Downloaded via UNIV OF CALIFORNIA SAN DIEGO on August 8, 2022 at 18:18:03 (UTC).
See https://pubs.acs.org/sharingguidelines for options on how to legitimately share published articles.

l‘ I ‘ Journal of Chemical Theory and Computation

pubs.acs.org/JCTC

Accelerators for Classical Molecular Dynamics Simulations of
Biomolecules

Derek Jones,* Jonathan E. Allen, Yue Yang, William F. Drew Bennett, Maya Gokhale, Niema Moshiri,
and Tajana S. Rosing™

Cite This: J. Chem. Theory Comput. 2022, 18, 4047-4069 I: I Read Online

ACCESS | Ll Metrics & More | Article Recommendations |

ABSTRACT: Atomistic Molecular Dynamics (MD) simulations
provide researchers the ability to model biomolecular structures such
as proteins and their interactions with drug-like small molecules with FPG A
greater spatiotemporal resolution than is otherwise possible using
experimental methods. MD simulations are notoriously expensive
computational endeavors that have traditionally required massive GPU
investment in specialized hardware to access biologically relevant
spatiotemporal scales. Our goal is to summarize the fundamental ASIC

algorithms that are employed in the literature to then highlight the

challenges that have affected accelerator implementations in practice.

We consider three broad categories of accelerators: Graphics | |
Processing Units (GPUs), Field-Programmable Gate Arrays | fs |
(FPGAs), and Application Specific Integrated Circuits (ASICs).
These categories are comparatively studied to facilitate discussion of
their relative trade-offs and to gain context for the current state of the art. We conclude by providing insights into the potential of
emerging hardware platforms and algorithms for MD.

ns ms

1. INTRODUCTION has existed for well over 70 years, with some of the first works
reported in the late 1950s and early 1960s, though it was not
until 1977 that the first MD simulation of a protein (BPTI)
was considered.®™"?

MD simulations are also notoriously expensive computa-
tional endeavors. By repeatedly integrating Newton’s equations
of motion over very small timesteps, trillions of iterations are
required before biologically relevant time scales can be
reached. In the face of these challenges, hardware accelerators
have played a crucial role in allowing MD simulations to unveil
biological phenomena that would otherwise be practically
infeasible using traditional hardware architectures.'’ Over the
years, accelerators for MD have grown from Application
Specific Integrated Circuits (ASICs) to now include Graphics
Processing Units (GPUs) and Field Programmable Gate Arrays
(FPGAs). As a product of the end of Moore’s law, richer
programming development environments, and algorithmic
advances, biologically relevant simulation time scales are

Now more than ever, the SARS-CoV-2 pandemic demon-
strates the need to rapidly design therapeutic treatments to
protect against diseases that pose a grave threat to human
health." It is well-known that drug design remains an expensive
and inefficient process consuming nearly a decade of time on
average with total costs regularly cited in the billions of USD to
develop a single successful candidate.”®> Compounding this
issue is the fact that the “drug-like” chemical space is itself not
well understood as a whole, with estimates of the upper bound
on this space varying between 10'*—10'® depending on the
assumptions made.” While modern purchasable compound
libraries only cover a small fraction of the prospective drug-like
chemical space, it is now possible to commercially order
molecules from a library of 10s of billions of virtual
compounds.”® Thus, the scale of molecular interrogation
needed in drug discovery necessitates alternatives to purely
experimental approaches.

Classical Atomistic Molecular Dynamics (MD) simulations
provide researchers the ability to apply a “computational Received: December 2, 2021 et ="
microscope” to study the dynamic properties of biomolecules Published: June 16, 2022
at spatiotemporal scales that current experimental methods are
not able to access.” The dynamics of interest include protein
folding, protein-drug binding, conformational change, and
transmembrane transport of substrates.” MD as a field of study

© 2022 The Authors. Published b
Ameericlén %ﬁemlijcallssgcietz https://doi.org/10.1021/acs.jctc.1c01214

W ACS Pu b| icat iO ns 4047 J. Chem. Theory Comput. 2022, 18, 4047—4069

Journal of Chemical Theory and Computation pubs.acs.org/JCTC
Protein Folding
Bond-length vibration Hinge Bending
Allosteric Transitions
| T T T T >
1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 |
1 1 1
[[] [ms]
Integration Time-step (5t) Biologically relevant time-scales
12,15—17

Figure 1. Representative time scales for protein motions.

becoming more readily available to researchers without access
to specialized architectures or High-Performance Computing
(HPC) resources.

The goal of this perspective is to review MD hardware
acceleration work to facilitate a comparative discussion on
current approaches and gain insight into opportunities to
improve on the current state of the art. Industry trends suggest
that future hardware environments will be heterogeneous
motivating the need for a review that explores the trade-offs of
different hardware acceleration approaches. The structure of
this article is as follows:

e We will provide an overview of the MD algorithm and
its components in Section 2 to provide a sufficient level
of background information for the latter sections. We
then discuss the algorithms employed for the primary
bottleneck in MD simulations, nonbonded force
computations, in Section 3.

Following the coverage of the algorithms, we discuss the
implementations of MD engines for various hardware
acceleration platforms. We begin this by discussing
GPU-based MD acceleration in Section 4. GPUs have
been increasingly employed for MD simulation given
their successes in applications requiring intensive
mathematical operations such as matrix multiplication
(for example, Deep Learning). We briefly discuss the
history of GPU-based MD engines and then discuss
current limitations as well as open areas for research.
FPGA-based MD acceleration work is discussed in
Section 5. The discussion is split into three subsections;
beginning with the early developments in the area, we
then describe the subsequent push toward production-
focused MD engines followed by recent developments in
FPGA-based MD engines, concluding with a compara-
tive analysis of these three distinct periods.

The final class of ASIC-based architectures is presented
in Section 6 where we discuss the early work in the area
followed by the two prominent ASIC architectures;
Anton by the D.E. Shaw Research group and the MD-
GRAPE project by the Riken Institute.

We then conclude with a comparative discussion of the
trade-ofts for each class of architectures and expand
upon future directions for research in MD acceleration.

2. OVERVIEW OF MOLECULAR DYNAMICS
ALGORITHM

2.1. Algorithm Description. Molecular Dynamics
(MD)”"*~** considers an “n-body” system of particles (that

4048

is, atoms) where each particle possibly exerts a nonzero force
on all of the other particles in the system. A description of the
relevant biological events is given in Figure 1.

At each iteration, bonded interactions are first computed.
The number of bonded interactions tends to be relatively
small, thus this step can be done in time proportional to O(n)
with n being the number of atoms. In contrast to the
subsequent nonbonded step, the number of interactions can
grow to be proportional to O(n*) in the worst case when
considering all pairwise combinations. Afterward, the accel-
eration vectors for each atom are updated followed by their
positions, completing one iteration of the simulation loop.

Time steps that are chosen for simulations are typically on
the order of femtoseconds (107'%s) for reasons concerning
numerical stability and simulation quality. The magnitude of
the timesteps are consequently very small in comparison to the
biologically relevant time scales.'”"® The number of sequential
operations needed to achieve these time scales can grow to be
at least 10°—10'%7

2.2. Force Computation. The first ingredient of an
atomistic MD simulation of n atoms are their positions in
Euclidean space, given as r, € R? for the i atom. The full set
of n atom positions is given by the vector r. Each of the n
atoms additionally carries a charge given by g;. Potential energy
of the system, given as U, can then be computed using r; and g;
for each of the n atoms. The specific form of the potential
energy function can vary (for example, refs 19, 20, and 21), the
model we consider gives a basic idea of the components.*’

The forces on each atom are then defined as the negative
gradient of the potential energy function:

F(r) = —VU(r) (1)

where F is a vector-valued function, r is a position vector
corresponding to a specific atom in the simulation.

The potential energy function that we consider within the
context of molecular dynamics simulations is generally defined
as

U(V) = Ubonded(r) + []rmn—bonded(r) (2)

which decomposes the potential energy function into the sum
of bonded and nonbonded terms.

2.2.1. Bonded Interactions. The bonded interactions can be
further decomposed into the spring potential between atom
pairs separated by a single covalent bond (1,2-pairs), the
angular bond potential, and the torsion angular potential
between atoms connected by 3 covalent bonds (1,4-pairs).

Ubonded(r) = (Jspring(r) + ljangular(r) + IJdihedral(r) (3)

https://doi.org/10.1021/acs.jctc.1c01214
J. Chem. Theory Comput. 2022, 18, 4047—-4069

Journal of Chemical Theory and Computation

| Perspective |

pubs.acs.org/JCTC

The term Uy, describes the bonded potential energy of
1,2-pairs as a function of the displacement of the bond length

from its equilibrium position and is defined as

l]spring(r) = Z Z kb,ij(rij - ”o,i;)z

i JEN() (4)

where N(i) denotes the set of j indices with covalent bonds to
atom i, k; ; is the spring constant describing the strength of the
bond, ry;; is the equilibrium bond length, where both k;; and
to,; are specific to the atom types of the 1,2-pair, and r;; = llr; —
rill.

Subsequently, U,,gu, describes the movement of bond
angles from their equilibrium positions is defined as

Z Z kﬂ(eij - 61‘;‘,0)2

i JEN() ()

[Jangular(r) =

where ; is the angle between vectors 7 j=n =0 and ry; = 1; —
1 00 is the equilibrium angle, and kg is the angle constant.
Finally, the 4-body torsion angle potential Ugj 4.4 models
the presence of steric barriers between the planes formed by
the first three and last three atoms of a consecutively bonded

(i, j, k, I)-quadruple of atoms (that is, 1,4 pairs):

Uthearal (1) = z k ginedral (W — »)*
1,4—pairs (6)

where y is the angle between the (i, j, k)-plane and the (j, k, I)-
plane, ¢ is the equilibrium angle between the two planes, and
giheara is @ constant. The exact form of the 4-body torsion
potential varies between force field definitions.

2.2.2. Non-Covalent Interactions. While covalent inter-
actions occur over relatively short distances (approximately 1—
2 A), noncovalent interactions may occur over much larger
distances that could in theory involve any pair of atoms in the
full simulation space.

We can decompose the nonbonded potential energy
function U, ponded 25

[]non—bonded(r) = IJvclw(”) + UCoulomb(r) (7)

which is a sum of the two primary types of interactions, van der
Waals and Coulomb electrostatics.

van der Waals interactions (Figure 2) are modeled using a
Lennard-Jones potential energy function and describe the

A

Lennard-Jones Potential

A

rmm

r(A)

Figure 2. Lennard-Jones potential as a function of interatomic
distance for a diatomic system.””

competing attractive and repulsive forces between two
atoms.These forces fall off quickly with distance so they are
typically for atom pairs within a cutoff distance r. This
potential is defined as

mw—ZZ———

i j<r, Tij Tij (8)

where A and C are constants that depend on the types of atoms
i, j involved in the interaction, r; j is the distance between the
atoms, r, is the cutoff radius, and the notation j < r. denotes
the set of neighbors within the cutoff radius. This term is
commonly truncated at approximately r, = 10—14 A.

The influence of the Coulomb electrostatic potential, in
contrast to the Lennard-Jones potentials, falls off slowly with

distance and is defined as

UCoulomb(r) - 2 Z

where g, g; are the point charges for atoms i and j, r; is the

47[60 (9)

distance between the atoms, and denotes the Coulomb

€y
constant. Truncation of this term is difficult to achieve as
atoms can have non-negligible interactions at arbitrarily long
distances (see Section 3).

2.3. Integration Algorithms. Provided that forces have
been computed, an integration algorithm is needed in order to
drive forward the dynamics of the system.'* Two criteria used
in the determination of the method are the approximate
conservation of energy in the system and “time-reversibility”,'*
which we will expand upon in Section 2.5. The Verlet
algorithm™ achieves both of these criteria and is given by

r(t + 6t) = 2r(t) — r(t — 8t) + a(t)5t> + 0(5t*) (10)

where O(6t') is the order of the local error of the calculation
due to truncation of the Taylor series expansion about r(t). In
order to compute quantities such as kinetic energy K, the
velocities v(t) can be computed as

_r(t+ 6t) — r(t — 6t)
v = 20 ()

Alternative implementations of the Verlet method exist such
as the “leap-frog” scheme that addresses issues around the
handling of velocities that might introduce unnecessary error
to the calculation. This “leap-frog” method directly computes
v(t) at half time-step intervals and is given by

1
r(t+ 6t) =r(t) + 5tv(t + 5&) (12)

v(t + lét) = v(t - l(St) + Sta(t)
2 2 (13)
Lastly, we mention the velocity Verlet method as it is
algebraically equivalent to the Verlet and leapfrog schemes, it is
also implemented in most modern MD packages. The velocity
Verlet integration scheme is given by

_ 1.o
r(t + t) = r(t) + Stv(t) + 25t a(t) (14)

1
v(t+8t) = v(t) + Z8tla(t) + alt + 51)] (15)

https://doi.org/10.1021/acs.jctc.1c01214
J. Chem. Theory Comput. 2022, 18, 4047—-4069

Journal of Chemical Theory and Computation

pubs.acs.org/JCTC

The integration methods covered here are not exhaustive,
modern MD packages support additional algorithms for more
sophisticated simulations.”***

2.4. Role of Sampling in MD. A point that is often
understated, especially when discussing MD with those who
may not be domain experts, is that the exact motions observed
of during an MD simulation are not meant to be taken
literally.""*® Another common question that frequently arises
is how much simulation is required for an MD run. In either
case it should be clarified that running a single simulation for
an incredible amount of time does not guarantee that the
biological event we are attempting to simulate even occurs,
despite our knowled%e about the time scales on which the
event tends to occur.”” MD simulations are sensitive to their
initial conditions and two nearby initial starting points will
produce trajectories that diverge exponentially in time.”®

When running simulations, we are concerned with the
measurement of an observable O which depends on the
microscopic system configuration, or microstate, s. For clarity, s;
= (r, p;) where r, is the position of the i atom and p; is the
momentum. The individual frames that are generated
sequentially over the course of a simulation can be seen as a
distribution of microstates’®*® in phase space. For simplicity,
we use s(t) to refer to the microstate of the system at time ¢. It
is possible to compute the value of O using the time average
where all possible microstates will have been sampled:

f_t O(s(1)) dt
(16)

Clearly it is impossible to evaluate eq 16 as in reality we
must choose a limit of time steps, t,, as a computation budget
we are willing to exert for an MD run. We now have a discrete
form for eq 16:

1

O = <O>time = (O(S(t)>time = limoo t_

obs ™ obs

Lobs

D os(1))

obs =1

1
O = <O>time =

(17)

however when computing O, it is important to understand
whether enough exploration in terms of system configuration
has been done rather than being purely concerned with the
simulation time scale itself.

2.5. Relating Microscopic Behavior to Macroscopic
Quantities by Statistical Mechanics. Statistical Mechanics
provides a link between the behavior of a system at the
microscopic level to its macroscopic properties we generally
refer to as O, such as energy or entropy.”’z‘s’28 We assume a
probability density p(s, t) over the phase space that is governed
by our choice of ensemble.'***** The simplest ensemble is
known as the Microcanonical or NVE ensemble which refers to
constant moles (N), volume (V), and energy (E).***® We note
here that the simulations covered in this work correspond to
the NVE ensemble unless stated otherwise. The Hamiltonian
H(r, p) governs the evolution of the system over time in phase
space and represents the sum of the kinetic and potential
energy of the system:

N PZ
H(r, p) = K(p) + U(r) =). o

i=1 i

+ U(r)
(18)

where N is the number of atoms and m, is the mass of the i
atom.'*?® Tt can then be shown that Newton’s second law of

4050

motion can be derived from the Hamiltonian formulation by
taking derivatives of H,

L OH _ R
Coopom, (19)
. oH ou

or; or; (20)

then inserting back into eq 20 to yield Newton’s second law of
motion:*®

¥ =

£
i
m

i (21)
B = mj; = E(r) (22)

In subsection 2.3, we introduced the typical integration
schemes used in MD, however we did not make the
connection as to why the Verlet methods are preferred in
our case of MD. Briefly stated, a numerical integrator that
conserves H is known as a symplectic integrator.M’26 This
property allows for the system dynamics to satisfy the
conservation of energy requirement of the NVE ensemble.*®
Furthermore, as Hamilton’s eqs 19 and 20 are symmetric in
time, an integrator should be time-reversible.' ¥

The density p(s, t) clearly depends on f, however as the
system approaches equilibrium in the limit of time (that is, t —
), then dp/ot 0 and we arrive at peq.14 Given the
equilibrium density p., and the set of points in phase spaces for
which p, is nonzero, the system is said to be ergodic if there
exists at least one trajectory that, §iven sufficient time, visits all
of the microstates in phase space. "***® This is another way of
saying that sampling a single system over infinite time is
equivalent to sampling s over many systems frozen at a sin()gle
point in time, provided the ergodic hypothesis holds.'*****
With p,, we can then reformulate eq 17 by ignoring time and
instead taking a weighted average of O according to the
probability density given by pq(s):

0 = (O} = (Olp) = D 0()p, (5)

(23)

Thus, the predictive power of the MD method lies within
the efficient and effective sampling of phase space, given the
choice of ensemble.

3. ALGORITHMS FOR NON-BONDED FORCE
COMPUTATIONS

Computation of nonbonded interactions comprise the major
bottleneck in MD simulations and according to Amdahl’s law
should be the focus of acceleration efforts.”” Numerous
algorithms have been proposed®”’' that are more efficient

than the naive O(n”) direct computation with greater accuracy
than a cutoff-based method.*’ We discuss methods featured in
the literature in the following subsections.

3.1. Particle Mesh Ewald. The Particle Mesh Ewald
method, also known as PME, is a prominent algorithm for
nonbonded electrostatic force calculations in biological
simulations. There are a variety of PME formulations used in
the literature.>>>* The common idea among these methods is
the splitting of the slowly converging sum of electrostatic
contributions in eq 9 into a short-range contribution, smooth

https://doi.org/10.1021/acs.jctc.1c01214
J. Chem. Theory Comput. 2022, 18, 4047—-4069

Journal of Chemical Theory and Computation

pubs.acs.org/JCTC

long-range contribution and a “self” contribution. At a high
level, the PME methods consists of five steps:*"

1. Charge assignment: The charges in the simulation real
space are “smeared” onto a uniform grid of points using
a window function.

. Grid transformation: The charge grid is then trans-
formed from real-space to a reciprocal space by way of
the Fast Fourier Transform (FFT).

3. Multiplication by optimized influence function: The
components of the FFT-transformed charge grid are
then multiplied by an optimal Green’s function. A
Green’s function is a mathematical tool used to solve
difficult instances of ODE’s and PDE’s.

. Transformation from reciprocal space back to real
space: An inverse FFT is performed to transform the
perturbed charge grid from reciprocal space back to real
space.

S. Force assignment: The forces from the charge grid are
interpolated onto each atom in the simulation space
using the same window function from step 1.

For a more in-depth description, we refer the reader to*® and
to the relevant papers.”>~**

3.2. Tree-Based Approaches. The Barnes-Hut algo-
rithm® and Fast Multipole Method (FMM)*® provide an
efficient way of computing nonbonded electrostatic inter-
actions by using an octree decomposition of the simulation
space. The intuition behind these methods is that beyond a
“well-separated” distance, the electrostatic contributions of
these “far-field” particles to a reference particle become more
similar to increasing distance. Interactions under this distance
are interpreted as “near-field” and are much more sensitive to
distance from the reference particle. The algorithms differ in
the stopping criteria for the decomposition as well as the form
of the potential function that aggregates the interactions of
each “cell” in the octree. Whereas the Barnes-Hut method uses
a simple sum aggregation of the cell, FMM uses “Multipole”
expansion of the spherical harmonics of the cell, which gives a
series of progressively finer angular features, that is “moments”:
The order p of the multipole expansion are functions of an
acceptable level of error € where p is typically chosen as
p= —Iogﬁ(e). The core of the Fast Multipole Method lies

within a set of three translation operations that propagate the
computed interaction information through the simulation tree
data structure, an upward pass of information, and a downward
pass stage as well as three translation operations; translation of
a multipole expansion, conversion of a multipole expansion
into a local expansion, and translation of a local expansion. For
a more in-depth description of the tree-based methods, we
refer the reader to the relevant papers.*>**°

3.3. Multigrid and Multilevel Summation. Alternative
hierarchical methods also exist, including the Multigrid®”**
and later Multilevel Summation methods,® which exhibit
linear asymptotic complexity in the number of atoms n. In
contrast to the FMM and other tree-based methods, the
Multigrid method hierarchically decomposes the simulation
into a series of progressively finer potential grids rather than
hierarchically decomposing the interaction pairs themselves.

3.4. Quality Measurements. Two metrics to assess the
quality of a simulation are consistently mentioned in the
literature; the Relative RMS Force Error and the Total Energy
Fluctuation,'%****#!

4051

The Relative RMS Force Error is used to validate a new
design of an MD simulation which may potentially differ from
a reference MD simulation in some way such as the precision
used to compute forces, the cutoffs used for Lennard-Jones

interactions, and so forth. The forces obtained from the high
quality simulation are given for the i atom as F, and the
forces from the query simulation are given respectively as F..

Thus, the Relative RMS Force Error is defined as

(24)

While Relative RMS Force Error can communicate how well
a new simulation may reflect the behavior of a reliable
reference point, it is difficult to determine whether the results
of the simulation are physically plausible from this metric
alone.

The Total Energy Fluctuation provides a measurement of
physical plausibility by measuring the sum of the relative
change in total energy, given by AE, of the physical system at
each time step. The total energy E of the system is the sum of
the kinetic and potential energy of the system:

E=Y U+K,
i (25)

where U is the potential energy for the i™ atom, and K; is the
kinetic energy for that atom. The kinetic energy for an atom in
the simulation is computed as

1

= Emivi

K,

(26)

where m; is the mass of the i atom in the simulation and ¥, is
the atom’s velocity vector. The Total Energy Fluctuation is
then defined as

E, — E.
aE= Ly | Bk
EO

NS

(27)

where E, is the initial total energy of the system and E; is the
total energy at time step i. In the ideal case, this value should
approach 0, indicating that the total energy in the simulation
has been conserved and the results are likely to be physically
meaningful. In practice, an acceptable upper bound has been
proposed as AE < 0.003.>* However, the choice of this
particular threshold for AE appears to be the product of a
choice made for a specific simulation and does not necessarilg
apply to arbitrary simulation systems and or force fields.”*™*
3.5. Comparison of Algorithms for Non-Bonded
Interactions. Support for the Particle Mesh Ewald method
is nearly ubiquitous among modern production MD software
packages given that it is well studied, “easier” to implement
efficiently compared to some tree-based approaches such as
Fast Multipole Method (FMM),*® exhibits good asymptotic
runtime in the number of atoms #, and is generally accepted to
be “accurate” according to the metrics presented (eqs 24 and
27). Improvements have been made to the original PME
method, such as the “Smooth” Particle Mesh (SPME)
algorithm,* which improves the accuracy of the interpolation
from the simulation space to the charge grid that is input into
the later Fast Fourier Transform calculation by way of B-spline
interpolation. Additional variations of PME-based approaches
include the k-GSE method, which uses a series of Gaussian
kernels to perform the charge spreading step (Table 1).**

https://doi.org/10.1021/acs.jctc.1c01214
J. Chem. Theory Comput. 2022, 18, 4047—-4069

Journal of Chemical Theory and Computation

pubs.acs.org/JCTC

Table 1. Various Non-bonded Force Interaction Algorithms
Featured in the Literature Covered in This Review

abbrev. name

PME Particle Mesh Ewald

SPME Smooth Particle Mesh Ewald
k-GSE k Gaussian Split Ewald
FMM Fast Multipole Method
MGrid Multigrid

BH Barnes-Hut

4. GPU-BASED ACCELERATION

4.1. GPU Architecture Overview. Graphics processing
units (GPUs) have garnered much attention as accelerators for
applications in machine learning and are noted generally for
possessing the ability to exploit data parallelism inherent in
certain classes of algorithms. Whereas a Central Processing Unit
(that is, CPU) is designed to be capable of quickly switching
between multiple serial tasks that may differ enormously in
their control flow or required resources, GPUs are designed to
trade-oft the CPU’s cache and control resources per core for a
greater number of lightweight compute cores.*’

In Figure 3, the components of the NVIDIA Tesla V100
GPU architecture are shown, indicating the GPU Processing
Clusters (GPCs), each of which is composed of multiple
Texture Processing Clusters (TPCs), composed of multiple
Streaming Multiprocessors (SMs). The SMs, depicted in
Figure 4, of the GPU are the fundamental computation unit
and within these elements are special cores for floating-point
and integer arithmetic as well as specialized tensor cores that
accelerate matrix and tensor multiplications often encountered
in deep neural networks. In order to exploit data parallelism,
the V100 GPU utilizes a Single Instruction, Multiple Thread
(SIMT) execution model, where a thread can be thought of as
an arbitrary execution of the kernel.>' The SIMT execution

SM

LO Cache |

Tensor
Core

Tensor

7R Core

FP32 FP32

Tensor
Core

Tensor

A Core

FP32 FP32

Tensor
Core

Tensor

FP32 Core

FP64 FP32

Tensor
Core

Tensor

FP64. o

FP32 FP32

Tensor
Core

Tensor

FRES Core

FP32 FP32

Tensor
Core

Tensor

R Core

FP32 FP32

Tensor
Core

Tensor
FP64 FP32 FP32 e

Tensor
Core

Tensor

e Core

FP32 FP32

Figure 4. Description of an NVIDIA GPU Streaming Multiprocessor
(SM) unit..>°

model then is best thought of as an extension of Single
Instruction, Multiple Data (SIMD) to multiple threads.”" For
the sake of clarity, when referring to SIMD, we are referring to
the array-processor defined in Flynn’s Taxonomy.’” In this
model groups of threads are called thread blocks, which are
decomposed into execution “warps”. Warp sizes are typically
chosen as 32 across recent NVIDIA GPU architectures. Warps
are then scheduled for execution across the SMs of the GPU,
which can execute multiple warps in parallel among the SM
compute cores. The hierarchy of SM groups in the GPU allow
for the sharing of memory resources at various levels with L0/
L1/L2 cache memories as well as a high bandwidth DRAM.
Modern NVIDIA GPUs also feature NVLink interconnect
technology, which allows for GPU-to-GPU data transfers at up
to 160 Gigabytes/second, providing 5 times as much
bidirectional bandwidth as PCIe Gen 3 x16.>

L2 Cache

Figure 3. Description of an NVIDIA GPU architecture.*

4052

https://doi.org/10.1021/acs.jctc.1c01214
J. Chem. Theory Comput. 2022, 18, 4047—-4069

Journal of Chemical Theory and Computation

pubs.acs.org/JCTC

The advantage that GPUs provide relative to CPU
implementations of MD simulations is precisely the SIMT
model of parallelism. The number of threads that may operate
in parallel are well into the thousands for modern GPUs,
whereas the number of CPU threads on a consumer device
remain limited to single digits. Even considering more
advanced CPU architectures such as the IBM Power Series
or special extensions to CPU instruction sets such as the Intel
Advanced Vector Extensions™* which provide CPUs with
enhancements for SIMD processing, GPUs remain far superior
in exploiting data parallelism.*’

In comparison to FPGAs, which can leverage the same data
parallelism that makes GPUs favorable for MD, GPUs lack
support for custom data-types that have been used in ASIC
and FPGA architectures to maximize resource utilization. For
example, ASIC and FPGA architectures allow for the designer
to employ custom floating units that can be tuned to the most
effective level of precision, while GPUs are limited to
computing with 16-bit, 32-bit, and 64-bit floating point units
that are included in the architecture. This flexibility in the
representation of the data can allow for ASIC and FPGA
designs to mix various levels of precision throughout the
computation, for example to compute individual forces with
32-bit fixed point and then accumulate forces with 64-bit fixed
point using dedicated hardware units (see corresponding
discussion in Sections 5 and 6).

4.2. GPU MD Applications. Classical MD simulations
were some of the earliest beneficiaries of GPU acceler-
ation.”>*® This adoption was due in part to the availability of
the CUDA GPU programming framework, drastically reducing
the com})lexity of mapping a nongraphics application to the
GPU.>>*’ Additionally, GPUs were posed as solutions to the
development of costly specialized processors due to their
relatively low cost as a consequence of their popularity as
accelerators for gaming.”>> Subsequent years show an explosion
of interest in the use of GPUs to accelerate Classical MD
simulations, with increasing complexity of algorithms stud-
ied.’® A recent comprehensive review of the work in this field
has been published®” and so we refer the reader there for more
detail. In this overview, we focus primarily on the works
published since.””

4.3. GPU Software Implementations. There exist
numerous packages for MD itself, so we will not exhaustively
study all those available in detail. We instead choose to
highlight some of the popular packages and discuss their
implementations comparatively.

NAMD (NAnoscale Molecular Dynamics)60 was the earliest
adopter of GPUs among MD packages, leveraging the
programmability provided by the Nvidia CUDA GPU
programming library.”> NAMD is built using the C++
programming language and CHARMM++°" parallel computa-
tion library. The philosophy of NAMD is to make running
simulations a simple process for the user, not to serve as a
platform to be modified by the user extensively.”” NAMD is
supported across Windows, OSX, and Linux operating systems.
In the initial description of the GPU features for NAMD, the
PME algorithm®” is presented as the kernel for nonbonded
interactions. However, the description clarifies that the
reciprocal space calculation for PME is actually implemented
to run on the CPU, while a combination of short-range
electrostatics and van der Waals interactions are the target for
GPU acceleration. In addition to the reciprocal space
calculation, all other steps (for example, bonded interactions,

4053

integration) of the MD simulation are carried out on the CPU.
Subsequent releases of NAMD increasingly moved computa-
tion from the CPU to the GPU, notably all forces are now
computed on the GPU including all computation related to the
PME implementation (SPME).®>® The latest version 3.0 of
NAMD is being actively developed and represents a significant
shift in the design philosophy.”>** The NAMD developers
note that the traditional decomposition of the MD algorithm
across the CPU and GPU, where the GPU is tasked with force
evaluations and the CPU with all other tasks related to
integration, leaves higher-end GPUs idling for a significant
portion of time.”> Currently, the developers of NAMD are
developing a “GPU-resident” version where the MD
computation is moved almost entirely from the CPU to the
GPU to reduce costs associated with moving data between the
CPU and GPU for each iteration of the MD simulation.”> A
recent blog post by a collaborative team at Nvidia also details
the most recent work in migrating the NAMD code from CPU
to GPU.®* Preliminary results show a speedup of up to
approximately 1.9 times faster than NAMD v. 2.13 when using
the same GPU, the Nvidia V100.%* Lastly, it should be noted
that current available version of the 3.0 alpha version of
NAMD supports the GPU-resident approach for a single GPU
at a time, with the focus being on being able to run more
parallel instances of the same MD system, allowing for greater
amount of sampling.> The NAMD software is distributed free
of charge with its source code.

GROMACS (GROningen MAchine for Chemical Simu-
lation) is another popular open source MD package.”> The
design philosophy of GROMACS is to run in as many different
computing environments as possible, ranging from a laptop
equipped with only a CPU to massive clusters of
heterogeneous servers that may feature multiple GPUs per
node. Version 4.5 of GROMACS was the first to feature GPU
acceleration, with the entire MD calculation implemented on
the GPU, similar to the current goal of the NAMD project we
previously described.®® However, in contrast to the approach
described by the NAMD authors, the latest iteration of
GROMACS is targeting increasingly heterogeneous platforms,
making use of both the CPU and the GPU implementation of
the MD algorithm in what the authors refer to as a “bottom-up
heterogeneous approach”.®” In order to accomplish this
approach for acceleration of MD, GROMACS uses a
scheduling protocol to allocate work between the CPU threads
and GPU(s) efficiently, taking into account the particular
topology of the compute environment as well as NUMA (Non-
Uniform Memory Access) considerations when placing
threads. The GROMACS software is able to assign force
calculations to both the CPU and GPU to optimize
communication and computation overlap, rather than explicitly
placing all force calculations on a single device. Interestingly,
this extends to the FFT calculations required for the PME
algorithm; specifically, while the truncated real-space non-
bonded interactions are carried out on the GPU, the CPU is
used to compute the forces for the reciprocal space.
Additionally, the GROMACS developers note their use of
CUDA streams to allow for nonlocal nonbonded interactions
to be sent to high priority queues across the various GPUs,
allowing for preemption of the local kernel to return force
calculations early. Additionally, GROMACS possesses the
ability to offload entire MD iterations to the GPU. In order to
minimize data transfer overheads, GROMACS wuses the
(relative to PCle bandwidth with host CPU) higher bandwidth

https://doi.org/10.1021/acs.jctc.1c01214
J. Chem. Theory Comput. 2022, 18, 4047—-4069

Journal of Chemical Theory and Computation

pubs.acs.org/JCTC

GPU Price to Performance Ratio for Amber 16 and Amber 18

10

~
=3
=

2
O
6
318 ~
4
@«
o~
P 3
2 o] A =i — <
S8R 3y B, 8K = B B =
=] o =] =}
0 o
3 5
]]
-2
0
]
I
-4
DHFR FactorIX Cellulose STMV DHFR FactorIX Cellulose STMV DHFR FactorlX Cellulose STMV
IXGTX- IxGTX- 1xGTX- 1xGTX- 1xTitan- 1xTitan- 1xTitan- 1xTitan- 1xV100 1xV100 1xV100 1xV100
1080TI ~ 1080TI 1080TI = 1080TI XP XP XP XP PCI PCI PCI PCI

W 2016 performance

2018 performance

Delta (2018-2016)

Figure S. GPU price to performance comparison for Amber MD software for versions 2016 and 2018. The data are collected from the Amber Web
76

site.

GPU-GPU interconnect (NVLink) to leverage data transfer
capabilities between GPUs. The developers of GROMACS
state further improvement to the load balancing capabilities for
CPU and GPU task scheduling as well as continued work to
overlap communication and computation as priorities. Recent
work has extended GROMACS to use the FMM method,
which the authors anticipate will become the algorithm of
choice for “the largest parallel runs”.” An implementation of
FMM for GROMACS has since been published.>®
Additionally, Amber is one of the most popular MD
packages for Drug Design.”® The name Amber often refers to
the set of force fields developed by the Amber project.'”**”°
Amber additionally provides extensive support for various
types of simulations as well as analysis tools such as PTRAJ
and CPPTRAJ.”' For the sake of our discussion, we are
concerned with the GPU MD simulation program, pmemd.”
Version 11 of the Amber software was the first to provide
support for GPU acceleration of the PME calculations. The
most recent published description of the Amber software,
corresponding to version 12, states that the entire MD
calculation was moved onto the GPU.”” The authors note that
their intention with version 12 of the software was to “port the
exact equations as they are described in AMBER’s CPU code”
to the GPU. A major point of emphasis was the introduction of
a numerical precision model for the MD engine termed
“SPFP” which combines sinagle-precision floating point and 64-
bit fixed point arithmetic.”> The distinction should be made
that NVIDIA GPUs have not themselves supported fixed-point
arithmetic at the hardware level so the implementation
approximates this through software. As opposed to NAMD
and GROMACS, the Amber implementation as presented in”?
does not use table lookup to compute the forces between the
atoms, choosing instead to directly evaluate the equations. The
pmemd program supports running simulations using multiple
GPUs by use of MPL In the case of a multi-GPU run, all
simulation data structures are replicated on each device to

4054

minimize data transfer overhead. The FFT calculation required
for reciprocal space force evaluations in PME are implemented
using the NVIDIA-developed cuFFT library.”* Additional
features have been added to later iterations of Amber, as well
as ongoing performance enhancements that are detailed in.””
Amber provides a number of free simulation and analysis tools
under AmberTools, which is regularly updated. An extensive
manual detailing the functionality available through the
package is also regularly updated with each release. More
advanced programs such as pmemd are available by way of a
licensing mechanism.

4.4, Characterizing Performance of GPUs for MD.
There is great interest currently in characterizing the
performance of GPUs to better understand their scaling
behavior. The Amber MD software package regularly publishes
benchmarking data on their Web site.”®

In Figure 5, we summarize some of the recent analysis of
price to performance ratios for several popular GPUs spanning
from “consumer-grade” (NVIDIA GTX 1080TI) to “data-
center-grade” (NVIDIA V100) with respect to the Amber
2016 and Amber 2018 MD packages, a widely popular MD
simulation package. The Amber software at each time point is
examined across multiple commodity GPUs, and with each
device a price-to-performance metric is reported, where the
best values would be those approaching 0. In both cases,
despite active development of the GPU implementation of the
pmemd code,” the price-to-performance exhibits a marginally
decreasing relationship to theoretically more capable devices
possessing progressively larger numbers of processing elements
and larger global memories. Another observation is that the
price-to-performance ratios for the top-end GPU, the NVIDIA
V100, increases for all simulation types monitored in this
study. It is not explicitly mentioned here why this is the case,
analysis for other algorithms is also not included, and it is
important to note that other MD software packages along with
their specific algorithmic implementations may exhibit differ-

https://doi.org/10.1021/acs.jctc.1c01214
J. Chem. Theory Comput. 2022, 18, 4047—-4069

Journal of Chemical Theory and Computation pubs.acs.org/JCTC
Programmable
Interconnect

‘i
“"HHHEB

TTITT
TR

BRAM DSP

Figure 6. Description of an FPGA architecture.

S S > =
eg
2 1y . § >
Full N
- > Adder -
4
= R
B Lookup
5 Table
6 >
£ 1y
‘y = Reg
Full N
£ 1y > Adder >
|

ent behavior. As the more recent NVIDIA A100 begins to
supplant the V100, based on the observations made here, extra
performance will come at a premium that does not necessarily
scale as favorably as it does for lower-end cards.

Recent benchmarking of the Gromacs®” software to
characterize price-to-performance has also been performed.”
The main conclusions from this work agree with what has been
observed for the Amber results; consumer grade GPUs provide
the greatest price-to-performance as opposed to professional
datacenter-grade GPUs. The conclusions of the work further
imply that the growth of GPU capabilities or other unspecified
architectures will lead to improved throughput of simulations
in future works.

Recently, NAMD was used in a Gordon Bell prize winning
work that investigated the use of large scale atomistic MD to
illuminate mechanisms of SARS-CoV-2 spike dynamics.”® Two
molecular simulations are studied in this case, an 8.5 million
atom spike-ACE2 complex and a 305 million atom virion (that
is, the complete virus structure). In the case of the smaller
spike-ACE2 system, scaling to more GPUs quickly saturates
performance, while for the larger virion system, the perform-
ance is nearly linear up to 512 compute nodes and then begins
to saturate. The PME algorithm is used in both MD
simulations, demonstrating the negative impact communica-
tion overheads have on simulation performance, resulting in
marginally decreasing returns with each additional device
added.

As stated previously in Section 4.2, the developers of NAMD
are working to improve their implementation by oftloading
more routines from the CPU to the GPU, such as the
numerical integration step. The analysis reported by the
NAMD developers,”” shows the simulation throughput
(measured in nanoseconds of simulation per day) of the
NAMD 2.14 versus NAMD 3.0alpha9 versions running on an

4055

NVIDIA DGX-2 as a function of number of GPU devices. The
projected performance assumes the ideal optimized version of
the software with minimal dependency on the CPU,
demonstrating an exponential growth in performance in this
case. However, it is unclear at this time what the outcome of
this optimization will ultimately achieve. The communication
costs imposed with increased number of devices into the
thousands will likely continue to limit performance of a GPU-
centric implementation for acceleration of a single system,
though these observations provide insight into the NAMD
designers focus on the GPU-resident design which can be used
to accelerate enhanced sampling algorithms.®>*°

4.5. Discussion. GPUs have experienced enormous
interest as general purpose accelerators given their low unit
cost and increased accessibility through the NVIDIA CUDA,
OpenCL, and AMD RocM libraries. Great interest remains in
understanding the limits of the technology, evidenced across
performance analyses for production MD software packages,
such as Amber, Gromacs, and NAMD.*>%7882 Buture work in
improving the scaling of GPU implementations will pay
particular attention to algorithms that address the efficiency of
all-to-all communication patterns inherent to PME-based
approaches.”®”*? Integration with often GPU-centric deep
learning tools will also play a significant role in addressing the
efficiency of MD simulation.”®"*%

The primary advantage GPUs have exhibited to date
compared to competing architectural solutions lie within the
robust development resources available to researchers to map
the nonbonded force calculations to the SIMT-paradigm
GPUs exploit, coupled with their relatively low prices. It is also
the case that more complex accurate algorithms, such as PME
which depend on an underlying Fast Fourier Transform, have
benefited from GPU acceleration. With tools such as the
NVIDIA CUDA framework,’® GPUs are more favorable to

https://doi.org/10.1021/acs.jctc.1c01214
J. Chem. Theory Comput. 2022, 18, 4047—-4069

Journal of Chemical Theory and Computation

pubs.acs.org/JCTC

Table 2. Characteristics of FPGAs Featured in Molecular Dynamics Simulations

ref accelerator ALMs
98, 99 Intel Stratix 10 933120
100 Xilinx VS LX 330T 51840
29, 101, 102 Xilinx XC2VP100 99216
103, 104 Xilinx XC2VP70-35 74 448
29, 102, 105—108 Xilinx XC2 V6000 33792
109 Xilinx Virtex-E 2000E 43200

“Denotes FPGA was used for simulation of performance.

I/O band embed. mem. mult. blocks
28.3 gb/s 253 Mbits 11520
3.75 gb/s 11 664 kbits 192
3.125 gb/s 7992 kbits 444
3.125 gb/s 5904 kbits 328

840 mb/s 2592 kbits 144

622 mb/s 655.36 kbits 0

alternatives such as FPGAs for the relative ease of develop-
ment. With that said, GPUs lack hardware flexibility that can
allow the programmer to define custom data-types that may
make better use of the chip resources or allow specific
calculations to be done more efficiently over the course of the
10°—10"2 iterations required.” GPUs are also defined as general
purpose processors and so while instructions can be carried out
in parallel on separate data, there remains latency in execution
due to control flow overhead such as process synchronization
and instruction fetching. Imbalances in computational capacity
of the GPU versus the bandwidth for which data can be
supplied result in challenges to keep the processors effectively
occupied. FPGAs in contrast leverage a spatial architecture in
which the data flows through a user defined pipeline that
alleviates the aforementioned sources of control flow latency
and are also directly equipped with high bandwidth I/O

. 49,87 . . Lo .
interfaces*®” (see the corresponding discussion in Section S).

5. RECONFIGURABLE ARCHITECTURES FOR MD

5.1. Overview of FPGA Architecture. At a high level, an
FPGA can be described as an array of programmable logic
blocks and programmable interconnect between those blocks
that can be configured after fabrication to implement arbitrary
program logic.”® An example of an Intel FPGA (formerly
Altera) architecture is shown in Figure 6.The Adaptive Logic
Modules (ALMs) are the fundamental compute units of an
FPGA. ALMs consist of a Lookup table (LUT) which is a
memory that maps address signals as inputs and the outputs
are stored in the corresponding memory entries.*® LUTs can
be programmed to compute any n-input Boolean function. Full
Adders perform addition and subtraction of binary inputs. Flip
Flops (FF) are the basic memory element for the FPGA and
serve as registers allowing the ALM to maintain state. The
FPGA architecture then interconnects many of the ALMs
through programmable interconnections forming an array of
processing elements.*® Coupled with this mesh of ALMs are
specialized or “hardened” elements such as on-chip Block
RAM (BRAM) and Digital Signal Processing (DSP) blocks.®®
BRAMs are configurable random access memory modules that
can support different memory layouts and interfaces.*® DSP
blocks help compute variable precision fixed-point and
floating-point operations.*’ Additionally, modern FPGAs also
include microprocessors that serve as a controller, allowing a
user to run an operating system such as Linux in order to
leverage facilities such as the device’s communication drivers
or running high-level programming languages such as
Python.* Lastly, FPGAs use 1/O blocks that allow for direct
low-latency interaction with various network, memory, and
custom interfaces and protocols.*”**

FPGAs, unlike GPUs and CPUs, are a spatial architecture, in
that the hardware directly and continuously executes a spatial
hardware circuit representation of the software. This eliminates

4056

control flow overhead that is encountered in general purpose
architectures which require instruction-fetch as well as process
scheduling and synchronization which can be detrimental to
performance.”” The programmable hardware approach instead
allows the data to flow through the pipelines that the designer
specifies in software or through Computer Aided Design
(CAD) tools.*” In contrast to ASIC architectures, which are
not able to be updated once the design has been fabricated,
FPGAs are able to be reconfigured with updates to the
algorithms as advances are made.

Despite the ability to be reconfigured with arbitrary logic,
updating an algorithm design for an FPGA is a significantly
slower process than it is for CPUs and GPUs, with compilation
time scales varying between minutes to a few days.”” The
learning curve for designing FPGA implementations has
historically been much steeper than for CPUs and GPUs due
to a dearth in higher level development tools.*” However, as
industry trends suggest heterogeneous architectures as a
solution for the issues faced by general purpose processors in
the trade-offs required for power versus efficiency,””" a
number of tools have been developed to ease the development
of programs that exploit the FPGA in anticipation of a
heterogeneous processing future.”' ™’

While early FPGA-based MD implementations were con-
strained to use vendor-specific toolchains that required VHDL
or C-like dialects (SRC MAP C) to program, modern tools
include Intel Quartus Prime, Xilinx Vivado, and OpenCL
toolchains, which allow for a higher-level C/C++ interface to
implement designs. In Table 2, we document the FPGA
hardware utilized in MD simulations reported in the literature.
The number of ALMs, embedded memories, dedicated
multiplier blocks, and transceiver I/O rates have all increased
by several orders of magnitude from the initial period of work.
In Table 3, we provide a summary of the development tools
used in the implementations reported in the literature.

Table 3. Description of the Development Environments
Featured in the FPGA-Based MD Simulation Literature

ref year dev. board dev. framework
109 2004 TM-3'"° VHDL
103, 2005 WildstarII-Pro*'* VHDL
111
108 2006 SRC 6 MAPstation Carte
102 2006 SRC 6 MAPstation (E/C) Carte
106, 2006 SRC 6 MAPstation (E) Carte
107
104 2006 Wildstarll-Pro' " VHDL
101 2007 SRC 6 MAPstation (E) Carte
29 2008 SRC 6 MAPstation (E/C) Carte
113 2011 Gidel PROCStar III Proc Dev. Kit
98, 99 2019 Intel Stratix 10 Intel Quartus Prime Pro
https://doi.org/10.1021/acs.jctc.1c01214

J. Chem. Theory Comput. 2022, 18, 4047—-4069

Journal of Chemical Theory and Computation

pubs.acs.org/JCTC

Recently, more attention has been paid to FPGAs for MD due
to advances in the hardware itself amortizing the relatively
higher cost as compared to GPU accelerators and thus
addressing a major issue with their viability.”*"’

5.2. Early FPGA Work. One of the earliest examples of
applying FPGA accelerators to the problem of molecular
dynamics is ref 109. The motivation of the work emphasized
the power of reconfigurable processors to address the
bottlenecks posed by the high costs of ASICs and the
expensive memory hierarchies in general purpose processors.
This work focuses solely on the short-range Lennard-Jones
interactions while ignoring the Couloumb electrostatics to
simplify the implementation.

The system consists of the PairGen, which generates the
neighbor lists for each atom in the simulation; the Force
computer, which computes the forces for the atoms using table
look ups to retrieve precomputed parameters; and the
acceleration update, which then is forwarded to the Verlet
integration update which writes the new atom positions to the
onboard memory. Fixed-point representations are used
exclusively, each tuned specifically to the dynamic range of
each quantity using a two particle system at various distances
to precompute their possible values in order to minimize
resource consumption. The design was implemented in
VHDL. The simulation used for the analysis consisted of
8192 atoms. The FPGA system as configured gives a per-time
step performance of 37 s, while the general processor
benchmark (Intel Pentium 4 2.4 GHz, single core) is able to
achieve 10.8 s. The authors claimed that with improvements to
the memory systems as well as migrating to more up to date
FPGA hardware with a higher clock rate would improve the
speedup from 5.1X to 21X.

The work of ref 103 improves upon the shortcomings of ref
109 with an FPGA architecture that includes both Coulomb
and Lennard-Jones forces. The design was implemented on a
single Xilinx Virtex-II-Pro XC2VP70 FPGA and used fixed-
point arithmetic throughout the implementation, and the force
computations were carried out using lookup tables with
interpolating polynomials, similar to ref 109. Furthermore, the
work improves upon ref 109 by reporting a 57X speedup with
respect to a single-core Intel Xeon 2.4 GHz CPU, with a
benchmark similar to the previous work. Considering that most
of the implementation was similar, the starkest difference was
that the FPGA used in ref 103 had nearly twice as many ALMs
as those used in ref 109 (74 448 vs 43 200), higher transceiver
I/O bandwidth (3.125 gb/s vs 622 mb/s), more embedded
memory (5904 kbits vs 655.36 kbits), and dedicated multiplier
blocks (328 vs 0). Therefore, by using more capable hardware
with a similar force calculation allowed the accelerator to vastly
outperform the initial FPGA designs.

5.3. Toward Production FPGA-Based MD. While the
initial studies of refs 103, 108, and 109 focused on proof-of-
concept implementations, ref 102 investigates how one could
go about porting a “production” MD system to an FPGA
architecture, citing issues with ref 109 and103 being their focus
on a “textbook” data set and the use of simplistic nonbonded
force algorithms. Another point of criticism with the previous
work was the use of “textbook” MD codes as general processor
benchmarks, therefore the NAMD MD software® is compared
with the FPGA results and serves as the starting point for the
FPGA implementation. The authors document their design
process from extracting the relevant kernels from the NAMD
code, implementation on the FPGA using MAP C,

4057

optimization of the initial designs using multiple target
platforms of the SRC MAPStation, comparing the two
featuring the Xilinx XC2 V6000 and Xilinx Virtex-II Pro
XC2VP100 FPGAs. Their FPGA implementation is said to
closely follow the original implementation (in Charm + +)
including the use of SPME for nonbonded force calculations,
improving upon the brute-force approaches of refs 103 and
109 Despite the increased design complexity, the work reports
a 3X speedup versus the CPU baseline (dual-core Intel Xeon
2.8 GHz) using a data set of 92 224 atoms.

The work of ref 104 also proposes to address some of the
issues with the earlier work by expanding the number of
particle types, demonstration of integration with existing
software (that is, ProtoMol''*) similarly to,"”* and general
architectural improvements such as the introduction of “semi-
floating point” representations for force calculations and
optimizations to reduce the size of the lookup tables. The
improved design yields a stable simulation of the bovine
pancreatic trypsin inhibitor (BPTI) when considering total
energy fluctuation (approximately 0.014 J) relative to the CPU
benchmark. However, performance metrics are reported using

the “textbook” data set of 8192 atoms and use the direct O(n*)
nonbonded force calculation for the most competitive case,
reporting a 15.7X speedup over the CPU benchmark (dual-
core Intel Xeon 2.8 GHz).

A later paper'®® improves upon ref 104 by implementing a
more sophisticated algorithm (Multigrid®”) to compute the
short-range Lennard-Jones and Coulomb forces. The updated
design is then compared against ProtoMol''* and NAMD
CPU benchmarks. The FPGA design presented in ref 100 is
validated using a 10000 time step simulation where total
energy fluctuation is measured. Compared to the results
collected from a ProtoMol CPU implementation (dual-core
Intel Xeon 2.8 GHz), a similar energy fluctuation is reported
for both the FPGA design'®’ and ProtoMol.

The work of ref 105 claimed to be the first FPGA
implementation of a realistic nonbonded force calculation
algorithm in an FPGA-centric hardware acceleration platform,
in contrast to the previous work of ref 109 (Lennard-Jones
only),'” (simple data set). For the sake of brevity, the
culmination of these works is presented in ref 29, which also
provides the first study of parallelization of FPGA-based MD in
a cluster of “reconfigurable-hardware-accelerated nodes”. The
results of the scaling analysis were somewhat disappointing,
On the one hand, as the number of nodes increases (using 1
Xilinx Virtex-II XC2 V6000 FPGAs per node), the latency per
MD time step decreases. On the other hand, the decrease in
latency compared to the CPU benchmark (dual-core Intel
Xeon 2.8 GHz) is significantly worse than the CPU benchmark
as the speedup from using 1 node to using 8 nodes drops from
2.08X to 1.51 X. It is worth noting that the authors chose to
implement their own software for the MD simulations for the
CPU-based and FPGA-based implementations, therefore it is
difficult to directly compare to other works while also
considering this was the first scaling analysis done for FPGA-
based MD.

The work of refs 101 and 115 demonstrates a design that
makes use of the two Xilinx XC2VP100 FPGAs available on
the SRC Series E MAPstation. Effectively, one of the FPGAs is
used as a controller for the nonbonded force calculations,
handling memory accesses from the host machine and running
the outer loop of the PME calculations which are pipelined
between both FPGAs. The second on-board FPGA is

https://doi.org/10.1021/acs.jctc.1c01214
J. Chem. Theory Comput. 2022, 18, 4047—-4069

Journal of Chemical Theory and Computation

pubs.acs.org/JCTC

exclusively dedicated to the inner loop, the force calculations
for a single atom and its “neighbors”. A major focus of this
study was to present a highly optimized FPGA-based MD
accelerator with what was at the time of publication, outdated
resources thus suggesting the improvements in performance
shown here (approximately 3X) to upward of 12X to 15X.

5.4. Recent Developments in FGPA-Based MD. The
first end-to-end FPGA implementations of MD are presented
in refs 98 and 99. The authors first develop an implementation
that includes only the direct-evaluation component of the PME
algorithm in ref 99 and then go on to include the full PME
calculation and its FFT kernel dependencies in ref 98.

One of the primary contributions of both works’”” is a
detailed study of the trade-offs of various implementation
designs. Of particular interest are the memory mapping
schemes of the simulation “cells”, the distribution of work
for the force calculations, and various implementations of the
nonbonded force pipelines. For the Dihydrofolate Reductase
(DFHR) test case of 23558 atoms, the best design uses
separate memory modules for each simulation “cell” along with
a work distribution in which each pipeline works on its own
“homecell”. The FPGA implementation achieves an approx-
imately 10% speedup over the best GPU (NVIDIA Titan
RTX) performance. Additionally, the FPGA implementation
using first-order interpolation is shown to have a similar energy
conservation as the Amber CPU benchmark. However, when
the authors extend their analysis to include molecular systems
that vary in their size and density, there is no design that
consistently outperforms the others across all cases.

5.5. Discussion. A quantitative as well as qualitative
summary of the work in FPGA-based acceleration for which a
simulation was demonstrated is provided in Tables 4, 5, and 6.

Table 4. Quantitative Characteristics of Simulations
Approached with FPGA-Based Acceleration

ref year #atoms force prec. box-size
109 2004 8192 50-bit Fixed not reported
103 2005 8192 48-bit Fixed not reported
111 2005 8192 35-bit Fixed not reported
105 2006 32932 17-bit Fixed 73.8 X 71.8 X 76.8 A3
102 2006 92224 32-bit Float 108 X 108 X 72 A®
106, 107 2006 32932 32-bit Float 73.8 X 71.8 X 76.8 A3
104 2006 8192 35-bit Float 64 x 50 x 50 A3
101 2007 23558 32-bit Float 62.23 X 62.23 X 62.23 A?
29 2008 32932 32-bit Float 73.8 X 71.8 X 76.8 A®
99 2019 20000 32-bit Float 59.5 X 51 X 51 A3
99 2019 20000 32-bit Float 59.5 X 51 x 51 A3
98 2019 23558 32-bit Float 62.23 X 62.23 X 62.23 A3
98 2019 23558 32-bit Float 62.23 X 62.23 X 62.23 A3

In terms of throughput, measured as nanoseconds per day,
time scales achieved by FPGA-based designs have improved by
over 6 orders of magnitude.”®””'* It is important to note
however that much of the work reported for FPGA-based MD
were not evaluated using production-level software on either
the CPU or for the FPGA. Exceptions to this are the work of
ref 102 which closely followed the NAMD® source code
and'®" which closely followed the Amber®" source code. In
terms of the general processor benchmarks, the reported
relative speedup versus CPUs has consistently outperformed,
though not by a large margin. Considering the throughput

4058

performance versus GPUs first reported in refs 98 and 99,
while there is evidence of an improvement, it remains modest.

FPGA-based implementations have lacked evaluation in the
production setting, considering the majority of the work has
been relegated to standard benchmark data sets. Therefore,
there has not been an exceptionally large simulation considered
using FPGA hardware in the number of atoms or the size of
the simulation box.

As work in the field progressed with hardware advances,
designs have eschewed Fixed-point arithmetic for Single
precision Floating Point in order to target an appropriate
level of accuracy for production MD. While it is difficult to
estimate the minimum precision required for all simulations,
the work of refs 98, 99, and 113 provide the most
comprehensive analysis of this. The most current work”®”’
demonstrates that in their design, the use of Single Floating-
point versus 32-bit Fixed point is more efficient in terms of
ALMs and BRAM utilization. The main bottleneck presented
by FPGA hardware has instead been resource utilization for
force calculation pipelines. As the hardware has progressed, the
number of pipelines working in parallel has increased several
orders of magnitude.””"

The vast majority of the FPGA-based designs have served as
accelerators connected to a host machine to compute pairwise
interactions given a cutoff threshold. Considering that the
outer loop of the simulation was generally run using a CPU
based code for the more complicated nonbonded interaction
algorithms such as PME, this paradigm presented a clear
bottleneck for memory accesses. The work of ref 29 addressed
this in their design by utilizing the on-chip BRAM to store
intermediate force calculations before making updates to the
on board memory. Even with designs to optimize memory
requirements,””'*"'%% it was not feasible to remove the host
bottleneck until recent work demonstrated fully end-to-end
simulations completely on FPGAs. % Additionally, the work
of refs 98 and 99 provided additional investigation into the use
of direct force calculations versus the use of look-up tables,
deciding to use lookup tables to conserve DSP utilization with
minimal loss in accuracy.

Lastly, as the applications have progressed, as have the
available development tools. The early work in FPGA-based
MD has either made use of VHDL'®'**'%!! o1 vendor-
specific toolchains featuring C or FORTRAN interfaces,
namely Carte and Gidel Pro Dev. Kit,'*"'0%!95719%113 The
complexity of development on FPGAs versus other main-
stream computing architectures such as CPUs or GPUs has
been the primary hurdle to their adaption in a broad class of
applications.*”"'® More recently, additional tools such as Xilinx
Vivado, OpenCL, and Intel Quartus Prime have provided
developers with a richer set of tools with C/C++ interfaces to
FPGA-based designs. Additional work in scaling FPGA
implementations to multiple devices is ongoing. Industry
trends suggest that in the near future heterogeneous
architectures will become the norm, along with software stacks
to ease the deployment of software in these environments.*’

6. ASIC-BASED ACCELERATION

Application Specific Integrated Circuits, or ASICs, are
specialized hardware that can be tuned to solve specific
problems very efficiently. In the context of MD simulations,
most of the early work, as well as the most imgortant advances,
have been as a result of ASIC designs.""” ">

https://doi.org/10.1021/acs.jctc.1c01214
J. Chem. Theory Comput. 2022, 18, 4047—-4069

Journal of Chemical Theory and Computation

pubs.acs.org/JCTC

Table S. Quantitative Characteristics of FPGA-Based Simulation Performance

ref year time/day
109 2004 2.34 ps
103 2008 517.4 ps
111 2005 3.8 ps
105 2006 0.188 ns
102 2006 28 ps
106, 107 2006 0.22 ns
104 2006 0.72 ns
101 2007 0.2 ns
29 2008 246.86 ps
99 2019 1.4 ps
99 2019 1.4 ps
98 2019 630.25 ns
98 2019 630.25 ns

speedup benchmark
0.29% Intel Pentium 4 2.4 GHz
57X Intel Xeon 2.4 GHz
S1x Intel Xeon 2.4 GHz
2.72X Intel Xeon 2.8 GHz
3% Intel Xeon 2.8 GHz
1.9% Intel Xeon 2.8 GHz
15.7% Intel Xeon 2.8 GHz
3.19% Intel Xeon 2.8 GHz
2.08% Intel Xeon 2.8 GHz (dual-core)
96.5%X Intel Xeon
3.29% NVIDIA GTX 1080Ti
25.3% Intel Xeon
1.1X NVIDIA GTX 1080Ti

Table 6. Qualitative Characteristics of Simulations
Approached with FPGA-Based Acceleration

ref year force L] coul alg. arch.
109 2004 LUT yes no direct full MD
103, 111 2005 LuT yes yes direct nonbond only
105 2006 LuT yes yes SPME nonbond only
102 2006 LUT yes yes SPME nonbond only
106, 107 2006 direct yes yes SPME nonbond only
104 2006 LuT yes yes direct nonbond only
101 2007 direct yes yes PME nonbond only
29 2008 direct yes yes SPME nonbond only
113 2011 direct yes yes PME nonbond only
99 2019 LUT yes no direct full MD
98 2019 LUT yes yes PME full MD

6.1. Early ASIC Development. One of the earliest
examples of an MD specific ASIC appeared in 1982'*"'*
for a condensed matter physics application. At the time of this
work, MD simulations were typically constrained to be on the
order of a few hundred atoms with the largest only
approaching the order of a few thousands of atoms on modest
time scales. The Delft Molecular Dynamics Processor
(DMDP)"*"'** was designed solely to accelerate the non-
bonded force calculations with the host computer tasked with
all other steps of the simulation. By keeping all particle data in
the DMDP’s local memory and using fixed-point arithmetic
(24 bits for position data, 32 bits for velocity data), the DMDP
was able to achieve performance comparable to a Cray-1
supercomputer' > at reportedly less than 1% of the cost.

6.2. GRAPE (GRAvity PipE) and MDGRAPE. The Riken
Institute-developed GRAPE/MD-GRAPE architectures for
various instances of the n-body problem have led to numerous
Gordon-Bell prizes over the years.'”* The first GRAPE VLSI
chip was introduced in 1990"*>'*° reporting performance
comparable to the CRAY-XMP/1 supercomputer at a cost
reportedly 10 000X less. GRAPE was proposed as an
alternative to more complicated algorithms exhibiting favorable
asymptotic complexity, by instead choosing the brute-force
calculation of the direct interactions between particles with the
use of a cutoff. The proposed design'>® was similar to that of
the DMDP with a host compute node managing the overall
simulation with the GRAPE chip exclusively computing the
long-range interactions.

While the early demonstrations of GRAPE were primarily
focused on celestial systems simulations,'*® the authors

4059

emphasized the flexibility of the machine to potentially handle
arbitrary instances of the n-body problem ranging from the
simulation of galaxies to that of biological macro-molecules
such as proteins by “simply” replacing the potential energy
function. Notably, the first GRAPE was apparently lacking this
feature as it was not until several years later that the MD-
GRAPE ASIC was introduced'”’ "> as an extended version of
GRAPE that could support an arbitrary potential. The
hardware architecture of MD-GRAPE was similar to that of
previous ASICs'>"'* in that the ASIC would be tasked with
performing only the direct force calculations.

Work on improving the MD-GRAPE system continued for
some time afterward with MDGRAPE-2"*" increasing the
number of pipelines in the chip (from 1 to 4), clock frequency,
use of double floating point precision instead of 80-bit fixed
point, and support for Direct Memory Accesses (DMA), while
achieving a sustained performance of 15 billion floating point
operations per second (that is, gigaFLOPs or GFLOPS) which
was equivalent to the peak performance of other top high-
performance computers at the time. Additionally, the overall
workflow supported more advanced Ewald-based nonbonded
forces. However, MDGRAPE-2 was restricted to “real-space”
accelerations. Functionality for computing Fast Fourier
transforms was implemented instead as a separate accelerator,
“WINE.2” 131132

The subsequent MDGRAPE-3 chip''® was reported as
having a particularly high development cost at approximately
USD 20 million. The authors emphasize that at less than $10
USD per GFLOP, the system was cost-effective unlike previous
works'** or other notable high-performance general purpose
computers such as the IBM BlueGene/L' (approximately
$140 USD per GFLOP). A number of molecular dynamics
packages including Amber (version 6)** and CHARMM
(Chemistry at HARvard Macromolecular Mechanics)'*® were
already ported for MDGRAPE-2 and were also compatible
with the MDGRAPE-3 chip.

While the MDGRAPE-3 system was demonstrated as the
first quadrillion floating point operations per second (that is,
petaFLOPS or PFLOPS) machine, significant bottlenecks
remained in its design an accelerator attached to I/O buses of a
host. MDGRAPE-4'** integrates the functions of both a host
and the accelerator as a system on a chip (SoC), removing host
communication bottlenecks. The MDGRAPE-4 chip'**
consists of dedicated hardware for force pipelines, general
processor cores along with a control general processor,
network interfaces units, as well as an FPGA interface and

https://doi.org/10.1021/acs.jctc.1c01214
J. Chem. Theory Comput. 2022, 18, 4047—-4069

Journal of Chemical Theory and Computation

memory units. The general processing cores (GP) are grouped
onto each board in 8 blocks, and each general processor has 8
cores. The control general processor (CGP) is situated in the
middle of the board and controls the execution flow of the
force calculations by communicating with each of the general
processors, the force pipelines (PP), and the network interfaces
(NIF). Whereas the force evaluation pipeline spanned 80% of
the die areas in MDGRAPE-3, it is reduced to only 20% by
comparison in the MDGRAPE-4.

Force calculations are computed using mixed precision and
formats. Input coordinates are expressed in a 32-bit fixed-point
format as the dynamic range is expected to be relatively
“small”. Force computations are expressed with a single-
precision IEEE-754 floating point. Force summation is done
using 32-bit fixed point. MDGRAPE-4 additionally differs from
MDGRAPE-3 by calculating Couloumb and van der Waals
forces and potentials simultaneously, whereas MDGRAPE-3
can only compute one at a time. Further, MDGRAPE-4
exploits Newton’s third law to reduce the computational cost
by half. MDGRAPE-4 has 64 pipelines in eight blocks on each
board, can handle $1.2 X 10° interactions per second, with
peak system performance equivalent to 2.5 trillion floating
point operations per second (that is, teraFLOPS or TFLOPS).
MDGRAPE-4 uses the Gaussian Split Ewald method for force
calculation™ as it is quoted as possessing a good property for
acceleration by specialized pipeline due to the Gaussian spread
function having a spherical symmetry. The MDGRAPE-4 is
programmed using C and assembléy language. The authors in
ref 134 ported the GROMACS® “mdrun” engine to their
architecture.

They also leave open in their discussion of what the optimal
configuration for global memory should be and point to the
fact that strong scaling of MD simulations is becoming more
difficult and requires increasing amounts of specialization to
improve performance, it may be worthwhile to investigate ways
to improve cost/performance. They also point out that systems
with a single chip or on a single module will be solutions that
could address the cost/compute power concerns.

MDGRAPE-4a was subsequently developed to improve data
and message flow efficiency and was applied to simulating
potential therapeutics for the SARS-CoV-2 virus."**'*® The
developers achieved performance of roughly 1 us per day for
the systems including about 100 thousand atoms using
timesteps of 2.5 fs. Despite the improvement however, the
authors still point out that the most recent Anton system is
estimated to be 1—2 orders of magnitude ahead of the
MDGRAPE-4a machine."*® The full MDGRAPE-4a system
cost approximately $6.5 million USD to develop, which is
significantly less expensive than that of MDGRAPE-3""® which
was reported cost approximately $20 million USD but remains
well beyond the reach of many researchers in terms of available
development resources to replicate a design.

6.3. Anton. Unlike the first iterations of GRAPE/
MDGRAPE, the principal task the Anton''” machine was
designed for was to accelerate “very-long” time scale
trajectories of biological entities such as proteins. In contrast
to the MDGRAPE-3 architecture which split the MD tasks
between a host microprocessor and a number of accelerator
chips, the Anton ASIC utilized a system-on-a-chip SoC design
with dedicated hardware to perform all tasks on chip or in a
network of chips.

The Anton ASIC consists of 4 subsystems. The high-
throughput interaction subsystem (HTIS)"*” computes

4060

pubs.acs.org/JCTC
electrostatic and van der Waals interactions. The flexible
subsystem'*® controls the ASIC while handling tasks such as

bonded force calculations, FFT, and integration. The
communication subsystem handles communication on chip
and between chips with 5.3GB/s communication bandwidth
between chips. The memory subsystem provides access to the
attached DRAM while also providing special memory write
operations that support accumulations of force, energy,
potential, and charge spreading. The HTIS is programmable
by the use of SRAM lookup tables to allow for changes in force
fields in ongoing research. It is not clear however to what
extent this module can be modified to handle the recent work
in force field development, an active area of research in
biochemistry.

At the heart of the HTIS are the pairwise point interaction
modules (PPIMs) and their pairwise point interaction
pipelines (PPIPs). Anton distributes particle interactions
using an efficient method that minimizes communication
costs associated with importing and exporting atomic
information among the nodes while also achieving scaling
benefits with increasing number of nodes.’*'* The particles
assigned to each node are referred to in two separate sets; the
set of tower particles and the set of plate particles. The
determination of a tower versus plate atom is based upon a set
of criteria that is specified in detail elsewhere.”* The PPIM is
distributed to a set of tower particles T and a set of plate
particles P, for which the Cartesian product of the two sets is
computed to form the set of possible pairwise interactions.
Using a set of multiple match units in parallel, the PPIM filters
the particle pairs for criteria assessing their suitability for an
interaction evaluation. After filtering, the PPIPs compute the
interactions between the particle pairs. The PPIPs feature
optimized numerical precision for each functional unit along
the datapath, maximizing the use of die area. The HTIS then
accumulates the results and writes the results to the memory
subsystem.

In terms of hardware capabilities, the subsequent Anton 2
ASIC'*® improves upon the original in nearly every
conceivable way. The Anton 2 chip is fabricated using 40
nm process technology versus 90 nm for the original. The
HTIS supports a maximum of 32 768 atoms, an increase from
6144. The data bandwidth for the torus neighbors has also
been increased from 221 Gb/s to 1075 Gb/s. A priority of this
updated design was to increase the overlap of communication
with computation in order to make more effective utilization of
the hardware capabilities. In addition to hardware improve-
ments, all embedded software on Anton 2 is written using C++
using a ported version of the GCC compiler. This is an
improvement upon the mix of C and assembly required for the
original Anton.

The latest iteration of the Anton series was recently
introduced as Anton 3."*” Anton 3 includes improvements to
the physical capabilities of the hardware from Anton 2,
featuring 1500X increase in transistor count, 107X increase in
SERDES Bandwidth (GB/s), 1290X increase in the number of
PPIP modules, as well as 264 newly developed specialized
bond interaction calculators. Anton 3 also features several
improvements in the PPIP modules which feature a special
bonded interaction calculator that makes for a higher
throughput calculation while requiring one-third the die area
of a geometry core which was previously used to compute
bonded forces. For nonbonded forces, Anton 3 introduces two
specialized PPIP modules, the Big PPIP and the Small PPIP.

https://doi.org/10.1021/acs.jctc.1c01214
J. Chem. Theory Comput. 2022, 18, 4047—-4069

Journal of Chemical Theory and Computation pubs.acs.org/JCTC

Table 7. Characteristics of ASIC Designs
year name alg. arch. force calc. force accum.
1996 MD-GRAPE'** direct nonbond only 32-bit float 80-bit fixed
1999 MD-Engine'*’ direct nonbond only 40-bit float 64-bit float
2003 MDGRAPE-2"* direct nonbond only 32-bit float 64-bit float
2003 MDGRAPE-3"* direct nonbond only 32-bit float 80-bit fixed
2009 Anton'*! GSE* full MD 32—36 bit fixed 86-bit fixed
2014 MDGRAPE-4"** GSE** full MD 32-bit float 32-bit fixed
2014 Anton 2% u-series'** full MD 32—36 bit fixed 86-bit fixed
2021 Anton 3% u-series' ** full MD 14—23 bit fixed 14—23 bit fixed

The Small PPIP module computes interactions with r > S°A
with specialized simpler logic at lower precision (14-bit
datapaths) allowing for three Small PPIPs to fit in the area
as one Big PPIP. Conversely, the Big PPIP handle interactions
with r < 5°A at increased precision (23-bit datapaths). Other
significant improvements to the filtering and communication
protocols for mapping interactions to PPIPs achieve improved
load balancing due to the novel Manhattan Method for
distributing the computation of nonbonded interactions, which
is introduced in the work describing Anton 3."*°

6.4. Discussion. Characteristics of the various ASIC
architectures developed for MD are summarized in Table 7.
The ASIC designs discussed follow a similar trajectory to
FPGA-based development. In the earlier period of the work,
the MDGRAPE''®"**"** and MD-Engine'** designs imple-
mented brute-force nonbonded calculations, even if they were
part of a larger more complex simulation workflow as is the
case in ref 120. The Anton design implemented the full-md
simulation on chip coupled with a more sophisticated PME
nonbonded force calculation. Subsequent ASICs followed this
design closely, moving to SoC-based designs with PME based
nonbonded force calculations.

ASIC implementations of MD remain orders of magnitude
“faster” than alternative architectures (for example, Tables 8
and 9). ASICs are also orders of magnitude more expensive to
build, with the costs for full clusters given in the millions of
USD. 18134

Table 8. Performance of Various Accelerator Configurations
to Run a Single Simulation of Dihydrofolate Reductase
(DHFR)®

accelerator engine time scale (ns/day)
Anton 3 (64-node) (ASIC) Custom'* 212200
Anton 2 (512-node) (ASIC) Custom'*° 85800
Intel Stratix 10 (FPGA) Custom”® 630
2x Nvidia Titan-RTX (GPU) Amber"** 629.03
NVIDIA V100 SXM (GPU) Amber'* 522.20
NVIDIA V100 PCIE (GPU) Amber'* 277.14
NVIDIA TITAN X (GPU) OpenMM"** 393
NVIDIA TITAN V (GPU) OpenMM"** 419
NVIDIA RTX 3090 (GPU) ACEMD'*¢ 1308

“DHFR is a 159-residue protein (suspended in water) target for
cancer therapeutics that has been used as a standard benchmark for
MD simulation throughput. All simulations reported here employ
NVE microcanonical constraints. NVE refers to the set of constraints
on MD simulations in which moles (N), volume (V), and energy (E)
are conserved in the simulation. All simulations reported here with the
exception of Anton 2'* use the PME?* algorithm for non-bonded
interactions. Anton 2 uses the y-series'*” algorithm for non-bonded
interactions.

4061

The justifications for development of ASICs have been cited
as being a choice between developin§ better algorithms versus
developing specialized hardware.''”"'®"?%13% The large
upfront costs were amortized by the expected improvement
in potential simulation throughput versus general processors
which was demonstrated for refs 40 and 141.

As a consequence of the high cost and technical expertise
required, development of MD specific ASICs has also been
mostly relegated to two institutions, the Riken Institute funded
by the Japanese government and the privately funded D.E.
Shaw Research group based in the United States. Thus, access
to ASIC-based MD engines remains an issue. In response, the
Anton machines''”'*’ have been provided to researchers as
part of an NIH grant at the Pittsburgh Supercomputing
Center. Recently, MD simulation trajectory data of the SARS-
CoV-2 main protease generated by the MDGRAPE-4 series of
ASICs has been made publicly available."*>'** Additionally,
the MDGRAPE-4 series and Anton 2 ASICs have improved
their programmability by implementing a C/C++ interface.

The Anton and MDGRAPE series of ASICs have helped
make significant strides in the simulations of fundamental
biological processes including protein-folding and protein—
ligand binding.*>"*"'** In the face of this, much attention is
being shifted toward the integration of machine learning into
molecular simulation workflows,”® and fundamental research is
ongoing in the development of more accurate force fields using
deep learning and quantum mechanics.'”** Future develop-
ment of ASICs will undoubtedly depend on the outcomes of
these efforts.

7. FUTURE DIRECTIONS

7.1. Heterogeneous Architectures. With increasing
complexity of workflows, it is becoming difficult to design a
processor which can optimallgr handle a diverse range of tasks
most effectively.”®”%°#!*715¢ nstead, there is acceptance in
the industry that competing architectures can be viewed as
complementary devices and potentially can be coupled
together in a heterogeneous architecture. The OneAPI
project'” is a primary example of the direction the hardware
industry will take in the future for design of servers that will
come to be used across industry, government, and academia.
CPUs excel at instruction level parallelism and are able to
handle diverse sets of tasks, GPUs are able to exploit data
parallelism with orders of magnitude more cores than a
traditional CPU, and FPGAs can approach ASIC performance
as they exploit instruction level and data parallelism while
being able to be reconfigured thus coming at a lower cost in
terms of investment in technical development or cost to
acquire. A heterogeneous workflow can ideally map various
simulation steps to a specific architecture that are best suited to
exploit the optimal performance. Challenges remain in

https://doi.org/10.1021/acs.jctc.1c01214
J. Chem. Theory Comput. 2022, 18, 4047—-4069

Journal of Chemical Theory and Computation

pubs.acs.org/JCTC

Table 9. Selected MD Simulations among the Largest of Those Reported in the Literature

name # atoms time scale (ns) resource engine year
SARS-CoV-2 viral envelope”® 304 780 149 84 Summit NAMD 2.14 2021
HINI 2009 viral envelope'®’ 160653271 121.04 Blue Waters NAMD 2.10 2020
GATA4 gene locus'* 1000 000 000 1 Trinity GENESIS 2019
STMV'*? 1066 628 13 NCSA Altix NAMD 2.5 2006

Table 10. Qualitative Comparison of Accelerator Classes Covered in the Discussion®

Dev. Simulation
Type Timeline Dev. Tools Acquisition Cost Timescales/day Characteristics
Nvidia CUDA
OpenCL
hundreds - thousands of
GPU > Hours-days | AMD RocM USD microseconds (107-6) | Most mainstream class of accelerator. Low Cost
Intel Quartus
Xilinx Vivado
OpenCL
Vendor-specific hundreds - thousands of Lack of familiarity among potential users. Low
FPGA > Months toolchains USD nanoseconds (107-9) Cost.
FPGA to ASIC
ASIC > Months mapping tools able to be "rented" milliseconds (107-3) Expertise in hardware required. High Cost.

“The time scales quoted here correspond to results collected for a common benchmark study that has been considered among the various
architectures discussed in this work, Dihydrofolate Reductase (DHFR), and are not meant to be presented as definitive assessments.

designing tools that can allow developers to design their codes
to leverage multiple hardware platforms, which do not all
support the same instruction sets.'””> The AMD Heteroge-
neous-Computing Interface for Portability (HIP)"® is a
solution for enabling heterogeneous device development,
allowing CUDA-based code to run on NVIDIA and AMD
devices. In the meantime, it is of great utility to better develop
quantitative studies of how the various architectures covered in
this work compare overall as well as specific investigation of
the various components of the MD workflow can be mapped
optimally among the classes of accelerators (Table 10).

7.2. Synthesis of Machine Learning and Hardware
Acceleration for MD. The integration of machine learning
and molecular dynamics has picked up much enthusiasm in
recent years.'®” With the rise of machine learning integration
into molecular simulation workflows, especially those of deep-
learning, present areas of interest for work include demonstrat-
ing how these technologies can be used in tandem with
hardware accelerators to better exploit molecular dynamics
simulations."®'~'* The JAX, M.D. project'®* aims to develop a
differentiable molecular dynamics workflow by providing a
framework that allows for seamless integration of machine
learning models with physical simulation code. JAX, MD itself
is built upon the JAX python library which integrates Autograd
and the Tensorflow accelerated linear algebra library, XLA,'®
to allow for high performance codes to be deployed on GPUs
and Tensor Processing Units (that is, TPUs) which are Al
ASICs designed by Google.'®® The TorchMD python library®®
was recently introduced and presents another attempt to
bridge machine learning and molecular dynamics simulations,
providing an interface built upon the PyTorch'®” deep learning
library. By adhering to a PyTorch backend, the TorchMD tools
can also leverage hardware accelerators such as GPUs and
TPUs, as well as others that may come to be supported by
PyTorch in the future. The initial debut of the TorchMD
library compared to a production MD simulation code
highlights the need for further optimization of the code itself,
but also where the utility of more capable acceleration in terms

4062

of software design as well as the target hardware architectures
themselves are likely to play a crucial role in enabling the
practical use of differentiable MD simulations in the future.

Numerous hardware accelerators for Al are coming to
market to meet the insatiable compute demand (measured in
floating point operations per second or FLOPs) for machine
learning workflows, estimated as doubling every 3.5 months."®
The Cerebras Systems Inc. CS-1/CS-2 wafer scale processor'®
and SambaNova Reconfigurable Dataflow Architecture'”® are
recently proposed alternatives to traditional multicore
architectures. Cerebras CS-2 is the largest chip ever built,
fabricated from the largest square from a single silicon wafer.
The CS-2 is over 56X larger than the largest GPU, features
850 000 programmable compute cores, 40 gigabytes of on-chip
SRAM, 20 petabytes/sec of memory bandwidth, and 220
petabits/sec of interconnect bandwidth. The system is
additionally supported by custom compilation tools that
optimize the reconfigurable dataflow processing units depend-
ing on the users application. Cerebras also provides support for
Tensorflow and PyTorch APIs, drastically lowering the barrier
to entry. The SambaNova DataFlow Accelerator is motivated
by a similar use case in machine learning acceleration with its
own reconfigurable dataflow architecture, custom compilation
tools, and custom “SambaFlow” software stack supporting
Tensorflow and PyTorch APIs. The Graphcore Intelligence
Processing Unit (IPU) is yet another Al accelerator poised to
challenge the status quo of the GPU-centric development
environments used in Al and MD simulations today.'”" As
these and likely additional accelerators come to market,
offering advantageous levels of computation relative to energy
utilization, the current status quo of a GPU-centric develop-
ment environment is likely to pivot to utilize these
architectures with tight integration with differentiable machine
learning libraries.

7.3. Further Improvement of Accuracy and Algo-
rithms. The discussion covered in this work considers the
context of NVE-ensemble simulations which have been
implemented across all of the various architectures employed.

https://doi.org/10.1021/acs.jctc.1c01214
J. Chem. Theory Comput. 2022, 18, 4047—-4069

Journal of Chemical Theory and Computation

pubs.acs.org/JCTC

It is also the case that simple integration algorithms such as
velocity Verlet are mostly common among the works
discussed. With that said, research into improving the accuracy
as well as efficiency of MD simulations remains an active area
so it is important to highlight some of the work as future
systems in heterogeneous environments will need to be
designed with such features in mind.

An obvious limitation of the classical MD algorithm as
described in this review is the order of the integration time
step, which is often chosen as 2 fs in order to capture the most
granular behavior, bond vibrations as shown in Figure 1. One
technique featured in modern MD engines is Hydrogen Mass
Repartitioning (HMR) which allows for the integration time
step to be increased by a factor of 2 with minimal loss in
accuracy or stability of the simulation trajectory by
repartitioning the mass of heavy atoms into the bonded
hydrogen atoms.'”> Other techniques for improving the
efficiency of MD simulations include Multiple time scale
MD," which partitions the interacting sets of atom neighbors
into primary and secondary interactions, and then update force
calculations at staggered time intervals. Additionally, Reaction-
Field Electrostatics'”® is another method to improve the
efficiency of long-range electrostatics and is implemented in
popular MD packages such as OpenMM."”*

Other limitations of the MD algorithms covered in this work
are the empirical force fields that are employed in the
simulations. Ab initio molecular dynamics (AIMD) treats the
electronic structure of the atoms in the simulation explicitly
and can provide more accurate description of the dynamics of
the system (for example, bond formation and breaking).'”®
While AIMD has historically been prohibitively expensive to
consider for the systems covered in this work, progress has
been made in the acceleration of these calculations using deep
learning to approximate the interatomic potential energy
surface from AIMD simulations.'”*™'7® A recent work
demonstrates the application of a heterogeneous computation
system (Summit Supercomputer at Oak Ridge National
Laboratory) to scale deep-learning based Potential Energy
Surface (PES) models in tandem with the LAMMPS MD
engine'”” to perform studies of very large systems, on the order
of 100 million atoms, at the nanosecond time scale with ab
initio accuracy.lso

Much of the MD acceleration covered in this work has been
concerned with accelerating the time scales of the microscopic
kinetics of the biomolecules ranging from very short time
scales to what are hopefully biologically meaningful time scales.
However, even a trajectory extracted from a relatively long-
time scale MD simulation is susceptible to becoming “stuck” in
one of the huge numbers of energy minima in the high-
dimensional potential energy surface due to the presence of
high potential energy barriers between these minima.'®"'®
Lacking an ability to effective sample low-energy states of a
biomolecule negatively affects the accuracy of the macroscopic
thermodynamic properties such as free energy, a critical
measurement especially for applications in drug discovery.
Modern MD packages include support for algorithms that
allow for improved sampling such as Replica-Exchange
Molecular Dynamics (REMD),"®! Metadynamics (MTD),"'*
and Adaptively Biased MD (ABMD).'*?

Enhanced sampling methods are provided in packages such
as PLUMED,"®*'%5 which wraps existing MD simulation
engines such as those discussed in Section 4.2. GPU packages
such as Amber also provide support for enhanced sampling

4063

algorithms.”®' Anton also has been shown to implement
enhanced sampling algorithms,'*~"% and the latest iteration
of Anton suggested continued development for enhanced
sampling methods.'*” Some of the challenges in implementing
these types of algorithms in specialized hardware have been
identified previously.'®® Specifically, the memory resource
requirements for replica exchange (RE)'®" forced the Anton 2
machine to use multiple Anton nodes to run a single replica of
a typical solvated protein.'*® Considering that REMD may
require hundreds of replicas,”” the Anton architecture was seen
as being better suited for the simpler Simulated Tempering
(ST) algorithm,'® where the entire machine could better
accelerate a single simulation.'®® Additionally, REMD imposes
communication requirements when exchanging systems
between nodes. The frequency of exchanges is a parameter
that may be tuned, but as the exchanges are attempted more
frequently, the communication burden grows. The current
generation of Anton (3) is presumed to have greater amounts
of SRAM available, given the current description of the
machine features an increase of nearly 2 orders of magnitude
capacity (atoms) per node."*” Enhanced sampling may also
require other functions in addition to the force field to be
evaluated. ST requires evaluation of the potential energy
function,'®® which at the hardware level required updating
force calculation parameters to instead compute energies.
Lastly, while an FPGA-focused implementation of an enhanced
sampling algorithm has not been presented in the literature,
ongoing work that studies networks of FPGAs for MD
acceleration could potentially be extended to enhanced
sampling algorithms.'”® Challenges faced by the Anton
machine are likely applicable to the case of FPGAs, such as
dynamically swapping between evaluation of forces and
potential energy. Additional work in applying machine learning
to accelerate sam lin% of atomic systems is ongoing with
promising results."”""?

8. CONCLUSIONS

We have reviewed three broad categories of accelerators for
molecular dynamics simulations that include GPUs, FPGAs,
and ASICs. Our discussion details the benefits of rich
development environments that have enabled the popularity
of GPUs for MD acceleration while also identifying out-
standing issues of the hardware itself to scale popular long-
range electrostatics algorithms effectively. We then investigated
the history of MD acceleration in the context of FPGAs, which
exhibit favorable properties such as flexibility in data types in
contrast to GPUs, elimination of control and synchronization
overheads, while exhibiting instruction-level and data-parallel-
ism. Despite these properties, however, a major hurdle in the
successful mainstream adoption of FPGAs as accelerators for
MD has been a lack of accessible development tools for
researchers. That stated, FPGA hardware as well as develop-
ment tools have progressed significantly since the first MD
applications were developed in the previous decade, and
industry trends suggest a future in which servers will become
more heterogeneous. Today there are already examples of
servers featuring FPGAs and microprocessors on the same chip
as well as the top supercomputers in the world regularly
featuring GPU coprocessors to accelerate a diverse array of
workloads that often combine MD with machine learning and
deep learning. While ASIC architectures have historically been
cost-effective to reduce the “time to solution” for achieving
biologically relevant MD time scales, they are also expensive to

https://doi.org/10.1021/acs.jctc.1c01214
J. Chem. Theory Comput. 2022, 18, 4047—-4069

Journal of Chemical Theory and Computation

pubs.acs.org/JCTC

develop and lack the flexibility to be reprogrammed to a
significant degree. The GPU has been enormously beneficial to
the scientific community for its ability to democratize longer-
time scale MD, as well as fuel research into more effective MD
sampling methods and thermodynamic property calculations.
With more specialized architectures for Al appearing, such as
the Cerebras Wafer-scale accelerators, SambaNova Reconfig-
urable DataFlow architecture, and Graphcore Intelligence
Processing Unit (IPU), it is not difficult to imagine a future
where MD applications which are already beginning to feature
tight integration with machine learning and deep learning will
be designed to leverage a diverse array of processing
capabilities rather than being implemented entirely on one
paradigm.

B AUTHOR INFORMATION

Corresponding Authors

Derek Jones — Department of Computer Science and
Engineering, University of California, San Diego, La Jolla,
California 92093, United States; Global Security Computing
Applications Division, Lawrence Livermore National
Laboratory, Livermore, California 94550, United States;

orcid.org/0000-0002-9510-6662; Email: wdjones@

ucsd.edu, djones@llnl.gov

Tajana S. Rosing — Department of Computer Science and
Engineering, University of California, San Diego, La Jolla,
California 92093, United States; Email: tajana@ucsd.edu

Authors

Jonathan E. Allen — Global Security Computing Applications
Division, Lawrence Livermore National Laboratory,
Livermore, California 94550, United States; ® orcid.org/
0000-0002-4359-8263

Yue Yang — Biosciences and Biotechnology Division, Lawrence
Livermore National Laboratory, Livermore, California
94550, United States

William F. Drew Bennett — Biosciences and Biotechnology
Division, Lawrence Livermore National Laboratory,
Livermore, California 94550, United States; ©® orcid.org/
0000-0003-3993-9077

Maya Gokhale — Center for Applied Scientific Computing,
Lawrence Livermore National Laboratory, Livermore,
California 94550, United States

Niema Moshiri — Department of Computer Science and
Engineering, University of California, San Diego, La Jolla,
California 92093, United States; © orcid.org/0000-0003-
2209-8128

Complete contact information is available at:
https://pubs.acs.org/10.1021/acs.jctc.1c01214

Funding

This work was supported in part by the Laboratory Directed
Research and Development program at Lawrence Livermore
National Laboratory (20-ERD-062), LLNL-JRNL-834158.
This work was also supported in part by CRISP, one of six
centers in JUMP, an SRC program sponsored by DARPA, and
in part by NSF grants 2003279, 1911095, 1826967, 2100237,
2112167, and 2052809.

Notes

The authors declare no competing financial interest.

4064

B ACKNOWLEDGMENTS

All work performed at Lawrence Livermore National
Laboratory is performed under the auspices of the U.S.
Department of Energy under Contract DE-ACS52-07NA27344.
Any subjective views or opinions that might be expressed in
the paper do not necessarily represent the views of the U.S.
Department of Energy or the United States Government.

B REFERENCES

(1) WHO Coronavirus (COVID-19) Dashboard. https://covid19.
who.int/ (accessed 10-11-2021).

(2) Smietana, K; Siatkowski, M.; Meller, M. Trends in clinical
success rates. Nat. Rev. Drug Discovery 2016, 15, 379—380.

(3) DiMasi, J. A,; Grabowski, H. G.; Hansen, R. W. Innovation in
the pharmaceutical industry: New estimates of R&D costs. J. Health
Econ. 2016, 47, 20—33.

(4) Schneider, P.; Walters, W. P.; Plowright, A. T.; Sieroka, N;
Listgarten, J.; Goodnow, R. A,, Jr; Fisher, J.; Jansen, J. M.; Duca, J. S.;
Rush, T. S.; Zentgraf, M.; Hill, J. E.; Krutoholow, E.; Kohler, M.;
Blaney, J.; Funatsu, K.; Luebkemann, C.; Schneider, G. Rethinking
drug design in the artificial intelligence era. Nat. Rev. Drug Discovery
2020, 19, 353—364.

(5) Lucas, X; Griining, B. A,; Bleher, S; Giinther, S. The
purchasable chemical space: a detailed picture. J. Chem. Inf. Model.
2015, 55, 915—924.

(6) REAL Compounds—Enamine. https://enamine.net/compound-
collections/real-compounds (accessed 10-5-2021).

(7) Dror, R. O.; Dirks, R. M.; Grossman, J. P.; Xu, H.; Shaw, D. E.
Biomolecular simulation: a computational microscope for molecular
biology. Annu. Rev. Biophys. 2012, 41, 429—452.

(8) Alder, B. J.; Wainwright, T. E. Phase Transition for a Hard
Sphere System. J. Chem. Phys. 1957, 27, 1208—1209.

(9) Gibson, J. B; Goland, A. N.; Milgram, M.; Vineyard, G. H.
Dynamics of Radiation Damage. Phys. Rev. 1960, 120, 1229—1253.

(10) McCammon, J. A; Gelin, B. R; Karplus, M. Dynamics of
folded proteins. Nature 1977, 267, 585—590.

(11) Shaw, D. E.; Maragakis, P.; Lindorff-Larsen, K.; Piana, S.; Dror,
R. O,; Eastwood, M. P.; Bank, J. A,; Jumper, J. M.; Salmon, J. K;
Shan, Y.; Wriggers, W. Atomic-level characterization of the structural
dynamics of proteins. Science 2010, 330, 341—346.

(12) Adcock, S. A.; McCammon, J. A. Molecular dynamics: survey of
methods for simulating the activity of proteins. Chem. Rev.
(Washington, DC, U. S.) 2006, 106, 1589—1615.

(13) Karplus, M.; McCammon, J. A. Molecular dynamics simulations
of biomolecules. Nat. Struct. Biol. 2002, 9, 646—652.

(14) Allen, M. P. M,; Tildesley, D. J.; Allen, T. D. Computer
Simulation of Liquids; Clarendon Press: Oxford, 1989.

(15) Shan, Y.; Kim, E. T.; Eastwood, M. P.; Dror, R. O.; Seeliger, M.
A.; Shaw, D. E. How does a drug molecule find its target binding site?
J. Am. Chem. Soc. 2011, 133, 9181—9183.

(16) Dror, R. O, Pan, A. C.; Arlow, D. H,; Borhani, D. W,;
Maragakis, P.; Shan, Y.; Xu, H.; Shaw, D. E. Pathway and mechanism
of drug binding to G-protein-coupled receptors. Proc. Natl. Acad. Sci.
U. S. A. 2011, 108, 13118—13123.

(17) Zwier, M. C;; Chong, L. T. Reaching biological timescales with
all-atom molecular dynamics simulations. Curr. Opin. Pharmacol.
2010, 10, 745-752.

(18) Henzler-Wildman, K.; Kern, D. Dynamic personalities of
proteins. Nature 2007, 450, 964—972.

(19) Tian, C.; Kasavajhala, K; Belfon, K. A. A.; Raguette, L.; Huang,
H,; Migues, A. N,; Bickel, J; Wang, Y,; Pincay, J; Wu, Q;
Simmerling, C. ff19SB: Amino-Acid-Specific Protein Backbone
Parameters Trained against Quantum Mechanics Energy Surfaces in
Solution. J. Chem. Theory Comput. 2020, 16, 528—552.

(20) Potential Energy Functions. https://www.ks.uiuc.edu/Research/
namd/2.9/ug/node22.html (accessed 10-11-2021).

https://doi.org/10.1021/acs.jctc.1c01214
J. Chem. Theory Comput. 2022, 18, 4047—-4069

Journal of Chemical Theory and Computation

pubs.acs.org/JCTC

(21) Bonded interactions—GROMACS 2019 documentation. https://
manual.gromacs.org/documentation/2019/reference-manual/
functions/bonded-interactions.html (accessed 5-2-2021).

(22) Yu, N.; Polycarpou, A. A. Adhesive contact based on the
Lennard-Jones potential: a correction to the value of the equilibrium
distance as used in the potential.]. Colloid Interface Sci. 2004, 278,
428—435.

(23) Verlet, L. Computer “Experiments” on Classical Fluids. L
Thermodynamical Properties of Lennard-Jones Molecules. Phys. Rev.
1967, 159, 98—103.

(24) Molecular Dynamics—GROMACS 2021 documentation. https://
manual.gromacs.org/documentation/2021/reference-manual/
algorithms/molecular-dynamics.html (accessed 5-25-2021).

(25) 17Theory Behind OpenMM: Introduction—OpenMM Users
Guide 7.5 documentation. http://docs.openmm.org/latest/userguide/
theory.html (accessed 5-25-2021).

(26) Tuckerman, M. Statistical Mechanics: Theory and Molecular
Simulation; Oxford University Press: Oxford, 2010.

(27) Zuckerman, D. M. Equilibrium sampling in biomolecular
simulations. Annu. Rev. Biophys. 2011, 40, 41—62.

(28) Huang, K. Lectures on Statistical Physics and Protein Folding;
World Scientific Publishing: Singapore, 2005.

(29) Scrofano, R.; Gokhale, M. B.; Trouw, F.; Prasanna, V. K
Accelerating Molecular Dynamics Simulations with Reconfigurable
Computers. IEEE Trans. Parallel Distrib. Syst. 2008, 19, 764—778.

(30) Arnold, A; Fahrenberger, F.; Holm, C.; Lenz, O.; Bolten, M,;
Dachsel, H.; Halver, R,; Kabadshow, I; Gihler, F.; Heber, F.;
Iseringhausen, J.; Hofmann, M.; Pippig, M.; Potts, D.; Sutmann, G.
Comparison of scalable fast methods for long-range interactions. Phys.
Rev. E: Stat, Nonlinear, Soft Matter Phys. 2013, 88, 063308.

(31) Sagui, C.; Darden, T. A. Molecular dynamics simulations of
biomolecules: long-range electrostatic effects. Annu. Rev. Biophys.
Biomol. Struct. 1999, 28, 155—179.

(32) Darden, T.; York, D.; Pedersen, L. Particle mesh Ewald: An N-
log(N) method for Ewald sums in large systems. J. Chem. Phys. 1993,
98, 10089—10092.

(33) Essmann, U,; Perera, L.; Berkowitz, M. L.; Darden, T.; Lee, H.;
Pedersen, L. G. A smooth particle mesh Ewald method. J. Chem. Phys.
1995, 103, 8577—8593.

(34) Shan, Y.; Klepeis, J. L.; Eastwood, M. P.; Dror, R. O.; Shaw, D.
E. Gaussian split Ewald: A fast Ewald mesh method for molecular
simulation. J. Chem. Phys. 2008, 122, 54101.

(35) Barnes, J.; Hut, P. A hierarchical O(N log N) force-calculation
algorithm. Nature 1986, 324, 446—449.

(36) Greengard, L.; Rokhlin, V. A fast algorithm for particle
simulations. J. Comput. Phys. 1987, 73, 325—348.

(37) Skeel, R. D.; Tezcan, 1; Hardy, D. J. Multiple grid methods for
classical molecular dynamics. J. Comput. Chem. 2002, 23, 673—684.

(38) Hardy, D. J.; Wu, Z.; Phillips, J. C.; Stone, J. E.; Skeel, R. D.;
Schulten, K. Multilevel summation method for electrostatic force
evaluation. J. Chem. Theory Comput. 2015, 11, 766—779.

(39) Hardy, D. J.; Wolff, M. A; Xia, J.; Schulten, K; Skeel, R. D.
Multilevel summation with B-spline interpolation for pairwise
interactions in molecular dynamics simulations. J. Chem. Phys. 2016,
144, 114112.

(40) Amisaki, T.; Fujiwara, T.; Kusumi, A.; Miyagawa, H.; Kitamura,
K. Error evaluation in the design of a special-purpose processor that
calculates nonbonded forces in molecular dynamics simulations. J.
Comput. Chem. 1995, 16, 1120—1130.

(41) Engle, R. D.; Skeel, R. D.; Drees, M. Monitoring energy drift
with shadow Hamiltonians. J. Comput. Phys. 2008, 206, 432—452.

(42) Zhou, R; Berne, B. J. A new molecular dynamics method
combining the reference system propagator algorithm with a fast
multipole method for simulating proteins and other complex systems.
J. Chem. Phys. 1995, 103, 9444—9459.

(43) Humphreys, D. D.; Friesner, R. A,; Berne, B. J. Simulated
Annealing of a Protein in a Continuum Solvent by Multiple-Time-
Step Molecular Dynamics. J. Phys. Chem. 1995, 99, 10674—10685.

4065

(44) Watanabe, M.; Karplus, M. Dynamics of molecules with
internal degrees of freedom by multiple time-step methods. J. Chem.
Phys. 1993, 99, 8063—8074.

(45) Tuckerman, M.; Berne, B. J.; Martyna, G. J. Reversible multiple
time scale molecular dynamics. J. Chem. Phys. 1992, 97, 1990—2001.

(46) Tuckerman, M. E.; Berne, B. J.; Rossi, A. Molecular dynamics
algorithm for multiple time scales: Systems with disparate masses. J.
Chem. Phys. 1991, 94, 1465—1469.

(47) Tuckerman, M. E,; Martyna, G. J.; Berne, B. J. Molecular
dynamics algorithm for condensed systems with multiple time scales.
J. Chem. Phys. 1990, 93, 1287—1291.

(48) Figueirido, F.; Levy, R. M.; Zhou, R;; Berne, B. J. Large scale
simulation of macromolecules in solution: Combining the periodic
fast multipole method with multiple time step integrators. J. Chem.
Phys. 1997, 106, 9835—9849.

(49) Compare Benefits of CPUs, GPUs, and FPGAs for Different
oneAPI. https://software.intel.com/content/www/us/en/develop/
articles/comparing-cpus-gpus-and-fpgas-for-oneapi.html (accessed
10-4-2021).

(50) Nvidia Tesla V100 GPU Architecture. https://images.nvidia.
com/content/volta-architecture/pdf/volta-architecture-whitepaper.
pdf (accessed 9-9-2021).

(51) Lindholm, E.; Nickolls, J.; Oberman, S.; Montrym, J. NVIDIA
Tesla: A Unified Graphics and Computing Architecture. IEEE Micro
2008, 28, 39-S8S.

(52) Flynn, M. J. Some Computer Organizations and Their
Effectiveness. IEEE Trans. Comput. 1972, C-21, 948—960.

(53) Nvidia Tesla P100 GPU Architecture. https://images.nvidia.
com/content/pdf/tesla/whitepaper/pascal-architecture-whitepaper.
pdf (accessed 9-9-2021).

(54) Intel Advanced Vector Extensions S12 (Intel AVX-512) Overview.
https://www.intel.com/content/www/us/en/architecture-and-
technology/avx-S12-overview.html (accessed 11-28-2021).

(55) Stone, J. E; Phillips, J. C.; Freddolino, P. L.; Hardy, D. J;
Trabuco, L. G.; Schulten, K. Accelerating molecular modeling
applications with graphics processors. J. Comput. Chem. 2007, 28,
2618—-2640.

(56) Phillips, J. C.; Stone, J. E.; Schulten, K. Adapting a message-
driven parallel application to GPU-accelerated clusters. SC ‘08:
International Conference for High Performance Computing, Networking,
Storage and Analysis; 2008; pp 4244—2835.

(57) Stone, J. E,; Hardy, D. J.; Ufimtsev, L. S.; Schulten, K. GPU-
accelerated molecular modeling coming of age.]. Mol. Graphics
Modell. 2010, 29, 116—125.

(58) Kohnke, B.; Kutzner, C.; Grubmiiller, H. A GPU-Accelerated
Fast Multipole Method for GROMACS: Performance and Accuracy.
J. Chem. Theory Comput. 2020, 16, 6938—6949.

(59) Jasz, A.; Rak, A,; Ladjénszki, L; Cserey, G. Classical molecular
dynamics on graphics processing unit architectures. Wiley Interdiscip.
Rev.: Comput. Mol. Sci. 2020, 10, 27.

(60) Phillips, J. C.; Braun, R.; Wang, W.; Gumbart, J.; Tajkhorshid,
E.; Villa, E.; Chipot, C.; Skeel, R. D.; Kal¢, L.; Schulten, K. Scalable
molecular dynamics with NAMD. J. Comput. Chem. 2005, 26, 1781—
1802.

(61) Acun, B.; Gupta, A; Jain, N.; Langer, A.; Menon, H.; Mikida,
E.; Ni, X,; Robson, M.; Sun, Y.; Totoni, E.; Wesolowski, L.; Kale, L.
Parallel programming with migratable objects: Charm++ in practice.
SC ‘14: Proceedings of the International Conference for High Performance
Computing, Networking, Storage and Analysis; 2014; pp 647—658.

(62) Phillips, J. C.; Hardy, D. J.; Maia, J. D. C.; Stone, J. E.; Ribeiro,
J. V,; Bernardi, R. C,; Buch, R; Fiorin, G; Hénin, J.; Jiang, W,;
McGreevy, R.; Melo, M. C. R,; Radak, B. K; Skeel, R. D.; Singharoy,
A.; Wang, Y.; Roux, B.; Aksimentiev, A.; Luthey-Schulten, Z.; Kal¢, L.
V.; Schulten, K; Chipot, C.; Tajkhorshid, E. Scalable molecular
dynamics on CPU and GPU architectures with NAMD. J. Chem. Phys.
2020, 153, 44130.

(63) Stone, J. E.; Hynninen, A.-P.; Phillips, J. C.; Schulten, K. Early
Experiences Porting the NAMD and VMD Molecular Simulation and
Analysis Software to GPU-Accelerated OpenPOWER Platforms.

https://doi.org/10.1021/acs.jctc.1c01214
J. Chem. Theory Comput. 2022, 18, 4047—-4069

Journal of Chemical Theory and Computation

pubs.acs.org/JCTC

International Workshop on OpenPower for High Performance Computing
2016, 9945, 188—206.

(64) Delivering up to 9X the Throughput with NAMD v3 and NVIDIA
AIO0 GPU. https://developer.nvidia.com/blog/delivering-up-to-9x-
throughput-with-namd-v3-and-a100-gpu/ (accessed 2-14-2022).

(65) Van Der Spoel, D.; Lindahl, E.; Hess, B.; Groenhof, G.; Mark,
A. E; Berendsen, H. J. C. GROMACS: fast, flexible, and free. J.
Comput. Chem. 2005, 26, 1701—1718.

(66) Pronk, S.; Péll, S.; Schulz, R; Larsson, P.; Bjelkmar, P.;
Apostolov, R.; Shirts, M. R.; Smith, J. C.; Kasson, P. M.; van der
Spoel, D.; Hess, B.; Lindahl, E. GROMACS 4.5: a high-throughput
and highly parallel open source molecular simulation toolkit.
Bioinformatics 2013, 29, 845—854.

(67) P4ll, S.; Zhmurov, A; Bauer, P.; Abraham, M.; Lundborg, M.;
Gray, A.; Hess, B,; Lindahl, E. Heterogeneous parallelization and
acceleration of molecular dynamics simulations in GROMACS. J.
Chem. Phys. 2020, 153, 134110.

(68) Case, D. A.; Cheatham, T. E., 3rd; Darden, T.; Gohlke, H.;
Luo, R;; Merz, K. M,, Jr; Onufriev, A,; Simmerling, C.; Wang, B,;
Woods, R. J. The Amber biomolecular simulation programs. J.
Comput. Chem. 2008, 26, 1668—1688.

(69) Wang, J.; Wolf, R. M.; Caldwell, J. W.; Kollman, P. A.; Case, D.
A. Development and testing of a general amber force field. J. Comput.
Chem. 2004, 25, 1157—1174.

(70) Maier, J. A; Martinez, C.; Kasavajhala, K; Wickstrom, L.;
Hauser, K. E,; Simmerling, C. ff14SB: Improving the Accuracy of
Protein Side Chain and Backbone Parameters from ff99SB. J. Chem.
Theory Comput. 20185, 11, 3696—3713.

(71) Roe, D. R; Cheatham, T. E., 3rd PTRAJ and CPPTRAJ:
Software for Processing and Analysis of Molecular Dynamics
Trajectory Data.]. Chem. Theory Comput. 2013, 9, 3084—3095.

(72) Salomon-Ferrer, R,; Gotz, A. W.; Poole, D.; Le Grand, S.;
Walker, R. C. Routine Microsecond Molecular Dynamics Simulations
with AMBER on GPUs. 2. Explicit Solvent Particle Mesh Ewald. J.
Chem. Theory Comput. 2013, 9, 3878—3888.

(73) Le Grand, S.; Gotz, A. W.; Walker, R. C. SPFP: Speed without
compromise—A mixed precision model for GPU accelerated
molecular dynamics simulations. Comput. Phys. Commun. 2013, 184,
374—380.

(74) cuFFT. https://docs.nvidia.com/cuda/cufft/indexhtml (ac-
cessed 2-17-2022).

(75) Lee, T.-S.; Cerutti, D. S.; Mermelstein, D.; Lin, C.; LeGrand, S.;
Giese, T. J; Roitberg, A.; Case, D. A,; Walker, R. C.; York, D. M.
GPU-Accelerated Molecular Dynamics and Free Energy Methods in
Amberl8: Performance Enhancements and New Features. J. Chem.
Inf. Model. 2018, S8, 2043—2050.

(76) pmemd.cuda GPU Implementation. https://ambermd.org/
GPUPerformance.php (accessed 11-28-2021).

(77) Kutzner, C.; Pall, S.; Fechner, M.; Esztermann, A.; Groot, B. L.;
Grubmuller, H. More bang for your buck: Improved use of GPU
nodes for GROMACS 2018. J. Comput. Chem. 2019, 40, 2418—2431.

(78) Casalino, L.; Dommer, A. C.; Gaieb, Z.; Barros, E. P.; Sztain,
T.; Ahn, S.-H,; Trifan, A.; Brace, A.; Bogetti, A. T.; Clyde, A.,; Ma, H,;
Lee, H.; Turilli, M.; Khalid, S.; Chong, L. T.; Simmerling, C.; Hardy,
D.J.; Maia, J. D. C,; Phillips, J. C.; Kurth, T.; Stern, A. C.; Huang, L,;
McCalpin, J. D.; Tatineni, M.; Gibbs, T.; Stone, J. E; Jha, S;
Ramanathan, A.; Amaro, R. E. Al-driven multiscale simulations
illuminate mechanisms of SARS-CoV-2 spike dynamics. Int. . High
Perform. Comput. Appl. 2021, 35, 432—451.

(79) NAMD Performance. http://www.ks.uiuc.edu/Research/namd/
benchmarks/ (accessed 5-4-2021).

(80) Yang, Y. I; Shao, Q.; Zhang, J.; Yang, L.; Gao, Y. Q. Enhanced
sampling in molecular dynamics. J. Chem. Phys. 2019, 151, 070902.

(81) Case, D. A,; Aktulga, H. M.; Belfon, K;; Ben-Shalom, L Y,;
Brozell, S. R.; Cerutti, D. S.; Cheatham, T. E., III; Cruzeiro, V. W. D,;
Darden, T. A.; Duke, R. E.; Giambasu, G.; Gilson, M. K.; Gohlke, H.;
Goetz, A. W.; Harris, R;; Izadi, S.; Izmailov, S. A,; Jin, C.; Kasavajhala,
K.; Kaymak, M. C,; King, E.; Kovalenko, A.; Kurtzman, T.; Lee, T. S.;
LeGrand, S.; Li, P; Lin, C,; Liu, J.; Luchko, T.; Luo, R.; Machado, M;

4066

Man, V.,; Manathunga, M.; Merz, K. M.; Miao, Y.; Mikhailovskii, O.;
Monard, G.; Nguyen, H,; O’Hearn, K. A; Pantano; Qi, R;
Rahnamoun, A.; Roe, D. R.; Roitberg, A, Sagui, C; Schott-
Verdugo, S.; Shen, J.; Simmerling, C. L.; Skrynnikov, N. R.; Smith,
J.; Swails, J.; Walker, R. C.; Wang, J.; Wei, H.; Wolf, R. M,; Wu, X,;
Xue, Y.; York, D. M.; Zhao, S.; Kollman, P. A. Amber 2021. https://
ambermd.org/doc12/Amber21.pdf (accessed 5-4-2021).

(82) Welton, B.; Miller, B. Exposing Hidden Performance Oppor-
tunities in High Performance GPU Applications. 18th IEEE/ACM
International Symposium on Cluster, Cloud and Grid Computing;
CCGRID, 2018; pp 301—310.

(83) Kohnke, B.; Kutzner, C.; Beckmann, A.; Lube, G.; Kabadshow,
1; Dachsel, H.; Grubmiiller, H. A CUDA fast multipole method with
highly efficient M2L far field evaluation. Int. J. High Perform. Comput.
Appl. 2021, 35, 97—117.

(84) No¢, F.; Tkatchenko, A.; Miiller, K.-R.; Clementi, C. Machine
Learning for Molecular Simulation. Annu. Rev. Phys. Chem. 2020, 71,
361-390.

(85) Doerr, S.; Majewski, M.; Pérez, A.; Krimer, A.; Clementi, C.;
Noe, F.; Giorgino, T.; De Fabritiis, G. TorchMD: A Deep Learning
Framework for Molecular Simulations. J. Chem. Theory Comput. 2021,
17, 2355-2363.

(86) CUDA Toolkit. https://developer.nvidia.com/cuda-toolkit
(accessed 11-29-2021).

(87) Sirowy, S.; Forin, A. Where's the beef? Why FPGAs are so fast.
https://www.microsoft.com/en-us/research/wp-content/uploads/
2016/02/tr-2008-130.pdf (accessed 9-30-2021), 2008.

(88) Kastner, R.; Matai, J.; Neuendorffer, S. Parallel Programming for
FPGAs. 2018, arXiv preprint arXiv:1805.03648. https://arxiv.org/abs/
1805.03648 (accessed 9-30-2021).

(89) Bacon, D. F,; Rabbah, R.; Shukla, S. FPGA programming for
the masses. Commun. ACM 2013, 56, 56—63.

(90) Vetter, J. S.; Brightwell, R.; Gokhale, M.; Mccormick, P.; Ross,
R.; Shalf, J.; Antypas, K; Donofrio, D.; Humble, T.; Schuman, C.;
Van Essen, B.; Yoo, S.; Aiken, A.; Bernholdt, D.; Byna, S.; Cameron,
K.; Cappello, F.; Chapman, B.; Chien, A.; Hall, M.; Hartman-Baker,
R; Lan, Z.; Lang, M,; Leidel, J; Li, S.; Lucas, R.; Mellor-Crummey, J.;
Peltz, P., Jr; Peterka, T.; Strout, M.; Wilke, J. Extreme Heterogeneity
2018—Productive Computational Science in the Era of Extreme
Heterogeneity: Report for DOE ASCR Workshop on Extreme
Heterogeneity; 2018.

(91) Auerbach, J.; Bacon, D. F.; Burcea, L; Cheng, P.; Fink, S. J;
Rabbah, R; Shukla, S. A compiler and runtime for heterogeneous
computing. Proceedings of the 49th Annual Design Automation
Conference; New York, NY, 2012; pp 271-276.

(92) Auerbach, J.; Bacon, D. F.; Cheng, P.; Rabbah, R. Lime: a Java-
compatible and synthesizable language for heterogeneous architec-
tures. Proceedings of the ACM International Conference on Object
Oriented Programming Systems Languages and Applications; New York,
NY, 2010; pp 89—108.

(93) Chamberlain, R. D. Architecturally truly diverse systems: A
review. Future Gener. Comput. Syst. 2020, 110, 33—44.

(94) Czajkowski, T. S.; Aydonat, U.; Denisenko, D.; Freeman, J.;
Kinsner, M.; Neto, D.; Wong, J.; Yiannacouras, P.; Singh, D. P. From
Opencl to High-Performance Hardware on FPGAS. 22nd Interna-
tional Conference on Field Programmable Logic and Applications (FPL);
2012; pp S31-534.

(95) An Independent Evaluation of: The AutoESL AutoPilot High-Level
Synthesis Tool; Berkeley Design Technology, Inc.: Berkely, CA, 2010.

(96) Greaves, D.; Singh, S. Designing application specific circuits
with concurrent C# programs. Eighth ACM/IEEE International
Conference on Formal Methods and Models for Codesign; MEMO-
CODE, 2010; pp 21-30.

(97) Bachrach, J.; Vo, H; Richards, B.; Lee, Y.; Waterman, A
Avizienis, R.;; Wawrzynek, J; Asanovic, K. Chisel: Constructing
Hardware in a Scala Embedded Language. https://people.eecs.
berkeley.edu/~jrb/papers/chisel-dac-2012-corrected.pdf (accessed
10-19-2021).

https://doi.org/10.1021/acs.jctc.1c01214
J. Chem. Theory Comput. 2022, 18, 4047—-4069

Journal of Chemical Theory and Computation

pubs.acs.org/JCTC

(98) Yang, C.; Geng, T.; Wang, T.; Patel, R;; Xiong, Q.; Sanaullah,
A.; Wy, C,; Sheng, J; Lin, C.; Sachdeva, V.; Sherman, W.; Herbordt,
M. Fully integrated FPGA molecular dynamics simulations. SC ‘19:
Proceedings of the International Conference for High Performance
Computing, Networking, Storage and Analysis. 2019; pp 1-31.

(99) Yang, C.; Geng, T.; Wang, T.; Lin, C.; Sheng, J.; Sachdeva, V.;
Sherman, W.; Herbordt, M. Molecular Dynamics Range-Limited Force
Evaluation Optimized for FPGAs. IEEE 30™ International Conference on
Application-specific Systems, Architectures and Processors (ASAP). 2019;
pp 263—271.

(100) Gu, Y; Vancourt, T.; Herbordt, M. C. Explicit Design of
FPGA-Based Coprocessors for Short-Range Force Computations in
Molecular Dynamics Simulations. Parallel Comput 2008, 34, 261—
277.

(101) Alam, S. R;; Agarwal, P. K; Smith, M. C; Vetter, J. S.; Caliga,
D. Using FPGA Devices to Accelerate Biomolecular Simulations.
Computer 2007, 40, 66—73.

(102) Kindratenko, V.; Pointer, D. A case study in porting a
production scientific supercomputing application to a reconfigurable
computer. 14th Annual IEEE Symposium on Field-Programmable
Custom Computing Machines; FCCM, 2006; pp 13—22.

(103) Gu, Y; Van Court, T.; DiSabello, D.; Herbordt, M. C.
Preliminary report: FPGA acceleration of molecular dynamics
computations. 13" Annual IEEE Symposium on Field-Programmable
Custom Computing Machines; FCCM ,2005; pp 269—270.

(104) Gu, Y.; VanCourt, T.; Herbordt, M. C. Improved
Interpolation and System Integration for FPGA-Based Molecular
Dynamics Simulations. 2006 International Conference on Field
Programmable Logic and Applications. 2006; pp 1—8.

(105) Scrofano, R.; Prasanna, V. K. Preliminary Investigation of
Advanced Electrostatics in Molecular Dynamics on Reconfigurable
Computers. SC '06: Proceedings of the 2006 ACM/IEEE Conference
on Supercomputing. 2006; pp 45—4S.

(106) Scrofano, R.; Gokhale, M.; Trouw, F.; Prasanna, V. K.
Hardware/Software Approach to Molecular Dynamics on Reconfigurable
Computers. 2006 14" Annual IEEE Symposium on Field-Programmable
Custom Computing Machines. 2006; pp 23—34.

(107) Gokhale, M. B.; Rickett, C. D.; Hsu, C. H. Promises and
Pitfalls of Reconfigurable Supercomputing. Proceedings of the Interna-
tional Conference on Engineering of Reconfigurable Systems & Algorithms
(ERSA) 2006, 11-20.

(108) Scrofano, R.; Prasanna, V. K. Computing Lennard-Jones
Potentials and Forces with Reconfigurable Hardware. Proceedings of
the International Conference on Engineering of Reconfigurable Systems &
Algorithms (ERSA) 2004, 284—292.

(109) Azizi, N; Kuon, L; Egier, A; Darabiha, A; Chow, P.
Reconfigurable molecular dynamics simulator. 12" Annual IEEE
Symposium on Field-Programmable Custom Computing Machines;
FCCM, 2004; pp 197—206.

(110) TM-3 documentation. https://www.eecg.utoronto.ca/~tm3/
(accessed 10-10-2021).

(111) Gu, Y.; VanCourt, T.; Herbordt, M. C. Accelerating molecular
dynamics simulations with configurable circuits. International Confer-
ence on Field Programmable Logic and Applications. 2005; pp 475—480.

(112) Annapolis Micro Systems, Inc, WILDSTAR II Pro PCL. http://
pdf.cloud.opensystemsmedia.com/xtca-systems.com/19243.pdf (ac-
cessed 5-13-2021).

(113) Chiu, M.; Khan, M. A.; Herbordt, M. C. Efficient Calculation of
Pairwise Nonbonded Forces. 2011 IEEE 19" Annual International
Symposium on Field-Programmable Custom Computing Machines;
FCCM, 2011; pp 73—76.

(114) Matthey, T.; Cickovski, T.; Hampton, S.; Ko, A;; Ma, Q.;
Nyerges, M.; Raeder, T.; Slabach, T.; Izaguirre, J. A. ProtoMol, an
object-oriented framework for prototyping novel algorithms for
molecular dynamics. ACM Trans. Math. Softw. 2004, 30, 237—265.

(115) Agarwal, P. K; Alam, S. R. Biomolecular simulations on
petascale: promises and challenges. J. Phys.: Conf. Ser. 2006, 46, 327—
333.

4067

(116) Villarreal, J.; Najjar, W. A. Compiled hardware acceleration of
Molecular Dynamics code. International Conference on Field Program-
mable Logic and Applications. 2008; pp 667—670.

(117) Shaw, D. E; Chao, J. C.; Eastwood, M. P.; Gagliardo, J;
Grossman, J. P.; Ho, C. R;; Ierardi, D. J.; Kolossvéry, I.; Klepeis, J. L.;
Layman, T.; McLeavey, C.; Deneroff, M. M.; Moraes, M. A.; Mueller,
R,; Priest, E. C.; Shan, Y.; Spengler, J.; Theobald, M.; Towles, B.;
Wang, S. C,; Dror, R. O.; Kuskin, J. S;; Larson, R. H.; Salmon, J. K;;
Young, C.; Batson, B.; Bowers, K. J. Anton, a special-purpose machine
for molecular dynamics simulation. Proceedings of the 34" Annual
International Symposium on Computer Architecture—ISCA "07, 2007.

(118) Taiji, M.; Narumi, T.; Ohno, Y.; Futatsugi, N.; Suenaga, A.;
Takada, N.; Konagaya, A. Protein Explorer: A Petaflops Special-Purpose
Computer System for Molecular Dynamics Simulations. SC 03:
Proceedings of the International Conference for High Performance
Computing, Networking, Storage and Analysis; New York, NY, 2003;
p 1S

(119) Fine, R; Dimmler, G.; Levinthal, C. FASTRUN: a special
purpose, hardwired computer for molecular simulation. Proteins:
Struct.,, Funct,, Bioinf. 1991, 11, 242—253.

(120) Toyoda, S; Miyagawa, H.; Kitamura, K; Amisaki, T.;
Hashimoto, E.; Ikeda, H.; Kusumi, A.; Miyakawa, N. Development
of MD Engine: High-speed accelerator with parallel processor design
for molecular dynamics simulations. J. Comput. Chem. 1999, 20, 185—
199.

(121) Bakker, A. F.; Bruin, C.; van Dieren, F.; Hilhorst, H. J.
Molecular dynamics of 16000 Lennard-Jones particles. Phys. Lett. A
1982, 93, 67—69.

(122) Bakker, A. F.; Bruin, C. In Special Purpose Computers; Alder, B.
J., Ed;; Academic Press: Cambridge, UK., 1988; pp 183—232.

(123) Fincham, D.; Ralston, B.J. Molecular Dynamics Simulation
Using the CRAY-i Vector Processing Computer. Comput. Phys.
Commun. 1981, 23, 127—134.

(124) Bell, G; Bailey, D. H.; Dongarra, J.; Karp, A. H.; Walsh, K. A
look back on 30 years of the Gordon Bell Prize. Int. J. High Perform.
Comput. Appl. 2017, 31, 469—484.

(125) Sugimoto, D.; Chikada, Y.; Makino, J.; Ito, T.; Ebisuzaki, T.;
Umemura, M. A special-purpose computer for gravitational many-
body problems. Nature 1990, 345, 33—35.

(126) Ito, T.; Makino, J.; Ebisuzaki, T.; Sugimoto, D. A special-
purpose N-body machine GRAPE-1. Comput. Phys. Commun. 1990,
60, 187—194.

(127) Fukushige, T.; Taiji, M.; Makino, J.; Ebisuzaki, T.; Sugimoto,
D. A Highly Parallelized Special-Purpose Computer For Many-Body
Simulations With An Arbitrary Central Force: MD-GRAPE. As-
trophys. J. 1996, 468, S1.

(128) Komeiji, Y.; Yokoyama, H.; Uebayasi, M.; Taiji, M,;
Fukushige, T.; Sugimoto, D.; Takata, R,; Shimizu, A; Itsukashi, K.
A high performance system for molecular dynamics simulation of
biomolecules using a special-purpose computer. Pac. Symp. Biocomput.
1996, 472—487.

(129) Komeiji, Y.; Uebayasi, M.; Takata, R.; Shimizu, A.; Itsukashi,
K.; Taiji, M. Fast and accurate molecular dynamics simulation of a
protein using a special-purpose computer. J. Comput. Chem. 1997, 18,
1546—1563.

(130) Susukita, R.; Ebisuzaki, T.; Elmegreen, B. G.; Furusawa, H,;
Kato, K; Kawai, A.; Kobayashi, Y.; Koishi, T.; McNiven, G. D,;
Narumi, T.; Yasuoka, K. Hardware accelerator for molecular
dynamics: MDGRAPE-2. Comput. Phys. Commun. 2003, 155, 115—
131.

(131) Narumi, T.; Susukita, R.; Furusawa, H.; Ebisuzaki, T. 46
TFLOPS special-purpose computer for molecular dynamics simu-
lations: WINE-2. Proceedings of the $™ International Conference on
Signal Processing; 2000; pp 575—582.

(132) Bhatele, A.; Kumar, S.; Mei, C.; Phillips, J. C.; Zheng, G.; Kale,
L. V. Overcoming scaling challenges in biomolecular simulations
across multiple platforms. IEEE International Symposium on Parallel
and Distributed Processing 2008, 1—12.

https://doi.org/10.1021/acs.jctc.1c01214
J. Chem. Theory Comput. 2022, 18, 4047—-4069

Journal of Chemical Theory and Computation

pubs.acs.org/JCTC

(133) Brooks, B. R; Bruccoleri, R. E.; Olafson, B. D.; States, D. J.;
Swaminathan, S.; Karplus, M. CHARMM: A program for macro-
molecular energy, minimization, and dynamics calculations. J. Comput.
Chem. 1983, 4, 187—217.

(134) Ohmura, I; Morimoto, G.; Ohno, Y,; Hasegawa, A.; Taiji, M.
MDGRAPE-4: a special-purpose computer system for molecular
dynamics simulations. Philos. Trans. R. Soc, A 2014, 372, 20130387.

(135) Komatsu, T. S.; Okimoto, N.; Koyama, Y. M.; Hirano, Y.;
Morimoto, G.; Ohno, Y.; Taiji, M. Drug binding dynamics of the
dimeric SARS-CoV-2 main protease, determined by molecular
dynamics simulation. Sci. Rep. 2020, 10, 16986.

(136) MDGRAPE-4A. https://www.r-ccs.riken.jp/exhibit (accessed
5-92021).

(137) Larson, R. H.; Salmon, J. K; Dror, R. O.; Deneroff, M. M.;
Young, C.; Grossman, J. P.; Shan, Y.; Klepeis, J. L.; Shaw, D. E. High-
throughput pairwise point interactions in Anton, a specialized
machine for molecular dynamics simulation. IEEE 14" International
Symposium on High Performance Computer Architecture; 2008; pp
331-342.

(138) Kuskin, J. S.; Young, C.; Grossman, J. P.; Batson, B.; Deneroff,
M. M,; Dror, R. O.; Shaw, D. E. Incorporating flexibility in Anton, a
specialized machine for molecular dynamics simulation. IEEE 14
International Symposium on High Performance Computer Architecture;
2008; pp 343—354.

(139) Shaw, D. E.; Adams, P. J.; Azaria, A.; Bank, J. A.; Batson, B.;
Bell, A.; Bergdorf, M.; Bhatt, J.; Butts, J. A.; Correia, T.; Dirks, R. M;
Dror, R. O.; Eastwood, M. P.; Edwards, B.; Even, A.; Feldmann, P.;
Fenn, M,; Fenton, C. H.; Forte, A.; Gagliardo, J.; Gill, G.; Gorlatova,
M,; Greskamp, B.; Grossman, J. P.; Gullingsrud, J.; Harper, A;
Hasenplaugh, W.; Heily, M.; Heshmat, B. C.; Hunt, J.; Ierardi, D. J.;
Iserovich, L.; Jackson, B. L.; Johnson, N. P.; Kirk, M. M.; Klepeis, J.
L.; Kuskin, J. S.; Mackenzie, K. M.; Mader, R. J.; McGowen, R;
McLaughlin, A,; Moraes, M. A; Nasr, M. H,; Nociolo, L. J;
O’Donnell, L.; Parker, A,; Peticolas, J. L.; Pocina, G.; Predescu, C,;
Quan, T,; Salmon, J. K; Schwink, C; Shim, K. S.; Siddique, N.;
Spengler, J.; Szalay, T.; Tabladillo, R; Tartler, R; Taube, A. G;
Theobald, M.; Towles, B.; Vick, W.; Wang, S. C.; Wazlowski, M.;
Weingarten, M. J.; Williams, J. M;; Yuh, K. A. Anton 3: Twenty
Microseconds of Molecular Dynamics Simulation before Lunch. SC 21:
Proceedings of the International Conference for High Performance
Computing, Networking, Storage and Analysis; New York, NY, 2021;
pp 1-11.

(140) Anton 2: Raising the Bar for Performance and Programmability
in a Special-Purpose Molecular Dynamics Supercomputer. SC ’'14:
Proceedings of the International Conference for High Performance
Computing, Networking, Storage and Analysis; 2014; pp 41—53.

(141) Shaw, D. E; Dror, R. O.; Salmon, J. K; Grossman, J. P.;
Mackenzie, K. M.; Bank, J. A.; Young, C.; Deneroff, M. M.; Batson, B.;
Bowers, K. J.; Chow, E.; Eastwood, M. P.; Ierardi, D. J.; Klepeis, J. L.;
Kuskin, J. S.; Larson, R. H, Lindorff-Larsen, K; Maragakis, P.;
Moraes, M. A.; Piana, S.; Shan, Y.; Towles, B. Millisecond-scale
molecular dynamics simulations on Anton. SC ‘09: Proceedings of the
Conference on High Performance Computing Networking. Storage
and Analysis 2009, 1—-11.

(142) Predescu, C.; Lerer, A. K; Lippert, R. A; Towles, B,;
Grossman, J. P.; Dirks, R. M.; Shaw, D. E. The u-series: A separable
decomposition for electrostatics computation with improved accu-
racy. J. Chem. Phys. 2020, 152, 084113.

(143) S, K. T.; Noriaki, O.; M, K. Y.; Yoshinori, H.; Gentaro, M.;
Yousuke, O.; Makoto, T. Molecular dynamics trajectories for SARS-
CoV-2 Mpro with 7 HIV inhibitors. https://zenodo.org/record/
3975394#.YXe99dnM]Jro (accessed 5-9-2021).

(144) Okimoto, N,; Futatsugi, N.; Fuji, H.; Suenaga, A.; Morimoto,
G.; Yanai, R.; Ohno, Y.; Narumi, T.; Taiji, M. High-performance drug
discovery: computational screening by combining docking and
molecular dynamics simulations. PLoS Comput. Biol. 2009, S,
No. e1000528.

4068

(145) Khokhar, A. A; Prasanna, V. K.; Shaaban, M. E.; Wang, C.-L.
Heterogeneous computing: challenges and opportunities. Computer
1993, 26, 18-27.

(146) Brodtkorb, A. R; Dyken, C.; Hagen, T. R;; Hjelmervik, J. M.;
Storaasli, O. O. State-of-the-art in Heterogeneous Computing. Sci.
Program. 2010, 18, 1-33.

(147) Mitra, T. Heterogeneous Multi-core Architectures. IPS].
Trans. Syst. LSI Des. Methodol. 20185, 8, 51—62.

(148) Mittal, S.; Vetter, J. S. A Survey of CPU-GPU Heterogeneous
Computing Techniques. ACM Comput. Surv. 2015, 47, 1-35.

(149) Hagleitner, C.; Diamantopoulos, D.; Ringlein, B.; Evangelinos,
C.; Johns, C; Chang, R. N.; D’Amora, B.; Kahle, J. A,; Sexton, J;
Johnston, M.; Pyzer-Knapp, E.; Ward, C. Heterogeneous Computing
Systems for Complex Scientific Discovery Workflows. Proceedings of
the Design, Automation Test in Europe Conference (DATE); 2021; pp
13-18.

(150) Di Natale, F.; Bhatia, H.; Carpenter, T. S.; Neale, C.; Kokkila-
Schumacher, S.; Oppelstrup, T.; Stanton, L.; Zhang, X,; Sundram, S.;
Scogland, T. R. W.; Dharuman, G.; Surh, M. P,; Yang, Y.; Misale, C.;
Schneidenbach, L.; Costa, C.; Kim, C.; D’Amora, B.; Gnanakaran, S,;
Nissley, D. V.; Streitz, F.; Lightstone, F. C.; Bremer, P.-T.; Glosli, J.
N,; Ingdlfsson, H. I. A massively parallel infrastructure for adaptive
multiscale simulations: modeling RAS initiation pathway for cancer.
SC “19: Proceedings of the International Conference for High Performance
Computing, Networking, Storage and Analysis; 2019; pp 1—16.

(151) oneAPI Programming Model. https://www.oneapiio/ (ac-
cessed 10-18-2021), 2021.

(152) Wang, S; Prakash, A; Mitra, T. Software Support for
Heterogeneous Computing. IEEE Computer Society Annual Symposium
on VLSI; ISVLSI, 2018; pp 756—762.

(153) AMD ROCm Release Notes v4.1—ROCm Documentation 1.0.0
documentation. https://rocmdocs.amd.com/en/latest/Current_
Release Notes/Current-Release-Notes.html (accessed 3-24-2021).

(154) pmemd.cuda GPU Implementation. https://ambermd.org/
GPUPerformance.php (accessed 1-10-2021).

(155) OpenMM. https://openmm.org/benchmarks (accessed 1-10-
2021).

(156) Harvey, M. J.; Giupponi, G.; Fabritiis, G. D. ACEMD:
Accelerating Biomolecular Dynamics in the Microsecond Time Scale.
J. Chem. Theory Comput. 2009, S, 1632—1639.

(157) Durrant, J. D.; Kochanek, S. E.; Casalino, L.; leong, P. U,;
Dommer, A. C.; Amaro, R. E. Mesoscale All-Atom Influenza Virus
Simulations Suggest New Substrate Binding Mechanism. ACS Cent
Sci. 2020, 6, 189—196.

(158) Jung, J.; Nishima, W.; Daniels, M.; Bascom, G.; Kobayashi, C.;
Adedoyin, A.; Wall, M.; Lappala, A.; Phillips, D.; Fischer, W.; Tung,
C.-S.; Schlick, T.; Sugita, Y.; Sanbonmatsu, K. Y. Scaling molecular
dynamics beyond 100,000 processor cores for large-scale biophysical
simulations. J. Comput. Chem. 2019, 40, 1919—1930.

(159) Freddolino, P. L.; Arkhipov, A. S.; Larson, S. B.; McPherson,
A.; Schulten, K. Molecular dynamics simulations of the complete
satellite tobacco mosaic virus. Structure 2006, 14, 437—449.

(160) Noé, F. In Machine Learning Meets Quantum Physics; Schiitt,
K. T., Chmiela, S., von Lilienfeld, O. A., Tkatchenko, A., Tsuda, K,,
Miiller, K.-R., Eds.; Springer: Cambridge, 2020; pp 331—-372.

(161) Jones, D.; Kim, H,; Zhang, X,; Zemla, A; Stevenson, G;
Bennett, W. F. D.; Kirshner, D.; Wong, S. E.; Lightstone, F. C.; Allen,
J. E. Improved Protein-Ligand Binding Affinity Prediction with
Structure-Based Deep Fusion Inference. J. Chem. Inf. Model. 2021, 61,
1583—1592.

(162) Lay, E. Y;; Negrete, O. A.; Bennett, W. F. D.; Bennion, B. J,;
Borucki, M.; Bourguet, F.; Epstein, A.; Franco, M.; Harmon, B.; He,
S.; Jones, D.; Kim, H.; Kirshner, D.; Lao, V.; Lo, J.; McLoughlin, K;;
Mosesso, R.; Murugesh, D. K.; Saada, E. A.; Segelke, B.; Stefan, M. A,;
Stevenson, G. A.; Torres, M. W.; Weilhammer, D. R.; Wong, S.; Yang,
Y,; Zemla, A; Zhang, X;; Zhu, F.; Allen, J. E,; Lightstone, F. C.
Discovery of Small-Molecule Inhibitors of SARS-CoV-2 Proteins
Using a Computational and Experimental Pipeline. Front. Mol. Biosci.
2021, 8, 678701.

https://doi.org/10.1021/acs.jctc.1c01214
J. Chem. Theory Comput. 2022, 18, 4047—-4069

Journal of Chemical Theory and Computation

pubs.acs.org/JCTC

(163) Stevenson, G. A.; Jones, D.; Kim, H.; Bennett, W. F. D.;
Bennion, B. J.; Borucki, M.; Bourguet, F.; Epstein, A.; Franco, M.;
Harmon, B.; He, S.; Katz, M. P.; Kirshner, D.; Lao, V.; Lau, E. Y.; Lo,
J; McLoughlin, K;; Mosesso, R.; Murugesh, D. K.; Negrete, O. A,;
Saada, E. A; Segelke, B.; Stefan, M.; Torres, M. W.; Weilhammer, D.;
Wong, S.; Yang, Y.; Zemla, A,; Zhang, X; Zhu, F.; Lightstone, F. C,;
Allen, J. E. High-throughput virtual screening of small molecule
inhibitors for SARS-CoV-2 protein targets with deep fusion models.
SC “21: Proceedings of the International Conference for High Performance
Computing, Networking, Storage and Analysis; New York, NY, 2021; pp
1-13.

(164) Schoenholz, S. S.; Cubuk, E. D.JAX MD: End-to-End
Differentiable, Hardware Accelerated, Molecular Dynamics in Pure
Python; 2019.

(165) Bradbury, J.; Frostig, R.; Hawkins, P.; Johnson, M. J.; Leary,
C.; Maclaurin, D.; Necula, G.; Paszke, A.; VanderPlas, J.; Wanderman-
Milne, S,; Zhang, Q. JAX: composable transformations of Python
+NumPy programs. http://github.com/google/jax (accessed 11-30-
2021).

(166) Jouppi, N. P.; Yoon, D. H.; Kurian, G.; Li, S.; Patil, N.;
Laudon, J; Young, C.; Patterson, D. A domain-specific super-
computer for training deep neural networks. Commun. ACM 2020, 63,
67-78.

(167) Paszke, A.; Gross, S.; Massa, F.; Lerer, A; Bradbury, J;
Chanan, G.; Killeen, T,; Lin, Z.; Gimelshein, N.,; Antiga, L.;
Desmaison, A.; Kopf, A.; Yang, E.; DeVito, Z.; Raison, M.; Tejani,
A.; Chilamkurthy, S.; Steiner, B.; Fang, L, Bai, J.; Chintala, S. In
Advances in Neural Information Processing Systems 32; Wallach, H.,,
Larochelle, H., Beygelzimer, A., d’ Alché-Buc, F., Fox, E., Garnett, R,,
Eds.; Curran Associates, Inc.: Red Hook, NY, 2019; pp 8024—8035.

(168) Amodei, D.; Hernandez, D.; Sastry, G.; Clark, J.; Brockman,
G.; Sutskever, I. AI and Compute. https://openai.com/blog/ai-and-
compute/ (accessed 5-6-2021).

(169) Cerebras Systems: Achieving Industry Best AI Performance
Through A Systems Approach. https://cerebras.net/wp-content/
uploads/2021/04/Cerebras-CS-2-Whitepaper.pdf (accessed $-6-
2021).

(170) Accelerated Computing with a Reconfigurable Dataflow
Architecture. https://sambanova.ai/wp-content/uploads/2021/06/
SambaNova_ RDA_Whitepaper English.pdf (accessed 5-6-2021).

(171) Jia, Z; Tillman, B.; Maggioni, M.; Scarpazza, D. P. Dissecting
the Graphcore IPU Architecture via Microbenchmarking. arXiv preprint
arXiv:1912.03413. https://arxiv.org/abs/1912.03413 (accessed 9-30-
2021).

(172) Hopkins, C. W.; Le Grand, S.; Walker, R. C.; Roitberg, A. E.
Long-Time-Step Molecular Dynamics through Hydrogen Mass
Repartitioning. J. Chem. Theory Comput. 2015, 11, 1864—1874.

(173) Tironi, L. G.; Sperb, R;; Smith, P. E.; van Gunsteren, W. F. A
generalized reaction field method for molecular dynamics simulations.
J. Chem. Phys. 1995, 102, 5451—5459.

(174) Eastman, P.; Pande, V. S. OpenMM: A Hardware
Independent Framework for Molecular Simulations. Comput. Sci.
Eng. 2010, 12, 34-39.

(175) Car, R; Parrinello, M. Unified approach for molecular
dynamics and density-functional theory. Phys. Rev. Lett. 1985, SS,
2471-2474.

(176) Zhang, L.; Han, J.; Wang, H.; Saidi, W. A; Car, R.; Weinan, E.
End-to-end Symmetry Preserving Inter-atomic Potential Energy Model for
Finite and Extended Systems. arXiv preprint arXiv:1805.09003. https://
arxiv.org/abs/1805.09003 (accessed 9-30-2021).

(177) Zhang, L.; Han, J.; Wang, H.; Car, R;; E, W. Deep Potential
Molecular Dynamics: A Scalable Model with the Accuracy of
Quantum Mechanics. Phys. Rev. Lett. 2018, 120, 143001.

(178) Zhang, Y.; Wang, H.; Chen, W.; Zeng, J.; Zhang, L.; Wang,
H.; Weinan, E. DP-GEN: A concurrent learning platform for the
generation of reliable deep learning based potential energy models.
Comput. Phys. Commun. 2020, 253, 107206.

(179) Plimpton, S. Fast Parallel Algorithms for Short-Range
Molecular Dynamics. J. Comput. Phys. 1995, 117, 1-19.

4069

(180) Lu, D; Wang, H,; Chen, M; Lin, L,; Car, R.; E, W,; Jia, W.;
Zhang, L. 86 PFLOPS Deep Potential Molecular Dynamics
simulation of 100 million atoms with ab initio accuracy. Comput.
Phys. Commun. 2021, 259, 107624.

(181) Sugita, Y.; Okamoto, Y. Replica-exchange molecular dynamics
method for protein folding. Chem. Phys. Lett. 1999, 314, 141—151.

(182) Laio, A.; Parrinello, M. Escaping free-energy minima. Proc.
Natl. Acad. Sci. U. S. A. 2002, 99, 12562—12566.

(183) Babin, V.; Roland, C.; Sagui, C. Adaptively biased molecular
dynamics for free energy calculations. J. Chem. Phys. 2008, 128,
134101.

(184) PLUMED consortium, Promoting transparency and reprodu-
cibility in enhanced molecular simulations. Nat. Methods 2019, 16,
670—673.

(185) Tribello, G. A.; Bonomi, M.; Branduardi, D.; Camilloni, C.;
Bussi, G. PLUMED 2: New feathers for an old bird. Comput. Phys.
Commun. 2014, 185, 604—613.

(186) Scarpazza, D. P.; Ierardi, D. J.; Lerer, A. K.; Mackenzie, K. M;
Pan, A. C; Bank, J. A;; Chow, E,; Dror, R. O.; Grossman, J. P;
Killebrew, D.; Moraes, M. A,; Predescu, C.; Salmon, J. K; Shaw, D. E.
Extending the Generality of Molecular Dynamics Simulations on a
Special-Purpose Machine. IEEE 27th International Symposium on
Parallel and Distributed Processing 2013, 933—945.

(187) Pan, A. C.; Weinreich, T. M.; Piana, S.; Shaw, D. E.
Demonstrating an Order-of-Magnitude Sampling Enhancement in
Molecular Dynamics Simulations of Complex Protein Systems.].
Chem. Theory Comput. 2016, 12, 1360—1367.

(188) Pan, A. C.; Jacobson, D.; Yatsenko, K. Sritharan, D.;
Weinreich, T. M.; Shaw, D. E. Atomic-level characterization of
protein-protein association. Proc. Natl. Acad. Sci. U. S. A. 2019, 116,
4244—4249.

(189) Marinari, E.; Parisi, G. Simulated tempering: A new Monte
Carlo scheme. EPL 1992, 19, 451—458.

(190) Wu, C; Geng, T.; Yang, C.; Sachdeva, V.; Sherman, W.;
Herbordt, M. A Communication-Efficient Multi-Chip Design for
Range-Limited Molecular Dynamics. IEEE High Performance Extreme
Computing Conference; HPEC, 2020; pp 1-8.

(191) Zhang, J.; Yang, Y. L; Noé, F. Targeted Adversarial Learning
Optimized Sampling. J. Phys. Chem. Lett. 2019, 10, 5791-5797.

(192) Noé, F; Olsson, S.; Kohler, J.; Wu, H. Boltzmann generators:
Sampling equilibrium states of many-body systems with deep learning.
Science 2019, 365. DOI: 10.1126/science.aaw1147

https://doi.org/10.1021/acs.jctc.1c01214
J. Chem. Theory Comput. 2022, 18, 4047—-4069

