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ABSTRACT
In this paper, we study the “decoding” problem for discrete-time, sto-

chastic hybrid systems with linear dynamics in eachmode. Given an

output trace of the system, the decoding problem seeks to construct

a sequence of modes and states that yield a trace “as close as possi-

ble” to the original output trace. The decoding problem generalizes

the state estimation problem, and is applicable to hybrid systems

with non-determinism. The decoding problem is NP-complete, and

can be reduced to solving a mixed-integer linear program (MILP).

In this paper, we decompose the decoding problem into two parts:

(a) finding a sequence of discrete modes and transitions; and (b)

finding corresponding continuous states for the mode/transition se-

quence. In particular, once a sequence of modes/transitions is fixed,

the problem of “filling in” the continuous states is performed by a

linear programming problem. In order to support the decomposi-

tion, we “cover” the set of all possible mode/transition sequences by

a finite subset. We use well-known probabilistic arguments to jus-

tify a choice of cover with high confidence and design randomized

algorithms for finding such covers. Our approach is demonstrated

on a series of benchmarks, wherein we observe that relatively tiny

fraction of the possible mode/transition sequences can be used as a

cover. Furthermore, we show that the resulting linear programs can

be solved rapidly by exploiting the tree structure of the set cover.
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1 INTRODUCTION
In this paper, given a sequence of possibly noisy output values from

a hybrid automaton we consider the problem of reconstructing a

sequences of modes, transitions and continuous states for a hybrid

automaton whose output is as close as possible to the given input

sequence. Inspired by a similar problem of decoding for Hidden

Markov models (HMMs) that involves constructing the most likely

sequence of latent states given an output sequence, we call this

the decoding problem for hybrid automata [20]. Specifically, we

consider hybrid systems whose modes have discrete-time linear

dynamics with polyhedral transition guards and linear updates on

transitions. This class of hybrid automata has been shown to be very

useful in modeling a variety of important applications [13]. The

decoding problem is closely related to that of observer design with

the key difference being that observers reconstruct the single state

at the end of an output sequence, whereas decoding reconstructs an

entire sequence of (latent) states. For deterministic systems, both

problems are essentially equivalent. However, in the presence of

non-determinism (common in many hybrid automata models), the

sequence of states adds more information than a single state.

Our approach first proves that the problem of finding if there is a

sequence of modes, transitions and continuous states whose outputs

are 𝜖-close to a given output sequence is NP-complete. Furthermore,

it is possible to reduce this to solving amixed integer linear program

(MILP) along the lines of well-known results from Bemporad et

al [1, 3]. However, solving this MILP is exponential in the size of

the hybrid automaton and the length of the sequence, in the worst-

case. In this paper, we consider a relaxation of this problem by

first computing a finite cover consisting of a set of mode/transition

sequences without the continuous state information. The desired

property of such a cover is that for every given output sequence,

there is a sequence in the cover which can produce an output

sequence that is 𝜖 close to the given sequence under a suitable

norm (we use 𝐿∞ norm in this paper but our approach can handle

𝐿1 or 𝐿2 norms as well, with modifications). Once a cover is found, it

is possible to solve the decoding problem approximately by solving

as many LPs as the size of the cover. In practice, this drastically

reduces the time to solve the decoding problem, since we find that

the size of the cover is relatively small.

However, it is a computationally hard problem to verify if a

given set 𝐶 is a cover, let alone finding a cover. Our approach uses

randomization by relaxing the notion of cover to be a probabilistic

one. I.e, rather than covering all output sequences, we define a

distribution over output sequences and ask that the set covers

output sequenceswith probability at least 1−𝛼 for a given𝛼 . In order

to find a cover, we use a randomized algorithm based on sampling

and verify a cover in a statistical sense. Our approach here borrows
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ideas from statistical model checking [10, 16, 25] and related ideas

from randomized solution to control design problems [7, 22]. Our

sampling-based verification algorithm grows a candidate cover set

and in each iteration attempts to verify it by generating samples.

If unsuccessful, the algorithm adds more samples to the candidate

cover set. When successful, it produces a cover set with the required

probabilistic guarantees.

We have empirically evaluated our approach on seven bench-

mark examples of hybrid automata with 4 − 10 state variables and

upto 400 modes. Our approach considers relatively long output se-

quences with upto 100 steps. We show that the MILP solver is often

incapable of solving large problems within the given time budget.

On the other hand, for each example, we discover relatively small

cover sets whose sizes range from a few tens to a few thousands.

Using an optimized tree-based decoding algorithm, we minimize

the number of LPs that are needed to solve for the decoding. Thus,

our approach achieves many orders of magnitude reduction in the

decoding time when compared to the MILP.

Recent applications to runtime monitoring have used state esti-

mation techniques to compute the state of a system under monitor-

ing from sensor data in order to evaluate the possibility of runtime

property violations [9, 17]. The decoded output can be naturally

used for runtime verification, especially when the properties of

interest are specified over the states of the system whereas observa-

tions are made on the outputs. Furthermore, we may use the model

to predict future states, enabling predictive monitoring [23, 24, 26]

or denoising, wherein the actual state sequence can be used to

produce an idealized version of the output sequence.

Due to limited space, many details including the benchmarks

used in our experimental evaluation are not presented here. An

extended version of the paper with these details can be obtained

from the authors’ websites.

1.1 Related Work
Alur et al investigate a closely related problem of testing if a given

sequence of labels can be accepted by a hybrid automaton with

piecewise constant dynamics [2]. Although this model has more

restrictive dynamics than the linear time dynamical systems studied

in this paper, it is interesting to note that the NP-completeness of

the decoding problem already applies to hybrid automata with

piecewise constant dynamics.

As mentioned earlier, the decoding problem is closely related to

that of designing observers. Observer design for hybrid systems

is a hard problem and known conditions for linear and nonlinear

systems are hard to generalize. For instance, Hwang et al present

extensions of Luenberger observers for stochastic hybrid systems

based on combining multiple observers, one for each mode in or-

der to estimate the current latent mode and continuous state [15].

Another important line of work has involved mixed integer lin-

ear programs. This work, pioneered by Bemporad, Morari and

their coworkers, models linear hybrid systems as so-called “mixed-

logic dynamical systems”. They encode the problem of finding

state sequence as a mixed binary optimization problem and present

combinations of SAT solvers with linear programming solvers [4],

anticipating later work in the formal methods community on SAT-

modulo theory solvers [11, 19] and SAT-modulo convex optimiza-

tion solvers [21]. Nevertheless, these approaches are quite expensive

for real-time state observations. An alternative solution involves

explicitly computing the map from the output observations to the

latent mode/state sequences so that it can be calculated efficiently

during the deployment. This approachwas first pioneered byMorari

et al for model-predictive control [5] but also extended to the hy-

brid system observability problem [3]. A key drawback is that these

approaches rely on solving parametric integer linear programming

problem, which is often quite expensive to solve. The size of this

problem is exponential in the length of the observation sequences.

Therefore, such approaches are suitable for relatively short length

observation sequences.

2 PRELIMINARIES AND PROBLEM
FORMULATION

In this section, we will provide definitions of the linear stochas-

tic hybrid automaton model and formulate our approach to the

decoding problem. Let 𝑋 : {𝑥1, . . . , 𝑥𝑛} represent state variables
collectively denoted by a vector ®𝑥 . Similarly,𝑌 : {𝑦1, . . . , 𝑦𝑘 } denote
output variables denoted as vector ®𝑦 and𝑊 : {𝑤1, . . . ,𝑤𝑙 } denote
the disturbance input variables collectively written as vector ®𝑤 .

Definition 2.1 (Linear Stochastic Hybrid Automaton). A linear

stochastic hybrid automaton H over states 𝑋 , outputs 𝑌 and dis-

turbances𝑊 is represented by a tuple ⟨𝑄, dyn,T ,G, 𝑞0,D0,D𝑤⟩:
(1)𝑄 : {𝑞1, . . . , 𝑞𝑚} is a finite set ofmodes; (2) dynmaps each mode

𝑞 ∈ 𝑄 to its (discrete-time) dynamics D(𝑞) : (𝐴𝑞, 𝐵𝑞), denoting the
dynamics: ®𝑥 (𝑡+1) = 𝐴𝑞 ®𝑥 (𝑡)+𝐵𝑞 ®𝑤 (𝑡). (3) T = {𝜏1, . . . , 𝜏𝑝 } is a finite
set of transitions. Each 𝜏𝑖 :

〈
𝑞𝑖 , 𝑞

′
𝑖
, guard𝑖 , update𝑖

〉
: (a) 𝑞𝑖 , 𝑞

′
𝑖
rep-

resent the pre and post-modes, respectively. (b) guard𝑖 is a guard
polyhedron 𝑃𝜏,𝑖 ®𝑥 ≤ ®𝑟𝜏,𝑖 . (c) update𝑖 is an affine transformation

®𝑥 ′ := 𝐴𝜏,𝑖 ®𝑥 + ®𝑏𝜏,𝑖 . (4) G represents an affine output map of the form

®𝑦 = 𝐺 ®𝑥 + ®ℎ that maps each state to an output. (5) 𝑞0 ∈ 𝑄 is fixed

initial mode. (6)D0 is a probability distribution over 𝑋 , from which

the initial states will be drawn. Its set of support is a polyhedron

X0. (7) D𝑤 is a probability distribution over𝑊 for the disturbance

inputs. Its set of support is a polyhedron W.

Additionally, for all 𝑞 ∈ 𝑄 , if 𝜏𝑖 and 𝜏 𝑗 are two different transi-

tions with 𝑞 as their pre-mode, then guard𝑖 ∩ guard𝑗 = ∅.
Our approach can easily extend to a more general model that

includes multiple initial modes, multiple enabled transitions from a

given state and output maps that vary depending on the mode.

A state of a linear hybrid automaton is a tuple ⟨𝑞, ®𝑥⟩ wherein
𝑞 ∈ 𝑄 is the current mode, ®𝑥 is the current continuous state (i.e, a

real-value assigned to each state variable in 𝑋 ). A run of the hybrid

automaton is a finite or infinite sequence of states and associated dis-

turbance values: (𝑞(0), ®𝑥 (0), ®𝑤 (0))
𝜏 (1)
−−−−→ (𝑞(1), ®𝑥 (1), ®𝑤 (1)) · · ·

𝜏 (𝑡 )
−−−→

(𝑞(𝑡), ®𝑥 (𝑡), ®𝑤 (𝑡)) → · · · , wherein, (1) 𝑞0 is the initial mode, and

®𝑥 (0) is a random initial state drawn according to D0. (2) 𝜏 (𝑡) is
either a transition 𝜏 ∈ T or a special action nop, indicating that

no transition is taken. (3) If 𝜏 (𝑡) = nop, then 𝑞(𝑡 − 1) = 𝑞(𝑡),
®𝑥 (𝑡) = 𝐴𝑞 (𝑡−1) ®𝑥 (𝑡 − 1) + 𝐵𝑞 (𝑡−1) ®𝑤 (𝑡 − 1), where ®𝑤 (𝑡 − 1) is a ran-
dom vector drawn according to the distribution D𝑤 . (4) Otherwise,

if 𝜏 (𝑡) = 𝜏 𝑗 , then 𝑞(𝑡 − 1) must be the source and 𝑞(𝑡) the target
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for transition 𝜏 𝑗 . Furthermore, there exists “pre-transition” state

®𝑥 ′ (𝑡 −1) such that: (a) ®𝑥 ′ (𝑡 −1) = 𝐴𝑞 (𝑡−1) ®𝑥 (𝑡 −1) +𝐵𝑞 (𝑡−1) ®𝑤 (𝑡 −1)
(dynamics 𝑞(𝑡 − 1)); (b) ®𝑥 ′ (𝑡 − 1) |= guard𝜏,𝑗 (must satisfy the

transition guard); and (c) ®𝑥 (𝑡) = update𝜏 𝑗 ( ®𝑥
′ (𝑡 − 1)) (state update).

Let us assume thatD0 is defined by a probability density function

𝑝0 ( ®𝑥0), and likewise, 𝑝𝑤 ( ®𝑤) is the PDF associated with D𝑤 . Note

that 𝑝0 ( ®𝑥0) > 0 iff ®𝑥0 ∈ X0, and likewise, 𝑝𝑤 ( ®𝑤) > 0 iff ®𝑤 ∈ W.

For a finite run 𝜎 : (𝑞(0), ®𝑥 (0), ®𝑤 (0))
𝜏 (1)
−−−−→ (𝑞(1), ®𝑥 (1)) · · ·

𝜏 (𝑇 )
−−−−→

(𝑞(𝑇 ), ®𝑥 (𝑇 ), ®𝑤 (𝑇 )), we define its log-likelihood as:

logL(𝜎) : log(𝑝0 ( ®𝑥 (0)) +
𝑇−1∑︁
𝑗=0

log(𝑝𝑤 ( ®𝑤 ( 𝑗))) .

If the initial state ®𝑥 (0) ∉ X0, or any disturbance ®𝑤 ( 𝑗) ∉ W, the

value of logL(𝜎) will be −∞.

Whereas a run is a sequence of states of the hybrid automata, we

define mode-transition sequences that consist purely of the discrete

modes and transitions.

Definition 2.2 (Mode-Transition Sequences). A sequence of modes

and transitions of length 𝑇 > 0

𝜎 : 𝑞(0)
𝜏 (1)
−−−−→ 𝑞(1)

𝜏 (2)
−−−−→ · · ·

𝜏 (𝑇−1)
−−−−−−→ 𝑞(𝑇 − 1) ,

is a mode-transition sequence iff for all 𝑡 ∈ [0,𝑇 − 1], (a) each
𝑞(𝑡) ∈ 𝑄 , (b) each 𝜏 (𝑡) is either nop or 𝜏 𝑗 ∈ T , (c) if 𝜏 (𝑡) = nop
then 𝑞(𝑡 − 1) = 𝑞(𝑡); otherwise; (d) if 𝜏 (𝑡) = 𝜏 𝑗 ∈ T then 𝑞(𝑡 − 1)
is the source mode for 𝜏 𝑗 while 𝑞(𝑡) is a destination mode. The

mode-transition sequence is feasible iff there exists a finite run:

𝜎 : (𝑞(0), ®𝑥 (0), ®𝑤 (0))
𝜏 (1)
−−−−→ · · ·

𝜏 (𝑇−1)
−−−−−−→ (𝑞(𝑇−1), ®𝑥 (𝑇−1), ®𝑤 (𝑇−1)) ,

such that logL(𝜎) > −∞.

2.1 Decoding Problem Formulation
Let𝑌 : (ŷ0, ŷ1, . . . , ŷ𝑇−1) be a given sequence of outputs. Given two
sequences 𝑌1 : ( ®𝑦1 (0), . . . , ®𝑦1 (𝑇 −1)) and 𝑌2 : ( ®𝑦2 (0), . . . , ®𝑦2 (𝑇 −1))
of the same length𝑇 , we fix a discrepencymetric:ℎ(𝑌1, 𝑌2). Examples

of such a metric could include a norm such as:

| |𝑌1 − 𝑌2 | |∞ :

𝑇−1
max

𝑡=0
( | | ®𝑦1 (𝑡) − ®𝑦2 (𝑡) | |∞) .

Definition 2.3 (Optimal Decoding Problem). Given a sequence of

outputs 𝑌 of length 𝑇 and a linear stochastic hybrid automaton

model H , we wish to find a run 𝜎 :

(𝑞(0), ®𝑥 (0), ®𝑤 (0)) → · · · → (𝑞(𝑇 − 1), ®𝑥 (𝑇 − 1), ®𝑤 (𝑇 − 1)) .
such that logL(𝜎) > −∞ and the corresponding output sequence

𝑌 : (G( ®𝑥 (0)), · · · ,G( ®𝑥 (𝑇 − 1))) minimizes the objective function:

−logL(𝜎) + ℎ(𝑌,𝑌 ) .
The objective function has two parts, one term maximizes the

likelihood of the trace and the other minimizes the discrepency

between the actual observations and those produced by the trace.

The decoding problem is closely related to that of designing an

observer or a state estimator. The chief difference is that an observer

(or state-estimator) typically recovers the state (𝑞(𝑇 − 1), ®𝑥 (𝑇 − 1))
at the last time step, and updates this state when a new input ®𝑦 (𝑇 )
is received. The decoding problem on the other hand

1
reconstructs

1
Inspired by the Viterbi decoding algorithm for Hidden Markov Models.

a sequence of states that produce a given output. The complexity

of the optimal decoding problem depends on factors that include:

(a) the form of the probability distributions D0 and D𝑤 ; and (b)

the discrepancy metric ℎ(𝑌,𝑌 ). Commonly encountered examples

will treat D0 (D𝑤 ) as uniformly distributed over some compact set

in R𝑛 (or R𝑙 ); or a multivariate Gaussian with a given mean and

standard deviation. Likewise, we assume the discrepancy metric is

a norm such as the Euclidean norm ℎ(𝑌,𝑌 ) = | |𝑌 − 𝑌 | |2
2
, 𝐿1 norm

ℎ(𝑌,𝑌 ) = | |𝑌 −𝑌 | |1 or the 𝐿∞ normℎ(𝑌,𝑌 ) = | |𝑌 −𝑌 | |∞. A detailed

discussion of these choices will be made in the extended version.

Depending on these choices, the optimal decoding problem for a

stochastic linear hybrid automaton can be formulated as a (binary)

mixed-integer linear program or a (binary) mixed-integer quadratic

program. For technical reasons we consider a decision version of

the problem that asks if the optimal decoding problem has optimal

value ≤ 𝜖 . We will call this the 𝜖 decoding problem.

For the rest of this paper, we will fix the following assumptions

for the simplifying the presentation: (a) the discrepancy function

ℎ(𝑌1, 𝑌2) : | |𝑌1 − 𝑌2 | |∞ and (b) the distributions D0 and D𝑤 are

uniform over compact polyhedraX0 andW, respectively. The latter

assumption guarantees that for every finite trace 𝜎 of length 𝑇 if

logL(𝜎) > −∞ then logL(𝜎) = 𝑐𝑇 , for some fixed constant 𝑐𝑇 < 0.

Theorem 2.4. The 𝜖 decoding problem given a stochastic linear
hybrid automaton is NP-complete.

Proof is provided in the extended version. Furthermore, in the

extended version, we demonstrate a mixed integer formulation of

the problem using binary variables to denote the choice of transi-

tions. Continuous variables are used for encoding state ®𝑥 (𝑡), output
®𝑦 (𝑡) and disturbances ®𝑤 (𝑡) at each time step. Likewise binary vari-

ables 𝑤 (𝑞 𝑗 , 𝑡),𝑤 (𝜏 𝑗 , 𝑡),𝑤 (𝑇, 𝑡) at each time step indicate whether

the trace visits mode 𝑞 𝑗 at time 𝑡 , takes the transition 𝜏 𝑗 at time

𝑡 or remains in the same mode at time 𝑡 without any transitions,

respectively. As a result, any feasible solution will yield a trace 𝜎 :

(𝑞(0), ®𝑥 (0), ®𝑤 (0)) → · · · → (𝑞(𝑇 − 1), ®𝑥 (𝑇 − 1), ®𝑤 (𝑇 − 1)) ,
with mode 𝑞(𝑡) = 𝑞 𝑗 iff 𝑤 (𝑞 𝑗 , 𝑡) = 1, 𝜏 (𝑡) = 𝜏𝑘 if 𝑤 (𝜏𝑘 , 𝑡) = 1 or

𝜏 (𝑡) = nop if 𝑤 (𝑇, 𝑡) = 1, state ®𝑥 (𝑡) and output ®𝑦 (𝑡) = G( ®𝑥 (𝑡)).
Likewise, the formulation guarantees that logL(𝜎) > −∞.

Theorem 2.5. The sequence of modes, transitions, states and out-
puts corresponding to any feasible solution of the MILP defined above
constitutes a run of the hybrid automaton. Conversely, any run of
length 𝑇 corresponds to a feasible solution of the MILP.

However, theMILP approach can be quite expensive. The number

of binary variables is given by 𝑂 (𝑇 × (|T | + |𝑄 |)), wherein |T | is
the number of transitions in the hybrid automaton and |𝑄 | is the
number of modes. Also, the best known algorithms for solving

(binary) MILPs require time exponential in the number of binary

variables, in the worst case. This blow-up is seen in practice, as

demonstrated by the empirical evaluation in Section 4.

3 PROPOSED APPROACH
Instead of solving an optimal decoding problem as aMILP in a single
shot, we may solve it in two steps: (1) Iterate over all sequences

of modes/transitions, 𝜎 : 𝑞(0) → · · · → 𝑞(𝑇 − 1). (2) Once a se-
quence 𝜎 is fixed, we formulate an LP to find the continuous states



HSCC ’22, May 4–6, 2022, Milan, Italy Narasimhamurthy et al

®𝑥 (𝑡), outputs ®𝑦 (𝑡) and disturbances ®𝑤 (𝑡). This LP is obtained by

fixing the values of all the binary variables in the MILP formula-

tion according to the sequence 𝜎 . The overall solution selects that

sequence 𝜎 whose corresponding LP minimizes the objective func-

tion. However, this approach is explicitly equivalent to enumerating

all assignments to the binary variables in the MILP and solving a

LP for each such assignment. The number of such assignments is

exponential in 𝑇 × (|𝑄 | + |T |).
Our approach solves an approximate version of the optimal de-

coding problem by fixing a finite set of mode-transition sequences

𝐶 : {𝜎1, . . . , 𝜎𝑁 }. Although there are no guarantees on the size of

such a sequence, in practice, we will show that 𝑁 ≪ 2
𝑇×( |𝑄 |+| T | )

.

We will call the set 𝐶 a covering set of sequences. Once such a

sequence is obtained, we may solve |𝐶 | linear programs to approxi-

mate the optimal decoding problem.

In what follows, we will first introduce the notion of 𝜖-cover

sequences. However, the problem of verifying if a given set 𝐶 satis-

fies this notion is computationally expensive. Therefore, we will

introduce a probabilistic notion of coverage with high confidence

that is easy to check and synthesize.

3.1 𝜖-Cover sequences
Let us define the set of all possible output sequences of length 𝑇 as

Y𝑇 : {𝑌 : ( ®𝑦 (0), . . . , ®𝑦 (𝑇−1)) | there exists a run ofH with output𝑌 } .

Let 𝜖 > 0 be a given tolerance parameter. We say that a mode-

transition sequence 𝜎 : 𝑞(0)
𝜏 (1)
−−−−→ · · ·

𝜏 (𝑇−1)
−−−−−−→ 𝑞(𝑇 − 1), 𝜖-covers a

given output sequence 𝑌 : ( ®𝑦 (0), . . . , ®𝑦 (𝑇 − 1)) iff there exists a run

(𝑞(0), ®𝑥 (0), ®𝑤 (0)) → · · · → (𝑞(𝑇 − 1), ®𝑥 (𝑇 − 1), ®𝑤 (𝑇 − 1)) ,

of the automatonH with output sequence 𝑌̃ : ( ˜®𝑦 (0), . . . , ˜®𝑦 (𝑇 − 1));
and the distance | |𝑌 − 𝑌̃ | |∞ ≤ 𝜖 . In other words, there is a run that

follows the given mode-transition sequence 𝜎 whose outputs are 𝜖

close to 𝑌 .

A set of mode-transition sequences 𝐶 : {𝜎1, . . . , 𝜎𝑁 } is said to 𝜖-

cover the output spaceY𝑇 iff for all output sequences𝑌 ∈ Y𝑇 , there
exists a mode-transition sequence 𝜎 𝑗 ∈ 𝐶 such that 𝜎 𝑗 𝜖-covers 𝑌 .

The set of all possible mode-transition sequences is a valid 𝜖-

cover for any 𝜖 ≥ 0. However, we seek a smaller covering set for

a given 𝜖 . However, finding such as set is computationally hard.

Let us first consider the verification problem, wherein given a set of

mode-transition sequences 𝐶 and tolerance 𝜖 > 0, we wish to find

out if 𝐶 is a valid 𝜖-cover for Y𝑇 .

Theorem 3.1. The problem of checking given a set of sequences 𝐶 ,
whether 𝐶 𝜖-covers Y𝑇 is co-NP-complete.

The proof of membership in co-NP consists of formulating a

mixed integer optimization problem whose infeasibility indicates

that 𝐶 covers Y𝑇 . Likewise, completeness is obtained by reducing

the problem of checking if a hybrid automaton has no valid runs

of length 𝑇 , which can be separately proved to be co-NP-complete.

Therefore, we may simply set 𝐶 = ∅ and reduce to the 𝜖-cover

checking problem.

Although, co-NP complete problems are common in verification

and solved for large instances by modern SAT/SMT solvers [11,

19], the complexity of checking whether a set 𝐶 𝜖-covers Y𝑇 is

exponential in the time horizon length 𝑇 , the size of the hybrid

automaton H and also exponential in the size of the cover set

|𝐶 |. Since we do not have a priori polynomial bounds on |𝐶 |, this
becomes quite an expensive problem to solve exactly.

3.2 Probabilistic and Approximate 𝜖-Covers
Rather than seek to cover Y𝑇 exactly with a set of mode-transition

sequences𝐶 , we seek to cover a subset ofY𝑇 using a set𝐶 , wherein

the probability that a randomly drawn sequence from Y𝑇 will be

𝜖-covered by some sequence in 𝐶 will be bounded from below by

probability 1 − 𝛼 .

Probabilistic 𝜖-Cover: Let 0 < 𝛼 ≪ 1 be a given coverage proba-
bility parameter. Let us assume that D is a probability distribution

over the output space Y𝑇 . We say that a set 𝐶 of mode-transition

sequences is a probabilistic 𝜖-cover with coverage parameter 𝛼 iff

for any randomly sampled sequence𝑌 ∼ D, there exists a sequence

𝜎 ∈ 𝐶 such that 𝜎 covers𝑌 with probability at least 1−𝛼 . In order to
statistically verify that a set𝐶 𝜖-coversY𝑇 with coverage parameter

𝛼 , we implement a simple statistical test:

(1) Sample a fixed number 𝐾 > 0 output sequences 𝑌1, . . . , 𝑌𝐾
from the distribution D.

(2) Check if all the sampled output sequences are 𝜖-covered by

some mode-transition sequence in 𝐶 .

(a) If all sampled output sequences are covered, we declare

that 𝐶 𝜖-covers Y𝑇 with coverage parameter 𝛼 .

(b) If not, we declare that𝐶 fails to coverY𝑇 with the desired

coverage parameter.

Since our test is statistical in nature, there is the chance that it will

erroneously accept a cover set 𝐶 even if it does not actually satisfy

the coverage criterion. This is called a type-I error in statistics
2
.

Our goal is to choose the number of test samples 𝐾 large enough

to bound the probability of type-I error to be at most 𝛿 , where

0 < 𝛿 ≪ 1 is a confidence parameter that is chosen by the user.

In what follows, we will consider how to choose a sample set size

𝐾 that guarantees that whenever we verify that 𝐶 is a cover with

coverage parameter 𝛼 , the probability of erroneous verification is

bounded by at most 𝛿 .

Let 𝑝 (𝐶) be the real underlying probability that a randomly

chosen sample output sequence 𝑌 ∼ D is covered by some mode-

transition sequence in 𝐶 . Thus, each sample’s coverage is seen as

a Bernoulli coin toss which will verify coverage (turn up “heads”)

with probability 𝑝 (𝐶). The statistical test tells us that 𝐾 such con-

secutive coin tosses all turn up heads. This happens with probability

𝑝 (𝐶)𝐾 (the sample space here is over imagined repetitions of this

experiment of 𝐾 consecutive coin tosses). Suppose 𝑝 (𝐶) < 1 − 𝛼 ,
but we turn up 𝐾 heads anyways to pass the statistical test.

𝑃𝑟 (𝐾 consecutive “heads”) = 𝑝 (𝐶)𝐾 ≤ (1 − 𝛼)𝐾 .

In order to ensure (1 − 𝛼)𝐾 ≤ 𝛿 , we need

𝐾 ≥ log(𝛿)
log(1 − 𝛼) . (1)

2
The other type of error where a valid cover set𝐶 is rejected is a type-II error, which

we will ignore since it will not affect the design of the verification procedure.
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Table 1: Overview of Linear Hybrid System Benchmarks

Benchmark #state #control #output #mode #transition

Bouncing Ball 4 0 2 1 1

Water Tank 2 0 1 2 2

Room Heater 1 3 0 2 3 4

Room Heater 2 5 0 4 80 720

Vehicle Platoon 10 1 3 2 2

Geometric Shapes 7 0 2 47 47

The simple argument above assures us that as long as 𝐾 is chosen

to be at least
log(𝛿 )

log(1−𝛼 ) , we can conclude with probability at least

1 − 𝛿 that the set 𝐶 covers Y𝑇 with coverage parameter 𝛼 .

We fix a bound 𝐾 on the number of samples for our verifica-

tion procedure using (1). The synthesis procedure initializes the

candidate cover set to the empty set. Next, it runs the verification

procedure by drawing 𝐾 independent samples fromD. If an output

sequence is not covered, we add a corresponding mode/transition

sequence back into the set 𝐶 . This requires us to re-run the veri-

fication procedure from scratch. The process succeeds when the

verification also succeeds.

Given a cover set𝐶 and an output sequence 𝑌 : ( ®𝑦 (0), . . . , ®𝑦 (𝑇 −
1)), the decoding problem reduces to solving |𝐶 | linear programs,

one for each mode-transition sequence 𝜎 ∈ 𝐶 . Each linear pro-

gram is obtained from a mode-transition sequence 𝜎 by fixing the

binary variables in the MILP formulation in accordance with the

mode transition sequence. Linear programs can be solved relatively

quickly with some of the fastest algorithms having a polynomial

time complexity. Out of the |𝐶 | linear program solutions, the solu-

tion with the least objective value is “closest to” the given output

sequence 𝑌 as measured using the 𝐿∞ norm distance. Subsequently,

we choose this to be the solution of the 𝜖 decoding problem.

It is possible to improve the running time substantially by solving

more LPs, but each of a smaller size. This is performed by organizing

the cover set𝐶 as a tree with |𝐶 | leaves, wherein each branch of the

tree represents a sequence in 𝐶 . The tree also serves to represent

common prefixes between various sequences in 𝐶 . This algorithm

will be presented in our extended version.

4 EXPERIMENTAL EVALUATION
In this section, we present an experimental evaluation of the pro-

posed approach. We compare the performance of the proposed

approach and the mixed integer program (MILP) optimization ap-

proach on a set of seven benchmarks from different applications.

Table 1 provides an overview of the benchmarks used for evalu-

ation. The benchmarks include a model of a bouncing ball, water

tank from Lygeros et al [18], room heater (3 rooms and 5 rooms)

from Fehnker and Ivancic [12], vehicle platoon with a control in-

put from Makhlouf et al [6], and a geometric shapes recognition

inspired by QuickDraw [8]. Descriptions of these benchmarks will

be available in our extended version.

All of the algorithms were implemented in Python 3.6. The linear

programs (MILP and LP) were solved using the Python extension

of Gurobi [14].

Test Dataset: For each benchmark, we created a test dataset of

n=1000 noisy output sequences to evaluate the two decoding ap-

proaches through simulation. The noise was uniformly distributed

in the range [−𝜖, 𝜖] and simply added to the simulated outputs.

Synthesizing 𝜖-Cover Set: We synthesized cover sets using the

procedure outlined in Section 3. The values of 𝜖 used in the ex-

periments are reported in Table 2, Column 1. The sample set size

was chosen in accordance with seeing K=150 consecutive samples

that were already covered corresponding to 𝛼 = 0.03 (97% cov-

erage probability) and 𝛿 = 0.01 (99% confidence). The number of

mode-transition sequences found in the 𝜖-cover set and the time

taken to generate the set are reported in Table 2, Columns 2-5. After

synthesizing the cover sets, we constructed 𝜖-cover prefix trees for

decoding output sequences in the test dataset.

Performance on Test Dataset: For every output sequence in the

test dataset, we solve a mixed integer program to decode the state

and mode sequence that best matches the output sequence. The

average, minimum, and maximum time taken (in seconds) to decode

the n=1000 noisy output sequences in the dataset are reported in

Table 2, Columns 6-8. The average MILP objective is reported in

Table 2, Column 9. Similarly, we report the performance of the our

approach. The average, minimum, and maximum time taken (in

seconds) is reported in Table 2, Columns 10-13 and the average LP

objective is reported in Table 2, Column 14.

Figure 1 shows plots of the outputs of the proposed approach on

some output sequenes. The solid lines and round markers indicate

the decoder output. The dashed line and square markers shows the

points in the provided noisy output sequence. We also simulate the

system forward in time for some length after the decoding time

horizon 𝑇 and show this with solid lines in the figure.

Discussion of Results: In our experimental evaluation, we ob-

served that a surprisingly small number of mode-transition se-

quences suffice to 𝜖-cover with high confidence. This is demon-

strated when we compare columns 2 and 3 of Table 2. The time

taken to synthesize the set ranges from 14 seconds to around 30

hours for some of the larger benchmarks. However, note that the

𝜖-cover set needs to be synthesized just once, offline, for a given

time horizon 𝑇 .

The remaining columns of Table 2 compares the MILP decoding

approach and the 𝜖 decoding approach for different time horizons.

The time taken to solve the two smaller benchmarks - bouncing

ball and water tank - using the two approaches are comparable.

We report values for time horizons up to T=100 time steps. For the

other benchmarks, the MILP decoding approach times out (after

10, 000 seconds), as the sequence length increases. This is indicated

with a “t/o” label in Table 2.

In general, our approach is much faster than the MILP approach

in terms of computation time, for most of the benchmarks. This

shows that our approach of synthesizing a finite cover sequence is

successful in practice. The average objective value of the LP-based

decoding is slightly larger than 𝜖 , which is to be expected since the

cover set accounts for about 97% of all output sequences.
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Figure 1: Simulations showing data with noise and the decoded sequence run forward in time to predict future outputs.

Table 2: Candidate set generation, Performance of MILP vs LP decoder on 1000 noisy output sequence samples. All of the
reported times are from experiments performed on a Linux server running Ubuntu 18.04 OS with 24 cores and 64 GB RAM.
“t/o” denotes timeout after 10, 000 seconds.

𝜖-Cover Set Generation Mixed-Integer Linear Program 𝜖 Decoder

Avg. Min. Max. Avg. Avg. Min. Max. Avg.

Benchmark T # possible # found time time(s) time(s) time(s) obj. time(s) time(s) time(s) obj.

Bouncing Ball

𝜖 = 0.05

20 2
20

95 01m 19s 0.31 0.04 1.12 0.05 0.72 0.28 2.40 0.11

40 2
40

411 22m 12s 0.92 0.12 4.34 0.05 2.15 1.06 6.08 0.06

60 2
60

705 1h 25m 53s 1.98 0.19 8.99 0.05 4.27 2.01 11.65 0.06

80 2
80

888 2h 50m 14s 4.08 0.32 38.15 0.05 6.67 3.39 13.05 0.05

100 2
100

983 4h 07m 38s 7.30 0.64 44.55 0.05 10.40 5.41 34.33 0.06

Water Tank

𝜖 = 0.05

20 2 · 320 40 14s 0.19 0.04 1.62 0.05 0.39 0.11 0.85 0.05

40 2 · 340 486 15m 36s 0.75 0.08 14.80 0.05 1.31 0.37 3.75 0.05

60 2 · 360 1668 1h 53m 10s 2.52 0.29 14.84 0.05 2.80 0.84 9.06 0.06

80 2 · 380 2916 5h 20m 01s 4.61 0.58 21.65 0.05 5.04 1.34 16.29 0.05

100 2 · 3100 4613 11h 31m 00s 6.77 0.68 29.46 0.05 6.89 2.20 23.37 0.07

Room Heater 1

𝜖 = 1.0

10 3 · 510 11 22s 3.28 0.58 26.03 0.83 0.16 0.05 0.43 0.99

20 3 · 520 113 12m 26s 29.41 1.94 175.85 0.91 1.57 0.24 6.32 1.14

30 3 · 530 944 17h 13m 21s 191.38 10.47 7776.37 0.94 10.01 0.77 103.49 1.07

Room Heater 2

𝜖 = 1.0

5 80 · 7215 37 5m 24s - t/o t/o - 0.48 0.13 1.26 0.99

10 80 · 72110 606 22h 50m 39s - t/o t/o - 16.77 4.72 31.47 1.15

Vehicle Platoon

𝜖 = 0.05

10 2 · 310 1 38s 5.66 1.91 12.49 0.05 0.54 0.27 0.69 0.05

20 2 · 320 2 02s 35.60 23.75 56.92 0.05 3.57 1.86 4.49 0.06

30 2 · 330 11 4m 18s 135.74 83.91 233.48 0.05 21.36 8.27 36.44 0.05

40 2 · 340 16 4m 46s 424.09 259.45 659.43 0.05 30.68 7.65 94.49 0.06

50 2 · 350 42 31m 53s - t/o t/o - 38.77 11.22 195.27 0.06

Geometric Shapes

𝜖 = 0.1

10 61 · 12110 45 1m 39s - t/o t/o - 1.30 0.31 4.40 0.09

20 61 · 12120 161 19m 46s - t/o t/o - 5.20 0.94 15.59 0.09

30 61 · 12130 500 2h 20m 10s - t/o t/o - 10.05 1.96 35.80 0.10

40 61 · 12140 1049 11h 10m 05s - t/o t/o - 13.85 3.31 72.38 0.10

50 61 · 12150 1525 30h 11m 45s - t/o t/o - 10.10 3.78 76.99 0.10

5 CONCLUSIONS
To conclude, we have demonstrated an approach to the decoding

problem for discrete time linear hybrid automata along with an

approach based on synthesizing a cover set with probabilistic guar-

antees. Our approach is evaluated over benchmark examples and

shows promise by synthesizing relatively small cover sets that al-

low rapid solution to the decoding problem even for large hybrid

systems with long output sequences.
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