
H
Z1Est
1E+0

1E+4

ox B3 Box

1§64x
EEEE |

1E+6

TaTx !

Rl E
=

15422 Eips

g 5
1IEHE

1E+0

CARDIO
UCIHAR
ISOLET
FACE

D=10000

PAMAP2

CARDIO
UCIHAR

1E+0

FACE T

PAMAP2

CARDIO ? *

ISOLET
UCIHAR

D=4000

1

D=10000

CARDIO r .

ISOLET
FACE
UCIHAR

PAMAP2

PAMAP2

D=4000

D=10000

(d) End-to-end

D=4000

1E+4

x| 1E+3 5

2
1E+2 2
1E+1 2

1E+0

(a) Encoding (b) Training (per epoch) (c) Inference
Fig. 9: Speed comparison of OpenHD vs. the baseline HDC implementation

E: o :z:A 75 pren N :‘;gg sionality. Since it has limited parallel computing resources,
2, f RS DI e T we disabled PARTRAIN. Fig. 11 shows the energy efficiency
- X g o= ’g . . .
Tt e T e R e a0k 500 A 8 @ o@n , wz improvement of OpenHD over the baseline. The encoding
] 2 1 X . .
=0 40 = 0 stage enables high parallelism and consumes more power,

P W,y T

b, t, gy, "'.?/v s ep,a l, %ol, 1"4’4' K
i g, Vet but reduced execution time improves the energy efficiency.
OpenHD Exec. Time (ms) 4 Speedup (x) OpenHD Exce. Time (ms) 4 Speedup (x)

(a) Encoding (b) Clustering (per epoch)

Fig. 10: Speed comparison of OpenHD vs. Tensorflow GPU-
based HDC clustering

lines. OpenHD-powered inference stage yields on average
1.17x and 27 x of speedup compared to XCelHD-based and
TensorFlow-based HDC, respectively.

Overall, on the HDC classification, OpenHD runs faster
than baselines. In particular, OpenHD-based implementa-
tion shows the best improvement on the training stage.
PARTRAIN helps to overcome limited parallelism and un-
derutilization during the training process in GPU-based
HDC. By adaptively generating CUDA code with regard to
the characteristics of the dataset and the encoding strategy,
the training and inference stage benefitted. For the end-to-
end execution of the HDC process, OpenHD-powered im-
plementation gains on average 4.5x and 78 x over the state-
of-the-art GPU-based HDC and TensorFlow-based HDC
classification, respectively, as shown in Fig. 9(d).
Clustering: Fig. 10 shows the clustering speed improve-
ments of OpenHD as compared to TensorFlow-based im-
plementation for the encoding and the clustering stages.
For these two stages we get 252x and 94x speedup on
average. In the encoding stage of OpenHD, each thread
loops over the features. The clustering dataset has a smaller
number of features than the dataset used in the classifica-
tion evaluation. Hence, while it shows a similar trend to
Fig. 9(a), the execution time reduction is substantial. Every
single clustering epoch, the algorithm loops over the data.
Comparing the absolute value of the dataset size to the
feature size, the former is significantly larger than the latter,
leading to a longer execution time during the clustering.
Therefore, it shows a more limited speedup than the en-
coding stage. For the end-to-end execution of HDC-based
clustering, OpenHD-based implementation is on average
96 x (up to 146 x) faster than TensorFlow-based HDC.

5.4.2 Energy Efficiency Improvements

We compared the energy consumption of OpenHD to the
state-of-the-art HDC classification running on the low-
powered CPU. CPU-based HDC uses SIMD, which supports
a smaller degree of parallelism than the hypervector dimen-

0018-9340 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.or{
Authorized licensed use limited to: Univ of Calif San Diego. Downloaded on August 08,2022 at 1

The training module uses low power in nature due to
limited parallelism. However, compared to the CPU-based
HDC, L2-RECYCLE significantly reduces the execution time
by removing redundant operations. It showed 125X energy
consumption reduction on average. We disabled PARTRAIN
in this experiment, but enabling it can enhance energy effi-
ciency further. Even if it has more parallelism and consumes
more power, the reduced number of iterations compensates
for the increased power consumption. Ultimately, OpenHD
achieves up to 172X energy efficiency improvement over the
CPU-powered HDC classification.

5.5 Effectiveness of ENC-STREAMER and L2-RECYCLE

In this section, we observe the effectiveness of ENC-
STREAMER and L2-RECYCLE by comparing the execution
time with and without applying strategies. We set several
scenarios to measure general effectiveness and fixed the
dataset size to 10,000. ENC-STREAMER mainly optimizes
the encoding stage, which is affected by dimension size D
and the number of features F'. Our experiment conducted
on four scenarios, (F, D): Case A) (500,10000), case B)
(500,4000), case C) (250,10000) and case D) (250,4000).
As shown in Fig. 12(a), ENC-STREAMER is most effective on
large hypervector dimensionality, achieving 1.94x in Case
A. Moreover, ENC-STREAMER improves energy efficiency
since the power consumption of the two variants is similar.
L2-RECYCLE is effective on the iterative training of
HDC classification. We measured execution time by varying
the number of classes C' and the dimensionality D. We
evaluated on four scenarios: Case A) (10,10000), case B)
(10,4000), case C) (20,10000) and case D) (20,4000). On
the large D, L2-RECYCLE showed significant speedup up to
12x (see Fig. 12(b)). Without L2-RECYCLE, the execution
time increases dramatically on large dimensionality. Our
optimization strategy offers similar training time regardless
of D. The overhead is minimal; in the worst case, case C
requires a small additional memory cost of 80 Byte.

5.6 Code Generation Overhead

As OpenHD performs JIT compilation, there is an overhead
of code analysis. Nevertheless, since OpenHD caches the
compiled code chunk once, there is no overhead when
rerun. We compared the execution time for the first run and

2:07 UTC from IEEE Xplore. Restrictions apply.

/%)ublicationsﬁstandards/Eublications/rights/indexhtml for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TC.2022.3179226, IEEE

Transactions on Computers

u CPU = GPU Ratio(CPU/GPU)]
1E+7 150 1E+7 1E+6 80 48— f79x—) 200
= 8 400x % a 65x = 163; =
Z 1Evs | 126x Z Zikss oz 2 63 o £ % 1jix 186x z
P 6% 2 =z 60 2 T1E+6 150 3
wg SIS x E E1En Z s 1Woxiffox :
£ S1Ew 193x 7x £ = 35x E 2 £
2 g = g 0= Zipw 100 =
= SI1Es 200 5 = £ =
so= © X O 1E+2 X R O g
% &t g 20 5 FIE2 50 g
08 =m0 0 & SI1EH 02 A 0 &
g fE¢gg|gf8¢8¢8 R EEIEEEEE £ 5858 L8588 ¢% S EEEEEEEEE
= = = = < 2 = z|a =) = = = = < =] b = =
EEgez255¢F¢: EEcCfZ2Ez 2 EEzcz|2E55¢%¢ EEgfz|zEzez
S 5 = =l 5 = = S 2 2 13 3 & = o 5 = Zlo 5 = = o 5 = =I5 = 2 =
D=10000 D=4000 D=10000 D=4000 D=10000 D=4000 D=10000 D=4000

(a) Encoding (b) Training (per epoch)

e
%

-overhead wlo

=06 - o L2-Recycle
@ o
£ E
=04 B
= -
£ - £
: 3
g2 g
% %

E

Case A CaseB Case C CaseD

(a) ENC-STREAMER

Case A CaseB Case C CaseD

(b) L2-RECYCLE

Fig. 12: Execution time reduction by proposed optimizations

the second run to measure the overhead of JIT compilation.
The overhead of code generation and compilation was at
most 88%. Besides, the profiling results show that the com-
pute utilization and throughput of GPU are improved by
1.72x and 1.82x, respectively. Since pre-compiled binaries
are used in actual deployment, the performance efficiency
of the HDC application can be maximized in the GPU
environment without an effort for kernel optimization.

5.7 Comparison with Other Hardware Implementation

We compare OpenHD with an efficient FPGA design imple-
mented and verified on Xilinx Alveo U200 accelerator card,
and with the ASIC design of [11]. The FPGA implementation
leverages RP encoding which relies on matrix-vector multi-
plication and is inherently more efficient, but less accurate in
certain applications such as time-series. Therefore in Fig. 13
we also present a variant of OpenHD that uses RP, OpenHD-
RP. Since the ASIC implementation achieves lower accuracy,
for a fair comparison, we also compare OpenHD-low and
FPGA-low, reduced-dimension GPU and FPGA that yield
the same accuracy of ASIC.

Using 10,000 dimensions, the average per-inference en-
ergy consumption of OpenHD, which uses ID-level encod-
ing, is 3.9x of FPGA. However, OpenHD-RP, that uses the
same encoding as FPGA, consumes 7.3x less energy than
FPGA. OpenHD-RP-low (reduced dimension with similar
accuracy of ASIC) improves the energy by 1.35x with re-
spect to FPGA-low, and only consumes 3.05x more energy
than the full-custom ASIC. In higher dimensions, OpenHD-
RP shows better improvement over FPGA (7.3x vs 1.35x).
It is because FPGA uses on-chip SRAM memory with single-
cycle access regardless of the dimensionality, so its execution
and energy improves linearly in lower dimensions, while
for GPU the data movement overhead manifests more sig-
nificantly in lower dimensions (wherein computation cost is
smaller).

0018-9340 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.or{
Authorized licensed use limited to: Univ of Calif San Diego. Downloaded on August 08,2022 at 1

(c) Inference

(d) End-to-End
Fig. 11: Energy consumption comparison of GPU (OpenHD) vs. HDC running on the embedded CPU

 OpenHD-low
FPGA-low

OpenHD-RP
= ASIC

OpenHD-RP-low

mOpenHD WFPGA OpenHD-RP

10000

s B 8
2 8 8

- 5
-~ 3 8
= 8 8

-

Time/Inference (uS)

°

Energy/Inference

o

CARDIO UCIHAR ISOLET FACE

CARDIO

UCIHAR ISOLET FACE

(a) Inference energy (b) Inference time

Fig. 13: OpenHD inference compared to FPGA and ASIC.

= OpenHD (end-to-end)

= openHD (retrain) ® OpenHD (end-to-end)

B FPGA (end-to-end

@ openHD (retrain)

pA
o

N

Time/Dataset (S)

BEEEEEEEEESE
]

ISOLET CARDIO

(b) Train time

UCIHAR UCIHAR ISOLET FACE

(a) Train energy

Fig. 14: OpenHD training compared to FPGA.

Fig. 13(b) compares the per-inference execution time of
OpenHD and FPGA. Using the more-complicated ID-level
encoding, OpenHD inference time is 30.8x higher than the
FPGA, while OpenHD-RP is only 1.08x slower than the
FPGA (with 7.3x better energy as alluded above). Note that
the ASIC [11] has not provided execution time numbers, so
we omitted it from comparisons.

Fig. 14 compares the training energy and execution time
of OpenHD and FPGA for 20 epochs. OpenHD improves the
end-to-end and iterative training (retrain)-only energy by
1.63x and 2.78x. The retrain-only energy does not include
the encoding for which OpenHD consumes more energy
due to using ID-level encoding. Therefore, the energy im-
provement without considering encoding is higher (with
RP encoding, the end-to-end energy improvement would be
even higher). Finally, the end-to-end and iterative retrain of
OpenHD is, respectively, 7.4 x and 4.9x slower than FPGA.
Using RP encoding can improve the encoding hence the
end-to-end time, but retrain time will improve intact as it
deals with already encoded hypervectors. Note that Xilinx
Alveo U200 is a high-performance FPGA and offers massive
parallelism. Comparing with low-end or mid-range FPGA,
we expect OpenHD could excel in performance, as well.

5.8 Evaluation on High-performance Hardware

High-performance hardware can also be utilized to process
HDC in the real-world; the workload can be offloaded to the

2:07 UTC from IEEE Xplore. Restrictions apply.

/%)ublicationsﬁstandards/Eublications/rights/indexhtml for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TC.2022.3179226, IEEE

Transactions on Computers

1E+6 1E+5
7 1E+5

g
X

E1Ee3 ¥ 1E43 1E+3

eednp x)

a z
s, =
£ H
B7x 83 H g
9 L T 0 H =
S 1E+2 N il 4 L I S imaz g
S (B 0 S 1 i [wa B)
1E+0 [0 I IRINs N 0 | w5 2
o & E B gl ¥ B =B g
= 2 8 0 2 £ 820 % 1E+0 1
2 £ 32 2 3|8 E 2 2 3 e % £ B gl ¥ g =B g
£ 3 = Z|$C5 8~ 2 5 £ 22 2|3 £ 3 % 2
(S =l 5 =) 35 8§ = 2|5 3% 8§ = =
D=10000 D=4000 ¢ =" e = = =~
= TF2 GPU XCelHD D=10000 D=4000
= OpenHD ASpeedup (TF2/OpenHD) .
ASpeedup (XCelHD/OpenHD) uCPU m=OpenHD 4 Ratio(CPU/GPU)
(a) Speedup (b) Energy Efficiency

Fig. 15: Improvement of OpenHD compared to baselines
running on high-end hardware

cloud, or the user may develop a new HDC algorithm on
the high-end GPUs. OpenHD is runnable on the desktop-
class GPU since it uses CUDA as a backend. As such,
we measured the execution time and energy consumption
of OpenHD and baselines for HDC-based classification
task on the high-performance system, Intel i7-8700K with
16GB RAM and NVIDIA Geforce GTX 1080Ti. We mea-
sured the power consumption using Intel PowerLog and
nvidia-smi command.

Fig. 15 shows the speedup and energy efficiency
improvement results for datasets tested on the high-
performance hardware. On high-end hardware, OpenHD
shows similar speedup trend to the embedded environ-
ment. For large tasks, OpenHD also shows a high degree
of acceleration. Even if the high-end GPU consumes more
power, due to the short execution time, the energy efficiency
improvement is larger than that of the embedded device.
Overall, our design achieves an average speedup of 6.7x
over XCelHD and energy efficiency improvement of 18 x on
average over CPU.

5.9 Case Study: OpenHD on Other HDC Tasks

Since OpenHD is a framework to implement various appli-
cations using HDC paradigm, we can also implement non-
ML applications. Here, we introduce two additional HDC
application examples implemented with OpenHD to discuss
potentials of HDC.

Key-value storage: With the element-wise addition and
multiplication, we can effectively implement a hash table-
like data structure (also accelerated on GPU for high ef-
ficiency): ﬁ = >, Rz ; where K; and V; are the
encoded hypervectors for the key and value. The single
hypervector includes multiple key-value relations. We can

check if a target value V is associated with a key K

5(3 X ?, ?) /D =~ 1 when using the dot product for the
similarity metric. Unlike the traditional hash table, the key-
value structure can categorize information effectively. For
example, let us give an analogous example — “which fruits
are red?.” To memorize the relationship between the fruit
and color, we can encode each fruit and color to K; and
Vi. If Y is the hypervector that represents the yellow color,

x Y is similar to all hypervectors associated with
near-orthogonal for other fruits. An interesting property of
HDC is that the dimension size determines the amount of
information that can be stored in a single hypervector.

Fig. 16 (a) shows the recovery rate according to the
number of pairs in HDC-based key-value storage. Because

11

_ 100 200

S ¢ L=100

E 90 g 100

9 w

5 80 0

> .

g 10 g 100 L=1000

3 60 &z 50 |i

g 0 - :

x 50 e - - =
G N®GS WS

100 300 500 700 900

of Key-Value Pairs Recognized Difference

(a) Key-Value Storage (b) Structure Comparison

Fig. 16: Stochastic nature of HDC for other cognitive tasks

the number of relations that can be distinguished by a
single hypervector is limited, the recovery rate decreases
as the number of key-value pairs increases. However, as the
dimension size of the hypervector increases, more relations
can be contained.
Structure comparison: The human memory easily recog-
nizes differences in structured objects, e.g., chronological
changes of train station connections due to constructions.
Let us consider a problem that compares two lists where a
list has different items. We may encode the structure of the
list using adjacent items, say L ; and ﬁ M = > f
When we have two hypervectors encoded for the dlfferent
lists, M 1 and My, we can identify the number of indels
using a single similarity computation: ¢ (M 9 — M 1, M 2)/D.
Fig. 16 (b) shows the distribution of recognized differ-
ences according to the list length L when data is encoded
and stored in a single hypervector. When a single hyper-
vector contains more information, i.e., when L is large, it
showed a lower resolution for a relation between data. In
contrast, for small L, the HDC-based solution captures the
difference well. However, as in the example of key-value
storage, using a single hypervector is efficient regarding the
data size. Also, the resolution issue can be mitigated by
increasing the dimensionality of the hypervector.

6 RELATED WORK
6.1 Automated GPU Acceleration

There are previous studies that accelerate algebraic oper-
ations on the GPU without users’ awareness of the GPU.
CuPy [39] offers GPU-accelerated application with NumPy-
compatible functions. Their work leverages existing CUDA-
based libraries such as cuDNN, cuSPARSE, and cuBLAS.
In [40], the authors present the system that generates
CUDA code from the C syntax. Their work mainly enhances
data access patterns using the existing polyhedral compiler
optimization technique. Numba [41] accelerates a Python
code using the LLVM compiler library, generating machine
code at runtime. Their work enables the parallelization of
the application using multithreading, SIMD vectorization,
and GPU. Libraries such as Kokkos [42] and RAJA [43]
have been released to increase the portability of CUDA
code with the abstraction for parallel execution and memory
management. The library uses modern C++-like syntax and
provides an abstraction for operations not only on loop exe-
cution, but loop partitioning, reorder, and tile. Furthermore,
for simple operations, execution configurations are automat-
ically set. Our work is different from these general-purpose

0018-9340 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.or{ /%)ubhcanons standards/Eubhcatlons/nghts/mdex .html for more information.
Authorized licensed use limited to: Univ of Calif San Diego. Downloaded on August 08,2022 at 1

2:07 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TC.2022.3179226, IEEE

Transactions on Computers

libraries in that OpenHD intelligently utilizes the charac-
teristics of HDC, adapting various optimization schemes
specialized to HDC for higher efficiency.

6.2 Hardware Acceleration of HDC

HDC consists of many bit-level arithmetic operations, in-
cluding addition and multiplication. It can effectively be
parallelized and handled on various parallel hardware plat-
forms. The ASIC designs are proposed, e.g., similarity com-
putation circuits [12] and text classification ASIC design [15]
based on advanced memory technology. The work in [14]
also shows how to accelerate the HD encoding scheme using
PIM techniques. In [44], the authors present a hybrid ASIC
architecture that runs both DL and HDC. In [25], the authors
propose the HDC-based classification running on the FPGA.

Although FPGA, ASIC, and PIM implementations offer
superior efficiency, design and synthesis time impede rapid
development. Prior works explored the GPU-powered HDC
implementation. The work in [11] shows TensorFlow for
HDC classification acceleration on GPU. Hypervectors can
be treated as a tensor data type. Hence, HDC operations
can be implemented and accelerated with the GPU with
tensor operations in TensorFlow. The results show that
TensorFlow-based HDC running on the NVIDIA Jetson
Nano consumes more energy and runs just as slow as HDC
on CPU. Thus, we need a tool such as OpenHD, which
automatically creates an efficient mapping of HDC appli-
cations to GPUs. OpenHD maximizes parallelism specific to
HDC applications, while effectively leveraging the memory
hierarchy and minimizing the memory accesses.

7 CONCLUSION

In this paper, we presented a GPU-based HDC acceleration
framework called OpenHD. OpenHD allows users to im-
plement various HDC applications in Python while auto-
matically accelerating them on GPU with highly optimized
techniques. We address the memory access challenges in the
current HDC application running on the GPU, with efficient
cache utilization and data reuse. The proposed optimization
module benefits the encoding and the prediction of the
HDC, which affects the end-to-end pipeline of HDC ap-
plications. Furthermore, we propose a parallelized training
method, called PARTRAIN, to enhance hardware utilization
and data-parallel benefits. Users can use proposed tech-
niques with NumPy-style Python syntax and automatically
get fully optimized CUDA code with the best possible
performance for commonly used HDC applications such
as classification and clustering. For the standardized HDC
operations, our framework offers API to compile in AOT
as a runtime library. In our experiments, OpenHD-based
classification offers comparable accuracy to the DNN-based
solution with 9x smaller model and 11.7x faster execution
time. OpenHD-based clustering is 53 x faster compared to
the K-means algorithm at comparable accuracy. Moreover,
the proposed PARTRAIN reduces the required epochs to ob-
tain comparable accuracy by 4 x. Evaluation results with the
low-powered embedded GPU show that OpenHD is 4.5x
and 146 faster execution time on average for classification
and clustering applications, respectively, compared to the
state-of-the-art GPU-based HDC implementation.

12
ACKNOWLEDGMENTS

This work was supported in part by CRISP, one of
six centers in JUMP (an SRC program sponsored by
DARPA), SRC Global Research Collaboration grant, DARPA
HyDDENN grant, and NSF grants #1911095, #2003279,
#2100237, and #2120019. This work was also supported by
the National Research Foundation (NRF) of Korea (NRF-
2018R1A5A1060031).

REFERENCES

[1] P. Kanerva, Sparse distributed memory. MIT press, 1988.

[2] Y. Kim, M. Imani, N. Moshiri, and T. Rosing, “Geniehd: Efficient
dna pattern matching accelerator using hyperdimensional com-
puting,” in Proceedings of the 23rd Conference on Design, Automation
and Test in Europe, ser. DATE '20. San Jose, CA, USA: EDA
Consortium, 2020, p. 115-120.

[3] A. Rahimi, P. Kanerva, and J. M. Rabaey, “A robust and energy-
efficient classifier using brain-inspired hyperdimensional com-
puting,” in International Symposium on Low Power Electronics and
Design. Association for Computing Machinery, 2016, p. 64-69.

[4] A. Mitrokhin, P. Sutor, C. Fermiiller, and Y. Aloimonos, “Learning
sensorimotor control with neuromorphic sensors: Toward hyper-
dimensional active perception,” Science Robotics, vol. 4, no. 30, May
2019.

[5] M. Imani, D. Kong, A. Rahimi, and T. Rosing, “Voicehd: Hy-
perdimensional computing for efficient speech recognition,” in
International Conference on Rebooting Computing (ICRC). IEEE,
2017, pp. 1-8.

[6] O.Résédnen and S. Kakouros, “Modeling dependencies in multiple
parallel data streams with hyperdimensional computing,” IEEE
Signal Processing Letters, vol. 21, no. 7, pp. 899-903, 2014.

[7] E Asgarinejad, A. Thomas, and T. Rosing, “Detection of epileptic
seizures from surface eeg using hyperdimensional computing,” in
2020 42nd Annual International Conference of the IEEE Engineering in
Medicine & Biology Society (EMBC). 1EEE, 2020, pp. 536-540.

[8] Y. Wu, G. Wayne, A. Graves, and T. Lillicrap, “The kan-
erva machine: A generative distributed memory,” arXiv preprint
arXiv:1804.01756, 2018.

[9] G. Karunaratne, M. L. Gallo, G. Cherubini, L. Benini, A. Rahimi,
and A. Sebastian, “In-memory hyperdimensional computing,”
arXiv preprint arXiv:1906.01548, 2019.

[10] S. Ahmad and J. Hawkins, “Properties of sparse distributed repre-
sentations and their application to hierarchical temporal memory,”
arXiv preprint arXiv:1503.07469, 2015.

[11] S. Datta, R. Antonio et al., “A programmable hyper-dimensional
processor architecture for human-centric iot,” IEEE Journal on
Emerging and Selected Topics in Circuits and Systems, vol. 9, no. 3,
pp. 439452, 2019.

[12] M. Imani, A. Rahimi, D. Kong, T. Rosing, and J. M. Rabaey,
“Exploring hyperdimensional associative memory,” in IEEE In-
ternational Symposium on High Performance Computer Architecture
(HPCA), Feb. 2017.

[13] M. Imani, J. Messerly, E. Wu, W. Pi, and T. Rosing, “A binary
learning framework for hyperdimensional computing,” in 2019
Design, Automation & Test in Europe Conference & Exhibition (DATE).
IEEE, 2019, pp. 126-131.

[14] S. Gupta, M. Imani, and T. Rosing, “Felix: Fast and energy-efficient
logic in memory,” in Proceedings of the International Conference on
Computer-Aided Design, 2018.

[15] H. Li, T. E Wu, A. Rahimi et al., “Hyperdimensional computing
with 3d vrram in-memory kernels: Device-architecture co-design
for energy-efficient, error-resilient language recognition,” in IEEE
IEDM, 2016, pp. 16.1.1-16.1.4.

[16] M. Imani, S. Pampana, S. Gupta, M. Zhou, Y. Kim, and T. Rosing,
“DUAL: Acceleration of clustering algorithms using digital-based
processing in-memory,” in 2020 53rd Annual IEEE/ACM Interna-
tional Symposium on Microarchitecture (MICRO). IEEE, Oct. 2020.

[17] J. Kim, H. Lee, M. Imani, and Y. Kim, “Efficient brain-inspired
hyperdimensional learning with spatiotemporal structured data,”
in 2021 29th International Symposium on Modeling, Analysis, and
Simulation of Computer and Telecommunication Systems (MASCOTS),
2021, pp. 1-8.

0018-9340 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.or{ /%)ublicationsﬁstandards/Eublications/rights/indexhtml for more information.
Authorized licensed use limited to: Univ of Calif San Diego. Downloaded on August 08,2022 at 18:

2:07 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TC.2022.3179226, IEEE

Transactions on Computers

[18] D. Kleyko, A. Rahimi, D. A. Rachkovskij, E. Osipov, and J. M.
Rabaey, “Classification and recall with binary hyperdimensional
computing: Tradeoffs in choice of density and mapping charac-
teristics,” IEEE transactions on neural networks and learning systems,
vol. 29, no. 12, pp. 5880-5898, 2018.

[19] J. Kang, B. Khaleghi, Y. Kim, and T. Rosing, “Xcelhd: An ef-
ficient gpu-powered hyperdimensional computing with paral-
lelized training,” in 2022 27th Asia and South Pacific Design Au-
tomation Conference (ASP-DAC), 2022, pp. 220-225.

[20] P. Kanerva, “Hyperdimensional computing: An introduction to
computing in distributed representation with high-dimensional
random vectors,” Cognitive Computation, vol. 1, no. 2, pp. 139-159,
Jan. 2009.

[21] A. Rahimi, S. Datta, D. Kleyko, E. P. Frady, B. Olshausen,
P. Kanerva, and J. M. Rabaey, “High-dimensional computing as a
nanoscalable paradigm,” IEEE Transactions on Circuits and Systems
I: Regular Papers, vol. 64, no. 9, pp. 2508-2521, 2017.

[22] Y. Kim, M. Imani, and T. Rosing, “Efficient human activity recog-
nition using hyperdimensional computing,” in Proceedings of the
8th International Conference on the Internet of Things, 2018, pp. 1-6.

[23] E R. Najafabadi, A. Rahimi, P. Kanerva, and J. M. Rabaey,
“Hyperdimensional computing for text classification,” in Design,
Automation & Test in Europe Conference & Exhibition (DATE), 2016.

[24] A.]Joshi, J. Halseth, and P. Kanerva, “Language recognition using
random indexing,” 2014.

[25] S. Salamat, M. Imani, B. Khaleghi, and T. Rosing, “F5-hd: Fast
flexible fpga-based framework for refreshing hyperdimensional
computing,” in International Symposium on FPGAs. ~ACM, 2019,
pp- 53-62.

[26] M. Imani, J. Morris, S. Bosch, H. Shu, G. De Micheli, and T. Rosing,
“Adapthd: Adaptive efficient training for brain-inspired hyperdi-
mensional computing,” in IEEE BioCAS, 2019, pp. 1-4.

[27] M. Imani, Y. Kim, T. Worley, S. Gupta, and T. Rosing, “HDClus-
ter: An accurate clustering using brain-inspired high-dimensional
computing,” in 2019 Design, Automation & Test in Europe Conference
& Exhibition (DATE). 1EEE, Mar. 2019.

[28] A.Klockner, N. Pinto, Y. Lee, B. Catanzaro, P. Ivanov, and A. Fasih,
“PyCUDA and PyOpenCL: A Scripting-Based Approach to GPU
Run-Time Code Generation,” Parallel Computing, vol. 38, no. 3, pp.
157-174, 2012.

[29] B. Peksag, “astor,” https://github.com/berkerpeksag/astor, 2020.

[30] M. Imani, J. Morris et al., “Bric: Locality-based encoding for
energy-efficient brain-inspired hyperdimensional computing,” in
56th Annual Design Automation Conference, 2019, pp. 1-6.

[31] H.Jin, Q. Song, and X. Hu, “Auto-keras: An efficient neural archi-
tecture search system,” in Proceedings of the 25th ACM SIGKDD
International Conference on Knowledge Discovery & Data Mining.
ACM, 2019, pp. 1946-1956.

[32] D. Arthur and S. Vassilvitskii, “K-means++: The advantages of
careful seeding,” in Proceedings of the Eighteenth Annual ACM-
SIAM Symposium on Discrete Algorithms, ser. SODA ‘07. USA: So-
ciety for Industrial and Applied Mathematics, 2007, p. 1027-1035.

[33] D. Dua and C. Graff, “UCI machine learning repository,” 2017.
[Online]. Available: http:/ /archive.ics.uci.edu/ml

[34] A. Reiss and D. Stricker, “Introducing a new benchmarked dataset
for activity monitoring,” in 2012 16th International Symposium on
Wearable Computers, 2012, pp. 108-109.

[35] A. Ultsch and]. Lotsch, “The fundamental clustering and projec-
tion suite (FCPS): A dataset collection to test the performance of
clustering and data projection algorithms,” Data, vol. 5,no. 1, p. 13,
Jan. 2020.

[36] J. Morris, M. Imani, S. Bosch, A. Thomas, H. Shu, and T. Rosing,
“Comphd: Efficient hyperdimensional computing using model
compression,” in 2019 IEEE/ACM International Symposium on Low
Power Electronics and Design (ISLPED), 2019, pp. 1-6.

[37] NVIDIA, “TensorRT,” https://developer.nvidia.com/tensorrt,
2020.

[38] T.Chen, T. Moreau, Z. Jiang, L. Zheng, E. Yan, M. Cowan, H. Shen,
L. Wang, Y. Hu, L. Ceze, C. Guestrin, and A. Krishnamurthy,
“Tvm: An automated end-to-end optimizing compiler for deep
learning,” in Proceedings of the 13th USENIX Conference on Operating
Systems Design and Implementation, ser. OSDI'18. USA: USENIX
Association, 2018, p. 579-594.

[39] R. Okuta, Y. Unno, D. Nishino, S. Hido, and C. Loomis, “Cupy:
A numpy-compatible library for nvidia gpu calculations,” in Pro-
ceedings of Workshop on Machine Learning Systems (LearningSys) in

13

The Thirty-first Annual Conference on Neural Information Processing
Systems (NIPS), 2017.

[40] M. M. Baskaran, J. Ramanujam, and P. Sadayappan, “Automatic
c-to-cuda code generation for affine programs,” in Proceedings
of the 19th Joint European Conference on Theory and Practice of
Software, International Conference on Compiler Construction, ser.
CC’10/ETAPS'10. Berlin, Heidelberg: Springer-Verlag, 2010, p.
244-263.

[41] S.K.Lam, A. Pitrou, and S. Seibert, “Numba: A llvm-based python
jit compiler,” in Proceedings of the Second Workshop on the LLVM
Compiler Infrastructure in HPC, ser. LLVM “15. New York, NY,
USA: Association for Computing Machinery, 2015.

[42] H. C.Edwards, C. R. Trott, and D. Sunderland, “Kokkos: Enabling
manycore performance portability through polymorphic memory
access patterns,” Journal of Parallel and Distributed Computing,
vol. 74, no. 12, pp. 3202 — 3216, 2014, domain-Specific Languages
and High-Level Frameworks for High-Performance Computing.

[43] D. A. Beckingsale, T. R. Scogland, J. Burmark, R. Hornung,
H. Jones, W. Killian, A. J. Kunen, O. Pearce, P. Robinson, and
B. S. Ryujin, “RAJA: Portable performance for large-scale scientific
applications,” in 2019 IEEE/ACM International Workshop on Perfor-
mance, Portability and Productivity in HPC (P3HPC). IEEE, Nov.
2019.

[44] M. Nazemi, A. Esmaili, A. Fayyazi, and M. Pedram, “Syner-
giclearning: neural network-based feature extraction for highly-
accurate hyperdimensional learning,” in 2020 IEEE/ACM Interna-
tional Conference On Computer Aided Design (ICCAD). IEEE, 2020,

pp- 1-9.

Jaeyoung Kang Jaeyoung Kang received a B.E. degree in electrical en-
gineering from Korea University, Seoul, South Korea, in 2019. Currently,
he is a third-year Ph.D. student in Electrical and Computer Engineer-
ing at the University of California San Diego, La Jolla, CA, USA. His
research interests include deep learning-based algorithm acceleration
on heterogeneous system architecture, GPU-based acceleration for big
data analysis in bioinformatics, and hyperdimensional computing.

Behnam Khaleghi Behnam Khaleghi is a Ph.D. candidate in the De-
partment of Computer Science and Engineering at the University of
California San Diego, CA, USA. He received M.S. and B.S. degrees
from the Department of Computer Engineering at the Sharif University
of Technology in 2013 and 2016, respectively. His research interests
include brain-inspired computing, ML acceleration, reconfigurable com-
puting, and VLSI design automation.

Tajana Rosing Tajana Simuni¢ Rosing (Fellow, IEEE) received the M.S.
degree in engineering management concurrently and the Ph.D. degree
from Stanford University, Stanford, CA, USA, in 2001. She is a Professor,
a Holder of the Fratamico Endowed Chair, and the Director of System
Energy Efficiency Laboratory, University of California at San Diego, La
Jolla, CA, USA. From 1998 to 2005, she was a full-time Research Scien-
tist with HP Labs, Palo Alto, CA, USA, while also leading research efforts
with Stanford University, Stanford, CA, USA. She was a Senior Design
Engineer with Altera Corporation, San Jose, CA, USA. She is leading
a number of projects, including efforts funded by DARPA/SRC JUMP
CRISP program with focus on design of accelerators for analysis of big
data, DARPA and NSF funded projects on hyperdimensional computing,
and SRC funded project on loT system reliability and maintainability.
Her current research interests include energy-efficient computing, cy-
ber—physical, and distributed systems.

Yeseong Kim Yeseong Kim is an Assistant Professor in the Department
of Information and Communication Engineering at Daegu Gyeongbuk
Institute of Science and Technology, Daegu, South Korea, where he
directs the Computation Efficient Learning Lab. His research interests
include alternative computing, computer architecture, and embedded
systems. He received a B.S. degree in computer science and engineer-
ing from Seoul National University, Seoul, South Korea, and an M.S. and
Ph.D. degrees in computer science from the University of California San
Diego, La Jolla, CA, USA.

0018-9340 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.or{ /%)ublicationsﬁstandards/Eublications/rights/indexhtml for more information.
Authorized licensed use limited to: Univ of Calif San Diego. Downloaded on August 08,2022 at 18:

2:07 UTC from IEEE Xplore. Restrictions apply.

