
PIMProf: An Automated Program Profiler for
Processing-in-Memory Offloading Decisions

Yizhou Wei∗, Minxuan Zhou†, Sihang Liu∗, Korakit Seemakhupt∗, Tajana Rosing†, and Samira Khan∗
∗University of Virginia, †University of California San Diego

Email: {yizhouwei, sihangliu, korakit, samirakhan}@virginia.edu, {miz087, tajana}@ucsd.edu

Abstract—Processing-in-memory (PIM) architectures reduce
the data movement overhead by bringing computation closer to the
memory. However, a key challenge is to decide which code regions
of a program should be offloaded to PIM for the best performance.
The goal of this work is to help programmers leverage PIM
architectures by automatically profiling legacy workloads to find
PIM-friendly code regions for offloading. We propose PIMProf1,
an automated profiling and offloading tool to determine PIM
offloading regions for CPU-PIM hybrid architectures. PIMProf
efficiently models the comprehensive cost related to PIM of-
floading and makes the offloading decision by an effective and
computational-tractable algorithm. We demonstrate the effective-
ness of PIMProf by evaluating the GAP graph benchmark suite
and the PARSEC benchmark suite under different PIM and CPU
configurations. Our evaluation shows that, compared to the CPU
baseline and a PIM-only configuration, the offloading decisions by
PIMProf provides 5.33× and 1.39× speedup in the GAP graph
workloads, respectively; 2.22× and 1.74× speedup in the PARSEC
benchmarks, respectively.

I. INTRODUCTION

Modern workloads, such as graph processing, machine

learning, and big data analytics, have increasingly higher

demand on memory. Therefore, recent works move computation

closer to memory and design different processing-in-memory
(PIM) architectures to relieve the pressure on main memory

bandwidth. For example, some works implement a large number

of simple and low-power processors in memory to accelerate

general-purpose workloads [1]–[3]; some other works design

specialized cores to accelerate certain workloads or computation

kernels [4]; it is also viable to employ in-situ bulk logic inside

memory arrays, where the in-memory logic only supports simple

operations (e.g., bitwise operators) but can utilize the massive

internal memory bandwidth [4]–[6]. Figure 1 shows a typical

PIM architecture where we integrate processing elements near

the memory (e.g., logic die of Micron’s hybrid-memory cube

(HMC) [7]). The processing units are able to process complex

operations without communicating with the host CPU. With

the different execution patterns enabled by PIM operations in

conventional systems, the immediate question arises—how can

one determine which code region to offload to the memory-side

in order to fully exploit the benefits of PIM?

A commonly used solution in previous works is to offload

specialized instructions that do not influence the cache co-

herence [3, 8, 9]. This simplification avoids the extra data

movement between CPU and PIM incurred by PIM offloading.

1The source code of PIMProf can be found at https://github.com/Systems-
ShiftLab/PIMProf

Fig. 1. High-level structure of a processing-in-memory (PIM) architecture.

Therefore, previous works make offloading decisions based

on the potential bandwidth savings by processing data in

memory. However, a more generic solution should take the

complications of CPU-PIM coherence into account, where we

may get more benefit by paying extra switching costs to change

the execution from one side to the other. To decide whether

a general program would benefit from PIM offloading or not,

there are two main challenges: (1) Provide a comprehensive

model of the costs caused by different offloading decisions,

among which the trickiest cost to model is the extra switching

cost caused by switching the execution between CPU and PIM

during the runtime. (2) Efficiently explore the design space

of PIM offloading and find good offloading decisions given

the cost model. However, it is hard to independently make the

offloading decision for multiple regions when the switching cost

is involved, as the switching cost of one region depends on other

regions. As a solution, we implement PIMProf, an automated

PIM profiling and offloading tool for general programs running

on CPU-PIM hybrid architectures. The contributions of this

work are the following:

• This is the first work that designs a profiler to automatically

determine PIM candidates in a general program for PIM

architectures, with different practical offloading overheads

taken into account. PIMProf tackles the two challenges with:

(1) an efficient cost modeling for PIM-offloaded programs,

and (2) an effective and computational-tractable heuristic-

based algorithm for offloading decision-making.

• We demonstrate the effectiveness of PIMProf by evaluating a

graph benchmark suite, GAP [10], and another more general

benchmark, PARSEC [11]), under different PIM and CPU

configurations.

• In GAP benchmarks, which are dominated by memory-

intensive PIM-friendly kernels, PIMProf shows that many

CPU-friendly regions are offloaded to PIM along with

855978-3-9819263-6-1/DATE22/ c©2022 EDAA

Authorized licensed use limited to: Univ of Calif San Diego. Downloaded on August 08,2022 at 19:07:30 UTC from IEEE Xplore. Restrictions apply.

Fig. 2. Streamcluster offloading decision with and without data dependency.

PIM-friendly regions to reduce data transfer overhead

between them. PIMProf provides 5.33×/1.39× speedup over

CPU/PIM-only configuration for GAP on average.

• Our evaluation on PARSEC shows that only a few workloads

have enough memory intensity and parallelism to be able to

exploit the benefits of PIM. PIMProf provides 2.22×/1.74×
benefit over CPU/PIM-only configurations for PARSEC

workloads on average, and shows major speedup for four

out of nine workloads we experimented.

II. CHALLENGES IN PIM OFFLOADING

Processing-in-memory (PIM) architectures overcome the

memory wall problem [12] by placing computation units close to

or within the memory device. Because of the abundant internal

bandwidth and parallelism, PIM architectures are efficient in

performing memory-intensive and highly-parallel procedures

(e.g., specialized instructions or computation kernels). Therefore,

a simple strategy of exploiting advantages of PIM can be

offloading code regions that meets these characteristics. For

example, code regions with a high cache miss rate—typically

measured as misses per kilo instructions (MPKI)—can be

accelerated by leveraging the high internal bandwidth in PIM.

However, in practice, hybrid CPU-PIM execution involves two

main categories of additional switching cost between CPU and

PIM: the cost from extra memory movement (data dependency
cost) and the cost from extra context switch (context switch
cost). Therefore, a naive MPKI- or parallelism-based offloading

solution may not perform well, especially in real-life workloads

with complicated dependencies.

Figure 2 shows a snippet of code from Streamcluster, a
workload in the PARSEC benchmark suite [11]. The three code

regions are part of a function for computing the approximated k-
Median. Based on the MPKI and parallelism, both region � and

� are PIM-friendly, whereas region �, which involves random

number generation and floating point division, is CPU-friendly.

However, the data dependency across regions can affect the

overall execution time, as switching between CPU and PIM

processors incurs data writeback from CPU cache to PIM. In

this example, since region � has data dependency with both

region � and �, executing � along with � and � on PIM

minimizes the data transfer overhead between CPU and PIM,

therefore, offering better performance.

Figure 3 shows the performance of PIM offloading based on

MPKI and parallelism for nine PARSEC workloads (detailed

Fig. 3. Offloading performance based on MPKI and parallelism for PARSEC
benchmarks, as compared to CPU-only and PIM-only offloading.

methodology in Section IV). We use configurations of CPU-

only and PIM-only execution as the baselines and normalize all

results to CPU-only. This experiment shows that MPKI-based

and parallelism-based offloading schemes cannot improve the

performance over the baselines in many cases. Even worse,

MPKI-based offloading significantly degrades the performance

of CPU-only offloading for several workloads (e.g., 41.6×
slower for Bodytrack and 22.7× slower for Swaptions). The
reason behind such performance degradation is the extremely

large overhead of data dependency and context switch caused

by offloading consecutive code regions to different platforms.

The motivational results demonstrate that PIM offloading

should consider not only memory access cost and parallelism

but also the data dependency cost. However, making offloading

decisions based on the cost of data dependency is challenging,

which highly depends on the execution of prior code regions.

Therefore, it is extremely hard for programmers to manually find

out PIM-friendly code regions, even with tools that profile the

cache miss status (e.g., Intel VTune [13] that reads performance

counters and Pin tool [14] that simulates the cache hierarchy).

III. PIMPROF DESIGN

The goal of this work is to tackle the PIM-offloading

problem: For a given program, what regions should be offloaded

to the PIM side in a CPU-PIM heterogeneous architecture.

There are two significant challenges: First, comprehensive cost

modeling of offloading decisions can be complicated due to

an extremely large number of data interactions in general

programs. Furthermore, it is hard to design a computational-

tractable algorithm to explore all possible offloading candidates

to minimize the holistic cost. To overcome these challenges, we

provide PIMProf, an end-to-end tool that automatically generates

offloading decisions for general programs running on CPU-PIM

architectures. The workflow of PIMProf is shown in Figure 4.

A. Program Instrumentation

PIMProf statically instruments the program using an

LLVM [15] compiler pass. It divides the entire program into

small regions to enable a fine-grained profiling by inserting

lightweight marker functions, and the program regions are used

as the basic unit for profiling and offloading. The granularity of

program regions is configurable so that applications that vary in

size, parallelism and data dependency patterns may all benefit

from offloading. In our evaluation, we choose two granularities:

the basic-block-grained [16] offloading, which usually works

856 Design, Automation and Test in Europe Conference (DATE 2022)

Authorized licensed use limited to: Univ of Calif San Diego. Downloaded on August 08,2022 at 19:07:30 UTC from IEEE Xplore. Restrictions apply.

Fig. 4. PIMProf overview.

better for programs whose PIM-friendliness change frequently;

and the function-grained offloading, which is suitable for larger-

scale programs whose PIM-friendliness change less frequently,

by sacrificing some potential optimization opportunities.

B. Runtime Profiling

Based on the automatically-instrumented region boundaries

(e.g., basic block or function), PIMProf collects the runtime

statistics for each region, including execution time, cache hit rate

of memory locations accessed by this code region, and number of

instructions in this region. As real PIM hardware is mostly under

academic and industry research, PIMProf collects the runtime

information from a simulator (Intel’s Sniper [17]). To compare

the offloading benefits, PIMProf simulates the execution on both

the PIM and CPU architectures. With the runtime statistics for

both processor types, the next step is to model the cost.

C. Cost Modeling

In order to provide good offloading decisions for a program,

it is necessary to fully understand the cost model of different

program executions for minimizing the total cost. Although the

execution time depends on multiple factors, it is possible to

consider those factors separately and then generate the overall

cost. We identify two major sources of cost: the execution cost

which is due to the execution of the code region (either on

CPU or PIM) and the switching cost which is the overhead for

maintaining the consistency of data and the program context

when switching between CPU and PIM.

1) Execution cost: As PIMProf has collected the statistics

about the runtime information of executing the code region both

on CPU and PIM, the execution cost directly comes from the

runtime profile. In Section IV-A, we elaborate on the details of

simulation used for modeling both CPU and PIM architectures.

2) Switching cost: The switching cost comes from two

sources. The first source is the data dependency between code

regions that are placed on different processing units, e.g., one

region on CPU and another on PIM. The second source is the

context switch, which mainly includes the overhead of saving

and restoring the processor states [18]. Different from the data

dependency cost, context switch has a more or less constant

cost, which is determined by the operating system.

Data dependency Cost. We analyze the data dependency

between program regions at cache line granularity, as memory
transfer is cache-line-grained. When the same cache line of

data is shared by two program regions that execute in different

places (PIM and CPU), we model a single data transfer as the

total cost of one cache line flush issued by the source, plus one

cache line fetch issued by the destination. Figure 5a shows a

code example with multiple program regions. Assume that we

execute region 0 on CPU and region 1 on PIM, and variables a

and b are stored in different cache lines, then when we switch

between them, the memory locations of a and b each incurs

a data dependency cost. Because the values of a and b are

both updated by a WRITE in region 0, the CPU needs to flush

the updates back to memory and then the PIM unit fetches the

updated data from memory. The number of data dependency

instances increases if there are multiple shared locations. To

compute the total data dependency cost of a certain offloading

decision, a naive way is to go over all memory accesses, and

increase the cost wherever a data transfer happens. However,

this is not feasible for a real-world program as we need to iterate

over all possible decisions to find the best one. As a solution, we

apply a few optimizations to provide a good offloading decision

with reasonable overhead, as described in Section III-D.

Context Switch Cost. The context switch cost appears when
two neighboring regions are executed in different places. This

cost is usually constant, depending on the operating system.

To compute this type of cost, PIMProf keeps track of how

many times the program goes across the boundary of one region

to another when executing the program by using a weighted
directed graph. The weight of each edge is the number of times
the execution goes from one region to another. Figure 6a shows

an example of the context switch graph.

Fig. 5. Optimizations to the data dependency chain.

D. Solver for offloading decisions

The target of the solver is to find an offloading decision for

each region that minimizes the sum of the execution cost, the

data dependency cost, and the context switch cost. The solver

generates offline decisions so each region will not change its

place of execution during the runtime. Without the data depen-

dency cost, finding an offloading decision that minimizes the

other costs is straightforward. However, it becomes challenging

when the data dependency cost is considered. This section

discusses how we optimizes the computation of data dependency

cost and incorporate this method into the solver of PIMProf.

Model data-dependency as chains. To formalize the data

dependency of all memory accesses, we model them as the data
dependency chains, shown in Figure 5b. For each cache line, its
data dependency chain records the information of all memory

accesses to it, including the region ID that the access occurs

and the access type (READ/WRITE). An access to different

addresses but within the same cache line is recorded to the

same chain. Created in this way, all accesses to a cache line are

logged in a single data dependency chain. Though functioning,

this method is not storage-efficient. Next, we perform several

optimizations to reduce its storage overhead.

Design, Automation and Test in Europe Conference (DATE 2022) 857

Authorized licensed use limited to: Univ of Calif San Diego. Downloaded on August 08,2022 at 19:07:30 UTC from IEEE Xplore. Restrictions apply.

Split data dependency chains into segments. There are a
few observations we can use to remove redundant information

in data dependency chains. First, data transfer will only occur

when we try to perform a READ in one place, but the data is

previously updated by a WRITE in the other place, i.e., read-

after-write (RAW) in different places. There will be no data

transfer at all if all READs between two consecutive WRITEs

are executed in the same place as the first WRITE, since the

second WRITE will overwrite the old value. So it is natural to

split a long chain into shorter segments that start with a WRITE

and end with the READ before the next WRITE (Figure 5c).

In this way, the total data dependency cost is equal to the

sum of the data dependency cost of all segments, where each

segment incurs a cost of at most one extra cache line flush

plus one cache line fetch when the segment contains regions

offloaded to different places. Second, subsequent READs from

the same region as the first READ/WRITE do not change the

data dependency cost of the segment. This is because the place

(PIM or CPU) that has executed the first READ/WRITE already

holds the latest data, so subsequent READs from the same

region will not trigger extra data transfer and can be removed

from the segment (Figure 5d). Third, since PIMProf tracks the

data dependency at cache line granularity, RAW to a cache

line in different places will always trigger one extra cache line

flush and one cache line fetch. By assuming that this cost is the

same for all cache lines, PIMProf merges the same segments

(segment with the same sequence of memory operations and

region IDs) from different cache lines (Figure 5e), and tracks

the number of occurrences using a counter (cnt in Figure 5).

PIMProf further merges the segments that are not exactly the

same but have the same prefixes using a trie (prefix tree) [19].

Fig. 6. Permute small batches of regions created from dependency segments
and context switch to find offloading decision that minimizes total cost.

Heuristic decision-solving algorithm. Our heuristic algo-

rithm takes the cost models as the input and finds a decision

that minimizes the total cost. However, this problem does not

have a general solution. It can be proved that a special case

of our problem where we only consider the execution cost and

context switch cost (and set all data dependency cost to 0), is

equivalent to the 0-1 quadratic programming problem, which is

already NP-complete [20]. Therefore, instead of using general-

purpose solvers for optimization problems, we create a heuristic

algorithm based on our observations on the data dependency:

The data dependency segment we collect is usually short (most

segments only have 2-3 nodes) because data remain in cache for

a limited time before it is evicted or flushed to memory, such

that it is feasible to test all decision combinations for regions in a

single segment. Based on this key idea, PIMProf uses a heuristic

method that permutes the decisions of all regions in a single

segment each time while keeping the other decisions the same,

and check if any of those changes in the decisions reduces the

total cost. To take context switch into account, PIMProf permute

the decisions of regions that have context switches with regions

in the segment at the same time. PIMProf will only consider a

segment when its occurrence exceeds a threshold (at least 0.01%

of the total execution time in our setup) to have enough impact

on the overall performance. Then it will start from segments

with fewer occurrences so that the decisions of more important

segments can have a chance to overwrite previous decisions

(sort the segments as shown in Figure 5f). PIMProf creates a

permutation batch for each segment and initialize it with all

regions in that segment. Then it keeps adding new regions that

have a context switch to/from the existing regions in the batch,

until the current batch reaches a pre-set threshold (15 regions

in our setup). The resulting batch of each segment is shown in

Figure 6b, and an example of finding the corresponding batch

of a segment is shown in Figure 6c. PIMProf then permutes the

decisions of the corresponding batch for each segment and keeps

the decisions that achieve the local minimum the same from

the previous segments when proceeding to the next segment.

IV. EVALUATION

In this section, we first describe our evaluation methodology,

and then present the results of our evaluated workloads.

A. Methodology

Evaluated Configurations. We model several CPU and

PIM architectures on the Sniper simulator [17], as listed in

Table I. The baseline configuration consists of out-of-order

CPU cores similar to high-performance server processors. And,

the configuration of PIM contains Atom-like in-order general-

purpose cores [2]. We also provide sensitivity analysis by

varying the number of cores on both CPU and PIM.

TABLE I
SYSTEM CONFIGURATION.

Out-of-Order CPU (baseline)
1/2/4 General purpose processors

3GHz, 4-way superscalar
32kB L1I, 32kB L1D, 256kB L2, 2MB L3
General-purpose in-order (PIM) [2]

16/32/64 general purpose cores
32kB L1I, 32kB L1D
Switching Cost

Cache line fetch/flush on CPU: 60 ns, on PIM: 30 ns
Context Switch: 2 μs [18]

Evaluated Workloads. For evaluation, We use two widely-

used benchmark suites that contain a variety of workloads to

demonstrate the flexibility of PIMProf: (1) graph benchmark

suite (GAP) [10]— high memory intensity and parallelism. (2)

PARSEC benchmark suite [11]— irregular workloads that are

harder for manual offloading.

858 Design, Automation and Test in Europe Conference (DATE 2022)

Authorized licensed use limited to: Univ of Calif San Diego. Downloaded on August 08,2022 at 19:07:30 UTC from IEEE Xplore. Restrictions apply.

Fig. 7. Geometric mean of the execu-
tion time of all design points, PIMProf
performance highlighted. (Execution time
normalized to CPU-only).

Fig. 8. Execution time breakdown of GAP and PARSEC workloads using PIMProf offloading decisions. We
include four categories of costs: execution cost on CPU, execution cost on PIM, data-dependency cost and
context-switch cost. The data dependency and context switch cost in this graph are not significant because
PIMProf decisions remove most of them. (Execution time normalized to CPU-only).

System Configurations. We evaluate four system configura-

tions as the baselines compared to PIMProf.

• CPU-only. The whole application runs on CPU.

• PIM-only. The whole application runs on PIM.

• MPKI-based: MPKI & parallelism-only. PIMProf detects

the MPKI and parallelism of the program and offloads the

regions to PIM if both the MPKI and parallelism of the

program region exceeds the threshold.

• NoDep: Execution-cost-aware-only. PIMProf decides where

to execute a region based on simply whether the execution

cost is smaller on CPU or PIM. It does not consider the data

dependency cost at all (usually suitable for applications with

multiple independent kernels).

• PIMProf: Data-dependency & context-switch-aware. PIM-

Prof decides whether to offload a region on CPU or PIM

based on the execution cost, the data dependency cost and

context switch cost.

All configurations including the baselines and PIMProf will be

evaluated with two different offloading granularities: function-
level offloading granularity (Func) and basic-block-level offload-
ing granularity (BBL).

B. Performance Analysis

We first demonstrate the performance of two different

benchmark suites when running on a CPU-PIM hybrid system

with a 1-core CPU and a 32-core HMC system. Figure 8 further

breaks down the performance of PIMProf (basic-block-grained).

Performance of Graph Workloads. We evaluate the perfor-

mance of graph workloads with in-order PIM cores, as prior

work demonstrated that these kernels provide a significant

performance benefit when offloaded to PIM [8]. Figure 8

shows the latency breakdown of each cost category when

running these workloads on CPU, PIM, and CPU-PIM (under

different strategies). We draw three conclusions from the results.

First, offloading graph kernels as a whole to PIM (PIM-only)

provides on average 1.89× speedup as compared to the CPU-

only execution. Second, the MPKI-aware offloading method

(MPKI-based-Func) is only 3.9% better than the PIM-only

method because the switching overhead (data dependency and

context switch) offsets the benefits from PIM offloading. Third,

PIMProf (with awareness of switching overhead) provides 5.33×
speedup over CPU-only (39% and 34% faster than PIM-only and

MPKI-aware offloading, respectively). We also show that using

PIMProf heuristics on function-level granularity (PIMProf-Func)

provides a 13% improvement over PIM-only, since the GAP

workloads have simpler data dependency compared to PARSEC.

However, due to the coarser granualrity, PIMProf-Func misses

some offloading opportunities. Thus, it is slower than PIMProf-

BBL (19% slower). We conclude that the offloading decision

made by PIMProf reduces the switching cost, while still

exploiting the benefits of PIM architecture.

Performance of PARSEC Workloads. PARSEC workloads

have higher irregularity than the simpler graph workloads.

Therefore, it is usually hard to find out PIM-friendly regions

in PARSEC workloads by directly analyzing the MPKI and

parallelism. In this experiment, we examine them with PIMProf

to determine if PARSEC workloads contain PIM-friendly

regions. Figure 7 demonstrates the overall speedup with various

decision-making strategies for these workloads. First, PIMProf-

Func provides 2.22× speedup over CPU-only and 1.74× over

PIM-only. Second, we also notice that PIMProf-BBL is not

performing as well as PIMProf-Func. We found that the heuristic

search algorithm is limited by the maximum number of regions.

Because the number of functions is much less than that of

basic blocks, the function-grained scheme is less likely to be

constrained by the limit. Nonetheless, it provides 1.99× speedup

over CPU-only and 1.55× over PIM-only. Third, due to the

large switching cost of PARSEC workloads, MPKI-based and

NoDep methods are not performing well. Figure 8 shows the

PIMProf decision execution time breakdown of these workloads.

We make the following observations: First, PIMProf decides

to offload most regions to CPU for PIM-unfriendly workloads

(e.g., Ferret) to minimize the overhead but can only provide

marginal improvement over CPU-only. Second, PIMProf-Func

provides a 38% improvements on average for PIM-friendly

workloads (e.g., Bodytrack, Dedup, Streamcluster, Swaptions
and X264). Third, Blackscholes, Ferret, and Fluidanimate do
not show good performance with a naive PIM-only strategy, but

PIMProf-Func is able to figure out PIM/CPU-friendly regions

in these workloads and provides 2.50× speedup over the PIM-

only configuration. We conclude that PIMProf is effective in

determining the offloading decisions for irregular workloads and

can be used to profile real-world workloads to estimate their

expected performance improvements from PIM architectures.

C. Sensitivity Analysis

We next perform a sensitivity study on different CPU/PIM

core configurations.

Design, Automation and Test in Europe Conference (DATE 2022) 859

Authorized licensed use limited to: Univ of Calif San Diego. Downloaded on August 08,2022 at 19:07:30 UTC from IEEE Xplore. Restrictions apply.

Fig. 9. PIMProf-BBL execution time breakdown when fixing CPU core number
while varying PIM core number. (Normalized to CPU-only)

Fig. 10. PIMProf-BBL execution time breakdown when fixing PIM core number
while varying CPU core number. (Normalized to PIM-only)

Parallelism. For multi-threading workloads, the performance
tightly depends on the parallelism provided by the underlying

hardware, including both the CPU and the PIM. Therefore, we

test PIMProf-BBL offloading decisions for graph kernels and

PARSEC workloads on architectures with variable numbers of

CPU and PIM cores. We first fix CPU core number to 1 and

vary the number of PIM cores, as shown in Figure 9. In general,

PIMProf-BBL provides better performance than CPU-only and

PIM-only in all configurations. However, the offloading benefit

is marginal in some scenarios (e.g., 16-core Ferret), as the CPU
performance is comparable with PIM and the benefit does not

compensate for the switching overhead. We also observe that

the decision of benchmarks, e.g., Pagerank and Bodytrack, swap
from “mainly execute on CPU” to “mainly execute on PIM”

as the number of PIM core increases. Likewise, in workloads

such as Bodytrack and Dedup, with PIM cores fixed to 32, as

the number of CPU cores increases, the decision moves from

“mainly execute on PIM” to “mainly execute on CPU” (shown

in Figure 10).

PIM Core Frequency. Unlike the CPU that typically contains

powerful cores, PIM architectures need to meet a tighter

hardware constraint, e.g., only allows light-weight in-order cores.

Therefore, we explore the design space of PIM cores and test the

efficiency of PIM offloading for a few PIM core configurations

that vary in core frequency. The results in Figure 11 shows that

PIMProf-BBL also tends to move more execution from CPU to

PIM as the frequency of PIM core increases.

V. CONCLUSIONS

In this work, we propose PIMProf, an automated profiling

and offloading tool to determine PIM offloading regions for

CPU-PIM hybrid architectures. PIMProf tackles the challenges

of PIM offloading through efficient cost modeling and optimiza-

tion algorithm. Our evaluation shows that PIMProf provides

Fig. 11. PIMProf-BBL execution time breakdown when fixing CPU core while
increasing PIM core frequency. (Normalized to CPU-only)

5.33×/1.39× speedup over CPU/PIM-only configuration for

graph benchmarks, and 2.22×/1.74× speedup over CPU/PIM-

only configuration for PARSEC benchmarks. A wide range

of future PIM-related research can benefit from PIMProf for

automatically profiling the emerging applications running on

PIM architectures and quickly generating efficient PIM-based

acceleration for general programs.

VI. ACKNOWLEDGEMENT

This work was supported in part by CRISP, one of six

centers in JUMP, a Semiconductor Research Corporation (SRC)

program, sponsored by DARPA. This work was also funded

by NSF grants (#1730158, #2100237, #1911095, #2112167,

#2052809, #1826967).

REFERENCES

[1] D. P. Zhang et al., “TOP-PIM: Throughput-oriented programmable
processing in memory,” in HPDC, 2014.

[2] J. Ahn et al., “A scalable processing-in-memory accelerator for parallel
graph processing,” in ISCA, 2015.

[3] K. Hsieh et al., “Transparent offloading and mapping (TOM): Enabling
programmer-transparent near-data processing in GPU systems,” in ISCA,
2016.

[4] M. Gao et al., “TETRIS: Scalable and efficient neural network acceleration
with 3D memory,” in ASPLOS, 2017.

[5] F. Gao et al., “ComputeDRAM: In-Memory compute using off-the-shelf
DRAMs,” in MICRO, 2019.

[6] V. Seshadri et al., “Ambit: In-memory accelerator for bulk bitwise
operations using commodity dram technology,” in MICRO, 2017.

[7] Hybrid Memory Cube Consortium, “HMC Specification 2.0,” 2014.
[8] J. Ahn et al., “PIM-Enabled Instructions: A low-overhead, locality-aware

processing-in-memory architecture,” in ISCA, 2015.
[9] R. Hadidi et al., “Cairo: A compiler-assisted technique for enabling

instruction-level offloading of processing-in-memory,” TACO, 2017.
[10] S. Beamer et al., “The GAP benchmark suite,” CoRR, 2015. [Online].

Available: http://arxiv.org/abs/1508.03619
[11] C. Bienia et al., “The PARSEC benchmark suite: Characterization and

architectural implications,” in PACT, 2008.
[12] W. A. Wulf and S. A. McKee, “Hitting the memory wall: Implications of

the obvious,” ACM SIGARCH computer architecture news, vol. 23, no. 1,
pp. 20–24, 1995.

[13] Intel, “Intel vtune profiler,” https://software.intel.com/content/www/us/en/
develop/tools/oneapi/components/vtune-profiler.html, 2021.

[14] C.-K. Luk et al., “Pin: Building customized program analysis tools with
dynamic instrumentation,” in PLDI, 2005.

[15] “The llvm compiler infrastructure,” https://llvm.org, 2021.
[16] F. E. Allen, “Control flow analysis,” in Proceedings of a Symposium on

Compiler Optimization, 1970.
[17] T. E. Carlson et al., “An evaluation of high-level mechanistic core models,”

TACO, 2014.
[18] J. Litton et al., “Light-weight contexts: An OS abstraction for safety and

performance,” in OSDI, 2016.
[19] R. De La Briandais, “File searching using variable length keys,” in Western

Joint Computer Conference (IRE-AIEE-ACM), 1959.
[20] A. Caprara, “Constrained 0–1 quadratic programming: Basic approaches

and extensions,” European Journal of Operational Research, 2008.

860 Design, Automation and Test in Europe Conference (DATE 2022)

Authorized licensed use limited to: Univ of Calif San Diego. Downloaded on August 08,2022 at 19:07:30 UTC from IEEE Xplore. Restrictions apply.

