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ABSTRACT

In this paper, we study the “decoding” problem for discrete-time, sto-
chastic hybrid systems with linear dynamics in each mode. Given an
output trace of the system, the decoding problem seeks to construct
a sequence of modes and states that yield a trace “as close as possi-
ble” to the original output trace. The decoding problem generalizes
the state estimation problem, and is applicable to hybrid systems
with non-determinism. The decoding problem is NP-complete, and
can be reduced to solving a mixed-integer linear program (MILP).
In this paper, we decompose the decoding problem into two parts:
(a) finding a sequence of discrete modes and transitions; and (b)
finding corresponding continuous states for the mode/transition se-
quence. In particular, once a sequence of modes/transitions is fixed,
the problem of “filling in” the continuous states is performed by a
linear programming problem. In order to support the decomposi-
tion, we “cover” the set of all possible mode/transition sequences by
a finite subset. We use well-known probabilistic arguments to jus-
tify a choice of cover with high confidence and design randomized
algorithms for finding such covers. Our approach is demonstrated
on a series of benchmarks, wherein we observe that relatively tiny
fraction of the possible mode/transition sequences can be used as a
cover. Furthermore, we show that the resulting linear programs can
be solved rapidly by exploiting the tree structure of the set cover.
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1 INTRODUCTION

In this paper, given a sequence of possibly noisy output values from
a hybrid automaton we consider the problem of reconstructing a
sequences of modes, transitions and continuous states for a hybrid
automaton whose output is as close as possible to the given input
sequence. Inspired by a similar problem of decoding for Hidden
Markov models (HMMs) that involves constructing the most likely
sequence of latent states given an output sequence, we call this
the decoding problem for hybrid automata [20]. Specifically, we
consider hybrid systems whose modes have discrete-time linear
dynamics with polyhedral transition guards and linear updates on
transitions. This class of hybrid automata has been shown to be very
useful in modeling a variety of important applications [13]. The
decoding problem is closely related to that of observer design with
the key difference being that observers reconstruct the single state
at the end of an output sequence, whereas decoding reconstructs an
entire sequence of (latent) states. For deterministic systems, both
problems are essentially equivalent. However, in the presence of
non-determinism (common in many hybrid automata models), the
sequence of states adds more information than a single state.

Our approach first proves that the problem of finding if there is a
sequence of modes, transitions and continuous states whose outputs
are e-close to a given output sequence is NP-complete. Furthermore,
it is possible to reduce this to solving a mixed integer linear program
(MILP) along the lines of well-known results from Bemporad et
al [1, 3]. However, solving this MILP is exponential in the size of
the hybrid automaton and the length of the sequence, in the worst-
case. In this paper, we consider a relaxation of this problem by
first computing a finite cover consisting of a set of mode/transition
sequences without the continuous state information. The desired
property of such a cover is that for every given output sequence,
there is a sequence in the cover which can produce an output
sequence that is € close to the given sequence under a suitable
norm (we use Lo norm in this paper but our approach can handle
L or Ly norms as well, with modifications). Once a cover is found, it
is possible to solve the decoding problem approximately by solving
as many LPs as the size of the cover. In practice, this drastically
reduces the time to solve the decoding problem, since we find that
the size of the cover is relatively small.

However, it is a computationally hard problem to verify if a
given set C is a cover, let alone finding a cover. Our approach uses
randomization by relaxing the notion of cover to be a probabilistic
one. Le, rather than covering all output sequences, we define a
distribution over output sequences and ask that the set covers
output sequences with probability at least 1—« for a given «. In order
to find a cover, we use a randomized algorithm based on sampling
and verify a cover in a statistical sense. Our approach here borrows
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ideas from statistical model checking [10, 16, 25] and related ideas
from randomized solution to control design problems [7, 22]. Our
sampling-based verification algorithm grows a candidate cover set
and in each iteration attempts to verify it by generating samples.
If unsuccessful, the algorithm adds more samples to the candidate
cover set. When successful, it produces a cover set with the required
probabilistic guarantees.

We have empirically evaluated our approach on seven bench-
mark examples of hybrid automata with 4 — 10 state variables and
upto 400 modes. Our approach considers relatively long output se-
quences with upto 100 steps. We show that the MILP solver is often
incapable of solving large problems within the given time budget.
On the other hand, for each example, we discover relatively small
cover sets whose sizes range from a few tens to a few thousands.
Using an optimized tree-based decoding algorithm, we minimize
the number of LPs that are needed to solve for the decoding. Thus,
our approach achieves many orders of magnitude reduction in the
decoding time when compared to the MILP.

Recent applications to runtime monitoring have used state esti-
mation techniques to compute the state of a system under monitor-
ing from sensor data in order to evaluate the possibility of runtime
property violations [9, 17]. The decoded output can be naturally
used for runtime verification, especially when the properties of
interest are specified over the states of the system whereas observa-
tions are made on the outputs. Furthermore, we may use the model
to predict future states, enabling predictive monitoring [23, 24, 26]
or denoising, wherein the actual state sequence can be used to
produce an idealized version of the output sequence.

Due to limited space, many details including the benchmarks
used in our experimental evaluation are not presented here. An
extended version of the paper with these details can be obtained
from the authors’ websites.

1.1 Related Work

Alur et al investigate a closely related problem of testing if a given
sequence of labels can be accepted by a hybrid automaton with
piecewise constant dynamics [2]. Although this model has more
restrictive dynamics than the linear time dynamical systems studied
in this paper, it is interesting to note that the NP-completeness of
the decoding problem already applies to hybrid automata with
piecewise constant dynamics.

As mentioned earlier, the decoding problem is closely related to
that of designing observers. Observer design for hybrid systems
is a hard problem and known conditions for linear and nonlinear
systems are hard to generalize. For instance, Hwang et al present
extensions of Luenberger observers for stochastic hybrid systems
based on combining multiple observers, one for each mode in or-
der to estimate the current latent mode and continuous state [15].
Another important line of work has involved mixed integer lin-
ear programs. This work, pioneered by Bemporad, Morari and
their coworkers, models linear hybrid systems as so-called “mixed-
logic dynamical systems”. They encode the problem of finding
state sequence as a mixed binary optimization problem and present
combinations of SAT solvers with linear programming solvers [4],
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anticipating later work in the formal methods community on SAT-
modulo theory solvers [11, 19] and SAT-modulo convex optimiza-
tion solvers [21]. Nevertheless, these approaches are quite expensive
for real-time state observations. An alternative solution involves
explicitly computing the map from the output observations to the
latent mode/state sequences so that it can be calculated efficiently
during the deployment. This approach was first pioneered by Morari
et al for model-predictive control [5] but also extended to the hy-
brid system observability problem [3]. A key drawback is that these
approaches rely on solving parametric integer linear programming
problem, which is often quite expensive to solve. The size of this
problem is exponential in the length of the observation sequences.
Therefore, such approaches are suitable for relatively short length
observation sequences.

2 PRELIMINARIES AND PROBLEM
FORMULATION

In this section, we will provide definitions of the linear stochas-
tic hybrid automaton model and formulate our approach to the

decoding problem. Let X : {x1,...,x,} represent state variables
collectively denoted by a vector ¥. Similarly, Y : {y1, ..., yx} denote
output variables denoted as vector §j and W : {wy, ..., w;} denote

the disturbance input variables collectively written as vector w.

Definition 2.1 (Linear Stochastic Hybrid Automaton). A linear
stochastic hybrid automaton H over states X, outputs Y and dis-
turbances W is represented by a tuple (Q, dyn, 7", G, qo, Do, Dy):
1) O : {q1,...,qm} is afinite set of modes; (2) dyn maps each mode
q € Q toits (discrete-time) dynamics D(q) : (Ag, By), denoting the
dynamics: X(t+1) = AgX(t)+Bgw(t).(3) T = {z1,...,7p} is a finite
set of transitions. Each 7; : {g;, q;,guard,, update; ): (a) gi, q; rep-
resent the pre and post-modes, respectively. (b) guard; is a guard
polyhedron P, ;X < 7;. (c) update; is an affine transformation
X = AriX + I;T,,-. (4) G represents an affine output map of the form
j=GX+ h that maps each state to an output. (5) qo € Q is fixed
initial mode. (6) Dy is a probability distribution over X, from which
the initial states will be drawn. Its set of support is a polyhedron
Xo. (7) D,y is a probability distribution over W for the disturbance
inputs. Its set of support is a polyhedron W.

Additionally, for all ¢ € Q, if 7; and r; are two different transi-
tions with g as their pre-mode, then guard; N guard; = 0.

Our approach can easily extend to a more general model that
includes multiple initial modes, multiple enabled transitions from a
given state and output maps that vary depending on the mode.

A state of a linear hybrid automaton is a tuple (g, X) wherein
q € Q is the current mode, X is the current continuous state (i.e, a
real-value assigned to each state variable in X). A run of the hybrid
automaton is a finite or infinite sequence of states and associated dis-

turbance values: (q(0), X(0), w(0)) ﬂ (q(1),X(1), w(1))--- ﬂ
(q(8),%(¢t),w(t)) — ---, wherein, (1) qo is the initial mode, and
%(0) is a random initial state drawn according to Dy. (2) 7(t) is
either a transition 7 € 7~ or a special action nop, indicating that
no transition is taken. (3) If (¢) = nop, then q(t — 1) = q(¢),
¥(t) = Ag(r—1)X(t = 1) + Bg(;_1)w(t — 1), where w(t — 1) is a ran-
dom vector drawn according to the distribution D,,. (4) Otherwise,
if 7(t) = rj, then q(t — 1) must be the source and q(t) the target
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for transition 7;. Furthermore, there exists “pre-transition” state
¥'(t—1) such that: (a) X' (£ = 1) = Ag(s_1)¥(¢t = 1) +Bgs_1)w(t 1)
(dynamics q(t — 1)); (b) X’ (t — 1) E guard, ; (must satisfy the
transition guard); and (c) X(t) = updateTj (¥’ (t — 1)) (state update).

Let us assume that Dy is defined by a probability density function
po(Xo), and likewise, p,y(w) is the PDF associated with D,,. Note
that po(Xp) > 0 iff Xp € Xo, and likewise, py, (W) > 0iff w € W.

For a finite run o: (q(0),%(0), w(0)) -, (q(1),%(1)) -+ i(i)_)
(q(T),%(T), w(T)), we define its log-likelihood as:

T-1
logL(0) : log(po(¥(0)) + _ log(pw(#(}))) -
j=0
If the initial state X(0) ¢ Xp, or any disturbance w(j) ¢ W, the
value of logL (o) will be —co.
Whereas a run is a sequence of states of the hybrid automata, we
define mode-transition sequences that consist purely of the discrete
modes and transitions.

Definition 2.2 (Mode-Transition Sequences). A sequence of modes
and transitions of length T > 0

(1) 7(2) 7(T-1)
a:4q(0) q(1) q(T-1),
is a mode-transition sequence iff for all t € [0,T — 1], (a) each
q(t) € Q, (b) each 7(t) is either nop or z; € 7, (c) if 7(t) = nop
then g(t — 1) = q(t); otherwise; (d) if 7(t) = 7; € 7 then q(t — 1)
is the source mode for 7; while g(t) is a destination mode. The
mode-transition sequence is feasible iff there exists a finite run:
(T-1)

B —

> N 7(1)
o : (q(0),%(0), w(0)) — -
such that logL (o) > —co.

(q(T-1),%(T-1), w(T-1)),

2.1 Decoding Problem Formulation

LetY : (§0,91,.. ., 97—1) be a given sequence of outputs. Given two
sequences Y7 : (71(0),...,51(T—1)) and Y2 : (§2(0),...,52(T—1))
of the same length T, we fix a discrepency metric: h(Y1, Y2). Examples
of such a metric could include a norm such as:

T-1, . -
171 = Yaleo : max(|[§1(t) = g2(t)lleo) -

Definition 2.3 (Optimal Decoding Problem). Given a sequence of
outputs Y of length T and a linear stochastic hybrid automaton
model H, we wish to find a run o:

(q(0),X(0),w(0)) = -+ = (q(T = 1),X(T = 1), w(T - 1)) .

such that logL (o) > —oco and the corresponding output sequence
¥ : (G(#(0)),--,G(¥(T - 1))) minimizes the objective function:

—logL(c) +h(Y,Y).

The objective function has two parts, one term maximizes the
likelihood of the trace and the other minimizes the discrepency
between the actual observations and those produced by the trace.
The decoding problem is closely related to that of designing an
observer or a state estimator. The chief difference is that an observer
(or state-estimator) typically recovers the state (q(T — 1), X(T — 1))
at the last time step, and updates this state when a new input 3(T)
is received. The decoding problem on the other hand ! reconstructs

!Inspired by the Viterbi decoding algorithm for Hidden Markov Models.
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a sequence of states that produce a given output. The complexity
of the optimal decoding problem depends on factors that include:
(a) the form of the probability distributions Dy and D,,; and (b)
the discrepancy metric h(Y, ¥). Commonly encountered examples
will treat Do (D,y) as uniformly distributed over some compact set
in R" (or Rl); or a multivariate Gaussian with a given mean and
standard deviation. Likewise, we assume the discrepancy metric is
a norm such as the Euclidean norm h(Y, Y) = ||Y — Y||2, L; norm
h(Y,Y) = ||Y=Y||1 or the Lo norm A(Y, ¥) = ||Y = ¥||co. A detailed
discussion of these choices will be made in the extended version.

Depending on these choices, the optimal decoding problem for a
stochastic linear hybrid automaton can be formulated as a (binary)
mixed-integer linear program or a (binary) mixed-integer quadratic
program. For technical reasons we consider a decision version of
the problem that asks if the optimal decoding problem has optimal
value < e. We will call this the e decoding problem.

For the rest of this paper, we will fix the following assumptions
for the simplifying the presentation: (a) the discrepancy function
h(Y1,Ys) : ||Y1 — 2|/ and (b) the distributions Dy and D,, are
uniform over compact polyhedra Xy and ‘W, respectively. The latter
assumption guarantees that for every finite trace o of length T if
logL(o) > —co then logL(o) = cr, for some fixed constant ct < 0.

THEOREM 2.4. The € decoding problem given a stochastic linear
hybrid automaton is NP-complete.

Proof is provided in the extended version. Furthermore, in the
extended version, we demonstrate a mixed integer formulation of
the problem using binary variables to denote the choice of transi-
tions. Continuous variables are used for encoding state X (t), output
1j(t) and disturbances w(t) at each time step. Likewise binary vari-
ables w(qj, t), w(zj, t), w(T, t) at each time step indicate whether
the trace visits mode g; at time ¢, takes the transition r; at time
t or remains in the same mode at time ¢ without any transitions,
respectively. As a result, any feasible solution will yield a trace o

(9(0),%(0),w(0)) = -+ = (¢(T = 1),X(T = 1), w(T - 1)),
with mode q(t) = q; iff w(q;,t) = 1, 7(t) = 7y if w(r,t) = 1or
7(t) = nop if w(T,t) = 1, state ¥(t) and output §(t) = G(Z(t)).
Likewise, the formulation guarantees that logL (o) > —co.

THEOREM 2.5. The sequence of modes, transitions, states and out-
puts corresponding to any feasible solution of the MILP defined above
constitutes a run of the hybrid automaton. Conversely, any run of
length T corresponds to a feasible solution of the MILP.

However, the MILP approach can be quite expensive. The number
of binary variables is given by O(T x (|77| +|Q|)), wherein |7 is
the number of transitions in the hybrid automaton and |Q] is the
number of modes. Also, the best known algorithms for solving
(binary) MILPs require time exponential in the number of binary
variables, in the worst case. This blow-up is seen in practice, as
demonstrated by the empirical evaluation in Section 4.

3 PROPOSED APPROACH

Instead of solving an optimal decoding problem as a MILP in a single
shot, we may solve it in two steps: (1) Iterate over all sequences
of modes/transitions, o : g(0) — --- — ¢g(T — 1). (2) Once a se-
quence o is fixed, we formulate an LP to find the continuous states
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X(t), outputs 3(¢) and disturbances w(t). This LP is obtained by
fixing the values of all the binary variables in the MILP formula-
tion according to the sequence o. The overall solution selects that
sequence o whose corresponding LP minimizes the objective func-
tion. However, this approach is explicitly equivalent to enumerating
all assignments to the binary variables in the MILP and solving a
LP for each such assignment. The number of such assignments is
exponential in T x (|Q] + |7).

Our approach solves an approximate version of the optimal de-
coding problem by fixing a finite set of mode-transition sequences
C :{o1,...,on}. Although there are no guarantees on the size of
such a sequence, in practice, we will show that N < 27*(IQI+I71)
We will call the set C a covering set of sequences. Once such a
sequence is obtained, we may solve |C| linear programs to approxi-
mate the optimal decoding problem.

In what follows, we will first introduce the notion of e-cover
sequences. However, the problem of verifying if a given set C satis-
fies this notion is computationally expensive. Therefore, we will
introduce a probabilistic notion of coverage with high confidence
that is easy to check and synthesize.

3.1 e-Cover sequences
Let us define the set of all possible output sequences of length T as

Yr :{Y : (§(0),...,5(T-1)) | there exists a run of H with output Y} .

Let € > 0 be a given tolerance parameter. We say that a mode-
. (1) (T-1)
transition sequence o : q(0) — -+ —— q(T — 1), e-covers a

given output sequence Y : (5(0),...,7(T — 1)) iff there exists a run
(g(0),X(0), w(0)) = -+ = (¢(T - 1),X(T = 1), w(T - 1)),

of the automaton H with output sequence Y: (g‘}(O), e f}(T -1));
and the distance ||Y — Y||co < €. In other words, there is a run that
follows the given mode-transition sequence ¢ whose outputs are €
close to Y.

A set of mode-transition sequences C : {071, ...,on} is said to e-
cover the output space Yr iff for all output sequences Y € Yr, there
exists a mode-transition sequence o; € C such that o; e-covers Y.

The set of all possible mode-transition sequences is a valid e-
cover for any € > 0. However, we seek a smaller covering set for
a given €. However, finding such as set is computationally hard.
Let us first consider the verification problem, wherein given a set of
mode-transition sequences C and tolerance € > 0, we wish to find
out if C is a valid e-cover for Yt.

THEOREM 3.1. The problem of checking given a set of sequences C,
whether C e-covers Yt is co-NP-complete.

The proof of membership in co-NP consists of formulating a
mixed integer optimization problem whose infeasibility indicates
that C covers Yr. Likewise, completeness is obtained by reducing
the problem of checking if a hybrid automaton has no valid runs
of length T, which can be separately proved to be co-NP-complete.
Therefore, we may simply set C = 0 and reduce to the e-cover
checking problem.

Although, co-NP complete problems are common in verification
and solved for large instances by modern SAT/SMT solvers [11,
19], the complexity of checking whether a set C e-covers Y is
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exponential in the time horizon length T, the size of the hybrid
automaton H and also exponential in the size of the cover set
|C]. Since we do not have a priori polynomial bounds on |C|, this
becomes quite an expensive problem to solve exactly.

3.2 Probabilistic and Approximate e-Covers

Rather than seek to cover Yr exactly with a set of mode-transition
sequences C, we seek to cover a subset of Y7 using a set C, wherein
the probability that a randomly drawn sequence from Yr will be
e-covered by some sequence in C will be bounded from below by
probability 1 — a.

Probabilistic e-Cover: Let 0 < a < 1 be a given coverage proba-
bility parameter. Let us assume that D is a probability distribution
over the output space Yr. We say that a set C of mode-transition
sequences is a probabilistic e-cover with coverage parameter « iff
for any randomly sampled sequence ¥ ~ D, there exists a sequence
o € Csuch that o covers ¥ with probability at least 1 —a. In order to
statistically verify that a set C e-covers Y1 with coverage parameter
a, we implement a simple statistical test:

(1) Sample a fixed number K > 0 output sequences Y1, ..., Yx
from the distribution D.
(2) Check if all the sampled output sequences are e-covered by
some mode-transition sequence in C.
(a) If all sampled output sequences are covered, we declare
that C e-covers Yr with coverage parameter a.
(b) If not, we declare that C fails to cover Y7 with the desired
coverage parameter.

Since our test is statistical in nature, there is the chance that it will
erroneously accept a cover set C even if it does not actually satisfy
the coverage criterion. This is called a type-I error in statistics 2.
Our goal is to choose the number of test samples K large enough
to bound the probability of type-I error to be at most §, where
0 < § < 1is a confidence parameter that is chosen by the user.

In what follows, we will consider how to choose a sample set size
K that guarantees that whenever we verify that C is a cover with
coverage parameter «, the probability of erroneous verification is
bounded by at most §.

Let p(C) be the real underlying probability that a randomly
chosen sample output sequence Y ~ D is covered by some mode-
transition sequence in C. Thus, each sample’s coverage is seen as
a Bernoulli coin toss which will verify coverage (turn up “heads”)
with probability p(C). The statistical test tells us that K such con-
secutive coin tosses all turn up heads. This happens with probability
p(C)X (the sample space here is over imagined repetitions of this
experiment of K consecutive coin tosses). Suppose p(C) < 1 — a,
but we turn up K heads anyways to pass the statistical test.

Pr(K consecutive “heads”) = p(C)K <(1-a)f.

In order to ensure (1 — )X < §, we need

log(8)
T log(l-a) )

The other type of error where a valid cover set C is rejected is a type-II error, which
we will ignore since it will not affect the design of the verification procedure.
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Table 1: Overview of Linear Hybrid System Benchmarks

Benchmark #state #control #output #mode #transition

Bouncing Ball 4 0 2 1 1

Water Tank 2 0 1 2 2
Room Heater 1 3 0 2 3 4
Room Heater 2 5 0 4 80 720

Vehicle Platoon 10 1 3 2 2
Geometric Shapes 7 0 2 47 47

The simple argument above assures us that as long as K is chosen

to be at least 1(};%%,
1 — ¢ that the set C covers Y1 with coverage parameter .

We fix a bound K on the number of samples for our verifica-
tion procedure using (1). The synthesis procedure initializes the
candidate cover set to the empty set. Next, it runs the verification
procedure by drawing K independent samples from D. If an output
sequence is not covered, we add a corresponding mode/transition
sequence back into the set C. This requires us to re-run the veri-
fication procedure from scratch. The process succeeds when the
verification also succeeds.

Given a cover set C and an output sequence Y : (§(0),..., (T —
1)), the decoding problem reduces to solving |C| linear programs,
one for each mode-transition sequence ¢ € C. Each linear pro-
gram is obtained from a mode-transition sequence ¢ by fixing the
binary variables in the MILP formulation in accordance with the
mode transition sequence. Linear programs can be solved relatively
quickly with some of the fastest algorithms having a polynomial
time complexity. Out of the |C| linear program solutions, the solu-
tion with the least objective value is “closest to” the given output
sequence Y as measured using the Lo, norm distance. Subsequently,
we choose this to be the solution of the € decoding problem.

It is possible to improve the running time substantially by solving
more LPs, but each of a smaller size. This is performed by organizing
the cover set C as a tree with |C| leaves, wherein each branch of the
tree represents a sequence in C. The tree also serves to represent
common prefixes between various sequences in C. This algorithm
will be presented in our extended version.

we can conclude with probability at least

4 EXPERIMENTAL EVALUATION

In this section, we present an experimental evaluation of the pro-
posed approach. We compare the performance of the proposed
approach and the mixed integer program (MILP) optimization ap-
proach on a set of seven benchmarks from different applications.

Table 1 provides an overview of the benchmarks used for evalu-
ation. The benchmarks include a model of a bouncing ball, water
tank from Lygeros et al [18], room heater (3 rooms and 5 rooms)
from Fehnker and Ivancic [12], vehicle platoon with a control in-
put from Makhlouf et al [6], and a geometric shapes recognition
inspired by QuickDraw [8]. Descriptions of these benchmarks will
be available in our extended version.

All of the algorithms were implemented in Python 3.6. The linear
programs (MILP and LP) were solved using the Python extension
of Gurobi [14].
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Test Dataset: For each benchmark, we created a test dataset of
n=1000 noisy output sequences to evaluate the two decoding ap-
proaches through simulation. The noise was uniformly distributed
in the range [—¢, €] and simply added to the simulated outputs.

Synthesizing e-Cover Set: We synthesized cover sets using the
procedure outlined in Section 3. The values of € used in the ex-
periments are reported in Table 2, Column 1. The sample set size
was chosen in accordance with seeing K=150 consecutive samples
that were already covered corresponding to @ = 0.03 (97% cov-
erage probability) and § = 0.01 (99% confidence). The number of
mode-transition sequences found in the e-cover set and the time
taken to generate the set are reported in Table 2, Columns 2-5. After
synthesizing the cover sets, we constructed e-cover prefix trees for
decoding output sequences in the test dataset.

Performance on Test Dataset: For every output sequence in the
test dataset, we solve a mixed integer program to decode the state
and mode sequence that best matches the output sequence. The
average, minimum, and maximum time taken (in seconds) to decode
the n=1000 noisy output sequences in the dataset are reported in
Table 2, Columns 6-8. The average MILP objective is reported in
Table 2, Column 9. Similarly, we report the performance of the our
approach. The average, minimum, and maximum time taken (in
seconds) is reported in Table 2, Columns 10-13 and the average LP
objective is reported in Table 2, Column 14.

Figure 1 shows plots of the outputs of the proposed approach on
some output sequenes. The solid lines and round markers indicate
the decoder output. The dashed line and square markers shows the
points in the provided noisy output sequence. We also simulate the
system forward in time for some length after the decoding time
horizon T and show this with solid lines in the figure.

Discussion of Results: In our experimental evaluation, we ob-
served that a surprisingly small number of mode-transition se-
quences suffice to e-cover with high confidence. This is demon-
strated when we compare columns 2 and 3 of Table 2. The time
taken to synthesize the set ranges from 14 seconds to around 30
hours for some of the larger benchmarks. However, note that the
e-cover set needs to be synthesized just once, offline, for a given
time horizon T.

The remaining columns of Table 2 compares the MILP decoding
approach and the e decoding approach for different time horizons.
The time taken to solve the two smaller benchmarks - bouncing
ball and water tank - using the two approaches are comparable.
We report values for time horizons up to T=100 time steps. For the
other benchmarks, the MILP decoding approach times out (after
10, 000 seconds), as the sequence length increases. This is indicated
with a “t/0” label in Table 2.

In general, our approach is much faster than the MILP approach
in terms of computation time, for most of the benchmarks. This
shows that our approach of synthesizing a finite cover sequence is
successful in practice. The average objective value of the LP-based
decoding is slightly larger than e, which is to be expected since the
cover set accounts for about 97% of all output sequences.
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Figure 1: Simulations showing data with noise and the decoded sequence run forward in time to predict future outputs.

Table 2: Candidate set generation, Performance of MILP vs LP decoder on 1000 noisy output sequence samples. All of the
reported times are from experiments performed on a Linux server running Ubuntu 18.04 OS with 24 cores and 64 GB RAM.
“t/0” denotes timeout after 10,000 seconds.

€-COVER SET GENERATION MIXED-INTEGER LINEAR PROGRAM € DECODER

Avg.  Min. Max. Avg. Avg. Min. Max. Avg.

Benchmark T #possible # found time time(s) time(s) time(s) obj. time(s) time(s) time(s) obj.

20 220 95 01m 19s 0.31 0.04 1.12 0.05 0.72 0.28 2.40 0.11

. 40 2 411 22m 12s 0.92 0.12 434  0.05 2.15 1.06 6.08 0.06
Bouncing Ball 60

€ =0.05 60 2 705 1h 25m 53s 1.98 0.19 8.99 0.05 4.27 2.01 11.65 0.06

80 20 888 2h 50m 14s 4.08 0.32 38.15 0.05 6.67 3.39 13.05 0.05

100 2100 983  4h 07m 38s 7.30 0.64 44.55 0.05 10.40 5.41 34.33 0.06

20 2-3% 40 145 019  0.04 1.62  0.05 039 011 085 0.05

Water Tank 40 2.34%0 486 15m 36s 0.75 0.08 14.80  0.05 1.31 0.37 3.75 0.05

€ =005 60 2. 360 1668  1h 53m 10s 2.52 0.29 14.84  0.05 2.80 0.84 9.06 0.06

80 2.3% 2916  5h 20m 01s 4.61 0.58 21.65 0.05 5.04 1.34 16.29 0.05

100 2. 3100 4613 11h 31m 00s 6.77 0.68 29.46 0.05 6.89 2.20 23.37 0.07

10 3.510 11 22s 3.28 0.58 26.03 0.83 0.16 0.05 0.43 0.99
Room Heater 1 20

e=1.0 20 3-5 113 12m 26s 29.41 1.94 175.85 0.91 1.57 0.24 6.32 1.14

30 3.5% 944 17h 13m 21s 191.38 10.47 7776.37 0.94 10.01 0.77 103.49 1.07

Room Heater 2 5 80-721° 37 5m 24s - t/o t/o - 0.48 0.13 1.26  0.99

e=1.0 10 80 - 7210 606 22h 50m 39s - t/o t/o = 16.77 4.72 3147 1.15

10 2.310 1 38s 5.66 1.91 12.49  0.05 0.54 0.27 0.69 0.05

Vehicle Platoon 20 2.3%0 2 02s 35.60 23.75 56.92 0.05 3.57 1.86 4.49 0.06

€ =005 30 2.3%0 11 4m 18s 135.74 8391 233.48 0.05 21.36 8.27 36.44 0.05

. 40 2.3%0 16 4m 46s 424.09 25945 659.43 0.05 30.68 7.65 94.49 0.06

50 2-3% 42 31m 53s - t/o t/o - 3877 1122 19527 0.06

10 61-1211° 45 1m 39s - t/o t/o - 130 031 440 0.09

Geometric Shapes 20 61-121%0 161 19m 46s - t/o t/o = 5.20 0.94 15.59 0.09

c—o1 30 61-121%° 500 2h 20m 10s - t/o t/o - 10.05  1.96 3580 0.10

40 61-121%0 1049 11h 10m 05s - t/o t/o = 13.85 3.31 72.38 0.10

50 61 -121%° 1525 30h 11m 45s - t/o t/o - 10.10 378  76.99 0.10

5 CONCLUSIONS ACKNOWLEDGMENTS

To conclude, we have demonstrated an approach to the decoding
problem for discrete time linear hybrid automata along with an
approach based on synthesizing a cover set with probabilistic guar-
antees. Our approach is evaluated over benchmark examples and
shows promise by synthesizing relatively small cover sets that al-
low rapid solution to the decoding problem even for large hybrid
systems with long output sequences.
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