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Abstract

Brain-inspired Hyperdimensional (HD) computing is a new ma-

chine learning approach that leverages simple and highly paralleliz-

able operations. Unfortunately, none of the published HD comput-

ing algorithms to date have been able to accurately classify more

complex image datasets, such as CIFAR100. In this work, we propose

HDnn-PIM, that implements both feature extraction and HD-based

classification for complex images by using processing-in-memory.

We compare HDnn-PIM with HD-only and CNN implementations

for various image datasets. HDnn-PIM achieves 52.4% higher accu-

racy as compared to pure HD computing. It also gains 1.2% accuracy

improvement over state-of-the-art CNNs, but with 3.63× smaller

memory footprint and 1.53× less MAC operations. Furthermore,

HDnn-PIM is 3.6×–223× faster than RTX 3090 GPU, and 3.7×more

energy efficient than state-of-the-art FloatPIM [5].
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1 Introduction

Hyperdimensional (HD) computing [8, 16] is an emerging ma-

chine learning paradigm that has shown impressive efficiency gains

in IoT domain benchmarks. HD encodes data into high-dimensional

space, where it can apply simple logic and arithmetic operations

on the hypervectors to carry out learning tasks. The simplicity of

HD operations, its inherent parallelism, combined with robustness

to noise [9, 11], makes it particularly appealing for learning at the

edge. One of the key challenges of HD computing is its inability to

get accurate results for more complex image analysis.
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Table 1: Accuracy comparison of HD, CNN, and HDnn.

Model↓ Dataset→ MNIST CIFAR10 CIFAR100 Flowers

HD (RP) [7] 94% 26.9% 9% 19.6%
HD (non-linear) [18] 97% 45.5% 27.7% 31.5%
StocHD [13] 98% N/A N/A N/A
CNN ([4]) 99% 94.6% 78.7% 84.7%
HDnn ([4]-based FE) 99% 95.1% 78.3% 88.8%

Table 1 shows that the state of the art HD computing algorithms

[7, 18] get poor accuracy for all but the simplest dataset, MNIST.

Even more recently published work that includes feature extraction

into HD [13] only provides MNIST results. To address this issue,

we propose HDnn (HD and Neural Network), which leverages a

few initial stages of the convolution-based feature extraction to

enable HD to learn effectively on complex data, as show in Fig. 1.

As Table 1 shows, HDnn is the only HD-based model that achieves

state-of-the-art accuracy on more complex datasets such as Flowers,

CIFAR10 and CIFAR100, while using 3.63× less memory vs. CNN

[4]. Table 2 shows the accuracy-size trade off of cutting layers off

the original CNN and adding HD classifier (ResNet34 baseline: [3,

4, 6, 3], accuracy: 77.41%, MAC: 1161.5M, Param: 21.33M).

There are a few recent publications that combine neural net-

works with HD computing. Early work on voice recognition shows

that using a neural network after HD classification results in a

smaller and just as accurate design as if only a neural network is

used [6]. Another example is [12] that uses neural network feature

extractors and classifiers for simple, non-image datasets, such as

ISOLET at the significant increase in the overall area due to using

two different neural networks, HD encoder and decoder. A few

publications combine Spiking Neural Networks (SNN) with HD for

event-based data classification[17], but again show results on only

the simplest datasets such as MNIST. Moreover, these works can be

orthogonal to HDnn as they focus on event/spike based data.

Quite a few publications have accelerated deep neural networks

using processing-in-memory [1, 5, 14]. The majority of these work

employ large and hard-to-scale mixed-signal circuits such as ADCs

and DACs to achieve low latency operations [1, 14] which leads to a

chip with a limited memory capacity incapable of processing large

networks. Digital PIM uses logical operations on digital signals

stored in memory cells to carry out computation [5, 15]. Such an

architecture retains high memory density at the expense of slower

atomic computations, which is less of a problem for HD due to its

simple operations. Thus, we choose digital in-memory design for

HDnn and compare it to state of the art digital PIM CNN [5].

Table 2: ResNet34-based feature extractor on CIFAR100.

HDnn Accuracy MAC (M) Parameter (M)

[3, 4, 6, 0] 77.07% (−0.34%) 951.6 (−18.1%) 8.56 (−59.9%)

[3, 4, 6, 1] 78.30% (+0.89%) 1010.4 (−13.0%) 12.29 (−42.4%)

[3, 3, 3, 1] 77.33% (−0.08%) 708.1 (−39.0%) 8.45 (−60.4%)
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Figure 1: HDnn uses a few of the first convolution layers for feature

extraction.

In summary, the major contributions in this work are:

(1) For the first time, we combine lightweight convolution-based

feature extractor with HD computing for accurate yet efficient clas-

sification of complex data types.

(2)We propose a configurable PIM-based architecture to accelerate

HDnn, which can run in HD- and DNN-only modes. HDnn-PIM

achieves high throughput by allocating compute memories stati-

cally to layers based on their compute requirements. This flexibility

is enabled by a novel 2-dimensional bus interconnect that leverages

the locality of internal data transfers and reduces the wire length.

(3)HDnn-PIM innately supports residual connections found in new

DNNs such as ResNet and Mobilenet, which alleviates the access

to off-chip memory. It reduces the load on the bus for residual net-

works while also avoiding pipeline stalls (due to off-chip memory

accesses) with a small area overhead.

(4)We identify the accumulation as a performance bottleneck of

PIM architectures used for HD and DNNs. Accordingly, we propose

a novel Compute Element (CE) that efficiently performs MAC oper-

ations by hiding their latency with memory read out. Accumulation

in memory takes at least 41% of total MACs time given the fully

parallel multiplication in memory. We reduce it to ‘bitwidth number

of cycles’ in the CMOS domain using bit-serial Carry-Save Adder,

leading to 1.66× faster MACs. HDnn-PIM’s CE is also suited for

HD, where it boosts HD’s encoding by 5× speedup over [7].

(5) We design a Post Processing Network (PPN) that speeds up the

accumulation for different (large or small) number of inputs after

MAC operation (e.g., for on-the-fly accumulation or bypass of tiles

outputs) by up to 4× compared to the typical in-memory addition.

2 HDnn Algorithmic Flow

Fig. 1 compares the HDnn and conventional CNN structure.

HDnn comprises three steps: (1) realizing a feature extractor, (2)

training of HD classifier, and (3) tuning the feature extractor.

(1) Feature extractor (FE): For FE, we rely on well-devised net-

works such as VGG, ResNet, and MobileNet. We cut these networks

after a certain pooling layer and use the first convolution layers as

FE. We extract the latent space representations by passing training

images forward through the FE, which act as features for the HD

encoder. The output of FE, per each image, is a manifold feature

maps. We flatten it to a one-dimension feature vector using global

averaging, which results in a compressed (usually 512 or 256, the

same as the number of filters of the cutting layer) vector.

(2) HD training: The extracted input features act as training

data for HD, which first encodes the data to high-dimensional space,

e.g., to D=4,000 dimensions. We use random projection (RP) [7]

as it can be transformed to a matrix-vector multiplication as Eq.

(1), where P is a D × 𝑑 binary projection matrix (𝑑 is the number

of features per input), and F𝑑 is the input feature extracted for an

image. H is the binary encoding hypervector of an image.

𝐻D = sign(PD×𝑑 × F𝑑 ) (1)

Finally, HD adds all hypervectors of the same label to create the

class of that label (e.g., 10 classed for CIFAR10 dataset) simply using

Cℓ =
∑
𝑖∈ℓ H

ℓ
𝑖 . Inference is realized by comparing/searching the

encoding hypervectors with the class hypervectors using cosine

similarity or Hamming distance.

(3) FE tuning: For FE, we use pre-trained CNN networks that

are not targeted for a classifier such as HD, especially when are

cut. Therefore, after attaching HD to FE (see Fig. 1), we keep the

HD fixed but retrain the FE to calibrate according to HD. The

RP encoding of Eq. (1) uses sign which does not converge during

backpropagation of retraining, hence, we replace it with tanhwhen
training FE. After training HD, we quantize the class hypervectors

to four bits without accuracy loss, especially the tuning step of FE

adjusts based on the existing fixed HD.

As previously shown in Table 1, while even a more sophisticated

HD encoding (non-linear, which uses floating-point projection ma-

trix) has 56.7% less average accuracy than CNN, HDnn improves

the accuracy by 1.34% with smaller number of parameters and

operations, which will be further elaborated in Section 4.

3 HDnn-PIM Architecture

3.1 Mapping HDnn on HDnn-PIM Architecture

Fig. 2 demonstrates the overall data flow and mapping of HDnn

on HDnn-PIM. We compile the given network to find out the map-

ping details of the layers on the supertiles of HDnn-PIM. The ar-

chitectural details are elaborated later in Section 3.2. We assign

supertiles based on the compute requirements of a given layer to

balance and hence maximize the throughput. We divide the input

image of the layer into multiple smaller images that are split across

the supertiles allocated to that layer. Each supertile has the same

coordinates among the input’s feature maps to process the outputs

independently. The weights are preloaded into the supertiles before

feeding the inputs. As shown in Fig. 2•1 , the weights are copied

across the supertiles of a layer.

Inside a supertile, inputs are reused among the tiles while the

weights are distributed among the tiles (Fig. 2•2 ). A tile implements

either convolution of the given input and filter, or matrix-matrix

multiplication. Inside each tile there are CEs that perform the actual

computations, i.e., the matrix-matrix multiplication breaks down

into matrix-vector operation inside the CEs. According to Fig. 2•3 ,

the input matrix is split into rows, where each CE takes care of a row,

but the weight matrix is copied into all the CEs of a tile. As shown

in Fig. 2•3 and•4 , each CE uses column-parallel multiplication in

memory and bit-serial parallel CMOS accumulation to produce the

partial sums or outputs. To perform the matrix-vector efficiently,

the input is replicated and the weight matrix is flattened to realize

it as a vector-vector multiplication, suited for digital PIM.

The FE module of HDnn-PIM generates the output features that

are flattened, average pooled and forwarded as inputs to the HD

module. The flattened input vector is multiplied by a binary projec-

tion matrix to realize encoding. This matrix-vector multiplication is

performed in an array of CEs as described above. Based on whether

the HD is in training or inference mode, the appropriate operation

(i.e., accumulation with class hypervectors or search) is carried out.
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Figure 2: Mapping flow of the HDnn on PIM. (1) Splitting the input image between supertiles allows input reuse and throughput balancing,

and avoids communication between the supertiles that implement the same layer. (2) Tiles of a supertile reuse/share the input on different

filters for parallel output production and can perform matrix-matrix multiplication. (3) Compute Elements of a tile split the inputs and

reuse the weights to generate output pixel and can perform matrix-vector multiplication. (4) Replication of inputs to perform matrix-vector

multiplications for all rows of a matrix in parallel. (5) Column-parallel multiplication in memory. (6) Output of the supertiles passed to the

final layer. (7) Random projection encoding using CE array to implement matrix-vector multiplication.

Figure 3: HDnn-PIM tiled architecture. ST: Supertile; PPN: Post Pro-

cessing Network; CE: Compute Element.

3.2 HDnn-PIM Architecture

Fig. 3 shows the HDnn-PIM’s tiled architecture. The tiles are

grouped into supertiles that allows input reuse among tiles and

increases the supported input channels and filter size. Fusion of

the tiles becomes necessary when a tile cannot hold all the data

necessary to generate an output feature (i.e., the 𝑘 × 𝑘 × 𝑛𝑖 filter
and the corresponding convolution window on the input). At most,

all the tiles of a supertile can fuse to support a maximum input size,

governed 𝑘 × 𝑘 × 𝑛 ≤ 𝑐 × 𝑛𝐶𝐸 × 𝑛𝑡𝑖𝑙𝑒 , where 𝑘 is the filter size, 𝑛𝑖
is the number of input channels, 𝑐 is the memory columns per CE,

𝑛𝐶𝐸 is the number of CEs per tile, and 𝑛𝑡𝑖𝑙𝑒 is the number of tiles

per supertile. A supertile has the following components.

Input Registers (IR) act as primary inputs to the tiles in the

supertile. IRs are divided into sets (IR 1 to IR 𝑛 in Fig. 3•3 ) where

each set delivers a convolution window of a input channel to the

tiles (tiles share the same inputs). The maximum window that can

be written to the tile at an instance is equal to the size of the sets.

Larger windows may need multiple passes to write a window. The

number of input channels that can be simultaneously written is

equal to the number of sets.

Input Processor (IP) in a supertile takes the IRs as inputs and

generates memory addresses to fill the CE memories. Based on the

configuration of the supertile, IP concatenates IR data into rows

of 1,024 elements that can be written in parallel to the CE memo-

ries. Row addresses are generated such that enough space is left

for in-memory multiplication. If the layer mapped to the super-

tile is preceded by pooling, the IP produces addresses to store the

corresponding inputs below one another for in-memory pooling.

Post Processing Network (PPN) enables the fusion of tiles,

and routes the tiles output to the appropriate supertile input (of the

next layer). PPN comprises an activation unit and an accumulator,

so applies activation functions to the accumulated outputs of the

tiles, as well. It connects the tiles in a binary tree structure as shown

in Fig. 3•4 . The accumulations in PPNs depends on the number of

fused tiles. Fusing happens when the input channels required to

produce an output pixel span multiple tiles due to memory limit.

The tiled architecture allows parallel accumulation/activation when

the input sizes are small and multiple of them fit in a tile.

History Memory (HM) is an additional 1,024×1,024 memory

block that stores the history of the outputs, and is required be-

cause of the fine-grained computation by the compute pipeline. In a

pipelined architecture, the current layer needs to provide the input

window of the next layer. Hence, in a sliding window mechanism,

the next layer will be lagging by at least one column worth of con-

volution windows. Therefore, this history needs to be stored so the

the next layer can accomplish its window. This storage increases

when a residual connection is introduced, where a layer may send

data several layers ahead and requires to match the exact latency of

the data that is passing through all the intermediate layers to reach

the residue destination. Thus, this storage becomes indispensable

to avoid large power hungry register banks at the output.

Feature Extraction (FE) tile has multiple CEs that perform

MACs in parallel. Each tile is equipped with its own top level ac-

cumulator to accumulate the partial sums of all the CEs (this is

different from the CSA adder of each CE directly connected to the

memory block). The output of each CE is one accumulated value.

This allows us to avoid data dependence between CEs and keep

the tile architecture simple. We consecutively store a convolution

window (of all the channels) associated with an output feature, and

then move on to store the window corresponding to the next output

feature. This allows of maximum use of the available memory size.

The HDnn-PIM architecture is designed such that supertiles

that process the same layer have no data dependency with each
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other. This increases the throughput of processing a given layer

by avoiding data transfers between supertiles that all compute a

certain layer. All supertiles of a layer work in parallel.

3.3 Supertile Data Management

HDnn-PIM architecture statically assigns supertiles to different

layers (to be executed pipelined) proportionally based on the com-

pute opportunity they present. The bus interconnect establishes

data transfer based on the destination information of each supertile.

Data transfer for the next computation is exerted simultaneously

with the current computation to throttle the cost of data transfer.

Supertile Mapping: For the mapping of layers on supertiles,

the compiler takes the network specifications as input and gener-

ates the configuration of HDnn-PIM. The key aspects taken into

consideration for a convolution layer for assignment are the filter

size 𝑘 , number of input/output channels 𝑛𝑖 /𝑛𝑜 , input dimensions

𝑑𝐼 , and strides along the 𝑥 and 𝑦 directions (𝑠𝑥 and 𝑠𝑦 ). These pa-

rameters are used to calculate the compute intensity (𝐶𝐼 =
𝑑2
𝐼

𝑠𝑥×𝑠𝑦
)

and configure the supertiles accordingly. The compiler ensures the

entire network fits into the CE memories. Otherwise, the network

is processed as batches of layers. Parallelism can also be extracted

by computing multiple convolution windows of the same input

feature in parallel (i.e., multiple filters over multiple window, as

in Fig. 2•1 ). The number of windows to be processed in parallel

for a given layer is the ratio of its CI to the layer with minimum

CI. The same procedure is used when the memories are limited.

However, now one CE may hold multiple sets of inputs and weights.

Multiplication is then performed sequentially for all sets in a CE.

This avoids off-chip accesses at the cost of throughput. By using

CI, the data rate mismatch due to different strides is also mitigated.

Pooling uses simple logic and arithmetic operations and is per-

formed in memory. As explained for the Input Register (IR) func-

tionality, the output of the layer preceding pooling is sent to the

memories allocated to subsequent layer. The pooling windows is

stored vertically in the memory columns of the next layer. Once

the output is obtained, the inputs are no longer required, so the

intermediate storage of the in-memory multiplications are released

for MAC operations. Large pooling windows that cannot fit in the

memory can be processed in multiple iterations.

Residual connections are challenging due to data transfer to mul-

tiple layers ahead, which requires the latency of the computation to

be matched such that the right inputs are added before activation.

This is realized by storing larger histories in the HM for layers that

are the producer of the residue and feed the values as required to

the consumer. The producer lag is fixed based on the specification

of the intermediate layers and the supertile mapping.

Bus Interconnect (BI), shown in Fig. 3•2 , acts as the backbone

of HDnn-PIM that enables all the mapping of supertiles and pipelin-

ing between the network layers. The flexibility of using CI to map

layers to the supertiles can only be achieved if all the supertiles can

communicate with the other supertiles. Each supertile has an ID,

and each register set in a supertile has a local register ID. This is

used to uniquely identify each supertile and its register sets. After

mapping all the layers to the supertiles, the compiler generates a

source and a destination ID for each supertile. When data is being

sent by a supertile, this metadata is used by the BI to route it to

the proper destination. Each node of the BI acts as a switch that

compares the destination ID to the threshold of that node (e.g., IDs

0–31 for the first branch and so on) and routes the data to the appro-

priate branch. Once the data reaches the destination, the supertile

uses the register ID to store the value in the right register set.

Dual bus structure is used because for larger designs the re-

sources of such structure scale linearly due to the type of data

transfer involved. Due to the natural staggering of computation

among different layers, the memory blocks assigned to the same

layer do not receive and send data at the same time. This signifi-

cantly reduces the maximum bandwidth requirement of the top bus

(limiting it to the transfer of the largest layer currently mapped).

3.4 Mapping HD to HDnn-PIM Architecture

HD Encoding in HDnn-PIM: HD encoding is implemented

as a matrix (binary)-vector multiplication (VMM). The core CE

remains the same as for the FE. The data access patterns in VMM

and convolution are different. Thus, we use different FE and HD

units on the chip to simplify the FE control logic and mapping. For

simple VMM, the tile hierarchy inside the supertiles, the BI, and the

HM are not required. We create multiple copies of the input feature

vector (output of the cutting layer) that are stored in different

supertiles, same as the weights of the FE. After multiplication in

memory and accumulating all the products in the supertile, one

dimension of the encoding hypervector is generated. The number

of outputs that can be generated concurrently is equal to the the

number of supertiles of the HD component, which is configured

to match the FE throughput. The results of the VMM (encoding) is

stored in a separate supertile. The dimensions of the hypervector,

which are multi-bit, are then reduced to 1-bit using thresholding.

HD Inference and Training in HDnn-PIM: For inference, we

encode the vector using the above architecture to obtain the query

hypervector. The class is determined using search in memories by

comparing the query hypervector to the stored class hypervectors.

This associative search can be performed in-memory as demon-

strated in [2]. For HD training all class hypervectors are obtained

through FE and encoding followed by accumulating the vectors of

the same class. Therefore, we get one vector per image from the

FE, that we encode and add it to the class vector to train the HD

classifier. We obtain all the class hypervectors once all the images

have passed through this procedure. For retraining, we perform

inference on each image in the training set and compare the pre-

dicted class with the expected class. If they do not match, we add the

query hypervector to the expected class’s hypervector and subtract

it from the predicted class’s hypervector. The location of the class

hypervectors remain the same memory blocks where they were

first stored. All training additions are performed in memory.

3.5 HDnn-PIM Compute Element

The CE is the lowest level component of HDnn-PIM, comprising

a 1,024×1,024 single-bit ReRAM crossbar capable of in-memory

arithmetic. Fig. 4 shows the organization of data in the memory

crossbar. Two sets of 1,024 16-bit numbers are stored in adjacent

columns, where each number is stored vertically in a single column

and 16 rows. The first (second) 16 rows store the first (second) set.

The two sets act as multipliers and multiplicands that are being

multiplied down the column to produce the product. Therefore, all

1,024 multiplications are performed in parallel. The two inputs, for

instance, could be the weights and input feature windows that need
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Figure 4: CE crossbar and associated bit-serial parallel CSA adder.

to be multiplied for convolution. The two inputs and the product

together occupy 48 rows of the crossbar. The remaining (976) bits

are used to store another input or act as scratchpads that store the

intermediate signals that are generated during the product.

Another component of the CE is a bit-serial parallel CSA adder.

The in-memory addition does not allow this operation optimally

since, first, all the columns of the array perform amultiplication and

no space is left along the rows (where the products are stored) to

perform accumulation. Second, if we change the data arrangement

to carry out in-memory accumulation, it is not possible to perform

1,024 16-bit accumulation in parallel in one crossbar. To maintain

this parallelism, the bit-serial CSA adder is used. Since the products

are stored along the columns, a bit of the same significance of all

the numbers can be read out simultaneously and accumulated. This

operation is performed 16 times using the CSA adder to produce

the accumulated output. Such PIM-CMOS hybrid structure allows

the architecture to extract high parallelism by performing more

multiplications, which is the most expensive operation. In addition,

accumulation is also performed in parallel while reading the data

out. Hence, it is hidden within the memory read out latency.

4 Evaluation

4.1 Experimental Setup

We implemented an operation-level simulator in Python to ana-

lyze the HDnn-PIM which models its architecture, considering the

size of operations, data mapping, memory size, and network param-

eters. The simulator uses the performance and energy consumption

values obtained from circuit-level evaluations in 45 nm technology

in Cadence Virtuoso. The memory cell characteristics are derived

from VTEAM memristor model [10]. We calibrate the model to rep-

resent the device characteristics used in [5]. The resultant memory

cell has 𝑅𝑂𝐹𝐹 and 𝑅𝑂𝑁 as 10MΩ and 10 kΩ respectively, with a

device switching delay of 1.1 ns (PIM’s design cycle time).

In our experiments we used CIFAR10/100 and Flowers datasets

on VGG-16, MobileNetV2, and ResNet-18/34 networks. HDnn trun-

cates the networks and uses as feature extractors (FEs), which

is followed by a HD-based classifier with D=4,000 dimensions.

We compare HDnn-PIM with the state-of-the-art PIM accelerators

FloatPIM [5] (digital) and ISAAC [14] (analog). We also compare

the HDnn-PIM performance with Intel Xeon Gold 6140 CPU and

Nvidia RTX 3090 GPU using PyTorch implementation of the HDnn.

4.2 HDnn Accuracy Analysis

For feature extraction with VGG-16, we cut at layer L17 (out of

44 layers including batch normalization). For ResNet-18, we cut off

the last fully connected layer and six preceding convolution layers.

Figure 5: a) HDnn inference throughput b) Performance per Watt of

HDnn-PIM vs. FloatPIM[5] and ISAAC[14]

We cut the MobileNetV2 layers after the fourth bottleneck layer

but we preserve its last fully connected layer. All analyses are done

for inference using models trained with 16-bit fixed point represen-

tation. Our analysis shows that HDnn is on average 51.0%, 49.1%,

and 57.3% more accurate than the mere HD model on CIFAR100,

CIFAR10, and Flowers datasets, respectively (see Table 1).

Fig. 6(a) shows the HDnn accuracy, and Fig. 6(c), and 6(d) show

the MAC and parameter reduction of HDnn using the aforemen-

tioned trimmed CNNs as the feature extractor, compared to the

original CNN. HDnn increases the accuracy by 1.2% on average

compared to CNN models for image classification, while reducing

the number of MACs and model parameters by 34.8% and 72.5%

respectively. Note that we also compared HDnn with the CNN that

is cut at the same layer followed by a fully connected layer (instead

of HD). Compared to such trimmed ResNet-18 configuration, HDnn

achieves 1.8% higher accuracy on CIFAR10 dataset, indicating the

effectiveness of HD to gain better insight from data.

4.3 HDnn-PIM vs State of the Art

CPU and GPU: Fig. 5(a) shows the inference throughput of

HDnnmodels on different platforms. Table 3 summarizes the speedup

and energy efficiency gains over GPU relative to other state of the

art works (HD only model and models without references are run

on HDnn-PIM). Our high performance design (PIM-16GB) achieves

223× higher throughput than RTX 3090 GPU, while consuming less

memory than the GPU which has 24GB of RAM. The area efficient

version (PIM-256MB) is yet 3.6× better than GPU. Comparing with

CPU, our high performance (area-efficient) design achieved 13,796×

(219×) higher throughput.

Previous PIM designs: None of the existing PIM-based HD

accelerators evaluate their design on complex image datasets such

as CIFAR100 or Flowers [3, 9], instead focusing primarily on MNIST.

They either use an inferior HD encoding as compared to the baseline

encoding used in HDnn [3, 9] or do not evaluate on complex image

datasets [13]. Hence, HDnn-PIM is at least 52.4% more accurate on

average than existing HD-PIM designs for Flower, CIFAR10, and

CIFAR100 datasets (Section 4.2).

We compare HDnn-PIM with digital-PIM FloatPIM DNN acceler-

ator [5], and analog-PIM ISAAC [14]. We use VGG-16 for compari-

son since these works are not capable of running networks with

residual connections. Our evaluations show that HDnn-PIM has an

energy-efficiency of 3,036 GOPS/s/W for 16-bit operations, which is

3.7× higher than FloatPIM [5] (Fig. 5(b)). By balancing throughput,

Table 3: Performance-Power normalized to GPU RTX 3090.

Model Speedup Energy Efficiency

HD (RP) [7] 133x 1215x
CNN (VGG-16) 84x 1202x

CNN (VGG-16) [5] 100x 325x
HD+FE [13] 14x 259x

HDnn (VGG-16-based FE) 104x 1213x
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Figure 6: (a) HDnn accuracy for different datasets leveraging different CNNs as FEs, (b) Performance scaling of HDnn-PIM, (c) HDnn MAC

reduction using different FEs, (d) HDnn parameter reduction using using different FEs for various datasets.

HDnn-PIM ensures optimum use of the given resources. HDnn-

PIM has per-area performance of 275.5 GOPS/s/mm2 which is 8.2%

(7.7×) less than FloatPIM’s low-power (high-power) version. This

is because, unlike FloatPIM, we consider the data-flow and map-

ping overheads of all DNN layers in HDnn-PIM. This includes, but

is not limited to, computation and data mapping requirements in

case of pooling, residual connections, and larger strides. HDnn-

PIM is 7.9× more energy-efficient than ISAAC [14] as it does not

use power-hungry mixed-signal circuits such as DAC/ADCs. Since

ISAAC merely performs convolution and does not handle other

DNN layers, it is 1.7× better in per-area performance.

4.4 HDnn-PIM Performance-Area Tradeoff
We analyse the impact of scaling the memory size by consider-

ing memory sizes ranging from 256MB to 16GB using the same

HDnn networks described in Section 4.2. As shown in Fig. 6(b), the

performance increases linearly with the available memory. This

indicates the scalability of HDnn-PIM to fit multiple networks on

different configurations without impacting performance drastically.

We also discuss the performance-efficient and area-efficient ver-

sions of HDnn-PIM. The performance-efficient design has 8,192

supertiles with 16 tiles each (total 16 GB). All multiplication opera-

tions in the pipeline happen in parallel which provides high com-

putation throughput. For the area-efficient design, we use lower

memory size which consumes lower power due to reduced paral-

lelism. We choose a design with 128 supertiles with 16 tiles each

(total 256MB), in which we perform compact data mapping and

store multiple rows of weights and inputs in a CE. This results in

less parallel multiplications but can fit the network on a signifi-

cantly smaller chip. Our evaluations show that the performance-

efficient (area-efficient) HDnn-PIM has a throughput of 93.3 TOPS/s

(1.5 TOPS/s) with an end-to-end latency of 0.14ms (8.9ms) for

VGG-16, 76.7 TOPS/s (1.2 TOPS/s) with 0.03ms (2.1ms) latency for

ResNet-18, and 112.3 TOPS/s (1.9 TOPS/s) with 0.13ms (7.6ms) la-

tency for MobileNetV2. The higher latency of MobileNet versus

ResNet-18 is due to its 1×1 convolutions that make the memory

blocks underutilized. Also, MobileNet has higher image size reduc-

tion due to the pooling and stride-2 convolutions, requiring more

resources for throughput balancing (e.g., a 2×2 pooling requires

four times of resources to be allocated to the previous layer).

5 Conclusion
We proposed HDnn, a novel approach of feature extraction for

HD computing for complex datasets such as images, and HDnn-

PIM, the first PIM based HDnn accelerator. We evaluated HDnn on

a variety of feature extractors and datasets. Our evaluation shows

that HDnn achieves 52.4% higher accuracy as compared to HD

computing without feature extraction. It also gains 1.2% accuracy

over state-of-the-art CNNs, but at 72.46% (3.63×) lower memory

footprint and 34.83% (1.53×) fewer MACs. Furthermore, HDnn-PIM

is 223× faster than RTX 3090 GPU and 3.7× more energy efficient

than the state-of-the-art PIM accelerator for DNNs.
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