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1 Introduction

Spatial economic analysis evaluates how localized shocks–e.g., infrastructure projects

(Redding and Turner, 2015), factory openings (Greenstone et al., 2010), and natural

disasters (Boustan et al., 2020)–affect the geographic distribution of economic activity.

Standard approaches match administrative or survey data to the geospatial structure

of these shocks. Because data tend to be released infrequently (e.g., decadally for

Censuses) and for relatively coarse spatial units (e.g., counties or metro areas), this

method is suitable for assessing long-run economic impacts at a broad spatial scale

(e.g., Faber, 2014; Baum-Snow et al., 2017). By contrast, assessing the impact of

shocks at the neighborhood level across all cities nationally would be infeasible with

conventional data in most countries.

Satellite imagery offer a path forward. Recent work leverages nighttime light in-

tensity to study regional economies where conventional data are sparse (see, e.g., Don-

aldson and Storeygard, 2016). Although nightlights can detect changes in economic

activity across cities, states, and countries, they are problematic at smaller spatial

scales. High luminosity in city centers may saturate satellite sensors, leading to top

coding, while surface reflectance may cause light to bleed across space, making urban

footprints appear artificially large. Aggregating imagery addresses these problems, but

dampens spatial variation. To increase granularity, recent work in remote sensing and

computer science uses convolutional neural networks (CNNs) to predict outcomes from

multi-spectral daytime satellite imagery at high spatial resolutions. This research de-

tects cross-sectional variation in spending and wealth for villages in Africa (Jean et al.,

2016) and poverty rates across a diverse sample of cities (Babenko et al., 2017; Piaggesi

et al., 2019). In related work on 1km grid cells in the US, Rolf et al. (2021) develop a

“task-agnostic” learning approach to predict a broad set of localized outcomes.

This paper makes two advances over the existing literature. First, we implement

a CNN to predict changes in local economic activity from changes in high-resolution

daytime satellite imagery. We achieve high predictive accuracy in the cross section, as

others have done, and in predicting localized outcomes in the time series, which has

not been the focus of previous work. Second, we demonstrate that our approach far

outperforms nighttime lights at predicting changes at fine spatial scales.1

For inputs in model training, we use multi-spectral imagery from Landsat; for

1Given their wide use in spatial analysis, nightlights are a natural benchmark for comparison. See, e.g.,
Chen and Nordhaus (2011), Henderson et al. (2012), Gennaioli et al. (2013), Michalopoulos and Papaioannou
(2014), Storeygard (2016), Bruederle and Hodler (2018), Henderson et al. (2018), Hjort and Poulsen (2019),
and Jedwab and Storeygard (2021). In the policy domain, the World Bank has produced a quarterly data
set, Light Every Night, which records localized nighttime light intensity from 1992 to 2020.
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labels, we use household income and population for Census Blocks in the US Census

and American Communities Surveys (ACS). Working in the data-rich US setting, we are

able to train a CNN from scratch using hundreds of thousands of images and training

labels. Matching Census data with Landsat to construct square images with side

lengths of 1.2km or 2.4km, we predict levels and changes in income and population.2

In the test set, model predictions achieve R2 values of greater than 0.85 in levels and

0.32 in time differences, which compare to R2 values for predictions in levels of 0.42

for income and 0.75 for population in Rolf et al. (2021). There are no estimates in the

literature to benchmark our predictions of changes in local income and population.

Methodologically, we advance the scale and specificity at which machine learning is

used to predict local changes in economic activity. Rather than beginning with image

features generated by existing models for prediction–which is the standard practice

of transfer learning–we train and tune CNN models for all urbanized pixels in the

contiguous US from the ground up. This computationally demanding approach allows

us to detect the low-level image features (i.e., shapes, shades, edges, clusters) that

are informative for predicting income and population, beyond those that have proven

useful in other image tasks (Rosenstein et al., 2005).

Our approach complements Rolf et al. (2021), who aim for generality rather than

specificity in predicting outcomes from satellite imagery. They use a layer of ran-

domly initialized filters–based on sampling a small patch from the imagery–to extract

features from the raw images. These features are then used to predict outcomes of

interest. Their process requires little training, is undemanding computationally, and is

suitable to predicting many outcomes, but may not be well tuned to specific prediction

tasks. Our approach, while highly intensive in training and computation, is bespoke

for predicting local changes in income and population.

Our model and code can be used to impute high-frequency outcomes in between

the periodic data drawn from large-scale surveys, to train models with imagery where

Census data exist but are sparse, and to predict levels and changes in income and pop-

ulation for spatially disaggregated units where Census data are unavailable entirely.3

We conclude with a discussion of potential applications.

2For comparison, in 2010 US Census Blocks had an average size of 0.9km x 0.9km.
3Our code, model, and output are available at https://github.com/thomas9t/spatial-econ-cnn.git. This

repository includes scripts and computed weights which can be used to augment or extend our modeling
approach. It also includes data and instructions for direct applications using our generated income and
population measures.
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2 Data & Methods

2.1 Imagery and Label Data

For satellite imagery, we use daytime surface reflectance detected by the USGS

Landsat 7 satellite, which has 7 spectral bands (3 visible, 2 near-infrared, 1 thermal, 1

mid-infrared), covers the Earth’s surface biweekly, and has a spatial resolution of 30m.

Using Google Earth Engine (Gorelick et al., 2017), we construct annual composites of

surface reflectance for the May-August median of cloud-free images each year.4

To avoid populating the data with a large number of images covering uninhabited

areas, we limit the sample to Landsat pixels corresponding to urbanized US Census

Block Groups.5 We first rank Block Groups according to population density in 2000

and identify those in descending rank order that collectively comprised 85% of the

continental US population in that year. We then draw a 1-mile buffer around these

Block Groups and include all images within the buffer in our sample. Following this

procedure, our data cover 93% of the continental US population in 2000. We construct

individual images from Landsat imagery as squares. We test two image sizes, one

with 2.4km sides and one with 1.2km sides (see Figure 1).6 Smaller images, which

increase the spatial resolution of the ultimate predictions, may be more useful in some

applications, but may also be more challenging to model as they have fewer pixels, and

therefore less information available, per image.

Labels for the analysis are constructed from the US Census for 2000, 2010, and 2020,

and the ACS five-year samples for 2005-2009, 2008-2012, and 2015-2019, all extracted

from Manson et al. (2020). From each sample, we use population by Census Block and

total personal income, for residents ages 15 years and older, by Census Block Group.7

Because income data are only published at the Block Group level, we interpolate income

from Block Groups to Blocks according to the population distribution across Blocks

within Groups.8 We further interpolate income and population from Census Blocks to

images based on the geographic overlap between the two.

4Using summer months averts irregularities due to persistent clouds or snow.
5Census Blocks (600 to 3,000 residents) are the smallest geographic unit in the Census; Block Groups are

the next smallest unit. In 2000, there were 211,267 Block Groups, with a mean of 39 Blocks per Group. We
exclude Census Blocks in which more than 10% of the population was living in group quarters in 2000.

6The 2.4km and 1.2km images have pixel dimensions of 80x80 (6,400 pixels) and 40x40 (1,600 pixels).
7Personal income includes wages and salaries, tips and bonuses, proprietor’s income, government cash

transfers, interest and rental income, and retirement benefits. In-kind government transfers, capital gains,
and revenue from property sales are not included (Manson et al., 2020). All values are in 2012 dollars.

8Because Block population is unavailable in the ACS data, we use the 2010 population to interpolate
2007 income from Block Groups to Blocks, and similarly use 2020 population to interpolate 2017 income.
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Figure 1: Geographic Area of Census and Image Units
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Note: This figure shows the geographic area covered by various Census geographic units alongside our
constructed images. Horizontal black dashes display the median area for each geographic unit; grey
vertical lines show the range from the 10th percentile of area to the 90th percentile of area for each
geography. Note that the y-axis is a log-scale of area.

2.2 Convolutional Neural Networks for Spatial Economic

Analysis

Although images are an information-rich medium, their unstructured and high-

dimensional nature make them difficult to use with conventional learning algorithms,

such as LASSO regression. The ability of CNNs to learn structure from data has

revolutionized image processing (LeCun et al., 2015). A CNN consists of a sequence

of layers, each of which implements a parameterized nonlinear transformation of its

inputs. The inputs to the first layer are raw images, in our case 7-dimensional images

from Landsat. The output of the first layer is used as input by the second layer and

so on. The transformation implemented by each layer is typically either a convolution

or pooling operation (Goodfellow et al., 2016), which can be visualized by sliding a

rectangular window (e.g., 3× 3× 7) over the input image. At each position, an inner

product is performed, which aggregates the pixel values in the window into a single

number. The output of either a convolution or a pooling operation is another image in

which the pixels are these aggregated values.9 After a sequence of convolutional and

9In a convolutional layer, the window contains coefficients used to compute a weighted sum of the pixel
values within each window via convolutional filtering. The CNN learns these weights to identify a feature of
the image. By applying a sequence of transformations that learn features at increasingly coarse spatial scale,
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pooling layers, the transformed image passes through a fully-connected layer, which

is a nonlinear regression that maps the image features extracted by the convolutional

and pooling layers to a predicted outcome. The parameters of the model are fit using

a gradient-based optimization algorithm known as stochastic gradient descent, which

minimizes the MSE over labeled training examples.

In our context, a CNN extracts economic information that is latent in spectral

data. Asphalt, cement, gravel, soil, water, vegetation, and other materials vary in

their reflectance intensity across the light spectrum (e.g., De Fries et al., 1998). The

presence of these materials varies enormously within an urban area: more vegetation

and loose soil in green spaces; more asphalt and cement around motorways; more steel

and wood, together with concrete, in houses and buildings (Zha et al., 2003). The

shapes of these materials exhibit similarly wide variation: irregular edges in green

spaces, intermittent grids of grass and roofing material in suburbs, larger rectangular

clusters in apartment complexes and shopping malls, and compact, interconnected

grids in urban centers (Ural et al., 2011, Pesaresi et al., 2016). It is this complexity

that makes a neural network powerful—the network learns the mapping of materials

and shapes to the level of economic activity and changes in materials and shapes to

changes in economic activity. As an empirical regularity, the features learned by the

network are often organized into a hierarchy of complexity (Zeiler and Fergus, 2014), in

which early layers learn to identify simple features, such as edges or basic shapes, and

subsequent layers learn to compose these simple features into complex objects, such as

office buildings, industrial parks, suburban developments.

The predicted values that our analysis generates will be subject to error. In re-

gression analysis, measurement error in the outcome variable does not generate bias

in estimating treatment effects if this error is uncorrelated with the treatment being

studied.10 Because treatments may be correlated with initial levels of economic de-

velopment, we wish to eliminate any correlation between prediction errors and initial

conditions. To do so, we include controls for local economic characteristics in the initial

time period (as measured in Census data) in our CNN models.11 An added virtue of

this approach is that it may improve model accuracy, thereby reducing the scope for

CNNs are able to represent complex spatial relationships between pixels in an image. In a pooling layer, we
condense all pixel values within the window to a single number—typically the maximum pixel value within
the window. Pooling differs from convolution primarily in that it does not require any learned weights.
Pooling serves to reduce the size of the image, which lowers the computational burden of subsequent layers,
and helps make the features detected by convolutions robust to small spatial transformations.

10For example, if the assigned treatment (a new highway) had a strong positive correlation with the
measurement error in the outcome (larger positive deviations between actual and predicted population or
income near the highway), this would lead to an overestimate of the true treatment effect.

11A full list of variables included can be found in Appendix Table 1.
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prediction errors to contaminate analysis that uses our predictions as outcome variables

in the first place. Implementing our approach, we find minimal correlations between

prediction errors and initial conditions in our data.12

2.3 Training, Tuning, and Testing Procedure

CNNs contain a large number of tunable parameters—known as hyperparameters—

which control the model architecture and optimization process (e.g., the dimension of

convolution filters, number of channels produced by each convolution layer, strength

of regularization on weights, and step size used by the optimization algorithm). CNNs

are prone to overfitting, in which a model generates accurate predictions on the data

used to fit parameters, but fails to generalize on out-of-sample data. To obtain ac-

curate estimates of the model’s out-of-sample performance and to determine the best

values for hyperparameters, we follow standard practice in empirical machine learning

by partitioning our data into three disjoint subsets for training, validation, and testing

(Friedman et al., 2001). The training set is used to fit model parameters, and the

validation set is used to estimate the out-of-sample error for a given set of hyperpa-

rameters. The final model is obtained by selecting the hyperparameters that yield the

lowest prediction error in the validation set. The test set is used to obtain an estimate

of out-of-sample error for the final model. Ideally, we would repeat this partitioning

many times to obtain an estimate of the distribution of out-of-sample error. However,

this is infeasible at our data scale.

Models are trained to minimize the MSE of the prediction using the Adam optimizer

(Kingma and Ba, 2014). When training models in levels, we pool training data for the

years 2000 and 2010, and train a single model to predict outcomes in this combined

sample. An alternative approach would be to specialize models in levels to a particular

year. However, this method led to greater over-fitting, where training on pooled data

resulted in only modest losses in accuracy. We tune hyperparameters for the learning

rate (step size and decay rate) and strength of L2-regularization on weights. The

training images are randomly augmented to prevent overfitting (cropping, flipping and

zooming). We stop the optimization process after 200 epochs or if the R2 on the

validation set fails to increase for 50 epochs. In the latter case we retain the weights

which maximize the validation R2. Further details are in the online appendix.

To obtain reliable estimates of out-of-sample performance, the training, validation,

and test sets must be disjoint. To construct these subsets, we partition the full set

12The largest correlation coefficient for the income differences model in the test set is 0.057 (for employment
in hospitality services), and the median correlation is 0.002. See Appendix Table 1 for details.
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of images meeting our inclusion criteria into contiguous urban areas. We randomize

selection into training, validation, and test sets at the level of the urban area, rather

than the level of the image. Maintaining a disjoint split of the images removes the

possibility of data leakage between the training and testing sets (which may result if

we allowed images from the two sets to be adjoining). This procedure leads to a total

of 4,710 urban regions, which are each randomly assigned to either the train (roughly

50%), validation (roughly 20%), or test (roughly 30%) sets. An image receives the sub-

set designation of the urban region it is contained by, where we discard images located

on borders between urban areas (e.g., images on the border between Minneapolis and

St. Paul, which are separate urban areas). Appendix Figure 3 shows the distribution

of images into each of these sub-groups.

3 Results

3.1 CNN Model Performance

3.1.1 Baseline Results

Here, we present our main results on the predictive power of CNNs. Table 1 Panel

A reports R2 values for model accuracy, again in levels (2000 and 2010) and time

differences (2000 to 2010) for 2.4km images; Table 1 Panel B repeats the results for

1.2km images. Our smaller images are close in dimension to the 1km images that

Piaggesi et al. (2019) and Rolf et al. (2021) use in their machine-learning approaches

to model, respectively, poverty levels and levels of average income and population

density in US data. We report performance in the training, validation, and test sets,

with and without incorporating initial conditions in model training.13 For models in

levels, we report results for a single model trained to predict both years; performance

in each year separately is very similar (see Appendix Table 5).

Beginning with larger images in Table 1 Panel A, we first consider model perfor-

mance for outcomes in levels. For income and population, and with initial conditions,

the R2 in the test set are 0.90 and 0.91, respectively. Without initial conditions, perfor-

mance deteriorates moderately, with the R2 falling by 0.05 to 0.07. Comparing these

results to those for smaller image sizes in Table 1 Panel B, the R2 for income and pop-

13The complete set of initial conditions, all measured for the year 2000, are at the county level, log
population, log personal income, and the shares of employment in business services, non-business services,
and industrial production; and at the Census Block level, population shares for individuals who are female,
ages 25 to 54, Black, non-Hispanic white, Hispanic, and living in group quarters, and employment shares for
two-digit manufacturing industries, business services, and non-business services.
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ulation are 0.85 and 0.86, with initial conditions, and 0.09 to 0.11 lower, without them.

The weaker performance of smaller relative to larger images is expected. For smaller

images, the network must form predictions based on a smaller number of underlying

pixels, which tends to undermine accuracy.

Table 1: R2 Values for Baseline Models of Large and Small Images

2000 and 2010 Levels 2000 to 2010 Difference
Train Valid Test Train Valid Test

Panel A: National 2.4km Imagery
Income
With Initial Conditions 0.9254 0.8934 0.9018 0.4863 0.4126 0.3962

Without Initial Conditions 0.8625 0.8289 0.8374 0.4951 0.3960 0.3702
Population
With Initial Conditions 0.9611 0.9029 0.9132 0.5410 0.4839 0.4573

Without Initial Conditions 0.9187 0.8636 0.8684 0.7004 0.4496 0.4202

Panel B: National 1.2km Imagery
Income
With Initial Conditions 0.8957 0.8620 0.8543 0.3819 0.3061 0.3216

Without Initial Conditions 0.7969 0.7597 0.7494 0.2959 0.2609 0.2690
Population
With Initial Conditions 0.9101 0.8716 0.8600 0.4217 0.3401 0.3559

Without Initial Conditions 0.7841 0.7612 0.7492 0.3924 0.3051 0.3036
Note: The table shows R2 values computed on each subset of the images with 2.4km and 1.2km sides. The total
sample size of spatially unique images in training, validation and test subsets is 112,932 for larger images and
320,880 for smaller images. Income measures the log of total personal income, while population is the log of total
population. 2000 and 2010 levels represent a model predicting levels for images in the two years together, while
the differences columns show the result predicting the change from 2000 to 2010. Initial conditions included
in the model are gender and racial composition, employment shares and county level population and income,
all measured in 2000. The results show high accuracy in predicting both levels and differences in income and
population; there is not strong evidence of over-fitting in the training set. Model fit is consistently lower on the
sample of smaller images; hence, we prioritize the sample of 2.4km imagery as our baseline analysis sample.

Turning to our predictions for changes over 2000-2012, for 2.4km images the R2

for income and population growth rates in the test set are 0.40 and 0.46, respectively,

with initial conditions, and 0.37 to 0.42 without them. For 1.2km images, model

performance is again somewhat weaker. The R2 is 0.32 to 0.36, with initial conditions,

and 0.27 and 0.30, without them.

Comparing our results for 1.2km images to those for 1km grid cells in Rolf et al.

(2021), we achieve higher performance for both population density (our R2 of 0.86

versus theirs of 0.72) and income (our R2 of 0.85 versus theirs of 0.42). We note

that whereas our model is trained from scratch for the express purpose of predicting
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income and population, their model is constructed for the general purpose of predicting

many possible outcomes and therefore may sacrifice accuracy for any specific quantity.

Because we are unaware of any prior work that uses CNNs to predict changes in income

or population at spatial resolutions similar to our image sizes, we have no benchmark

for comparison in the literature for these results.14

To evaluate overfitting, we compare predictive accuracy across training, validation,

and test sets. Focusing on the time-difference models and on results in validation

versus training sets, the R2 for income growth in 2.4km images falls minimally by 0.02

from the validation to the test set, with initial conditions, and by 0.03, without initial

conditions; the change in R2 is slightly larger for population growth. For 1.2km images,

the R2 either rises or changes minimally from the validation to the test set, both for

income and population and with or without initial conditions. With cross-validation,

overfitting in our model training does not appear to be manifest.

3.1.2 Model Prediction Errors

To evaluate prediction errors in our model, Figure 2 shows scatter plots of model-

predicted values and actual values for log income and population, in levels and time

differences. In the models for levels, the data are tightly packed around the 45-degree

line, indicating that the model accurately captures log income and population across

the entire distributions of each. The results for growth rates in the second row show

that the prediction of differences is more challenging. The model captures much of the

variation for images in which values are growing, but tends to over-predict growth in

images for which values are flat or declining, especially for income. The asymmetry

in errors for positive and negative growth rates—for income, in particular—may be

a result of the slow depreciation of physical capital. Whereas in expanding regions

income growth may lead directly to new construction, in declining regions income loss

may result in the change or removal of structures over longer time horizons.

To see whether our prediction errors are associated with initial economic conditions,

we compute the correlation of our prediction errors with initial industry employment

shares and demographic characteristics. These correlations are all below 0.1 and mostly

well below 0.02, as seen in Appendix Table 1. Estimating a regression of prediction

errors on fixed effects for each urban area in the sample, the fixed effects absorb 11% or

14In Appendix Table 2, we report results for log income per capita. In levels for 2000 and 2010 and with
initial conditions, we achieve R2 in the test set of 0.65 for 2.4km imagery and 0.61 for 1.2km imagery; in
changes for 2000-2010 and with initial conditions, we achieve R2 in the test set of 0.07 for both 2.4km and
1.2km imagery. Differencing population from income, which removes much of the systematic variation in
economic activity from the data, appears to complicate extracting information from satellite imagery.
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Figure 2: Model Predictions against Actual Values

Note: Levels models include data from both 2000 and 2010. Extreme outliers are omitted from this figure to allow
visualization of the central tendency in the data.
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less of the variation in the errors, as seen in the last row of Appendix Table 1. Appendix

Figures 4A and 4B further show no systematic variation in prediction accuracy across

geographic regions. In all, there appears to be little covariation between prediction

errors and initial economic conditions in our sample.15

3.2 Comparison with Nightlight Intensity

Given the growing use of nightlights to detect GDP, as discussed above, we next

compare our CNN performance to how well nightlights predict levels and changes in

economic activity. In Figure 1, we regress log income or log population on log nightlight

intensity, first in levels for the years 2000 and 2010 pooled in a single regression, and

then in changes over the 2000 to 2010 time period. The geographies studied range from

US states to Census Blocks and include our 1.2km and 2.4km images. To normalize

the size of spatial units, we express all values per km2.

Figure 3: Nightlight Predictive Accuracy by Geography
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Note: This figure shows the linear fit of log income and log population on log night lights for
given geographic units, where measures are in values per km2. Night light intensity is a spatial
sum of DMSP-OLS average visible light in both 2000 and 2010. The regression for each geography
is conducted with population weights. Results show that nightlights are a powerful predictor of
population and income in large geographies, but their effectiveness in smaller geographies is limited.

Figure 3 summarizes the results by presenting the R2 values for each OLS regression.

In the regressions in levels for larger geographies, nightlights are a strong predictor of

15In the online appendix, we follow recent literature on interpreting neural network predictions by evalu-
ating saliency maps, which indicate which pixels in an image most influence network prediction.
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economic activity, consistent with previous research (Gennaioli et al., 2013; Donaldson

and Storeygard, 2016). For income levels in 2000 and 2010, where results for population

are very similar, R2 levels are stable across larger spatial units, at 0.67 for states, 0.66

for commuting zones, and 0.71 for counties. Jumping from counties to our 2.4km

images, the R2 drops to 0.57 and drops further to 0.50 for our 1.2km images. Even at

roughly the neighborhood level—the 1.2km images—nightlights are strongly positively

correlated with the level of economic activity.

Yet, our CNN trained on daylight imagery substantially outperforms nightlights in

cross-section data. Referring to our baseline CNN results in Table 1, the CNN trained

on daylight satellite imagery with initial conditions yields an R2 for log income that

is 0.33 higher for 2.4km images (0.90 versus 0.57) and 0.35 higher for 1.2km images

(0.85 versus 0.50); improved accuracy for log population is similar.

The contrast between nightlights and our CNN model is even greater when predict-

ing changes in income or population. For 2000-2010 income changes—where results for

population are again similar—R2 values are 0.10 for nightlights using 2.4km images,

compared to 0.40 in our CNN with initial conditions (or 0.37 without them), and 0.06

for nightlights using 1.2km images, compared to 0.32 in our CNN with initial condi-

tions (or 0.27 without them).16 At the neighborhood dimension of our 1.2km images,

changes in nightlights have weak predictive power for changes in economic activity.17

3.3 Robustness Exercises

We examine the robustness of our results to changes in the satellite imagery and

machine-learning methods used in the analysis.

3.3.1 Performance with RGB Only

We consider the effect of limiting the Landsat imagery used for training to the visible

spectrum (i.e., the red, green, and blue (RGB) channels). The non-RGB bands in our

imagery more than double the size of the data and therefore significantly increase

training complexity. It is therefore useful to examine whether the added modelling

complexity of using non-RGB data is justified.

Appendix Table 3 compares test accuracy on models trained with RGB bands alone

and those trained with all 7 Landsat bands. For levels models with initial conditions,

16Consistent with previous literature, we find that nightlights have sizable predictive power for long-run
income changes in larger geographies, achieving R2 values of 0.45 for states and 0.25 for counties.

17This lack of predictive power for nightlights may be due to the fact that the resolution of 1.2km images
is close to that of the 1km pixels for which raw nightlight imagery are available. At the pixel level, perhaps
unsurprisingly, changes in nightlights have little information about income or population growth.
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we find a modest benefit of adding the four non-RGB bands: the R2 rises by 0.04 for

both log income and log population. The gain is larger for difference models: including

the additional non-visible Landsat bands raises the R2 by 0.06 for log income and by

0.11 for log population. For predicting log growth in income and population, having

more complete spectral imagery is of substantial value in predictive accuracy.

3.3.2 Performance of 30m (low) vs 15m (high) Resolution Imagery

The resolution of satellite imagery is a key determinant of the information ob-

servable in a fixed image region. The USGS Landsat 7 imagery we use has a native

30m resolution. Governments and private companies are working to produce more

resolute images. DigitalGlobe, for instance, collects and sells satellite imagery with

30cm resolution, where a single 30m pixel contains 10,000 30cm pixels. Although such

high-resolution data promise massive advances in information content, these gains are

counter-balanced by similarly massive increases in computational complexity.

To provide a partial evaluation of the gains to prediction from having higher resolu-

tion imagery, we compare model performance when doubling the resolution of daytime

satellite imagery from 30m to 15m. To perform this comparison, we construct 15m

Landsat imagery using panchromatic sharpening, as described and used in Jean et al.

(2016). This process restricts the Landsat spectral bands to the RGB wavelengths.

The results, which appear in Appendix Table 4, contrast the accuracy of CNN models

trained on 1.2km images for 30m versus 15m pan-sharpened RGB bands. To reduce

computational complexity, we limit the images used in model training to those in

the Mid-Atlantic and Southeast US, as shown in Appendix Figure 3. Results on test

samples indicate that using the higher resolution imagery leads to no meaningful im-

provement in fit across model specifications. For all models, increases in R2 are less

than 0.005. This finding suggests that modestly higher resolution imagery is unlikely

to offer large improvements in a network’s ability to learn relevant features for out-

of-sample prediction at a fixed geographic scale. However, we cannot speak to the

possible model accuracy if substantially higher resolution imagery were coupled with

the computational resources to conduct a similar exercise.

3.4 Out-of-Sample Predictions

A primary application of our model is to use income and population predictions

as outcomes for analyses occurring over periods in which Census data are coarse or

unavailable. We offer examples of such analyses in Section 4 and guidance on imple-

menting them in the online appendix. To evaluate the accuracy of our predictions in
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out-of-sample time periods, we train and tune a modified model in which we allocate

70% of our images to training and 30% to validation. In this case, we evaluate model

performance in periods outside of 2000 and 2010, rather than in a dedicated set of

test images as in our baseline models. To estimate accuracy in periods as far from our

sample period as possible, we use 2020 for population and 2017 for income.18

Table 2: Model R2 for National 2.4km Imagery in Out-of-sample Periods

In-Sample Period Out-of-Sample Period

Population 2000, 2010 2000-2010 2020 2010-2020 2000-2020
With Initial Conditions 0.9356 0.5132 0.9193 0.1963 0.4967

Without Initial Conditions 0.8806 0.5030 0.8737 0.1702 0.5106

Income 2000, 2010 2000-2010 2017 2007-2017 2000-2017
With Initial Conditions 0.9043 0.4910 0.8928 -0.0432 0.4193

Without Initial Conditions 0.8463 0.4331 0.8302 -0.0999 0.3731
Note: The table shows R2 values computed on all images with 2.4km sides. The sample size of spatially unique images in training
and validation subsets is 112,932. Income measures the log of total personal income, while population is the log of total population.
The columns delineate fit in the training period and in the out of sample periods, both in terms of levels and differences. Because
our imagery panel concludes in 2019, predictions on 2019 imagery are evaluated against actual 2020 population, and 2009 to
2019 change predictions against 2010 to 2020 population change. Initial conditions included in the model are gender and racial
composition, residential employment shares and county level population and income, all measured in the initial period (2000 for
demographics, 2004 for employment).

Table 2 shows the accuracy of these models when used to predict log population

and log income in each period for our larger 2.4km images. We find in-period accuracy

similar to our baseline model, at 0.90 to 0.94 for levels predictions and 0.49 to 0.51

for time differences (when including initial conditions). This approach also performs

well in predicting out-of-sample levels: the R2 for the levels models including initial

conditions is 0.92 for 2020 population and 0.89 for 2017 income. There is little loss in

accuracy for predictions in levels when we extend beyond our sample period.

For the more challenging task of predicting out-of-sample changes, we achieve an

R2 of 0.20 for the change in log population over 2010 to 2020, approximately half of the

accuracy seen in our baseline results in the in-sample-period holdout test set. However,

the income model is unable to outperform the true mean (i.e., R2 = 0) when forecasting

income changes over 2007 to 2017. Performance improves markedly when we instead

set our base period to be the in-sample year of 2000 and let the end period extend 7 to

10 years beyond the sample. R2 values are 0.50 for the 2000-2020 population change

and 0.42 for the 2000-2017 income change (with initial conditions), which are similar

to results for the 2000-2010 sample period.

18Block population for 2020 is from the Census Redistricting File; income for 2017 is from the 2015-2019
ACS and imputed to Blocks using the 2020 population.
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Lower performance in predicting changes, particularly for income over 2007-2017,

may be related to the sluggish recovery to the Great Recession, which may have damp-

ened changes in the visible properties of economic growth. During this period, falling

unemployment drove economic growth, a type of cyclical adjustment for which our

CNN may be poorly suited. A second explanation is lower quality label data in the

out-of-sample periods, particularly for income. Because block-level population is only

available in decennial census years, we use the 2010 and 2020 population distributions

to disaggregate 2007 and 2017 income, respectively, from block groups to blocks. The

resulting noise may be more problematic over a 10-year period than over the longer

periods tested, explaining the difference in accuracy. Because this label quality issue

coincides with recessionary years, we are unable to disentangle the two explanations.

We conclude from the results in Table 2 that, when evaluated against high quality

label data, our approach shows strong potential for producing accurate predictions in

out-of-sample periods. The results also indicate that this approach is likely to be most

effective when predicting changes over long time horizons, and in periods which do not

include large business cycle fluctuations.

4 Discussion

Remotely sensed data have the potential to transform spatial economic analysis.

Because much of these data are in the public domain, the cost of working at fine

geographic scales is now low. We show that applying convolutional neural networks

to daytime satellite imagery predicts microspatial changes in income and population

at a decadal frequency. An immediate application is to use predictions of income or

population at these spatial scales as outcomes in analysis. Our method can also be

used to impute income and population between Census years for the US, to extend to

other high-income countries where the relationship between multi-spectral imagery and

economic activity is likely to be similar, and to initialize layers for training CNNs in

other contexts, thereby reducing computational costs. Khachiyan (2021), for example,

uses our output to examine the within-county impacts of the US fracking boom.

A related area that would benefit from such data is the study of place-based poli-

cies, such as subsidies to firms that invest in designated areas. Justifying these policies

hinges on whether new investments have positive spatial spillovers (Kline and Moretti,

2014; Gaubert et al., 2021). Using our model, researchers could evaluate spillovers at

much finer spatial scales than is feasible with public data. Estimating the welfare con-

sequences of place-based policies relies further on addressing their non-random location
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and timing. With our model, researchers could examine pre-existing trends and control

for spatial-temporal shocks at much finer resolutions (e.g., county-year levels) than is

possible in conventional data (in which the county-year may be the unit of analysis).

Another application is the evaluation of transport infrastructure, which has seen

major recent advances (Redding, 2020). Satellite-based measures of income and pop-

ulation would allow researchers to evaluate specific projects, such intra-city bus lanes

or subway lines, at the neighborhood level across many cities. Such granularity would

permit refined tests of economic theory, such as whether transport links lead to more

agglomeration in larger nodes (via home market effects) or less agglomeration in inter-

mediate nodes (due to agglomeration shadows). Although researchers have obtained

granular information from smartphone data (e.g., Akbar et al., 2018, Kreindler and

Miyauchi, 2021) and private transport platforms (e.g., Hall et al., 2018), there may

be non-random selection of users who supply these data (e.g., taxi riders in New York

City may differ from taxi riders in Phoenix). Satellite imagery offers the equivalent of

administrative-level data that is consistent across space and time.

A further application is the analysis of natural disasters. Floods, earthquakes,

wildfires, and tornadoes tend to have highly localized impacts (Dell et al., 2014). Our

model allows analysts to trace the consequences from point of impact to neighboring

communities and to broader metro areas. Such disaggregation is important not just for

the academic task of evaluating shock transmission across space but for policy makers

who, after disasters occur, require tools to assess where need is likely to be acute.

Finally, our results suggest paths for future work developing predictive models from

satellite imagery. First, the model does not perform as well in the shorter frequency out-

of-sample prediction exercise, although this could be due to business cycles. Addressing

this issue could leverage further the ability to use higher-frequency changes in images

to predict economic growth. Second, our model is trained on US data, and future work

could explore how well model parameters perform in other countries.
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Technical Appendix

Modelling Appendix

Our modelling approach has two stages. We first train a multi-layer convolutional neu-

ral network model, which we use to predict outcomes in levels (income and population

in a given year). Our model architecture is a 7-band version of the VGG16 network

model, which is widely used in the computer vision community (Simonyan and Zis-

serman, 2014) and consists of three convolutional blocks followed by a fully connected

block. Each convolutional block consists of three two-dimensional convolution layers

followed by a max-pooling layer. The output of the final convolutional block is flattened

into a vector, which is used as input to the fully connected block. The fully connected

block consists of three hidden layers, each separated by a dropout layer. The weights

of each layer in the fully connected block are regularized using an L2 norm penalty. To

incorporate initial conditions in the models, we standardize all features to be of zero

mean and unit variance and concatenate the resulting feature vector to the flattened

representation obtained by the CNN. The resulting augmented image representation is

then processed by the fully connected block to form predictions. A detailed description

of model architecture, including filter sizes and strides, is in the Appendix and in our

code on GitHub. Appendix Figure 1 shows our model architecture.

We use the model trained in levels to construct a model for predicting time differ-

ences in the outcome variables over a given time period (e.g., 2000 to 2010). For each

year, we first extract the image representation using the convolutional filters learned

by training the levels model, as described above. We then concatenate the vectorized

representations for each year and use this as input to a new fully connected block,

which is used to predict the difference in outcomes between the two years.

More formally, let Ia, Ib ∈ R
r×c×7 be the input images in years a and b, respectively.

We first instantiate a copy of the convolutional layers of the levels model described

above, which we denote as a function fφ : R
r×c×7 → R

d. The parameters φ are

initialized to the weights learned by training the levels model. The predicted outcome

of interest is then modeled as ŷ = fψ(fφ(Ia), fφ(Ib)), where fψ can be described by

concatenating its two arguments and then applying a dense block as described above.

The set of parameters φ and ψ is then optimized to minimize the mean-squared-error

of the prediction. In this process, we use the levels model to “warm-start” the training

of the differences model, based on the intuition that features salient for predicting

differences are likely related to, but not coincident with, those for predicting levels.

Levels Models. The levels models consist of three convolution blocks, a “flatten”
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layer which vectorizes the output of the convolution layers, and a dense block, which

is used to predict the outcome of interest from the features extracted by the convo-

lution blocks. Weights in all layers are initialized using the Glorot Normal random

initialization (Glorot and Bengio, 2010). Each convolution layer block consists of three

2D convolution layers followed by a max pooling layer. The convolution layers use a

stride of 1 and a kernel size of 3 with ReLu activations. The convolution kernels are

regularized using an L2 norm penalty where the strength of the penalty is chosen using

cross-validation as described in the body of the paper. The number of filters is constant

within each block and increases by a factor of 2 between each block. In other words, if

the first block has n filters, the second block outputs 2n filters and the third outputs

4n. The max-pooling layer pools over a 2 × 2 window. For models that incorporate

nightlight intensity, these are included as another channel in the input image.

The output of the convolution blocks is flattened into a vector which is then passed

to the dense block. For models that incorporate baseline features (e.g., county level

income or population), these features are concatenated to the vectorized output of

the convolution blocks. The dense block consists of three fully connected layers each

separated by a dropout layer. The fully connected layers use ReLu activations and are

regularized by an L2 norm penalty where the strength of the penalty is again chosen

using cross-validation and grid-search. The specific set of parameters considered can

be found in our code on GitHub. The dropout probability in dropout layers is fixed at

0.5. The number of hidden units in each fully-connected layer in the dense block is set

based on the number of filters used in the convolution layers. If the first convolution

layer outputs n filters, then each fully connected layer uses li · n hidden units, where

l1 = 16, l2 = 16 and l3 = 8. The output of the dense block is passed through a final

linear layer which produces a scalar value that is the predicted output. This layer is

also regularized by an L2 penalty.

Differences Models. The differences model takes a pair of images, of the same

spatial region, in different years as input and produces an estimate of the change in the

outcome of interest as output. The images for both years are passed through the levels

model as described above and the output of the flatten layer is extracted for each year.

For models that incorporate auxiliary features, these features are again concatenated

to the output of the flatten layer. The image representations extracted for each year

are then concatenated and passed to a dense block as described above. The output

of the dense block is again passed to a final linear layer which generates the predicted

difference in the outcome of interest. The entire architecture, including the convolution

filters in the levels models, is then trained end-to-end.
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Computing R2 Values from CNN Predictions

To compute R2 in our case of highly non-linear CNN models, we use the general

formula of 1− SSR
TSS . Here SSR is the sum of squared residuals, where each residual is

the difference between the predicted and true value for an image. TSS is conversely the

Total Sum of Squares, which is the sum across images of squared differences between

each true value and the mean true value of the given outcome.

Code and Data Appendix

While highly effective, developing and training CNN models requires significant

computational resources and technical expertise. To assist researchers interested in

using our predicted outcomes for their own applications, or in adapting our approach

to predict other outcomes or generate predictions in periods or countries outside of

our analysis, we have made publicly available our entire code pipeline, image labels

and predicted values used to generate results in this paper, and trained CNN models.

These resources, along with documentation can be found in our project GitHub at

https://github.com/thomas9t/spatial-econ-cnn.git.

Specifically, the following resources are available:

• Code: The code base used in this paper is available on GitHub. This includes

code to (1) extract raw publicly-available imagery from Google Earth Engine and

to link imagery with census labels, (2) process image files and convert data to

input to the CNN, (3) define and train CNN models, (4) generate predictions

using the trained CNN models, and (5) evaluate the accuracy of predictions. Our

code base can be directly adapted by researchers to develop new CNN models

predicting other outcomes of interest.

• Model Predictions: We include CSV files with image-level predictions of in-

come and population levels in each year from 2000 to 2019. We also share predic-

tions of 10-year changes in each outcome for every 10-year period from 2000 to

2019. These predictions are generated for our large images using our out-of-period

model (Table 2). These include an image id variable (img id) and predictions

based on models both with and without initial conditions. Each of these files is

at the image level, with variables predicting outcomes in a given year and over 10

year changes. Shapefiles of our urban image samples are included for researchers

wishing to directly study these geographies. For those interested in aggregating

to census geographies, we include a cross-walked version of these predictions for

2010 Census Blocks, which can be further aggregated to containing census geogra-

phies (i.e. Counties). Those wishing to study other geographic units will need
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to construct their own crosswalk between our images and their units of interest.

One way to do this would simply be based on the spatial overlap between units

of the different geographies.

• Trained Models: For researchers interested in generating predictions on ge-

ographies or time-periods not described above, we have also made available the

trained parameters of our CNN models. Using these pre-trained models, along

with the data processing scripts described above, researchers can input their own

Landsat data into our models and compute predicted values. Another use-case

would be to use lower levels of our trained CNNs in a transfer learning applica-

tion in order to reduce the computational cost of training on different economic

outcomes.

We also provide documentation and a step-by-step example illustrating how to generate

out-of-sample predictions on LANDSAT data not used in our analysis.

Saliency Maps

In addition to validating model performance on a held out test set, it is also useful

to assess network performance qualitatively by interpreting the features that appear

to be learned by the network. There is a large literature on techniques for interpreting

neural network predictions; we focus on saliency mapping, which is simple and widely

used (Simonyan et al., 2013; Zeiler and Fergus, 2014; Samek et al., 2016). Saliency

maps typically take the form of a heat map showing which pixels in a particular image

most strongly influenced the network’s prediction. They provide qualitative assurance

that the network utilizes “reasonable” features of the image.

The saliency map is generated by calculating the derivative of the score of a class

of interest Sc with respect to the input I ∈ R
r×c×d at any image I0 (Simonyan et al.,

2013). In our case, the problem is regression rather than classification. To adapt

saliency maps to this setting, we generate the saliency map M ∈ R
r×c by

Mij =

7∑

c=1

∣∣ωh(i,j,c)

∣∣ ,

ω =
∂f

∂I

∣∣∣∣
I0

,

where f is the entire model for prediction, ωh(i,j,c) is the i-th row, j-th column and

c-th channel of ω. In this way, the saliency map will show which features increase the

output most across all the channels.
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Appendix Figure 2 shows several saliency maps for images in urban, suburban, and

semi-rural environs and for which model predictions of income in levels are accurate

and inaccurate. Examining cases in which the model performs well and poorly at

each population density level gives context on the types of land cover features that

are being captured accurately in our models and those that are not. We caution

that interpreting saliency is challenging—the motivation for using a CNN is that the

relevant image features are unknown and thus one would not expect saliency maps

to have in each instance a visually obvious and precise interpretation. Nonetheless,

it may be possible to extract some lessons from their examination. Reassuringly, the

network ignores water and tends to focus on developed regions in images. For instance,

in the second row of the column titled “Rural, Accurate,” the network is focusing on

the small developed region at the top of the image. Similarly, in the first row of the

column “Suburban, Accurate,” the model is focusing on the developed region at the

lower left. However, in the first and second rows of the column “Urban, Innacurate”

the network seems to prioritize undeveloped regions. This is not necessarily a concern,

as in some contexts green space is predictive of income. Taken with our quantitative

results, which show relatively little evidence of overfitting, the saliency maps suggest

that our model is extracting relevant economic information from the images.
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Results Appendix

Appendix Figure 1: Convolutional Neural Network, Landsat Imagery Model Architecture
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Appendix Figure 2: Selected Saliency Maps
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Appendix Figure 3: Spatial Extent of Urban Areas and Model Development Subsets

Note: This map shows the urban areas of the contiguous Unites States used to assign images into training, validation and
testing subsets for our CNN models. The black dotted line represents the Mid-Atlantic region used for our high-resolution
imagery robustness tests discussed in Section 3.3.2. The sample subsets represented in this map are randomly generated and
used in training the model for large images; separate randomization is conducted to subset the areas for small images and the
high-resolution robustness check. Blank space on this map represents low population density regions (approximately 7% of
total population), which are not included in our analysis of urban areas.
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Appendix Figure 4A: Levels Model Average Prediction Error across Counties

Note: This map shows the spatial distribution of our modelling error across US counties. We compute image-level prediction
error as the average of predicted log income minus actual log income in 2000 and 2010. The color of each county in the map
represents the average of these prediction errors across all images in the county.
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Appendix Figure 4B: Differences Model Average Prediction Error across Counties

Note: This map shows the spatial distribution of our modelling error across US counties. We compute image-level prediction
error as predicted income change from 2000 to 2010 minus actual income change for the same period. The color of each
county in the map represents the average of this prediction error across all images in the county.
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Appendix Table 1: Prediction Error Correlations with Covariates and Geography

Income Income Population Population
Level Difference Level Difference

Female –0.0925 0.0409 –0.0620 0.0591
Emp in Business Services –0.0750 –0.0026 –0.0268 –0.0227
Emp in Accommodation & Food Services 0.0562 0.0570 0.0659 0.0446
Emp in Wholesale Trade –0.0521 –0.0336 0.0013 –0.0450
Log Income, County –0.0520 –0.0049 –0.0011 –0.0230
Emp in Administrative/Support/Waste/Remediation Services –0.0499 0.0247 –0.0127 0.0166
Emp in Production, County –0.0467 0.0211 –0.0294 0.0387
White 0.0428 –0.0022 0.0101 –0.0052
Emp in Non-Business Services 0.0420 0.0358 –0.0076 0.0408
Log Population, County –0.0417 –0.0038 0.0015 –0.0179
Hispanic –0.0415 0.0088 –0.0054 –0.0010
Emp in Business Services, County –0.0369 0.0173 –0.0426 0.0101
Emp in Construction –0.0369 0.0169 –0.0470 0.0054
Emp in Professional/Scientific/Technical Services –0.0364 –0.0008 –0.0288 –0.0077
Emp in Real Estate, Rental & Leasing –0.0358 0.0042 –0.0273 –0.0046
Emp in Production –0.0337 –0.0000 –0.0112 0.0189
Emp in Finance & Insurance –0.0336 –0.0123 –0.0035 –0.0397
Emp in Non-Business Services, County 0.0335 0.0211 –0.0403 0.0451
Emp in Public Administration 0.0293 0.0074 –0.0132 0.0045
Black –0.0266 0.0052 –0.0266 0.0245
Emp in Information –0.0251 –0.0000 0.0048 –0.0247
Emp in Transportation and Warehousing –0.0243 –0.0012 0.0125 –0.0145
Group Quarters –0.0230 0.0010 –0.0090 0.0161
Emp in Mining/Quarrying & Oil/Gas Extraction 0.0226 –0.0431 –0.0060 0.0080
Emp in Manufacturing –0.0224 0.0030 0.0165 0.0175
Emp in Retail Trade –0.0178 0.0060 –0.0353 0.0153
Emp in Agriculture, Forestry, Fishing, & Hunting –0.0153 0.0010 –0.0227 –0.0004
Emp in Arts, Entertainment & Recreation –0.0142 0.0258 –0.0062 0.0030
Emp in Health Care & Social Assistance 0.0131 0.0081 –0.0170 0.0352
Emp in Management –0.0128 –0.0017 0.0067 0.0029
Emp in Utilities 0.0122 –0.0060 0.0049 0.0002
Emp in Educational Services 0.0062 –0.0077 –0.0380 –0.0020
Emp in Other Services –0.0023 0.0146 –0.0112 0.0123
Working Age 0.0023 –0.0555 0.0020 –0.0718

Urban Area Fixed Effects 0.1067 0.0803 0.0890 0.0669
Note: The table reports correlation coefficients between covariates and prediction errors in each of the four prediction exercises: log
income in 2000 and 2010, the change in log income from 2000 to 2010, and the corresponding values for population. The final row shows
the R2 coefficient of an OLS regression on fixed effects by contiguous urban areas (as shown in Appendix Figure 1). All covariates measure
an initial value (2004 for employment, 2000 for the rest) at the image-level, and all but the initial county income and population columns
represent shares of the relevant image population. These values are spatially interpolated to images from Census Block labels, with the
exception of rows listed as County. Residential employment shares are broken down by two-digit NAICS manufacturing industries as
well as the aggregates Business Services, Non-Business Services, and Production. Rows are sorted from highest to lowest correlation for
income levels. Prediction errors are constructed based on models which include initial conditions.
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Appendix Table 2: R2 Values for Income Per Capita in Large and Small Images

2000 and 2010 Levels 2000 to 2010 Difference
Train Valid Test Train Valid Test

National 2.4km Imagery
With Initial Conditions 0.7049 0.6795 0.6533 0.1220 0.0624 0.0674

Without Initial Conditions 0.5077 0.4276 0.3884 0.0984 0.0407 0.0461

National 1.2km Imagery
With Initial Conditions 0.7011 0.6166 0.6091 0.0838 0.0621 0.0653

Without Initial Conditions 0.4502 0.3037 0.3317 0.0534 0.0360 0.0306
Note: The table shows R2 values computed on each subset of the images with 2.4km and 1.2km sides. The
total sample size of spatially unique images in training, validation and test subsets is 112,932 for larger images
and 320,880 for smaller images. Income per capita measures the log of total personal income per person. 2000
and 2010 levels represent a model predicting levels for images in the two years together, while the differences
columns show the result predicting the change from 2000 to 2010. Initial conditions included in the model are
gender and racial composition, employment shares and county level population and income, all measured in 2000.
The results show that predictions on income per capita are less accurate than those on income or population
separately, particularly when predicting differences and excluding initial conditions.

Appendix Table 3: Model R2 for National 2.4km Imagery: All Bands vs RGB Only

2000 and 2010 Levels 2000 to 2010 Difference
RGB Only LS Bands LS + NL RGB Only LS Bands LS + NL

Income

With Initial Conditions 0.8580 0.9018 0.8949 0.3330 0.3962 0.3917
Without Initial Conditions 0.7502 0.8374 0.8429 0.2815 0.3702 0.3827

Population

With Initial Conditions 0.8781 0.9132 0.9025 0.3467 0.4573 0.4408
Without Initial Conditions 0.7952 0.8684 0.8571 0.3197 0.4202 0.4538

Note: The table shows R2 values computed on the test set of images with 2.4km sides. The total sample size of spatially unique
images in training, validation and test subsets is 112,932. Income measures the log of total personal income, while population is the
log of total population. 2000 and 2010 levels represent a model predicting levels for images in the two years combined, while the
differences columns show the result predicting the change from 2000 to 2010. Initial conditions included in the model are gender
and racial composition, employment shares and county level population and income, all measured in 2000. RGB Only refers to
the red/green/blue Landsat 7 bands, LS refers to all 7 Landsat Bands, LS+NL Refers to all 7 Landsat bands plus the DMSP-OLS
nightlight band. The results show that including the non-visible Landsat bands improves the model performance, particularly in
predicting differences. Further including nightlight data does not improve models (with initial conditions).
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Appendix Table 4: Model R2 in Mid-Atlantic Region: 30m vs 15m Resolution RGB Imagery

2000 and 2010 Levels 2000 to 2010 Difference
30m RGB 15m RGB 30m RGB 15m RGB

Income
With Initial Conditions 0.7997 0.7970 0.2499 0.2320

Without Initial Conditions 0.6644 0.6683 0.2014 0.1773

Population
With Initial Conditions 0.8167 0.8189 0.2749 0.2492

Without Initial Conditions 0.7159 0.6995 0.2545 0.2265
Note: The table shows R2 values computed on the test set of images with 1.2km sides. The total sample
size of spatially unique images in training, validation and test subsets is 163,250. Income measures the log
of total personal income, while population is the log of total population. 2000 and 2010 levels represent a
model predicting levels for images in the two years combined, while the differences columns show the result
predicting the change from 2000 to 2010. Initial conditions included in the model are gender and racial
composition, employment shares and county level population and income, all measured in 2000. 30m RGB
refers to the same Landsat 7 RGB bands used in the rest of the analysis. 15m RGB refers to pan-sharpened
RGB bands which are refined from 30m to 15m resolution using the panchromatic Landsat band. All results
in this table are based on the Mid-Atlantic subset of the national imagery, shown in Appendix Figure 3,
to address the additional computation of analyzing imagery with double resolution. Results show that the
extra information of 15m resolution images does not meaningfully improve model accuracy relative to equally
sized images with 30m pixels.

Appendix Table 5: Model R2 for National Imagery By Year

2000 2010 Diff
Train Valid Test Train Valid Test Train Valid Test

Panel A: National 2.4km Imagery

Income

With Initial Conditions 0.9287 0.8981 0.9029 0.9221 0.8887 0.9006 0.4863 0.4126 0.3962
Without Initial Conditions 0.8672 0.8330 0.8373 0.8577 0.8248 0.8375 0.4951 0.3960 0.3702

Population

With Initial Conditions 0.9610 0.9061 0.9146 0.9613 0.8996 0.9119 0.5410 0.4839 0.4573
Without Initial Conditions 0.9186 0.8620 0.8669 0.9189 0.8652 0.8700 0.7004 0.4496 0.4202

Panel B: National 1.2km Imagery

Income

With Initial Conditions 0.9032 0.8729 0.8615 0.8883 0.8512 0.8470 0.3819 0.3061 0.3216
Without Initial Conditions 0.7988 0.7604 0.7482 0.7949 0.7591 0.7507 0.2959 0.2609 0.2690

Population

With Initial Conditions 0.9149 0.8788 0.8650 0.9052 0.8645 0.8548 0.4217 0.3401 0.3559
Without Initial Conditions 0.7815 0.7602 0.7452 0.7867 0.7623 0.7532 0.3924 0.3051 0.3036

Note: The table shows R2 values computed on each subset of the images with 2.4km and 1.2km sides. The total sample size of spatially
unique images in training, validation and test subsets is 112,932 for larger images and 320,880 for smaller images. Income measures the
log of total personal income, while population is the log of total population. Results for 2000 and 2010 are shown separately here, while
the differences columns show the result predicting the change from 2000 to 2010 as in Table 1. Initial conditions included in the model are
gender and racial composition, employment shares and county level population and income, all measured in 2000. The results show high
accuracy in predicting both levels and differences in income and population; there is not strong evidence of over-fitting in the training set.
Model fit is lower using the smaller images.
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