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ARTICLE INFO ABSTRACT

Keywords: The unprecedented scale and ubiquity of the Internet of Things (IoT) introduce a maintainability challenge. IoT
IoT networks networks operate in diverse and harsh environments that impose thermal stress on IoT devices. The lifetime
R°1u“§ff of these networks can be limited by hardware failures resulting from exacerbated reliability degradation
Reliability

mechanisms at high temperatures. In this paper, we propose a novel adaptive and distributed reliability-aware
routing protocol based on reinforcement learning to mitigate the reliability degradation of IoT devices and
improve the network Mean Time to Failure (MTTF). Through routing, we curb the utilization of quickly
degrading devices, which helps to lower the device power dissipation and temperature, thus reducing
the effect of temperature-driven failure mechanisms. To quantify and optimize networking performance
besides reliability, we incorporate Expected Transmission Count (ETX) in our formulations as a measure of
communication link quality. Our proposed algorithm adapts routing decisions based on the current reliability
status of the devices, the amount of degradation they are likely to experience due to communication activity,
and network performance goals. We extend the ns-3 network simulator to support our reliability models and
evaluate the routing performance by comparing with state-of-the-art approaches. Our results show up to a
73.2% improvement in reliability for various communication data rates and the number of nodes in the network
while delivering comparable performance.

1. Introduction hardware failures due to reliability issues. As a result of aging and
degradation, components in IoT devices lose reliability and eventually

The Internet of Things (IoT) continues to rapidly develop as it is fail, leading to a permanent loss of functionality.
adopted progressively across many domains such as logistics, farm- Previous research has shown that reliability degradation of electron-
ing, industrial and environmental monitoring, healthcare, and smart ics worsens exponentially with increasing temperature due to intensi-
infrastructures. The number of interconnected IoT devices will reach fied effects of various mechanisms such as Time-Dependent Dielectric

40 billion by 2025 and worldwide spending on the IoT is already Breakdown (TDDB), Electromigration (EM), Bias Temperature Instabil-
more than $750 billion [1]. Unfortunately, coupled with such dramatic ity (BTI), and Hot Carrier Injection (HCI) [4-6]. IoT devices are often
growth, the inherent large-scale of the IoT brings a maintainability

challenge with high costs. Currently, the operational expenses reach
up to 80% of the overall cost [2], of which a significant fraction is
due to hardware failures. While meeting the needs of a growing range
of applications, it is also a crucial requirement for IoT devices and
networks to operate reliably for long periods, otherwise, maintenance
investments can become a critical bottleneck for the growth of IoT.
Recent advances in energy harvesting techniques combined with
energy-efficient approaches at different layers of the networking stack
made it possible for IoT devices to have substantially prolonged bat-
tery lifetimes. With batteries continuously being recharged by energy
harvesting sources, energy-neutral operation [3] for the network can
be ensured. In such networks, since the risk of batteries running out
of energy is diminished, the limiting factor for network lifetime are

deployed in harsh environments, resulting in stress on the hardware to
reduce their reliability and mean time to failure (MTTF). The majority
of them typically do not have active cooling to mitigate the thermal
stress. In such cases, curbing power dissipation of devices helps to lower
the device temperatures and scaling down the effect of temperature-
driven failure mechanisms to achieve a better MTTF. Network routing
can be useful in this regard; it is possible to place the IoT devices into
low-power states by avoiding them in communication paths. In this
way, low reliability devices in the network are utilized less to reduce
thermal stress and slow down degradation.

Many energy-based routing algorithms have been proposed
[7-9] with the goal of extending the battery lifetime of IoT networks,
but no work considers the reliability of IoT devices. Here we refer
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Fig. 1. Reliability-driven routing in IoT networks.

specifically to the aging and reliability degradation of the hardware of
an IoT device, not the communication reliability or soft errors that are
broadly studied. The literature on network routing does not scrutinize
the problem of hardware failures and reliability issues as a bottleneck
for the lifetime of networks. To improve the MTTF of IoT networks, a
reliability-aware routing should be designed following these principles:

(1) Avoid the weakest nodes: As shown in Fig. 1(a), there are many
situations that may result in an unbalanced reliability degradation in
IoT networks. We call this phenomenon reliability gap, the situation
in which there is a significant reliability difference between differ-
ent nodes of the network. Reliability gap can arise as a result of
convergecast traffic patterns, congestion, environmental stress, and dis-
proportionate communication distances (Fig. 1(a)). For networks with
convergecast traffic patterns and local congestions, some regions in the
network may have more traffic to forward, and hence, the nodes here
are active more often than the others. Similarly, some nodes may be ex-
posed to higher thermal stress due to their physical location, especially
in applications such as industrial and environmental monitoring. These
nodes may be the bottleneck for network lifetime since their reliability
degrades rapidly and will be the first to fail because of shortened
MTTF. The networking load should be distributed as a function of the
reliability state of the nodes — besides network performance — by using
reliability-aware routing, thus avoiding the weakest nodes.

(2) Use efficient communication links: If the communication link is of
low quality and inefficient, then the transmitter node must send many
copies of the same packet to be correctly captured by the receiver.
Multiple retransmissions mean that the transmitter and receiver will
stay active and experience reliability degradation until a successful
reception takes place. Using better links improves both communica-
tion performance and device reliability. Therefore, the routing proto-
col should be aware of the link quality and its influence on device
reliability.

The typical approach for routing is to model the network as a
weighted directed graph and then find paths with the minimum cumu-
lative weight. The weights of the graph edges and vertices traditionally
include a variety of node and link metrics: latency, hop count, stability,
bandwidth, throughput, and energy, or may be a composite of multiple
metrics [10,11]. The impact of degradation mechanisms on device
reliability has not been taken into account by routing techniques to
date. A simple example of how reliability might affect routing is shown
in Fig. 1(b). Node 2 is in a location exposed to higher temperature
and thus has much higher thermal stress than the other nodes. A
traditional routing solution, shown in yellow, in the bottom right
figure, selects the least hop path between the source (S) and the
destination (D) nodes, routing through node 2, thus causing its early
failure. Our solution, shown in the top right figure, in green, takes a
slightly longer path through nodes 1 and 3 but avoids the early failure
of node 2. Performance and reliability trade-off over a continuous
sample space of possible routing strategies is shown on the left of
Fig. 1(b). Traditional routing solutions purely aim at maximizing the
aforementioned performance-related metrics. In contrast, the goal of a

reliability-aware routing solution is to find a favorable middle ground
between performance and reliability.

In recent years, the complexity, dynamism, and heterogeneity of
modern IoT networks have driven a recent development of routing
techniques based on reinforcement learning (RL) [12,13]. Traditional
routing techniques, which are based on statistical assumptions regard-
ing traffic flows and network conditions, are more and more perceived
as inefficient to suit the diverse, complex, and highly changing condi-
tions of IoT networks. RL-based routing techniques have been shown
to successfully address these challenges; they automatically learn the
dynamics of networks, such as new flow arrivals, congestion points,
topology changes, quality of links, and adapt to it.

In this paper, we propose R3-I0T, a distributed reinforcement learn-
ing based reliability-aware routing protocol for IoT networks. We max-
imize the reliability and hence the MTTF of the most degraded nodes
by (i) avoiding them in the communication path to minimize their
traffic, (ii) using high quality, reliable links to reduce retransmissions.
Reliability and Expected Transmission Count (ETX) [14] metrics are
incorporated in the reinforcement learning formulation. The routing
policy learns from experience at runtime, using the past routing deci-
sions and their outcomes, to achieve high performance and to prolong
the network lifetime. To the best of our knowledge, we are the first
to present a routing solution that explicitly addresses the reliability
degradation problem in IoT networks. We conduct extensive simula-
tions using a real-world ambient temperature dataset from the National
Solar Radiation Database (NSRDB) [15]. Our evaluation uses large-
scale sensor network data, along with real device measurements and
models from the High-Performance Wireless Research and Education
Network (HPWREN) [16]. Since reliability is difficult to evaluate in
practice, we use simulations based on an extended version of ns-3
[17] to demonstrate that our routing approach can achieve similar
performance compared to the state-of-the-art while showing up to
73.2% improvement in reliability for various communication data rates
and number of nodes in the network.

2. Related work
2.1. Reliability in routing

The term reliability, especially in networks, is associated with many
different types of failures. Almost all of the literature on network reli-
ability focuses on communication link reliability, that is, the situations
where the connection between two nodes in the network fails. In some
papers, node failures are also included, but they can be categorized into
three groups, none of which handle hard errors: soft errors (causing
random bit flips) [18], software reliability issues [19], or batteries
running out of energy [20,21]. For example, in [19], software failures,
message congestion, VM failures on [oT devices are considered, and
the failures are modeled as a Poisson process with an average failure
rate. There are also some hardware failures discussed in various works
(such as [22]), but they consist of superficial models of sensor faults;
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short faults, constant faults, and noise faults. These types of failures are
transient and can be more easily fixed, whereas hard failures are not
recoverable. We propose a routing solution that explicitly addresses the
reliability degradation due to hardware failure mechanisms, which is
different from previous works.

Hard failures, caused by well-known thermally-driven mechanisms
in silicon, such as TDDB, EM, BTI, result in a need to replace that
electronic component in the field, leading to high maintenance and
replacement costs. Hard failure models have been studied extensively
at the circuit and chip level [4-6], and adopted for dynamic voltage
& frequency scaling, task scheduling, and power gating strategies in
multi-core system-on-a-chips [23]. Prior to our work in [24], nobody
has considered how hard failures affect problems at the network level
and how networking might affect the electronics reliability. This paper
extends and improves [24] by introducing a new reinforcement learn-
ing based protocol, whereas only a routing metric was proposed in the
former.

2.2. Maximum lifetime routing

The problem of maximum lifetime routing has been extensively
researched over the last two decades for Wireless Sensor Networks
(WSNs) and more recently for IoT networks. Since the majority of WSN
and IoT devices are battery-operated, the works in this domain are
directed towards improving battery lifetimes. In contrast to the ap-
proaches that aim at minimizing the total or average energy consump-
tion (e.g., LEACH [25], GEAR [26], ER-RPL [9]), maximum lifetime
routing can ensure a balanced depletion of energy among the network
nodes. By incorporating the residual energy of node batteries into rout-
ing decisions, quickly draining nodes are avoided in the communication
paths, and hence network lifetime is extended. A detailed survey on this
topic can be found in [20,27,28]. We next discuss a few representative
publications.

Chang and Tassiulas [21] define the communication link cost as
a function of remaining node energy and the required transmission
energy for using that link. By using the Bellman-Ford shortest path
algorithm for the computed link costs, the least cost path — whose
residual energy is the largest — is found. Following similar method-
ologies, metrics such as link quality [29], throughput [30], queue
utilization [31], and so on were combined with residual energy to
achieve different objectives along with the network lifetime. The au-
thors of [32,33] proposed evolutionary algorithms for balancing the
load and energy consumption of the nodes. In [34], the traffic load is
estimated and the optimal data path is computed to avoid energy holes
by efficiently utilizing the nodes that are susceptible to congestion.
Although a myriad of studies analyzed the network lifetime problem
from an energy optimization perspective, to date, there is no work that
addresses the reliability issues in the way we do in this paper.

Only a small subset of the proposed routing algorithms have found
application in practice. There are prevalent routing protocols that
have gone through the standardization process, which demands a lot
of time, effort, and is expensive. Thus, if impact is needed, build-
ing a protocol completely from scratch is undesirable. Following this
philosophy, modifications and improvements to various standardized
protocols such as AODV [35], OLSR [36], RPL [37] were proposed with
a focus on extending network lifetime. Many studies engineered new
routing metrics that take into account residual battery energies [38-
40]. Further modifications are proposed in [41,42]. Similarly, in our
paper we adopt and build upon the AODV (Ad hoc On-Demand Distance
Vector) protocol.

2.3. Reinforcement learning based routing
Reinforcement learning based routing is gaining importance with

the ever-increasing complexity and dynamism of IoT networks and the
recent advancements in machine learning [12]. The first application
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of RL in routing by Boyan and Littman [43] demonstrated that RL
is indeed a promising solution for complex communication networks.
Since then, many studies have been conducted using variants of RL al-
gorithms with different networking objectives and requirements. Most
of the works in RL-based routing have utilized the well-established
Q-routing algorithm [43] as their underlying idea, albeit with some
improvement [44-46]. Q-routing is based on the traditional Q-learning
model in which each node makes its routing decision based on the local
routing information. Among many different objectives employed using
Q-routing based algorithms, the work in [46] reduces end-to-end delay.
Work in [44] couples Q-routing with on-policy Monte Carlo to reduce
energy consumption and enhance the network lifetime. The authors of
[45] introduce a dynamic discount factor to Q-learning for reducing the
amount of route discovery processes after a link failure occurs.

A few recent works consider a combination of reinforcement learn-
ing with AODV routing. For example, Q-learning AODV (QLAODV)
[47] is a routing protocol that considers link stability and bandwidth
efficiency. In [48] the authors use a Bayesian Network to estimate con-
gestion levels and tune the learning weights where they consider signal
to noise ratio, delay, and throughput for making routing decisions.
Residual battery levels and energy efficiency were also explored as
routing objectives in [49], where they are utilized to adjust the willing-
ness of nodes to participate in AODV routing with the SARSA learning
algorithm. In contrast to the previous works on RL based routing, we
consider the reliability of network devices which was not studied before
and we try to maximize hardware lifetime. Reinforcement learning
based AODV was particularly studied in MANETs and VANETs due
to their erratic mobility, energy consumption, and traffic profiles. It
has shown promising results because of its adaptability in such highly
dynamic network conditions. Following this rationale, we propose a
novel distributed Q-learning based adaptive AODV routing approach. In
our work, we model the dynamic factors such as ambient temperature
and computation workloads of IoT devices, as well as their effect on
reliability. We assume that [oT devices run various workloads which
contribute to their heating, combined with the thermal stress imposed
by the environment. Our proposed approach is able to adapt these
variations in the network and discover better routes without having
to know the network topology and traffic patterns in advance.

To summarize, our main contributions are as follows:

We explicitly consider hardware reliability in IoT network routing
to reduce failures and improve network lifetime.

We incorporate node reliability and ETX metrics into Q-learning
updates in our reinforcement learning based approach. Through
ETX, we assess the expected communication link performance
as well as the expected reliability degradation of a node. Thus,
routing decisions are driven by the current reliability of the nodes
on the path, amount of degradation they will experience due to
retransmissions, and networking performance.

We implement our routing mechanism in a novel routing protocol
called R3-IoT.

We model reliability in the ns-3 network simulator. To accom-
plish this, we include the ambient temperature and computation
workloads of IoT devices in our simulations.

We compare R3-IoT to state-of-the-art routing protocols and
show that the network reliability is significantly improved while
achieving similar performance.

3. Reliability modeling and simulation
3.1. Device modeling

Reliability is defined as the probability of not having failures up to a
given time . The reliability function R(r), in general, can be expressed

as a function of failure rate A1) [5]:

t '
Ry =~ Jo 2 M
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Fig. 2. Device state model.

From Eq. (1), the rate of how quickly reliability is degrading is deter-
mined by the failure rate, which depends on temperature, aging, device
power state, and switching frequency between power states.

In our reliability analysis, we focus on hard failure mechanisms
that cause irrecoverable device failures. Mechanisms such as Time-
Dependent Dielectric Breakdown (TDDB), Electromigration (EM), Bias
Temperature Instability (BTI), and Hot Carrier Injection (HCI) induce
reliability degradation, and thus eventually cause failures. Failure rate
models have been developed for each mechanism, which show an ex-
ponential dependence on temperature that can be described as follows:

_ L
Ay = Agnge kT, (2)
Vq € {Active, Idle, Sleep, ...

TransitionT oSleep, TransitionT oActive}

where A is an empirically determined constant, E, is the activation
energy, k is the Boltzmann’s constant, and 7, is a constant depending on
the respective mechanism and device. Here, we consider temperature
T, of a device as a function of its power state, ambient temperature, and
time. When a device switches to a different power state, temperature
increases/decreases until it converges to a new steady-state value after
a certain time. We assume that the IoT devices can be in various
operational states (e.g., Active, Idle etc.) denoted ¢, characterized by
power dissipation, voltage, and frequency.

Fig. 2 depicts a sample power state diagram of the device with
the state transition mechanisms and the parameters characterizing the
states. Such state-based model is able to represent the dynamics of IoT
devices for many applications, yet convenient and adaptable for simu-
lation purposes. For IoT devices, switching between power states using
duty-cycling and wake-up radio techniques — usually implemented at
Medium Access Control (MAC) layer — is common for energy saving
purposes [50]. The objective of state transitions (represented with arcs)
is to put the IoT device in low power modes when not communicating.
In the idle state, the system-on-a-chip (SoC) of the device is powered
on but not communicating or processing any packets. In the sleep state,
most of the SoC subsystems are power-gated. In the active state, the
device is busy transmitting/receiving and processing packets. Power
scaling methods such as DVS policies can be used for transition between
active states for some IoT devices, either down-scaling to reduce power
consumption or up-scaling to meet an application performance criteria
[3]. Transition to sleep and transition to active states model the time
and power consumption required to enter and exit the sleep state. Tran-
sition times to/from low-power states follow average transition times
1,55 1:q> TESpectively. Failure rates and the amount of induced reliability
degradation change with each power state since different levels of
power consumption result in different temperature profiles. Ambient
temperature heavily influences the device’s internal temperature and
has an effect in every operational state.
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3.2. Reliability simulation for IoT networks

Analytical models for power, temperature, and reliability should
be used to enable reliability evaluation and analysis in network sim-
ulations. In this work, we leverage the recently proposed RelloT [51]
framework for the ns-3 simulator and enhance it according to our
reliability modeling discussion.

The original framework offers an application-based power model
that characterizes power consumption of different applications run-
ning on IoT devices, particularly targeting edge computing scenarios.
Fig. 3(a) depicts the node structure in ns-3 augmented with the RelloT
framework, our modifications, and new additions. We implement a new
power state machine model as in Fig. 2, for the communication compo-
nent of a node’s power consumption module. The state transitions take
place according to the node’s communication activity. To compute re-
liability, power/temperature/reliability model flow is initiated by state
transitions as shown in Fig. 3(b). We adopt RelloT’s first order differen-
tial temperature model, which incorporates the dependence of node’s
internal temperature on power and ambient temperature. However, we
change the temperature update mechanism. The model dynamically
updates device temperature when ambient temperature changes or a
state transition occurs. During the transient period, temperature in-
creases/decreases until converging to the steady-state temperature of
the new operational state. Our modified reliability model dynamically
updates the node’s reliability through Eq. (3) by recursively subtracting
the degradation induced between consecutive state transitions. The
current implementation uses the reliability model presented in [6].

R, =Ry~ ( R4y T)= R4, T, ) 3)
—_—
degradation

The subscripts g and ¢’ indicate the current and previous states respec-
tively. T, is the temperature experienced by the device between two
state transitions from time instants 7,/ to ,. R(-) is the static reliability
function described in Eq. (1). Finally, the reliability model connects
with our routing protocol so that reliability values can be monitored by
the routing algorithm. Packet structures are modified to accommodate
for the requirements of our learning algorithm, which are explained
into more detail in Section 5.

In real systems, reliability tracking is possible with degradation,
stress, or aging monitors [52-54]. These monitors, based on ring os-
cillators that convert temperature and voltage stress into oscillation
frequency, give information on the accumulated stress of the SoC,
which is used to estimate failure rates and reliability degradation
caused by different mechanisms (e.g., TDDB, EM, NBTI) [52,53]. As
an example use for IoT, the authors in [54] implement an on-chip
stress monitor for IoT devices and pave the way for its future usage in
IoT maintenance and management. The system reliability degradation
status is usually an input into dynamic reliability management (DRM)
techniques [55] to improve device usage. In our case, we propose to use
reliability status as an input to our network routing protocol to drive
routing decisions.
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Fig. 4. System model.

4. Reliability-aware routing with reinforcement learning

In the following, we first describe the system model and the prob-
lem. We next present our proposed reinforcement learning based rout-
ing algorithm.

4.1. System model

Consider an ad hoc wireless IoT network deployed in a mesh topol-
ogy. The network consists of heterogeneous nodes that we classify into
three categories: sensors, gateways, and servers. Each category can
have devices of different types. For example, the sensor node can have
ARM Cortex-M4 or ARM Cortex-A7 processors. The sensor nodes are
‘source’ nodes that generate data, which needs to be communicated
to a sink (i.e. server). Since the network topology is mesh, nodes
can cooperate to distribute and relay data in a multi-hop fashion. We
assume that gateways can do data processing.

We investigate a network with many sensor and gateway nodes but
a single sink node, similar to related works [47-49]. There are a total of
N +1 nodes, where nodes i = 1, ..., N denote sensor and gateway nodes
and i = N + 1 denotes the sink node. Source (sensor) nodes generate
data at rates r;, so the sink node receives their sum ) r;. The distance
between nodes i and j is d, ;. Let N; denote the set of neighboring nodes
to which node / can send packets to. Then, N, = {j : d;; < d,,,}, where
d e« 18 the distance of transmission with maximum power. The notation
j € N; is used to show that node j is a neighbor of node i and they can
communicate. The nodes are static with fixed distances, so neighbors
do not change. However, the communication between neighbors is not
perfect at all times because we assume lossy communication links,
which cause random packet drops.

As shown in Fig. 4, nodes are characterized by their power consump-
tion, temperature, reliability, and the ambient temperature around
them. We assume an energy harvesting network, so the residual energy
of batteries is not included in our model. In a heterogeneous net-
work, the power, thermal, and reliability characteristics vary between
different nodes. Each node consumes the power amount P,,,,; for
computation and P,,,,,; for communication. Even though our routing
approach only has an impact on communication power consumption,
the routing decisions are made by taking into account the overall device
temperature and reliability. IoT devices usually run various workloads
throughout their operation that contribute to their power consumption.
Therefore, we also consider the computation power consumption for
the nodes. The core temperature T,; of the nodes is influenced by
their overall power dissipation P,,,,,; + P.onp,; and by the ambient
temperature 7T, ;. Finally, R; denotes the reliability, which is heavily
affected by temperature T, ;. For the routing algorithm, the compu-
tation power consumption P,,,,; and ambient temperature T,,,; are
‘external’ factors that influence node reliabilities. A routing algorithm
cannot control these variables, but the routing decisions should be
made in consideration of their effect on the overall reliability.

In such a setting, we seek to improve the network’s mean time
to failure (MTTF) by means of routing, while keeping performance at
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adequate levels. MTTF of a single node can be expressed through Eq. (4)
as a function of reliability:

MTTF = / h R(t)dt 4
0

where R(7) is the reliability if a device at time 7. Then, network MTTF is
the minimum of any node in the network (i.e. min;c 5y MTTF,). Here we
assume that the network lifetime is defined as the time of first node’s
failure, which is a common assumption. This definition is one of the
most prevalent in literature [20] and was used in many recent works
[42,56]. Improving the network’s MTTF, or its lifetime in general, can
be accomplished by maximizing the reliability of the weakest nodes in
the network and minimizing the overall reliability degradation on the
nodes. If the weakest node in the network has high reliability, then the
time it takes for the first node to fail on average will be extended. As
stated previously, how quickly a node’s reliability degrades relates to
its communication activity, which is influenced by routing decisions.
Hence, routing can help prolong network lifetime.

Our goal is to have a protocol that improves the reliability, and
hence the MTTF of the most degraded nodes, as well as takes into
account the performance in its routing decisions. The routing protocol
should (i) help avoiding paths with the minimum reliability nodes, (ii)
utilize efficient communication links, and (iii) lead to decisions that
will induce minimal reliability degradation.

4.2. Reinforcement learning: Background

Reinforcement learning (RL) [57] is a framework in which an agent
learns control policies based on experience, for making decisions in an
environment, to optimize a given notion of rewards. The agent interacts
over time with its environment, collects information, and selects the
action to be applied according to its goal and current state. What is
good or what is bad for the agent is defined by the reward signal. The
environment returns a reward to the agent on each time step to provide
feedback about the effect of the recent taken action. The total amount
of reward an agent can expect to accumulate, starting from the current
state, is estimated by the value function. Reward signals indicate what is
good (or bad) in an immediate sense, whereas value functions indicate
what is good (or bad) in the long run. Therefore, usually value functions
are the primary criteria when making and evaluating action decisions.

The problem of reinforcement learning is mathematically framed
using a 4-tuple (S, A,P,R), where S is the set of states, A the set
of actions, P the state transition probabilities, and R the rewards.
The agent and environment interact at discrete time steps (also called
epochs), t = {0,1,2,3,...}. At each time step ¢, the agent observes state
s, € S, then selects an action g, € A. As a consequence of its action, one
time step later, the agent receives a reward, r,,; € R, and finds itself
in a new state, s,,,. The probability of moving from state s to state s’
by taking action q is:
p(s'|s,a) = Pris,, =5'ls,=s,a, = a}

2 p(s'ls.a)=1 (5)
s'es

The objective of the agent while selecting a certain action is to
maximize the total cumulative reward it receives over its lifetime. Thus,
the agent should learn which of its actions are desirable in the long run.

Based on this, actions are selected such that the return G,, expressed as
the sum of discounted rewards, is maximized:

0
G = z ykrr+k+l (6)
k=0

where y € [0, 1] is the discount factor. If y = 0, the agent is called ‘my-
opic’, only being concerned with maximizing the immediate reward. As
y approaches 1, the future rewards are taken into account more.

The rewards the agent can expect to receive in the future depend
on which actions it will take. A policy = defines how the agent selects
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its actions. Formally, the policy z(s,a) : S x A +— [0,1] is a mapping
from states to probabilities of selecting each possible action. The value
function V7*(s) is the expected return of following a policy = when at a
state s:

VA6 =BG ls, = 51 = B, [ 3 v riopeals, =] @)
k=0

Here, E_[-] denotes the expected value if the agent follows the policy
x. The function V'” is particularly called as the state-value function. A
similar function, denoted Q” (s, a), is defined for the expected return of
starting from state s and taking action a under policy #. It is called as
the action-value function and expressed as: O”(s,a) = E, [G,|s, = s,a, =
al.

The goal of reinforcement learning is to find a policy that results in
maximum reward in the long run. A policy z is better than a policy 7’
if its expected return is greater than that of ' for all states, i.e., = >
7 & V7i(s) > V7 (s), Vs € S. The optimal policy =* has the optimal
state-value function V* and action-value function Q*, given as follows:

V*(s)=max V”(s), Vs€ S
Q*(s,a) = max Q"(s,a), Vs € S, Va € A(s) (8)

The optimal value function V*(s) can be expressed through Eq. (9)
without reference to any policy, in a special form called the Bellman
equation [57].

* ’ s )

V*(s) = max [r”s;sp(s 5.V ") ©
Once V* is obtained, the optimal policy can be determined by solving a
system of equations. However, explicitly solving the Bellman equation
is rarely practical due to the large solution space present in the majority
of RL problems. There are many different methods that approximately
solve the Bellman equation at reasonable computational cost. In our
problem, we use such a method — Q-learning — since we deal with large
networks and the learning has to take place on resource-constrained IoT
devices.

4.3. Q-learning based routing algorithm design

In this paper, we use Q-learning for routing, which is a model-free
off-policy temporal difference reinforcement learning approach [57].
Q-learning is based on the value of state-action pairs Q(s,a), called
action-value function. We define the value of taking action a in state
s under a policy =, O (s, a) as the expected return from taking such an
action and thereafter following policy z:

O"(s,a) = E_[G,|s, = 5,0, = a]

s
=E, [Z ykrr+k+l s, =s.a,=a
k=0
=r+y 2 oI5 V() a0
s'es

Thus, from Egs. (9) and (10), we have:
V*(s) = max Q*(s, a) 1)
aeA

In Q-learning, the agent learning consists in a sequence of stages, called
epochs. In epoch 7, the agent is in state s,, it performs action a,, it
receives a reward r,, and it moves to state s, ;. The action value is
updated as follows:

Oy a) < (1= ))Q(sp. a) + alryyy + ymaxO(s,yy, a1l 12

where « is the learning rate. The agent learns optimal policy with the
help of a greedy policy where an action can be chosen just by taking
the one with the maximum Q-value for the current state. Q-learning
is a suitable method for online ‘runtime problems’ such as routing in
our case, because it only uses the most recent decisions to update its
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policy. Also, it converges to the optimum action-values with probability
1 as long as all actions can be randomly sampled in all states [58].
For this reason, it is an effective technique for learning from delayed
reinforcement, i.e. learning based on the reward that can be received
far in the future. To map a routing problem to a Q-learning problem,
one needs to design the state space, action space, reward function, and
learning parameters:

+ State (s): The current state of the agent is the index of the node
holding the packet.

« Action (a): Selection of the node for the next hop.

» Reward (r): Higher rewards earned if the action brings the packets
closer to the destination node.

* Learning Parameters (y, a): Described in terms of reliability and per-
formance related metrics of the nodes.

4.3.1. States and actions

For learning a routing strategy, each node is associated with a state
s, and for each of its neighbor s’, there is a corresponding action.
Executing action « at s means forwarding the packet to the neighbor s
corresponding to that action. Let s = i denote the node holding a packet
P to forward and Q;(des, j) denote the Q-value of node i forwarding
the packet to destination d through next-hop node s’ = j. Then, the
action-value updates are expressed through Eq. (13).

O;(des, j) = (1 — @)Q;(des, j) + alr + ymaxQ;(des, k)] 13)
kEN;

Node i maintains a table of Q-values Q;(des, j) for each neighbor j
and destination des, which can be regarded as its routing table, telling
which neighbor to forward the data. With the help of this routing
table, the optimal routing path can be constructed by a sequence of
table look-up operations. We treat the network as the environment and
the nodes as the entities where the agents reside. For a completely
distributed Q-learning based routing, we assume that there exists an
agent at each node. The agents try to improve the current solution
while switching between exploration and exploitation of the solution
space. The exploration and exploitation processes of Q-learning have
their own interpretations for routing. In our approach we adopt the
€ — greedy strategy. By default, a node selects the next hop node which
has maximal Q-value to forward data, which is called exploitation.
However, with some probability e it chooses a random node which does
not have maximal Q-value, this is called exploration.

4.3.2. Reward function

The reward function is critical to Q-learning, as it determines the
behavior and performance of the agent. The goal of the routing al-
gorithm employing Q-learning is to get the packet delivered to the
destination (the sink node) with maximum expected return, i.e., mini-
mum cost. To prevent loops and ensure forwarding the packets towards
the destination node, we need increasing Q-values in the direction of
the destination. Hence, we employ the following reward function:

L1
o

where N, is the set of neighbors of the destination des. This means
that if a node receives a packet from the destination, the reward will
be 1 and otherwise 0. Therefore, only the immediate neighbors of the
sink node receives a reward of 1. By using this reward function, closer
nodes to the destination attain high Q-values. This reward propagates
to the nodes away from the destination, but it gets discounted more
and more as it travels further.

if i € Ny
otherwise

14)
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4.3.3. Reliability-aware learning parameters

To include both reliability and performance aspects in our Q-value
updates, we propose a composite discount factor (y) function of a node’s
reliability and its expected transmission count (ETX) over communication
links. Using this approach, Q-value of a node decreases at each update
if its reliability and link quality is low. The optimal policy is then the
one which picks both reliable nodes and reliable communication links
for routing.

ETX is one of the most frequently used metrics in routing protocols.
It estimates the number of data transmissions required to send a packet
over a link and get acknowledged, including retransmissions. It is
computed as:

ETX = 1/(1’19,‘ 'ij) s

Here, the notation p;,_,; denotes the probability of successful packet
delivery from packet source node i to destination node j. We obtain
both probabilities p;,,; and p;,,; with a message exchange protocol that
is explained in Section 5. Through ETX, we assess the link performance
as well as the expected reliability degradation for using that link.
To calculate the reliability degradation induced, we first estimate the
traffic that the node has to forward. Let j denote the node of interest,
then the total allocated traffic for j is the sum of traffic it generates
TRfe" and the traffic TR incoming from its neighbors i:

total __ gen total
TR = TRE" + Z TR (16)
ilirj
Multiplying this estimate of total traffic TR;.""” with the expected
transmission count ETX;,_,; and then dividing by the data rate r; of
the node, we compute the expected communication time through Eq.
(10).

_ tal
t;omm = (TR;." at. ETXjHi)/rj 17)

Finally, in Eq. (11), we estimate the reliability degradation D; induced
by using Egs. (1) and (3).
D; = R(t,;,T,;)— R(t,; + t;‘”"m,T,’j) (18)

N

Since D is proportional to ET X, its value will be higher for low-quality
links. Selecting paths with the minimum D utilizes efficient links (better
performance with fewer packet loss) and induces minimal reliability
degradation.

As the second part of our composite function, we need a com-
ponent that focuses on the bottleneck in network MTTF: the node
with minimum reliability. Thus, the discount factor should be directly
proportional to the current reliability R; of the nodes. Together with
both the degradation and current reliability metrics, a node computes
its discount factor y as

yj:R.

2 Y0
i arctan(E) 19)

J

where y, is a predefined constant. We use inverse tangent function to
contain the value of 7 in the interval [0,1]. Using this discount factor,
Q-value is updated based on the current reliability of the nodes, the
amount of degradation they will experience due to retransmissions,
and networking performance (by the implicit use of ETX in the DEG
function). The information is discounted for each node it passes through
and is also discounted according to the reliability and the expected
degradation of the nodes. In this way, we ensure that the route selected
has less hops and is more reliable.

Intuitively, by designing such a discount factor we do not only
consider individual node reliabilities at each single hop, on the con-
trary, we consider the overall system reliability from the source to the
destination. From Egs. (10) and (12), we observe that the discount
factor is multiplied for each node Q-value is computed. A cumulative
equivalent discount factor for the overall system, from a source node

sre to a destination node des, can be expressed as y,,, = H:.j:m v =
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ijw R /72z arctan (%). This multiplicative property of the discount fac-
tor exhibits a meanfngful resemblance to a common system reliability
definition used in industry. The system of n components fails if any
of its components fails — as we have assumed in our network lifetime
definition — for systems organized in a ‘series’ structure. The series

system reliability is then given as follows [5]:

n
Rsystem(t) = H Ri(t) (20)
i=0
at any time ¢ throughout the operation of the system. It can be seen that
the cumulative discounted rewards over a packet route has a similar
form to Eq. (20).

In our work, we model the dynamic factors such as ambient tem-
perature and computation workloads of IoT devices, as well as their
effect on reliability. We assume that IoT devices run various workloads
which contribute to their heating, combined with the thermal stress
imposed by the environment. Through this reliability-aware learning
parameter, our Q-learning approach is able to adapt these variations
in the network and discover better routes without having to know the
network topology and traffic patterns in advance.

5. R3-I0T protocol design

In this section, we describe several design considerations for our
routing protocol, which is a modified version of the Ad-Hoc On-demand
Distance Vector (AODV) [35] protocol. We explain implementation
details including the route discovery mechanism, the packet structures,
the routing table, and the metadata exchanged between devices. We
also discuss the overhead involved. Finally, we present results on a
small ‘toy’ example to demonstrate the route discovery process of our
approach.

5.1. Route discovery mechanism

Route discovery is carried out by Route Request (RREQ) and Route
Reply (RREP) packets as in the AODV protocol. The source node floods
the network with RREQ packets, which are forwarded through multiple
hops until they reach to the destination. The RREQ packets are only
forwarded to the neighbor with the highest Q-value. When the RREQ
packet reaches the destination, the destination node returns an RREP
packet through the same path that the RREQ packet followed. In the
original AODV protocol, each node broadcasts RREQ packets to all
of its neighbors. We choose where the packet should be forwarded
independently at each node based on greedy exploitation, that is, the
packet is only sent to a single node of highest Q-value. This significantly
reduces the number of packets need to be communicated as there is no
need for broadcasting.

5.2. Packet structure and metadata exchange

To determine the ETX metric of a link between two nodes, ETX
based protocols (e.g., AODV-ETX [59]) use Low Power Payload (LPP)
packets. The successful packet delivery probabilities p,.; and p;._;
in Eq. (15) are estimated with the LPP packets that are broadcasted
over the network. Each node broadcasts LPP at an average period 7
and remembers the LPPs received from its neighbors over the last w
seconds, allowing to compute the probability p;_,; at any time ¢ through
Eq. (21). Using relatively small size LPPs, this process incurs only a
marginal overhead and saves bandwidth.

count(t,t — w)
= 7 21
Djesi /7 21
where count(t, t—w) is the number of LPPs received by node i and w/7 is
the number of LPPs that was sent by node j during the window w. For
the link i + j, this allows node i to simply estimate p;,,; by counting

successfully received LPPs from j. On the other hand, to compute p;,;,
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Table 1
Structure of the LPP packet.
Field name Size Description
Type 8b Indicates that the packet is of type LPP
LPP ID 8b Identification number of LPP
Originator IP Addr. 32b IPv4 address of the node that generates the
LPP packet
Originator Seq. No. 32b Sequence number of the node that

generates the LPP packet

No. of Neighbors (n) 8b The number of neighbors whose LPPs are

received by this node

Neighbor IP Addr. IPv4 address of the neighbor from which an

n*40b LPP packet is received in the last w seconds
Forward LPP Count The number of LPP packets received in the
last w seconds from the neighbor
Max Q-Value 32b The max Q-value among the neighbors of
the node that generates the LPP packet
Reliability 32b The current reliability of the node that

generates the LPP packet

node j includes the number of LPPs it received from i sent during the
last w seconds in its each LPP. This way, node i can also estimate p;,_, ;
by using this information.

We modify the LPP packets to also include the fields that are needed
for Q-learning. The structure of our modified LPP packet is shown in
Table 1 with the description of the fields. The fields Neighbor IP Address
and Forward LPP Count are repeated for each neighbor. The number of
neighbors is indicated by n. Max Q-Value and Reliability are floating
point numbers, so are not suitable for serialization and deserialization
of packets. We represent these values as integers by 10* for k decimal
digit resolution before the serialization and deserialization processes.

5.3. Routing table

In AODV, the routing table entries are classified by the destination
addresses. If there are more than one route to the destination, the best
route is selected as the one with the least number of hops. We extend
the original routing table of AODV with an additional Q-Table. Since
we assumed that there exists an agent at each node for completely
distributed Q-learning, every node has to store and maintain the Q-
values of its next-hop neighbors. We use a dynamic Q-Table, such that
the size of the Q-Table of a node is determined by the number of
destination nodes and neighbor nodes.

In addition to Q-values, Egs. (7)-(12) show that R, ETX, and
the maximum Q-Values of each neighbor are needed for action-value
updates. Every node has a table for their neighbors with records of this
metadata, which is extracted from the LPP packets they receive. Also,
the table needs new fields regarding the forward and reverse LPP counts
for each neighbor of a node to calculate ETX. Overall, the table has
the following fields per each neighbor:

NeighborIpAddress: contains the IP address of the neighbor,
ReverseLppCount: tracks the number of LPP packets received from the
neighbor with respective IP address,

ForwardLppCount: tracks the number of LPP packets that the neighbor
with respective IP address received from this node,

QValue: contains the Q-Value for the neighbor with respective IP
address,

MaxQValue: contains the maximum Q-value in the Q-table of the
neighbor with respective IP address,

Reliability: contains the reliability value of the neighbor with respec-
tive IP address.

The maintenance of the entries of Q-Tables is ensured through
LPP packets. Each node exchanges information with neighboring nodes
and updates its Q-Table periodically. ReverseLppCount is obtained by
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counting received LPPs from each neighbor. ForwardLppCount is ob-
tained from the received LPP packets. ETX metric is calculated for
each neighbor from these two values, as shown in Eq. (21). The entry,
MaxQValue, contains the maximum Q-value in the Q-Table of the
neighbor. As shown in Table 1., the neighbor node finds the maximum
Q-value of its own neighbors (i.e., max,cy Q;(des, k)) and puts it in the
LPP packet. This value is received and stored, then is used for learning
updates.

5.4. Protocol overhead analysis

The overhead of communication comes from metadata exchanging
with LPP packets. As Table 1 shows, the extra header of each LPP
packet includes Q-value, maximum Q-value, and reliability. All the
other metadata is already present in the default LPP packet structure.
All added fields are represented with a 32-bit word. Therefore, in
total, there are additional 24 bytes. The frequency of broadcasting LPP
packets is usually very low compared to data communication, and
hence, this part of overhead is negligible. In our experiments, we set
the LPP period r = 1 s so the LPP overhead is only 24 bytes/s compared
to any ETX based protocol.

For the Q-learning algorithm, each node has to carry out compu-
tations to update Q-values when an LPP packet exchange occurs. As
shown in Eq. (6), this computation is a simple multiply-add operation
that introduces very modest delay and power consumption, much
smaller than that of communications. The computation overhead is also
negligible. Additional computations required by our technique involve
only two floating-point additions and multiplications per iteration of
Q-learning, which is very minor relative to what is required for the
rest of the computation and communication. This overhead scales
linearly with the number of node’s neighbors. However, even though
the number of nodes reach thousands, the number of neighbors per
node stay in the order of tens [60]. Most other routing protocols
have similar communication and computation overhead. Regarding
the training overhead of our Q-learning method, we leverage the dis-
tributed structure of Q-learning to reduce this cost where the training
overhead per individual node is small and scales with the number
of node’s neighbors. In large networks, the traffic distribution is not
expected to be uniform across all nodes in most cases where a fraction
of nodes may stay dormant/less active; hence, the frequently accessed
nodes become more critical and can be trained faster by levering the
distributed nature of our Q-learning. The training of the Q-learning
model is done completely online (no offline phase) using temporal
difference learning method where the model continues adapting at
runtime, using runtime observations.

Besides exchanging metadata and computing Q-values, nodes need
to store these metadata — some in the form of routing tables — for
all of their neighbors. At runtime, the amount of required metadata
storage may vary because the number of neighbors and the commu-
nication paths in the network can dynamically change. Again, this
metadata is much smaller compared to the storage capacity [oT devices
have and the data payload they hold. In the case of very large-scale
networks with a high number of nodes, approximate Q-learning can
be implemented to dramatically reduce the size of Q-tables. By using
function approximation, Q-learning can scale to handle very large state-
spaces [61]. In particular, deep Q-learning is a promising solution that
proposes neural network function approximation for Q-tables [62,63].

5.5. Small-scale example

We use the simple network shown in Fig. 5 to demonstrate the route
discovery mechanism of our approach. The source node S wants to send
packets to the destination node D. Then, the possible non-cyclic routes
that the packet can take are: S-2-D, S-1-2-D, S-1-3-D, S-2-3-D, and S-
1-2-3-D. The particular route to be selected for packet transmission
depends on the routing protocol. We assume that at the beginning
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Fig. 5. Simple network example.
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Fig. 6. Route discovery in the simple network example.

of route discovery node 2 is highly degraded with a reliability value
R, = 0.70 under the influence of environmental stress, whereas other
intermediate nodes have reliability values R, = R; = 0.90. Here, the
reliability values depict the probability of not having failures before the
given time instant, defined in the interval [0,1]. The route discovery
procedure for the default AODV and our proposed approach are shown
in Fig. 6, as a flow diagram of RREQs and RREPs.

In AODV, the source node S first broadcasts an RREQ, which is
received by both node 1 and node 2. In our approach instead, RREQs
are not broadcasted, they are forwarded to the neighbor with the
highest Q-value. As node 2 has the lower reliability in this example,
its Q-value is small as well. Therefore, an RREQ is sent to node 1.
As a second step, AODV again broadcasts RREQs from each node that
received RREQ in the previous step. If the received RREQ packet has the
same ID which was already seen, it is discarded, else, the ‘hop count’
value of the RREQ is increased by 1, and the packet is broadcasted
again until it reaches the destination. Since in our approach RREQs
have only a single receiver at each step, they are not discarded at
any point. Finally, for both approaches, when the destination node D
receives RREQ, it generates a unicast RREP packet and sends it back to
the source node. When the source node receives this RREP, it then has
the route to the destination and can start sending data packets.
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For the example network in Fig. 5, the default AODV protocol
chooses the least hop path S-2-D, whereas our proposed approach
chooses path S-1-3-D, avoiding the most degraded node 2. Results show
that node 2 degrades much faster than the other nodes using default
AODV and becomes the bottleneck for the network lifetime. When our
approach is used, degradation of node 2 slows down and the reliabilities
of all nodes meet at the value R = 0.42. After that point, all nodes
degrade at the same rate. In this way, the MTTF of the simple network
is increased by 2.55x. For this particular small network of 5 nodes, this
improvement comes with a cost of one extra hop in the path (from one
hop to two hop route) and an increase of 16.7% end-to-end delay. In
general networks have many more hops from the source to destination
than this example. The performance penalty of our approach is not as
large with only a few extra hops, for which we provide detailed results
in the following section.

6. Evaluation

We conduct simulations based on a scenario of environmental mon-
itoring. We refer to an example of real-world deployment, the High-
Performance Wireless Research and Education Network (HPWREN)
[16]. HPWREN is a heterogeneous wireless sensor network, deployed
in the Southern California area. In HPWREN, there are many types
of computing systems ranging from the small wireless sensor nodes,
single-board computers, to the high-performance server systems at the
UCSD Supercomputer Center. It comprises several subnetworks, but we
only focus on a 2 km? region of the Santa Margarita Ecological Reserve
(SMER) network covered with a mesh topology [64]. We use data
collected from HPWREN to model IoT devices in ns-3 and configure the
parameters of the simulation. In our simulations, IoT devices (nodes)
are randomly distributed over a field of 1000 m x 1000 m. We conduct
experiments for networks of 50, 100, 150, 200, and 250 nodes. A subset
of 20 nodes generate Constant Bit Rate (CBR) traffic — typical of sensors
that sample at regular intervals — and transmit UDP data with 512
bytes packets to a sink node in an ad hoc fashion. We chose data rates
of 20, 40, 60, 80, 100, and 120 kbps for evaluation. Wireless links
between nodes are assumed lossy and have a bandwidth of 2 Mbps,
so successful packet transmission is not guaranteed. The lossy commu-
nication environment is simulated using the HybridBuildingsLossModel
in ns-3. Experiments last 730 s, are repeated 100 times with different
random seeds and averaged to reduce the randomness in results for
achieving high confidence. In our experiments we use the IEEE 802.11b
standard for the MAC layer because it the most matured communication
standard implementation in ns-3. There are efforts on modeling low-
rate and low-power standards for IoT, but they are not fully developed
yet. Hence, we modify the 802.11 PHY and MAC layer parameters and
scale data rate and power values to imitate communication in an IoT
environment. All the communication-related parameters used in our
simulations are summarized in Table 2. For Q-learning, we set the
learning rate « = 0.8, the discount rate constant y, = 1073, and the
exploration parameter ¢ = 0.1. The respective values were determined
by carrying out a grid search and finding the best performing values.
Therefore, the values used in the paper are optimized and represent the
best achievable results using our method.

Environment: Reliability heavily depends on the temperature of
the environment, so we consider realistic, varying ambient temperature
conditions. We use a temperature dataset which contains half-hourly
ambient temperature measurements of 210 locations over a year [15].
Moreover, we consider the effects of the device being placed in different
locations by selecting the temperature as T, + U(—10,+10), where U
is a uniform distribution. For example, a device placed in a closed con-
tainer under the sun, with airflow around the device is restricted, will
have a much higher ambient temperature than a device placed under a
shade in open air. Reliability is evaluated considering the TDDB failure
mechanism [6], which is a commonly used model in industry today.
Other reliability modes can easily be added as needed, since they all
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Table 2
Simulation parameters.

Parameter Value

1000 m x 1000m
50, 100, 150, 200, 250
AODV, AODV-ETX, R3-IoT

Simulation area
Number of nodes
Routing protocol

MAC layer IEEE 802.11b

Traffic type CBR UDP

Data rate 20, 40, 60, 80, 100, 120 kbps
Packet size 512 bytes

Bandwidth 2 Mbps

Loss model ns3::HybridBuildingsLossModel

exponentially depend on temperature. We scale the impact of reliability
degradation in the simulations to reflect 1 year of degradation for 365 s
of simulation time.

Target Platforms: To capture the heterogeneity of IoT networks,
we use models of 3 different embedded devices in our simulations. The
target IoT devices are Raspberry Pi 0, Raspberry Pi 2, and ESP8266
microcontroller. We estimate the CPU and WiFi power consumption
and temperature of the edge devices by collecting measurements of
various applications under different ambient temperatures on the actual
devices. We configure the parameters of the heterogeneous node mod-
els in ns-3 so that they follow the power, temperature, and reliability
characteristics of the modeled platforms. We randomly choose the
number of each device platform in the network for every simulation
instance.

Workloads: We assume IoT devices run various computation work-
loads as well as communication data. Therefore, device reliability
is also affected by these workloads, which can be considered as an
external factor. In our experiments, we consider the ML classification
and regression tasks characterized for edge computing settings in [65]
with their corresponding power consumption values. The simulated
workloads are generated randomly from the measured set of tasks with
the execution times sampled from an exponential distribution with a
mean of 10 s.

We compare our proposed approach (referred to as R3-IoT) with the
following techniques:

* AODV [35] is the original Ad-Hoc On-demand Distance Vector
routing protocol. It routes the packets through the least hop path.

+ AODV-ETX [59] finds the path with the least total expected
transmission count. The goal is to optimize the packet delivery
ratio.

* Q-AODV [66] is a Q-learning based energy-aware maximum life-
time routing approach. Network nodes learn to adjust its route-
request packets according to their energy profile.

All the models and solutions are implemented in the ns-3 network
simulator, leveraging RelloT framework [51] for power, temperature,
and reliability simulation. We modified the original models in this
framework to support our routing implementation. We simulate the
following three different scenarios:

(1) Constant Uniform Ambient Temperature and No Computation Work-
load. When the ambient temperature is the same for all nodes
and they do not run any computation, it is expected that only
communication would make a difference in their reliability and
hence lifetime. In this experiment, we evaluate how good our
approach is without the influence of external factors (workloads,
ambient temperature) affecting reliability.

(2) Varying Ambient Temperatures and No Computation Workload. The
most important external factor that affects reliability is the ambient
temperature. Since it is an uncontrollable element, the routing de-
cisions would not change it. However, the routing protocol should
still be aware of the impact of ambient temperature on reliability
over time to be able to moderately utilize the nodes which are
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Fig. 8. Scenario 2: Reliability for different data rates and number of nodes.

under environmental stress. In this experiment, we evaluate if our
approach can learn the pattern of ambient temperature changes and
the magnitude of its impact on reliability over time.

(3) Varying Ambient Temperatures and Stochastic Computation Workloads.
Computation is an orthogonal component to communication, which
also degrades the reliability of IoT devices. In this case, we model
the possible workloads that can be running on IoT devices. These
workloads cause extra heating of the device. The routing protocol
should learn to avoid the devices which heat up because of running
high workloads and operating under high ambient temperatures.
We randomly pick workloads from our task dataset and set their
service times by sampling from an exponential distribution. Not all
nodes do computation, we also randomly select the ones that run
workloads.

In the following, we present results for reliability (probability of not
having failures up to the given time) and performance (packet delivery
ratio, end-to-end delay, and convergence rate). The reliability results
are represented as probabilities that take values in [0, 1].

Reliability Results: Figs. 7-9 show reliability results for different
data rates and number of nodes in all scenarios, averaged over random-
ized simulation runs. The data rate results were collected for networks
with 100 nodes, then different numbers of nodes were tested at a data
rate of 100 kbps. The reliability values denote the minimum reliability
in the network since we have defined the network lifetime as the
time which the first node fails. In all scenarios and for all approaches,
reliability degrades with increasing data rate as expected due to the
increased communication activity. AODV performs the worst because
it always chooses the same nodes which result in the least hop in
the communication path. AODV-ETX changes the nodes used because
of randomness in expected transmission counts due to link qualities.
This is the reason why it performs similar to R3-IoT in Scenario 1
(Fig. 7), because the only source of degradation is due to communi-
cation and retransmissions due to link losses. Q-AODV also shows a
similar characteristic to AODV-ETX because energy consumption and
expected transmission count is highly correlated, so they inherently
have parallel goals. Again in Scenario 1, for the increasing number of
nodes, there is not much difference in the minimum reliability in the
network because the most degraded nodes in this scenario are always
the ones closer to the sink.

As shown in Fig. 8, when an external factor, temperature, that
affects reliability is involved, R3-IoT performs much better than both
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AODV, AODV-ETX, and Q-AODV. R3-IoT learns the routes that bypass
the nodes under high thermal stress. Q-AODV also results in fairly
high reliability because the nodes that are highly degraded usually
also has lower energy. Hence, Q-AODV avoid the low-reliability nodes
too. When there are a high number of nodes in the network, then R3-
IoT can find more routes that include only high-reliability nodes. The
discrepancy between R3-IoT and other approaches is further exacer-
bated when computation workloads are added to nodes (Fig. 9). In this
scenario, at the highest data rate 120 kbps, the most degraded node
has 73.2%, 37.8%, and 26.4% more reliability with R3-IoT compared to
AODV, AODV-ETX, Q-AODV approaches respectively. Similarly, for the
networks with 250 nodes, improvements of 51.8%, 38.6%, and 24.9%
are observed.

Finally, for scenario 2, we run simulations under various average
ambient temperature values to show its impact on resulting reliability.
We use hourly values from 2 years long temperature data collected
for cities: Denver, Los Angeles, Miami, Philadelphia, and Phoenix. The
respective 2 year average temperatures between 2015-2017 of these
cities are: 9.8 °C, 17.8 °C, 25.1 °C, 12.4 °C, and 22.4 °C. Fig. 10 shows
that a network deployed in a city with hot weather (Miami) can have
as much as 42% less reliability after 2 years compared to a network
deployed in a city with cold weather (Denver).

Performance Results: We evaluate the performance of all meth-
ods under all scenarios. Fig. 11(a) shows the packet delivery ratios
(PDR) for different data transmission rates. Error bars are omitted for
performance results since the variation between simulation runs was
negligible unlike the reliability results. For all cases, PDR drops with
the increasing transmission rate, however, the drop is more severe for
AODV and Q-AODV. Both AODV-ETX and R3-IoT chooses better com-
munication links because they utilize the ETX metric, which results in a
fewer number of packet losses over links. For all three scenarios, AODV,
AODV-ETX, Q-AODV performances do not change because they are
agnostic of the changes in node temperature and workloads. Therefore,
we use only a single line on the plots to depict the performance of
these approaches on the three scenarios. On the other hand, as tem-
perature increases and nodes start running workloads, R3-IoT favors
the nodes with higher reliability in the route instead of the nodes with
higher quality links. This is the reason performance drops slightly from
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Fig. 11. Performance results.

scenario 1 (R3-IoT (1) on the plot) to scenario 3 (R3-IoT (3) on the
plot).

In Fig. 11(b) we compare the PDRs for varying numbers of nodes in
the network. Similar to the previous case, Q-AODV performs the worst
while R3-IoT performs very close to AODV-ETX. There is a slight in-
crease in PDR as the number of nodes increases for all approaches. This
is due to the fact that there are more possible routes that packets can
take if the number of nodes is high. For more nodes, the performance of
R3-I0T in both Scenario 1 and Scenario 2 approaches to its performance
in Scenario 1. Even though R3-10T tends to choose the nodes with high
reliability instead of the ones that can result in better performance,
there are more nodes that satisfy both properties in a network with
large number of nodes.

We further present comparison for average end-to-end delay of all
methods under all scenarios in Fig. 12. The results are plotted only for
varying number of nodes because no significant changes were observed
for different data rates. Similar to PDR results, AODV, AODV-ETX,
Q-AODV delays do not change under varying node temperature and
workloads. Q-AODV performs the worst because it does not include any
mechanism to determine the shortest paths or the most reliable links.
AODV and AODV-ETX can find paths with minimal number of hops and
hence acquire very small delays. Our approach is similar to AODV in
Scenario 1, but it gravitates towards balancing reliability when ambient
temperature and workloads are introduces to the simulations.

Fig. 13 shows the convergence performance of our Q-learning ap-
proach for networks with varying number of nodes. The corresponding
experiments were conducted at a data rate of 100kbps. We omit the
results for varying data rates as we have not observed any significant
changes at different data rates, the convergence rates were similar
across the board. The values plotted are the normalized sum of the
Q-values of all the nodes in the network. Epochs denote the number
of Q-value updates, that is, the operation described in using Eq. (12).
The time each epoch takes can be configurable in our approach and is
equal to the LPP packet period since Q-value updates take place when
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LPP packets are exchanged. In the second plot we present convergence
in actual clock time metric for different LPP periods, simulated on a
100 node network. Results show that convergence is reached in fairly
low iterations, especially for networks with a small number of nodes.
This implies an efficient use of samples, that is, the sampling complexity
of the proposed distributed reinforcement learning approach is low. It
should be noted that these results show a learning curve for a “cold-
start”, when the algorithm is run right after the network is set up.
Similar initialization periods are common for many routing protocols
for building their routing tables. After the initial phase, it only needs
a few epochs for the Q-learning algorithm to react to the changes
in the system (e.g. variations in the external factors such as ambient
temperature and workloads).

7. Discussion

Q-learning can be computationally costly to implement in large-
scale networks due to the growing size of Q-tables. In an ad hoc
network, each node may have to store every next-hop and destination
pair for all of the nodes in the network. However, the nodes have
only one destination, i.e., the sink node, in the scenario we considered.
It is only crucial to keep the next-hop information for this specific
destination node. On the other hand, the Q-values are kept for only the
neighbors of the nodes, which is not a large number when compared to
the total number of nodes in the network. If the nodes have very large
number of neighbors, then approximate Q-learning can be implemented
to dramatically reduce the size of Q-tables. By using function approxi-
mation, Q-learning can scale to handle very large state-spaces [61]. In
particular, deep Q-learning is a promising solution that proposes neural
network function approximation for Q-tables [62,63]. In future work,
we want to utilize deep reinforcement learning solutions to overcome
such scaling issues.

Our general Q-learning methodology can be adopted and imple-
mented into different protocols albeit with modifications, but the spe-
cific implementation in this paper is based on AODV. For example, a
more common routing protocol is RPL [37] for many low-power IoT
applications. One of the reasons that we used AODV is that it is the most
mature communication standard implementation in ns-3. Moreover, it
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is specifically designed for ‘dynamic’ networks such a MANETs where
the topology change over time. There are efforts on modeling low-
power and lossy network protocols such as RPL for IoT, but they are
not fully developed yet. Hence, we propose to extend our approach to
such protocols in future work.

8. Conclusion

In this paper, we explored the problem of maintaining IoT device
reliability from the perspective of network routing. The literature on
network routing up to date did not study hardware related reliability
issues. We proposed a distributed reinforcement learning based routing
approach to improve network MTTF, which learns to make its decisions
based on the current reliability of the nodes, the amount of degradation
they will experience, and networking performance. We extended the
ns-3 AODV protocol with a Q-learning algorithm and demonstrated
improved network MTTF compared to AODV, AODV-ETX, and Q-AODV
methods. Our results show up to a 73.2% improvement in reliability
for various communication data rates and the number of nodes in the
network while delivering comparable performance.
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