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Abstract

Brain-inspired Hyperdimensional (HD) computing is a new ma-
chine learning approach that leverages simple and highly paralleliz-
able operations. Unfortunately, none of the published HD comput-
ing algorithms to date have been able to accurately classify more
complex image datasets, such as CIFAR100. In this work, we propose
HDnn-PIM, that implements both feature extraction and HD-based
classification for complex images by using processing-in-memory.
We compare HDnn-PIM with HD-only and CNN implementations
for various image datasets. HDnn-PIM achieves 52.4% higher accu-
racy as compared to pure HD computing. It also gains 1.2% accuracy
improvement over state-of-the-art CNNs, but with 3.63% smaller
memory footprint and 1.53X less MAC operations. Furthermore,
HDnn-PIM is 3.6X-223x faster than RTX 3090 GPU, and 3.7X more
energy efficient than state-of-the-art FloatPIM [5].
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1 Introduction

Hyperdimensional (HD) computing [8, 16] is an emerging ma-
chine learning paradigm that has shown impressive efficiency gains
in IoT domain benchmarks. HD encodes data into high-dimensional
space, where it can apply simple logic and arithmetic operations
on the hypervectors to carry out learning tasks. The simplicity of
HD operations, its inherent parallelism, combined with robustness
to noise [9, 11], makes it particularly appealing for learning at the
edge. One of the key challenges of HD computing is its inability to
get accurate results for more complex image analysis.
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Table 1: Accuracy comparison of HD, CNN, and HDnn.

Model| Dataset— MNIST CIFAR10 CIFAR100 Flowers
HD (RP) [7] 947% 26.9% 9% 19.6%
HD (non-linear) [18] 97% 45.5% 27.7% 31.5%
StocHD [13] 98% N/A N/A N/A
CNN ([4]) 99% 94.6% 78.7% 84.7%
HDnn ([4]-based FE) 99% 95.1% 78.3% 88.8%

Table 1 shows that the state of the art HD computing algorithms
[7, 18] get poor accuracy for all but the simplest dataset, MNIST.
Even more recently published work that includes feature extraction
into HD [13] only provides MNIST results. To address this issue,
we propose HDnn (HD and Neural Network), which leverages a
few initial stages of the convolution-based feature extraction to
enable HD to learn effectively on complex data, as show in Fig. 1.
As Table 1 shows, HDnn is the only HD-based model that achieves
state-of-the-art accuracy on more complex datasets such as Flowers,
CIFAR10 and CIFAR100, while using 3.63% less memory vs. CNN
[4]. Table 2 shows the accuracy-size trade off of cutting layers off
the original CNN and adding HD classifier (ResNet34 baseline: [3,
4, 6, 3], accuracy: 77.41%, MAC: 1161.5M, Param: 21.33M).

There are a few recent publications that combine neural net-
works with HD computing. Early work on voice recognition shows
that using a neural network after HD classification results in a
smaller and just as accurate design as if only a neural network is
used [6]. Another example is [12] that uses neural network feature
extractors and classifiers for simple, non-image datasets, such as
ISOLET at the significant increase in the overall area due to using
two different neural networks, HD encoder and decoder. A few
publications combine Spiking Neural Networks (SNN) with HD for
event-based data classification[17], but again show results on only
the simplest datasets such as MNIST. Moreover, these works can be
orthogonal to HDnn as they focus on event/spike based data.

Quite a few publications have accelerated deep neural networks
using processing-in-memory [1, 5, 14]. The majority of these work
employ large and hard-to-scale mixed-signal circuits such as ADCs
and DACs to achieve low latency operations [1, 14] which leads to a
chip with a limited memory capacity incapable of processing large
networks. Digital PIM uses logical operations on digital signals
stored in memory cells to carry out computation [5, 15]. Such an
architecture retains high memory density at the expense of slower
atomic computations, which is less of a problem for HD due to its
simple operations. Thus, we choose digital in-memory design for
HDnn and compare it to state of the art digital PIM CNN [5].

Table 2: ResNet34-based feature extractor on CIFAR100.

HDnn Accuracy MAC (M) Parameter (M)
[3.4,6,0] 77.07%(<0.34%) 951.6 (—18.1%)  8.56 (=59.9%)
[3.4,6,1] 78.30% (+0.89%) 1010.4 (—13.0%) 12.29 (—42.4%)
[3.3.3,1] 77.33% (—0.08%) 708.1 (=39.0%)  8.45 (—60.4%)
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Figure 1: HDnn uses a few of the first convolution layers for feature
extraction.

In summary, the major contributions in this work are:
(1) For the first time, we combine lightweight convolution-based
feature extractor with HD computing for accurate yet efficient clas-
sification of complex data types.
(2) We propose a configurable PIM-based architecture to accelerate
HDnn, which can run in HD- and DNN-only modes. HDnn-PIM
achieves high throughput by allocating compute memories stati-
cally to layers based on their compute requirements. This flexibility
is enabled by a novel 2-dimensional bus interconnect that leverages
the locality of internal data transfers and reduces the wire length.
(3) HDnn-PIM innately supports residual connections found in new
DNNs such as ResNet and Mobilenet, which alleviates the access
to off-chip memory. It reduces the load on the bus for residual net-
works while also avoiding pipeline stalls (due to off-chip memory
accesses) with a small area overhead.
(4) We identify the accumulation as a performance bottleneck of
PIM architectures used for HD and DNNs. Accordingly, we propose
a novel Compute Element (CE) that efficiently performs MAC oper-
ations by hiding their latency with memory read out. Accumulation
in memory takes at least 41% of total MACs time given the fully
parallel multiplication in memory. We reduce it to ‘bitwidth number
of cycles’ in the CMOS domain using bit-serial Carry-Save Adder,
leading to 1.66X faster MACs. HDnn-PIM’s CE is also suited for
HD, where it boosts HD’s encoding by 5x speedup over [7].
(5) We design a Post Processing Network (PPN) that speeds up the
accumulation for different (large or small) number of inputs after
MAC operation (e.g., for on-the-fly accumulation or bypass of tiles
outputs) by up to 4x compared to the typical in-memory addition.

2 HDnn Algorithmic Flow

Fig. 1 compares the HDnn and conventional CNN structure.
HDnn comprises three steps: (1) realizing a feature extractor, (2)
training of HD classifier, and (3) tuning the feature extractor.

(1) Feature extractor (FE): For FE, we rely on well-devised net-
works such as VGG, ResNet, and MobileNet. We cut these networks
after a certain pooling layer and use the first convolution layers as
FE. We extract the latent space representations by passing training
images forward through the FE, which act as features for the HD
encoder. The output of FE, per each image, is a manifold feature
maps. We flatten it to a one-dimension feature vector using global
averaging, which results in a compressed (usually 512 or 256, the
same as the number of filters of the cutting layer) vector.

(2) HD training: The extracted input features act as training
data for HD, which first encodes the data to high-dimensional space,
e.g., to D=4,000 dimensions. We use random projection (RP) [7]
as it can be transformed to a matrix-vector multiplication as Eq.
(1), where P is a D X d binary projection matrix (d is the number
of features per input), and ¥y is the input feature extracted for an
image. H is the binary encoding hypervector of an image.
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Hp = sign(Ppxq X Fa) (1)
Finally, HD adds all hypervectors of the same label to create the
class of that label (e.g., 10 classed for CIFAR10 dataset) simply using
Cl=Yic 7‘(1.[. Inference is realized by comparing/searching the
encoding hypervectors with the class hypervectors using cosine
similarity or Hamming distance.

(3) FE tuning: For FE, we use pre-trained CNN networks that
are not targeted for a classifier such as HD, especially when are
cut. Therefore, after attaching HD to FE (see Fig. 1), we keep the
HD fixed but retrain the FE to calibrate according to HD. The
RP encoding of Eq. (1) uses sign which does not converge during
backpropagation of retraining, hence, we replace it with tanh when
training FE. After training HD, we quantize the class hypervectors
to four bits without accuracy loss, especially the tuning step of FE
adjusts based on the existing fixed HD.

As previously shown in Table 1, while even a more sophisticated
HD encoding (non-linear, which uses floating-point projection ma-
trix) has 56.7% less average accuracy than CNN, HDnn improves
the accuracy by 1.34% with smaller number of parameters and
operations, which will be further elaborated in Section 4.

3 HDnn-PIM Architecture

3.1 Mapping HDnn on HDnn-PIM Architecture

Fig. 2 demonstrates the overall data flow and mapping of HDnn
on HDnn-PIM. We compile the given network to find out the map-
ping details of the layers on the supertiles of HDnn-PIM. The ar-
chitectural details are elaborated later in Section 3.2. We assign
supertiles based on the compute requirements of a given layer to
balance and hence maximize the throughput. We divide the input
image of the layer into multiple smaller images that are split across
the supertiles allocated to that layer. Each supertile has the same
coordinates among the input’s feature maps to process the outputs
independently. The weights are preloaded into the supertiles before
feeding the inputs. As shown in Fig. 2@, the weights are copied
across the supertiles of a layer.

Inside a supertile, inputs are reused among the tiles while the
weights are distributed among the tiles (Fig. 2@). A tile implements
either convolution of the given input and filter, or matrix-matrix
multiplication. Inside each tile there are CEs that perform the actual
computations, i.e., the matrix-matrix multiplication breaks down
into matrix-vector operation inside the CEs. According to Fig. 2@,
the input matrix is split into rows, where each CE takes care of a row,
but the weight matrix is copied into all the CEs of a tile. As shown
in Fig. 2@ and @, each CE uses column-parallel multiplication in
memory and bit-serial parallel CMOS accumulation to produce the
partial sums or outputs. To perform the matrix-vector efficiently,
the input is replicated and the weight matrix is flattened to realize
it as a vector-vector multiplication, suited for digital PIM.

The FE module of HDnn-PIM generates the output features that
are flattened, average pooled and forwarded as inputs to the HD
module. The flattened input vector is multiplied by a binary projec-
tion matrix to realize encoding. This matrix-vector multiplication is
performed in an array of CEs as described above. Based on whether
the HD is in training or inference mode, the appropriate operation
(i.e., accumulation with class hypervectors or search) is carried out.
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Figure 2: Mapping flow of the HDnn on PII\‘/II. (1) Splitting the input image between supertiles allows input reuse and throughput balancing,
and avoids communication between the supertiles that implement the same layer. (2) Tiles of a supertile reuse/share the input on different
filters for parallel output production and can perform matrix-matrix multiplication. (3) Compute Elements of a tile split the inputs and
reuse the weights to generate output pixel and can perform matrix-vector multiplication. (4) Replication of inputs to perform matrix-vector
multiplications for all rows of a matrix in parallel. (5) Column-parallel multiplication in memory. (6) Output of the supertiles passed to the
final layer. (7) Random projection encoding using CE array to implement matrix-vector multiplication.
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Figure 3: HDnn-PIM tiled architecture. ST: Supertile; PPN: Post Pro-
cessing Network; CE: Compute Element.

3.2 HDnn-PIM Architecture

Fig. 3 shows the HDnn-PIM’s tiled architecture. The tiles are
grouped into supertiles that allows input reuse among tiles and
increases the supported input channels and filter size. Fusion of
the tiles becomes necessary when a tile cannot hold all the data
necessary to generate an output feature (i.e., the k X k X n; filter
and the corresponding convolution window on the input). At most,
all the tiles of a supertile can fuse to support a maximum input size,
governed k X k X n < ¢ X ncg X nyjj., where k is the filter size, n;
is the number of input channels, ¢ is the memory columns per CE,
ncg is the number of CEs per tile, and n;;j, is the number of tiles
per supertile. A supertile has the following components.

Input Registers (IR) act as primary inputs to the tiles in the
supertile. IRs are divided into sets (IR 1 to IR n in Fig. 3@) where
each set delivers a convolution window of a input channel to the
tiles (tiles share the same inputs). The maximum window that can
be written to the tile at an instance is equal to the size of the sets.
Larger windows may need multiple passes to write a window. The
number of input channels that can be simultaneously written is
equal to the number of sets.

Input Processor (IP) in a supertile takes the IRs as inputs and
generates memory addresses to fill the CE memories. Based on the
configuration of the supertile, IP concatenates IR data into rows
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of 1,024 elements that can be written in parallel to the CE memo-
ries. Row addresses are generated such that enough space is left
for in-memory multiplication. If the layer mapped to the super-
tile is preceded by pooling, the IP produces addresses to store the
corresponding inputs below one another for in-memory pooling.
Post Processing Network (PPN) enables the fusion of tiles,
and routes the tiles output to the appropriate supertile input (of the
next layer). PPN comprises an activation unit and an accumulator,
so applies activation functions to the accumulated outputs of the
tiles, as well. It connects the tiles in a binary tree structure as shown
in Fig. 3@. The accumulations in PPNs depends on the number of
fused tiles. Fusing happens when the input channels required to
produce an output pixel span multiple tiles due to memory limit.
The tiled architecture allows parallel accumulation/activation when
the input sizes are small and multiple of them fit in a tile.
History Memory (HM) is an additional 1,024X1,024 memory
block that stores the history of the outputs, and is required be-
cause of the fine-grained computation by the compute pipeline. In a
pipelined architecture, the current layer needs to provide the input
window of the next layer. Hence, in a sliding window mechanism,
the next layer will be lagging by at least one column worth of con-
volution windows. Therefore, this history needs to be stored so the
the next layer can accomplish its window. This storage increases
when a residual connection is introduced, where a layer may send
data several layers ahead and requires to match the exact latency of
the data that is passing through all the intermediate layers to reach
the residue destination. Thus, this storage becomes indispensable
to avoid large power hungry register banks at the output.
Feature Extraction (FE) tile has multiple CEs that perform
MACs in parallel. Each tile is equipped with its own top level ac-
cumulator to accumulate the partial sums of all the CEs (this is
different from the CSA adder of each CE directly connected to the
memory block). The output of each CE is one accumulated value.
This allows us to avoid data dependence between CEs and keep
the tile architecture simple. We consecutively store a convolution
window (of all the channels) associated with an output feature, and
then move on to store the window corresponding to the next output
feature. This allows of maximum use of the available memory size.
The HDnn-PIM architecture is designed such that supertiles
that process the same layer have no data dependency with each
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other. This increases the throughput of processing a given layer
by avoiding data transfers between supertiles that all compute a
certain layer. All supertiles of a layer work in parallel.

3.3 Supertile Data Management

HDnn-PIM architecture statically assigns supertiles to different
layers (to be executed pipelined) proportionally based on the com-
pute opportunity they present. The bus interconnect establishes
data transfer based on the destination information of each supertile.
Data transfer for the next computation is exerted simultaneously
with the current computation to throttle the cost of data transfer.

Supertile Mapping: For the mapping of layers on supertiles,
the compiler takes the network specifications as input and gener-
ates the configuration of HDnn-PIM. The key aspects taken into
consideration for a convolution layer for assignment are the filter
size k, number of input/output channels n;/n,, input dimensions
dr, and strides along the x and y directions (sx and sy ). These pa-

2

rameters are used to calculate the compute intensity (CI = m)
and configure the supertiles accordingly. The compiler ensures the
entire network fits into the CE memories. Otherwise, the network
is processed as batches of layers. Parallelism can also be extracted
by computing multiple convolution windows of the same input
feature in parallel (i.e., multiple filters over multiple window, as
in Fig. 2@). The number of windows to be processed in parallel
for a given layer is the ratio of its CI to the layer with minimum
CL The same procedure is used when the memories are limited.
However, now one CE may hold multiple sets of inputs and weights.
Multiplication is then performed sequentially for all sets in a CE.
This avoids off-chip accesses at the cost of throughput. By using
CI, the data rate mismatch due to different strides is also mitigated.

Pooling uses simple logic and arithmetic operations and is per-
formed in memory. As explained for the Input Register (IR) func-
tionality, the output of the layer preceding pooling is sent to the
memories allocated to subsequent layer. The pooling windows is
stored vertically in the memory columns of the next layer. Once
the output is obtained, the inputs are no longer required, so the
intermediate storage of the in-memory multiplications are released
for MAC operations. Large pooling windows that cannot fit in the
memory can be processed in multiple iterations.

Residual connections are challenging due to data transfer to mul-
tiple layers ahead, which requires the latency of the computation to
be matched such that the right inputs are added before activation.
This is realized by storing larger histories in the HM for layers that
are the producer of the residue and feed the values as required to
the consumer. The producer lag is fixed based on the specification
of the intermediate layers and the supertile mapping.

Bus Interconnect (BI), shown in Fig. 3@, acts as the backbone
of HDnn-PIM that enables all the mapping of supertiles and pipelin-
ing between the network layers. The flexibility of using CI to map
layers to the supertiles can only be achieved if all the supertiles can
communicate with the other supertiles. Each supertile has an ID,
and each register set in a supertile has a local register ID. This is
used to uniquely identify each supertile and its register sets. After
mapping all the layers to the supertiles, the compiler generates a
source and a destination ID for each supertile. When data is being
sent by a supertile, this metadata is used by the BI to route it to
the proper destination. Each node of the Bl acts as a switch that
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compares the destination ID to the threshold of that node (e.g., IDs
0-31 for the first branch and so on) and routes the data to the appro-
priate branch. Once the data reaches the destination, the supertile
uses the register ID to store the value in the right register set.
Dual bus structure is used because for larger designs the re-
sources of such structure scale linearly due to the type of data
transfer involved. Due to the natural staggering of computation
among different layers, the memory blocks assigned to the same
layer do not receive and send data at the same time. This signifi-
cantly reduces the maximum bandwidth requirement of the top bus
(limiting it to the transfer of the largest layer currently mapped).

3.4 Mapping HD to HDnn-PIM Architecture

HD Encoding in HDnn-PIM: HD encoding is implemented
as a matrix (binary)-vector multiplication (VMM). The core CE
remains the same as for the FE. The data access patterns in VMM
and convolution are different. Thus, we use different FE and HD
units on the chip to simplify the FE control logic and mapping. For
simple VMM, the tile hierarchy inside the supertiles, the B, and the
HM are not required. We create multiple copies of the input feature
vector (output of the cutting layer) that are stored in different
supertiles, same as the weights of the FE. After multiplication in
memory and accumulating all the products in the supertile, one
dimension of the encoding hypervector is generated. The number
of outputs that can be generated concurrently is equal to the the
number of supertiles of the HD component, which is configured
to match the FE throughput. The results of the VMM (encoding) is
stored in a separate supertile. The dimensions of the hypervector,
which are multi-bit, are then reduced to 1-bit using thresholding.

HD Inference and Training in HDnn-PIM: For inference, we
encode the vector using the above architecture to obtain the query
hypervector. The class is determined using search in memories by
comparing the query hypervector to the stored class hypervectors.
This associative search can be performed in-memory as demon-
strated in [2]. For HD training all class hypervectors are obtained
through FE and encoding followed by accumulating the vectors of
the same class. Therefore, we get one vector per image from the
FE, that we encode and add it to the class vector to train the HD
classifier. We obtain all the class hypervectors once all the images
have passed through this procedure. For retraining, we perform
inference on each image in the training set and compare the pre-
dicted class with the expected class. If they do not match, we add the
query hypervector to the expected class’s hypervector and subtract
it from the predicted class’s hypervector. The location of the class
hypervectors remain the same memory blocks where they were
first stored. All training additions are performed in memory.

3.5 HDnn-PIM Compute Element

The CE is the lowest level component of HDnn-PIM, comprising
a 1,024x1,024 single-bit ReRAM crossbar capable of in-memory
arithmetic. Fig. 4 shows the organization of data in the memory
crossbar. Two sets of 1,024 16-bit numbers are stored in adjacent
columns, where each number is stored vertically in a single column
and 16 rows. The first (second) 16 rows store the first (second) set.
The two sets act as multipliers and multiplicands that are being
multiplied down the column to produce the product. Therefore, all
1,024 multiplications are performed in parallel. The two inputs, for
instance, could be the weights and input feature windows that need
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Figure 4: CE crossbar and associated bit-serial parallel CSA adder.

to be multiplied for convolution. The two inputs and the product
together occupy 48 rows of the crossbar. The remaining (976) bits
are used to store another input or act as scratchpads that store the
intermediate signals that are generated during the product.

Another component of the CE is a bit-serial parallel CSA adder.
The in-memory addition does not allow this operation optimally
since, first, all the columns of the array perform a multiplication and
no space is left along the rows (where the products are stored) to
perform accumulation. Second, if we change the data arrangement
to carry out in-memory accumulation, it is not possible to perform
1,024 16-bit accumulation in parallel in one crossbar. To maintain
this parallelism, the bit-serial CSA adder is used. Since the products
are stored along the columns, a bit of the same significance of all
the numbers can be read out simultaneously and accumulated. This
operation is performed 16 times using the CSA adder to produce
the accumulated output. Such PIM-CMOS hybrid structure allows
the architecture to extract high parallelism by performing more
multiplications, which is the most expensive operation. In addition,
accumulation is also performed in parallel while reading the data
out. Hence, it is hidden within the memory read out latency.

4 Evaluation

4.1 Experimental Setup

We implemented an operation-level simulator in Python to ana-
lyze the HDnn-PIM which models its architecture, considering the
size of operations, data mapping, memory size, and network param-
eters. The simulator uses the performance and energy consumption
values obtained from circuit-level evaluations in 45 nm technology
in Cadence Virtuoso. The memory cell characteristics are derived
from VTEAM memristor model [10]. We calibrate the model to rep-
resent the device characteristics used in [5]. The resultant memory
cell has Ropr and Ron as 10 MQ and 10 kQ respectively, with a
device switching delay of 1.1 ns (PIM’s design cycle time).

In our experiments we used CIFAR10/100 and Flowers datasets
on VGG-16, MobileNetV2, and ResNet-18/34 networks. HDnn trun-
cates the networks and uses as feature extractors (FEs), which
is followed by a HD-based classifier with 9=4,000 dimensions.
We compare HDnn-PIM with the state-of-the-art PIM accelerators
FloatPIM [5] (digital) and ISAAC [14] (analog). We also compare
the HDnn-PIM performance with Intel Xeon Gold 6140 CPU and
Nvidia RTX 3090 GPU using PyTorch implementation of the HDnn.

4.2 HDnn Accuracy Analysis

For feature extraction with VGG-16, we cut at layer L17 (out of
44 layers including batch normalization). For ResNet-18, we cut off
the last fully connected layer and six preceding convolution layers.
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We cut the MobileNetV2 layers after the fourth bottleneck layer
but we preserve its last fully connected layer. All analyses are done
for inference using models trained with 16-bit fixed point represen-
tation. Our analysis shows that HDnn is on average 51.0%, 49.1%,
and 57.3% more accurate than the mere HD model on CIFAR100,
CIFAR10, and Flowers datasets, respectively (see Table 1).

Fig. 6(a) shows the HDnn accuracy, and Fig. 6(c), and 6(d) show
the MAC and parameter reduction of HDnn using the aforemen-
tioned trimmed CNNs5s as the feature extractor, compared to the
original CNN. HDnn increases the accuracy by 1.2% on average
compared to CNN models for image classification, while reducing
the number of MACs and model parameters by 34.8% and 72.5%
respectively. Note that we also compared HDnn with the CNN that
is cut at the same layer followed by a fully connected layer (instead
of HD). Compared to such trimmed ResNet-18 configuration, HDnn
achieves 1.8% higher accuracy on CIFAR10 dataset, indicating the
effectiveness of HD to gain better insight from data.

4.3 HDnn-PIM vs State of the Art

CPU and GPU: Fig. 5(a) shows the inference throughput of
HDnn models on different platforms. Table 3 summarizes the speedup
and energy efficiency gains over GPU relative to other state of the
art works (HD only model and models without references are run
on HDnn-PIM). Our high performance design (PIM-16GB) achieves
223x higher throughput than RTX 3090 GPU, while consuming less
memory than the GPU which has 24GB of RAM. The area efficient
version (PIM-256MB) is yet 3.6% better than GPU. Comparing with
CPU, our high performance (area-efficient) design achieved 13,796x
(219x) higher throughput.

Previous PIM designs: None of the existing PIM-based HD
accelerators evaluate their design on complex image datasets such
as CIFAR100 or Flowers [3, 9], instead focusing primarily on MNIST.
They either use an inferior HD encoding as compared to the baseline
encoding used in HDnn [3, 9] or do not evaluate on complex image
datasets [13]. Hence, HDnn-PIM is at least 52.4% more accurate on
average than existing HD-PIM designs for Flower, CIFAR10, and
CIFAR100 datasets (Section 4.2).

We compare HDnn-PIM with digital-PIM FloatPIM DNN acceler-
ator [5], and analog-PIM ISAAC [14]. We use VGG-16 for compari-
son since these works are not capable of running networks with
residual connections. Our evaluations show that HDnn-PIM has an
energy-efficiency of 3,036 GOPS/s/W for 16-bit operations, which is
3.7% higher than FloatPIM [5] (Fig. 5(b)). By balancing throughput,

Table 3: Performance-Power normalized to GPU RTX 3090.

Model Speedup | Energy Efficiency
HD (RP) [7] 133x 1215%
CNN (VGG-16) 84x 1202x
CNN (VGG-16) [5] 100x 325x
HD+FE [13] 14x 259x
HDnn (VGG-16-based FE) | 104x 1213x
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Figure 6: (a) HDnn accuracy for different datasets leveraging different CNNs as FEs, (b) Performance scaling of HDnn-PIM, (¢) HDnn MAC
reduction using different FEs, (d) HDnn parameter reduction using using different FEs for various datasets.

HDnn-PIM ensures optimum use of the given resources. HDnn- is 223X faster than RTX 3090 GPU and 3.7x more energy efficient
PIM has per-area performance of 275.5 GOPS/s/mm? which is 8.2% than the state-of-the-art PIM accelerator for DNNG.
(7.7x) less than FloatPIM’s low-power (high-power) version. This Acknowledgements

is because, unlike FloatPIM, we consider the data-flow and map-

) ’ o This work was supported by TSMC, in part by CRISP, one of
ping overheads of all DNN layers in HDnn-PIM. This includes, but

six centers in JUMP (an SRC program sponsored by DARPA), SRC

s not lflmltel(.i to, cor.r(liputlatlon anq data mzp lpmg requ.hrem;:;l];s m Global Research Collaboration (GRC) grant, and NSF grants #1911095,
case of poo ing, residua conr}ectlons, and larger stri les. nn- #1826967, #2100237, and #2112167.

PIM is 7.9x more energy-efficient than ISAAC [14] as it does not

use power-hungry mixed-signal circuits such as DAC/ADCs. Since References

ISAAC merely performs convolution and does not handle other [1] Ping Chi, Shuangchen Li, et al. 2016. Prime: A novel processing-in-memory

DNN layers, it is 1.7X better in per-area performance_ architecture for neural network computation in reram-based main memory.
ACM SIGARCH Computer Architecture News 44, 3 (2016), 27-39.

4.4 HDnn-PIM Performance-Area Tradeoff [2] Amirali Ghofrani et al. 2016. Associative memristive memory for approximate
. . . . computing in gpus. IEEE Journal on Emerging and Selected Topics in Circuits and
We analyse the impact of scaling the memory size by consider- Systems 6, 2 (2016), 222-234.

ing memory sizes ranging from 256 MB to 16 GB using the same [3] Saransh Gupta, Mohsen Imani, and Tajana Rosing. 2018. Felix: Fast and energy-
: : : PO efficient logic in memory. In 2018 IEEE/ACM International Conference on Computer-

HDnn networl.<s descnbefi in Sect1qn 4.2. As s}}own in Fig. 6(b), tbe Aided Design (ICCAD). TEEE, 1-7.
performance increases linearly with the available memory. This [4] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. 2016. Deep Residual
indicates the scalability of HDnn-PIM to fit multiple networks on Learning for Image Recognition. In Proceedings of the IEEE Conference on Computer

Vision and Pattern Recognition (CVPR).

different conﬁgur ations without mp, actlgg per formance dr ?‘Stlcally' [5] Mohsen Imani, Saransh Gupta, Yeseong Kim, and Tajana Rosing. 2019. Floatpim:
We also discuss the performance-efficient and area-efficient ver- In-memory acceleration of deep neural network training with high precision. In
sions of HDnn-PIM. The performance—eﬁ’lcient design has 8,192 46th Intematignal Symposium on Compu{fer'Architec'ture (ISCA). IEEE, 802}—815.

. . i Lo . [6] Mohsen Imani, Deqian Kong, Abbas Rahimi, and Tajana Rosing. 2017. VoiceHD:
super tiles with 16 tiles each (total 16 GB)' All multlphcatlon opera- Hyperdimensional Computing for Efficient Speech Recognition. In 2017 IEEE
tions in the pipeline happen in parallel which provides high com- International Conference on Rebooting Computing (ICRC). 1-8.
putation throughput. For the area-efficient design, we use lower [7] Mohsen Imani, Justin Morris, et al. 2019. Bric: Locality-based encoding for

R K energy-efficient brain-inspired hyperdimensional computing. In 56th Annual
memory size which consumes lower power due to reduced paral- Design Automation Conference. 1-6.
lelism. We choose a design with 128 supertiles with 16 tiles each [8] Pentti Kanerva. 2009. Hyperdimensional computing: An introduction to com-
(total 256 MB), i hich £ t dat . d puting in distributed representation with high-dimensional random vectors.
ota VIB), in which we perlorm compact data mapping an Cognitive computation 1, 2 (2009), 139-159.
store multlple rows of welghts and inputs in a CE. This results in [9] Geethan Karunaratne, Manuel Le Gallo, Giovanni Cherubini, Luca Benini, Abbas
less parallel multiplications but can fit the network on a Sigl’liﬁ- Rah'lml, anq Abu Sebastlan. 2019. In-memory hyperdimensional computing.
. . arXiv preprint arXiv:1906.01548 (2019).
cantly smaller chip. Our evaluations show that the performance- [10] Shahar Kvatinsky, Misbah Ramadan, et al. 2015. VTEAM: A general model for
efficient (area-efficient) HDnn-PIM has a throughput of 93.3 TOPS/s voltage-controlled memristors. IEEE Transactions on Circuits and Systems II:
: Ct Express Briefs 62, 8 (2015), 786-790.
(1.5 TOPS/s) with an end-to-end la.tency of 0.14ms (8.9 ms) for [11] Justin Morris, Kazim Ergun, et al. 2021. HyDREA: Towards More Robust and
VGG-16, 76.7 TOPS/s (1.2 TOPS/s) with 0.03 ms (2.1 ms) latency for Efficient Machine Learning Systems with Hyperdimensional Computing. In 2021
ResNet-18, and 112.3 TOPS/s (1.9 TOPS/s) with 0.13 ms (7.6 ms) la- (2] Des}i%": Automation Tff]it in Europe Cvlnferencle Exhibitévn (DATE). 723-728. 1
. . . 12] Mahdi Nazemi, Amirhossein Esmaili, et al. 2020. SynergicLearning: Neura
tency for MobileNetV2. The hlgher latency of MobileNet versus Network-Based Feature Extraction for Highly-Accurate Hyperdimensional Learn-
ResNet-18 is due to its 1x1 convolutions that make the memory ing. In International Conference On Computer Aided Design (ICCAD). 1-9.
blocks underutilized. Also, MobileNet has higher image size reduc- [13] Prathyu'sh Posiuval, Zhuowen Zou, Hassan Najafi, et al. 20?1. StocHD: Stochastic
. K . A L. Hyperdimensional System for Efficient and Robust Learning from Raw Data. In
tion due to the pooling and stride-2 convolutions, requiring more ACM/IEEE Design Automation Conference (DAC). 1195-1200.
resources for throughput balancing (e.g., a 2x2 pooling requires [14] Ali Shafiee, Anirban Nag, et al. 2016. ISAAC: A convolutional neural network

accelerator with in-situ analog arithmetic in crossbars. ACM SIGARCH Computer

four times of resources to be allocated to the previous layer). Architecture News 44, 3 (2016), 14-26

5 C 1 . [15] Nishil Talati, Saransh Gupta, Pravin Mane, and Shahar Kvatinsky. 2016. Logic
onclusion . design within memristive memories using memristor-aided loGIC (MAGIC). IEEE
We proposed HDnn, a novel approach of feature extraction for Transactions on Nanotechnology 15, 4 (2016), 635-650.
HD computing for complex datasets such as images’ and HDnn- [16] Anthony Thomas, Sanjoy Dasgupta, and Tajana Rosing. 2020. Theoretical Foun-
dations of Hyperdimensional Computing. arXiv:2010.07426 (2020).
PIM, ‘the first PIM based HDnn accelerator. We evaluated. HDnn on [17] Zhuowen Zou, Haleh Alimohamadi, Farhad Imani, Yeseong Kim, and Mohsen
a variety of feature extractors and datasets. Our evaluation shows Imani. 2021. Spiking Hyperdimensional Network: Neuromorphic Models Inte-
that HDnn achieves 52.4% higher accuracy as compared to HD grated with Memory-Inspired Framework. arXiv:2110.00214 [cs.NE]
. . . . [18] Zhuowen Zou, Yeseong Kim, M. Hassan Najafi, and Mohsen Imani. 2021. ManiHD:
computing without feature extraction. It also gains 1.2% accuracy Efficient Hyper-Dimensional Learning Using Manifold Trainable Encoder. In 2021
over state-of-the-art CNNs, but at 72.46% (3.63X) lower memory Design, Automation Test in Europe Conference Exhibition (DATE). 850-855.

footprint and 34.83% (1.53x) fewer MACs. Furthermore, HDnn-PIM

286



