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Abstract: The hot dense environment of the early universe is known to have produced large numbers

of baryons, photons, and neutrinos. These extreme conditions may have also produced other long-

lived species, including new light particles (such as axions or sterile neutrinos) or gravitational

waves. The gravitational effects of any such light relics can be observed through their unique imprint

in the cosmic microwave background (CMB), the large-scale structure, and the primordial light

element abundances, and are important in determining the initial conditions of the universe. We

argue that future cosmological observations, in particular improved maps of the CMB on small

angular scales, can be orders of magnitude more sensitive for probing the thermal history of the

early universe than current experiments. These observations offer a unique and broad discovery

space for new physics in the dark sector and beyond, even when its effects would not be visible

in terrestrial experiments or in astrophysical environments. A detection of an excess light relic

abundance would be a clear indication of new physics and would provide the first direct information

about the universe between the times of reheating and neutrino decoupling one second later.
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1 Introduction

Cosmology unites the study of the fundamental laws of particle physics, the history of the universe,

the origin of its structure, and its subsequent dynamics. The abundances of baryons, photons,

neutrinos, and (possibly) dark matter were determined during the hot thermal phase that dominated

the early universe. It is the abundances of these particles and the forces between them that determine

the conditions of the cosmos that we see today.

There is strong motivation to determine if other forms of radiation (i.e. relativistic species),

including gravitational waves, were produced during the hot big bang. Changes to the radiation den-

sity make a measurable impact on cosmological observables, including the amplitude of clustering,

the scale of the baryon acoustic oscillations (BAOs), and primordial light element abundances. An

accurate measurement of the total radiation density is therefore also crucial in order to calibrate

late-time observables, such as the BAO scale or the lensing amplitude.

New sources of (dark) radiation are well motivated by both particle physics and cosmology

(cf. e.g. [1–3]). New light particles are predicted in many extensions of the Standard Model (SM),

including axions and sterile neutrinos, or can arise as a consequence of solving the hierarchy

problem (see e.g. [1–22]). For large regions of unexplored parameter space, these light particles are

thermalized in the early universe and lead to additional radiation at later times. Light species are

ubiquitous in models of the late universe as well: they may form the dark matter (e.g. axions), be an

essential ingredient of a more complicated dark sector as the force carrier between dark matter and

the Standard Model (or itself), or provide a source of dark radiation for a dark thermal history. Fur-

thermore, these new particles could also play a role in explaining discrepancies in the measurements

of the Hubble constant H0 [23–27], the amplitude of large-scale matter fluctuations σ8 [28–31], and

the properties of clustering on small scales [32, 33]. Measuring the total radiation density is a broad

window into all these possibilities as well as additional scenarios that we have yet to consider.

Remarkably, cosmological observations provide an increasingly sharp view of the radiation

content of the universe. The cosmic neutrino background itself is a compelling example: while

it has not been possible to see cosmic neutrinos in the lab, their presence has been observed at

high significance in the cosmic microwave background (CMB) and through observations of light

element abundances [33, 34]. These indirect measurements of the cosmic neutrino background

therefore provide a window back to a few seconds after the big bang, the era of neutrino decoupling.

A new thermalized light particle adds at least a percent-level correction to the radiation density that

is determined by its decoupling temperature (time). Measurements in the coming decade will be

sensitive to decoupling temperatures that are orders of magnitude higher than current experiments,

and able to reveal new physics that will be inaccessible in any other setting.

2 Light Relics of the Big Bang

Cosmic Neutrino Background

The cosmic neutrino background is one of the remarkable predictions of the hot big bang. In the

very early universe, neutrinos were kept in thermal equilibrium with the Standard Model plasma.

As the universe cooled, neutrinos decoupled from the plasma. A short time later, the relative

number density and temperature in photons increased, due primarily to the transfer of entropy

from electron-positron pairs to photons. The background of cosmic neutrinos persists today, with

a temperature and number density similar to that of the CMB. Their energy density ρν is most
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commonly expressed in terms of the effective number of neutrino species,

Neff =
8

7

7

11

4

ç4/3
ρν

ργ
, (1)

where ργ is the energy density in photons. This definition is chosen so that Neff = 3 in the SM

if neutrinos had decoupled instantaneously prior to electron-positron annihilation. The neutrino

density ρν receives a number of corrections from this simple picture of decoupling, and the best

available calculations give NSM
eff = 3.045 in the SM [35–37].

Cosmology is sensitive to the gravitational effects of neutrinos, both through their mean energy

density [38–41] and their fluctuations, which propagate at the speed of light in the early universe due

to the free-streaming nature of neutrinos [41–43]. A radiation fluid whose fluctuations do not exceed

the sound speed of the plasma [44, 45] could arise from large neutrino self-interactions [46, 47],

neutrino-dark sector interactions, or dark radiation self-coupling. Such a radiation fluid can be

observationally distinguished from free-streaming radiation, and can serve as both a foil for the

cosmic neutrino background and a test of new physics in the neutrino and dark sectors [42, 48, 49].

Neutrinos are messengers from a few seconds after the big bang and provide a new window into

our cosmological history. While these relics have been detected in cosmological data, higher

precision measurements would advance the use of neutrinos as a cosmological probe. Furthermore,

the robust measurement of the neutrino abundance from the CMB is crucial for inferring cosmic

parameters, including the expansion history using BAOs [50], the neutrino masses [51], and H0 [27].

Beyond the Standard Model

A measurement of the value of Neff provides vastly more information than just the energy density in

cosmic neutrinos. The parameter Neff is a probe of any particles that have the same gravitational

influence as relativistic neutrinos, which is true of any (free-streaming) radiation. Furthermore,

this radiation could have been created at much earlier times when the energy densities were even

higher than in the cores of stars or supernovae, shedding light on the physics at new extremes of

temperatures as well as densities, and our early cosmic history.

New light particles that were thermally produced in the early universe contribute to the neutrino

density ρν and increase Neff above the amount from neutrinos alone. The presence of any additional

species can therefore be characterized by ∆Neff ; Neff �NSM
eff . Since all such thermalized particles

behave in the same way from a cosmological point of view, this parametrization captures a vast

range of new physics: axions, sterile neutrinos, dark sectors, and beyond [13, 18, 52, 53].

Constraints on Neff are broadly useful and, most importantly, allow the exploration of new

and interesting territory in a variety of well-motivated models. This can be seen with a simple

example: dark matter-baryon scattering. For low-mass (sub-GeV) dark matter, current data allows

for relatively large scattering cross sections [54]. If they scatter through a Yukawa potential, which

is a force mediated by a scalar particle, this force is consistent with fifth-force experiments and

stellar cooling if the mediator has a mass around 200 keV. However, the particle which mediates

the force necessarily† contributes ∆Neff � 0.09 when it comes into thermal equilibrium with the

Standard Model [55]. Excluding this value would require that the strength of the interactions is

small enough to prevent the particle from reaching equilibrium at any point in the history of the

universe, which, consequently, limits the scattering cross section, as shown in the left panel of Fig. 1.

†The mediator with a mass of 200 keV is too heavy to contribute to Neff, but it must decay to sub-eV mass particles,

which will increase Neff, in order to avoid more stringent constraints.
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when the production rate Γ is much larger than the expansion rate H(T ). At high temperatures,

production is usually fixed by dimensional analysis, Γ ∝ λ 2T 2n+1, where λ is the coupling to

the Standard Model with units of [Energy]�n. The particle is therefore in equilibrium if λ 2 �

M�1
P T�2n+1. There are two important features of this formula: (i) the appearance of the Planck

scale MP implies we are sensitive to very weak couplings (M�2
P = 8πGN), and (ii) for n � 1 it scales

like an inverse power of T . As a result, sensitivity to increasingly large TF implies that we are

probing increasingly weak couplings (lower production rates) in proportion to the improvement

in TF (not ∆Neff). These two features explain why future measurements of ∆Neff can be orders of

magnitude more sensitive than terrestrial and astrophysical probes of the same physics [18, 53].

The impact of the coming generation of observations is illustrated in Fig. 1. Anticipated improve-

ment in measurements of Neff translate into orders of magnitude in sensitivity to the temperature TF .

This temperature sets the reach in probing fundamental physics. Even in the absence of a detec-

tion, future cosmological probes would place constraints that can be orders of magnitude stronger

than current probes of the same physics, including for axion-like particles [18] and dark sec-

tors [21, 22, 55, 63]. It is also worth noting that these contributions to Neff asymptote to specific

values of ∆Neff = 0.027,0.047,0.054 for a massless (real) spin-0 scalar, spin-1/2 (Weyl) fermion

and spin-1 vector boson, respectively (see Fig. 1). A cosmological probe with sensitivity to ∆Neff at

these levels would probe physics back to the time of reheating for even a single additional species.

Even without new light particles, Neff is a probe of new physics that changes our thermal

history, including processes that result in a stochastic background of gravitational waves [64–

66]. Violent phase transitions and other nonlinear dynamics in the primordial universe could

produce such a background, peaked at frequencies much larger than those accessible to B-mode

polarization measurements of the CMB or, in many cases, direct detection experiments such as LIGO

and LISA [67–71]. For particularly violent sources, the energy density in gravitational waves can

be large enough to make a measurable contribution to Neff [71–73].

In addition to precise constraints on Neff, cosmological probes will provide an independent

high-precision measurement of the primordial helium abundance Yp due to the impact of helium

on the free electron density prior to recombination. This is particularly useful since Yp is sensitive

to Neff a few minutes after the big bang, while the CMB and matter power spectra are affected

by Neff prior to recombination, about 370000 years later. Measuring the radiation content at these

well-separated times provides a window onto any nontrivial evolution in the energy density of

radiation in the early universe [74–77]. Furthermore, Neff and Yp are sensitive to neutrinos and

physics beyond the Standard Model in related, but different ways, which allows for even finer

probes of new physics, especially in the neutrino and dark sectors.

3 Cosmological and Astrophysical Observables

Cosmic Microwave Background The effect of the radiation density on the damping tail of the

anisotropy power spectrum drives the constraint on Neff from the CMB. The largest effect comes

from the change to the expansion rate, which impacts the amount of photon diffusion, which in turn

causes an exponential suppression of short wavelength modes [78]. This effect on the damping

tail is dominant when holding fixed the scale of matter-radiation equality and the location of the

first acoustic peak [40], both of which are precisely measured. At the noise level and resolution of

upcoming observations [53, 61,79–81], this effect is predominately measured through the TE power

spectrum on small scales. Planck has provided a strong constraint of Neff = 2.92+0.18
�0.19 using
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temperature and polarization data [33]. Future high-resolution maps of the CMB could realistically

achieve σ(Neff) = 0.03 in the coming decade [53, 61].

In addition to the effect on the expansion rate, perturbations in neutrinos (and other free-

streaming light relics) affect the photon-baryon fluid through their gravitational influence. The

contributions from neutrino fluctuations are well described by a correction to the amplitude and the

phase of the acoustic peaks in both temperature and polarization [41]. The phase shift is a particularly

compelling signature since it is not degenerate with other cosmological parameters (unlike the

damping tail) [41,42] and has a direct connection to the underlying particle properties [42]. Recently,

the phase shift from neutrinos has also been established directly in the Planck temperature data [82],

which provides the most direct evidence for free-streaming radiation consistent with the cosmic

neutrino background. If ∆Neff 6= 0 is detected, this phase could provide a powerful confirmation.

Big Bang Nucleosynthesis (BBN) The production of light elements in the early universe is

affected by the density of light relics through their impact on the expansion rate during the first few

minutes after reheating. Cosmic neutrinos play a special role during BBN since they also participate

in the weak interactions that interconvert protons and neutrons. Measurements of the primordial

abundances of light elements can therefore be used to infer the relic density of neutrinos and other

light species, with deuterium [83] and helium-4 [84, 85] currently providing the tightest constraints.

Future improvements will be driven by 30 m-class telescopes, but are limited by the analysis of

the most pristine astrophysical systems rather than statistics. When abundance measurements are

combined with Planck CMB data, the density of light relics is found to be Neff = 3.04±0.11 [33].

Large-Scale Structure (LSS) Maps of the large-scale structure of the universe from galaxy and

weak lensing surveys can provide complementary measurements of the radiation content. The main

observable is the shape of the matter power spectrum, which can be decomposed into a smooth

(broadband) component and the spectrum of baryon acoustic oscillations. Additional radiation

alters the sound horizon, which is routinely captured in current BAO analyses. While this is highly

degenerate with other parameters, combining BAO and CMB observations slightly improves the

sensitivity to Neff over the CMB alone, Neff = 2.99±0.17 [33]. The BAO spectrum also exhibits the

same phase shift observed in the CMB spectra. A nonzero phase shift was recently extracted from the

distribution of galaxies observed by the Baryon Oscillation Spectroscopic Survey (BOSS) [60, 86]

and upcoming galaxy surveys will significantly improve on this measurement.

The two main consequences of a different radiation density on the broadband shape of the

power spectrum are a change of the power on small scales and in the location of the turn-over of

the spectrum. Although these effects are clearly visible in the linear matter power spectrum, they

are limited by uncertainties related to gravitational nonlinearities and biasing. The combination of

planned spectroscopic LSS surveys with Planck data could reach σ(Neff) = 0.08 [60]. However,

these surveys would not contribute a meaningful improvement when combined with a CMB ex-

periment achieving σ(Neff)á 0.03. If nonlinear effects can be controlled, very large-volume and

high-resolution LSS maps can reach comparable sensitivity to the CMB [60, 87] and would sig-

nificantly add to the scientific impact of the CMB alone. Furthermore, LSS observations are also

sensitive to effects induced by neutrinos and other light relics beyond Neff, for example in the

Lyman-α forest and the biasing of galaxies (see e.g. [88–92]).

Summary Sub-percent-level measurements of the radiation density would transform our under-

standing of the early universe, the neutrino and dark sectors, and more. To reach clear observational

targets, future CMB observations offer the most promising and concrete path in the next decade.
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CNRS/IN2P3, Université Paris Diderot, 10, rue Alice
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