978-3-9819263-6-1/DATE22/©)2022 EDAA

PIMProf: An Automated Program Profiler for
Processing-in-Memory Offloading Decisions

Yizhou Wei*, Minxuan Zhou', Sihang Liu*, Korakit Seemakhupt*, Tajana RosingT, and Samira Khan*
*University of Virginia, tUniversity of California San Diego
Email: {yizhouwei, sihangliu, korakit, samirakhan} @virginia.edu, {miz087, tajana}@ucsd.edu

Abstract—Processing-in-memory (PIM) architectures reduce
the data movement overhead by bringing computation closer to the
memory. However, a key challenge is to decide which code regions
of a program should be offloaded to PIM for the best performance.
The goal of this work is to help programmers leverage PIM
architectures by automatically profiling legacy workloads to find
PIM-friendly code regions for offloading. We propose PIMProf’,
an automated profiling and offloading tool to determine PIM
offloading regions for CPU-PIM hybrid architectures. PIMProf
efficiently models the comprehensive cost related to PIM of-
floading and makes the offloading decision by an effective and
computational-tractable algorithm. We demonstrate the effective-
ness of PIMProf by evaluating the GAP graph benchmark suite
and the PARSEC benchmark suite under different PIM and CPU
configurations. Our evaluation shows that, compared to the CPU
baseline and a PIM-only configuration, the offloading decisions by
PIMProf provides 5.33x and 1.39x speedup in the GAP graph
workloads, respectively; 2.22x and 1.74x speedup in the PARSEC
benchmarks, respectively.

I. INTRODUCTION

Modern workloads, such as graph processing, machine
learning, and big data analytics, have increasingly higher
demand on memory. Therefore, recent works move computation
closer to memory and design different processing-in-memory
(PIM) architectures to relieve the pressure on main memory
bandwidth. For example, some works implement a large number
of simple and low-power processors in memory to accelerate
general-purpose workloads [1]—[3]; some other works design
specialized cores to accelerate certain workloads or computation
kernels [4]; it is also viable to employ in-situ bulk logic inside
memory arrays, where the in-memory logic only supports simple
operations (e.g., bitwise operators) but can utilize the massive
internal memory bandwidth [4]-[6]. Figure 1 shows a typical
PIM architecture where we integrate processing elements near
the memory (e.g., logic die of Micron’s hybrid-memory cube
(HMC) [7]). The processing units are able to process complex
operations without communicating with the host CPU. With
the different execution patterns enabled by PIM operations in
conventional systems, the immediate question arises—how can
one determine which code region to offload to the memory-side
in order to fully exploit the benefits of PIM?

A commonly used solution in previous works is to offload
specialized instructions that do not influence the cache co-
herence [3, 8, 9]. This simplification avoids the extra data
movement between CPU and PIM incurred by PIM offloading.

I'The source code of PIMProf can be found at https://github.com/Systems-
ShiftLab/PIMProf

Memory DRAM Dies
L S S S S)
R T S S S S |

[Memory Controllers

[Last-level cache

Host CPU

Parallel Light-weight PIM Cores

Memory Logic Die

Fig. 1. High-level structure of a processing-in-memory (PIM) architecture.

Therefore, previous works make offloading decisions based
on the potential bandwidth savings by processing data in
memory. However, a more generic solution should take the
complications of CPU-PIM coherence into account, where we
may get more benefit by paying extra switching costs to change
the execution from one side to the other. To decide whether
a general program would benefit from PIM offloading or not,
there are two main challenges: (1) Provide a comprehensive
model of the costs caused by different offloading decisions,
among which the trickiest cost to model is the extra switching
cost caused by switching the execution between CPU and PIM
during the runtime. (2) Efficiently explore the design space
of PIM offloading and find good offloading decisions given
the cost model. However, it is hard to independently make the
offloading decision for multiple regions when the switching cost
is involved, as the switching cost of one region depends on other
regions. As a solution, we implement PIMProf, an automated
PIM profiling and offloading tool for general programs running
on CPU-PIM hybrid architectures. The contributions of this
work are the following:

e This is the first work that designs a profiler to automatically
determine PIM candidates in a general program for PIM
architectures, with different practical offloading overheads
taken into account. PIMProf tackles the two challenges with:
(1) an efficient cost modeling for PIM-offloaded programs,
and (2) an effective and computational-tractable heuristic-
based algorithm for offloading decision-making.

e We demonstrate the effectiveness of PIMProf by evaluating a
graph benchmark suite, GAP [10], and another more general
benchmark, PARSEC [11]), under different PIM and CPU
configurations.

e In GAP benchmarks, which are dominated by memory-

intensive PIM-friendly kernels, PIMProf shows that many
CPU-friendly regions are offloaded to PIM along with

855

Authorized licensed use limited to: Univ of Calif San Diego. Downloaded on August 08,2022 at 19:07:30 UTC from IEEE Xplore. Restrictions apply.

856

@for(int k = k1; k < k2; k++) {
float distance = dist(points->p[k],points->p[@],points->dim);

a points->p[k].cost = distance * points->p[k].weight; PIM g
) points->p[k].assign = @; Z
P 3
H =]
@ o
k] F rj1 = 1; i < points->num;_i++) e e e e £
2 (@ ~bool to_open = ((Float)Iranda8()/(Float)INT MAX) < =
é* (points->p[i].cost/z); // RNG and FP division are CPU- chndlw PIM é
3 _ _if(toopen) {_ _ _ o ___] IS
g For(int k = kI3 KX KG K++ 7 T

Float distance=dist(points->p[i],points->p[K],points->dim);
if(d1stance*p01nts >p[k] weight < points->p[k].cost) {
points- H

points- >p[k] asslgn =i

T I
} Code region: |CPU-| frlend_ly| PIM-friend];

}

PIM

Fig. 2. Streamcluster offloading decision with and without data dependency.

PIM-friendly regions to reduce data transfer overhead
between them. PIMProf provides 5.33x/1.39x speedup over
CPU/PIM-only configuration for GAP on average.

e Our evaluation on PARSEC shows that only a few workloads
have enough memory intensity and parallelism to be able to
exploit the benefits of PIM. PIMProf provides 2.22x/1.74 x
benefit over CPU/PIM-only configurations for PARSEC
workloads on average, and shows major speedup for four
out of nine workloads we experimented.

II. CHALLENGES IN PIM OFFLOADING

Processing-in-memory (PIM) architectures overcome the
memory wall problem [12] by placing computation units close to
or within the memory device. Because of the abundant internal
bandwidth and parallelism, PIM architectures are efficient in
performing memory-intensive and highly-parallel procedures
(e.g., specialized instructions or computation kernels). Therefore,
a simple strategy of exploiting advantages of PIM can be
offloading code regions that meets these characteristics. For
example, code regions with a high cache miss rate—typically
measured as misses per kilo instructions (MPKI)—can be
accelerated by leveraging the high internal bandwidth in PIM.
However, in practice, hybrid CPU-PIM execution involves two
main categories of additional switching cost between CPU and
PIM: the cost from extra memory movement (data dependency
cost) and the cost from extra context switch (context switch
cost). Therefore, a naive MPKI- or parallelism-based offloading
solution may not perform well, especially in real-life workloads
with complicated dependencies.

Figure 2 shows a snippet of code from Streamcluster, a
workload in the PARSEC benchmark suite [11]. The three code
regions are part of a function for computing the approximated k-
Median. Based on the MPKI and parallelism, both region @ and
©® are PIM-friendly, whereas region @, which involves random
number generation and floating point division, is CPU-friendly.
However, the data dependency across regions can affect the
overall execution time, as switching between CPU and PIM
processors incurs data writeback from CPU cache to PIM. In
this example, since region @ has data dependency with both
region @ and ©, executing @ along with @ and ® on PIM
minimizes the data transfer overhead between CPU and PIM,
therefore, offering better performance.

Figure 3 shows the performance of PIM offloading based on
MPKI and parallelism for nine PARSEC workloads (detailed

®CPU = PIM
5 41.6 m Data-Dependency = Context-Switch 22.7
o
E4
=
g3
€2
21 e a . . = B ||
o §] Y NN 3 N N

=1 22T 22F 2T I 2| T2 T2
2 EE S EESEESEEZEELSEELEELEE EEE S
= ??_g??_g??g??g??g??g??g??g;?g
s T T v T v T =1 T D
P PEIRECPECRESSZCPEIRELEELRE:
3 U“-';U“-;_Uﬁ-;_Uﬂ-hUﬁ-a_Uﬂ-;_Uﬁ-a_Uﬂ-;_Uﬁ-ﬂ_
z = = = = = = = = =

black body dedup ferret fluid freq stream swap X264

Fig. 3. Offloading performance based on MPKI and parallelism for PARSEC
benchmarks, as compared to CPU-only and PIM-only offloading.

methodology in Section V). We use configurations of CPU-
only and PIM-only execution as the baselines and normalize all
results to CPU-only. This experiment shows that MPKI-based
and parallelism-based offloading schemes cannot improve the
performance over the baselines in many cases. Even worse,
MPKI-based offloading significantly degrades the performance
of CPU-only offloading for several workloads (e.g., 41.6x
slower for Bodytrack and 22.7x slower for Swaptions). The
reason behind such performance degradation is the extremely
large overhead of data dependency and context switch caused
by offloading consecutive code regions to different platforms.
The motivational results demonstrate that PIM offloading
should consider not only memory access cost and parallelism
but also the data dependency cost. However, making offloading
decisions based on the cost of data dependency is challenging,
which highly depends on the execution of prior code regions.
Therefore, it is extremely hard for programmers to manually find
out PIM-friendly code regions, even with tools that profile the
cache miss status (e.g., Intel VTune [13] that reads performance
counters and Pin tool [14] that simulates the cache hierarchy).

[II. PIMPROF DESIGN

The goal of this work is to tackle the PIM-offloading
problem: For a given program, what regions should be offloaded
to the PIM side in a CPU-PIM heterogeneous architecture.
There are two significant challenges: First, comprehensive cost
modeling of offloading decisions can be complicated due to
an extremely large number of data interactions in general
programs. Furthermore, it is hard to design a computational-
tractable algorithm to explore all possible offloading candidates
to minimize the holistic cost. To overcome these challenges, we
provide PIMProf, an end-to-end tool that automatically generates
offloading decisions for general programs running on CPU-PIM
architectures. The workflow of PIMProf is shown in Figure 4.

A. Program Instrumentation

PIMProf statically instruments the program using an
LLVM [15] compiler pass. It divides the entire program into
small regions to enable a fine-grained profiling by inserting
lightweight marker functions, and the program regions are used
as the basic unit for profiling and offloading. The granularity of
program regions is configurable so that applications that vary in
size, parallelism and data dependency patterns may all benefit
from offloading. In our evaluation, we choose two granularities:
the basic-block-grained [16] offloading, which usually works

Design, Automation and Test in Europe Conference (DATE 2022)

Authorized licensed use limited to: Univ of Calif San Diego. Downloaded on August 08,2022 at 19:07:30 UTC from IEEE Xplore. Restrictions apply.

Offloading Decision +

Input Program . S
P 8 Performance Summary

Architecture Config

| Decision Solver
| (Section 111-D)
Execution Cost

Data Dependency Cost
Context Switch Cost

Instrumentation Simulator ‘ | Cost
(Section III-A) | | (Section 111-C) |

Instrumented Runtime
Binary, tatistics
Profiling Library
(Section ITI-B)

Fig. 4. PIMProf overview.

better for programs whose PIM-friendliness change frequently;
and the function-grained offloading, which is suitable for larger-
scale programs whose PIM-friendliness change less frequently,
by sacrificing some potential optimization opportunities.

B. Runtime Profiling

Based on the automatically-instrumented region boundaries
(e.g., basic block or function), PIMProf collects the runtime
statistics for each region, including execution time, cache hit rate
of memory locations accessed by this code region, and number of
instructions in this region. As real PIM hardware is mostly under
academic and industry research, PIMProf collects the runtime
information from a simulator (Intel’s Sniper [17]). To compare
the offloading benefits, PIMProf simulates the execution on both
the PIM and CPU architectures. With the runtime statistics for
both processor types, the next step is to model the cost.

C. Cost Modeling

In order to provide good offloading decisions for a program,
it is necessary to fully understand the cost model of different
program executions for minimizing the total cost. Although the
execution time depends on multiple factors, it is possible to
consider those factors separately and then generate the overall
cost. We identify two major sources of cost: the execution cost
which is due to the execution of the code region (either on
CPU or PIM) and the switching cost which is the overhead for
maintaining the consistency of data and the program context
when switching between CPU and PIM.

1) Execution cost: As PIMProf has collected the statistics
about the runtime information of executing the code region both
on CPU and PIM, the execution cost directly comes from the
runtime profile. In Section IV-A, we elaborate on the details of
simulation used for modeling both CPU and PIM architectures.

2) Switching cost: The switching cost comes from two
sources. The first source is the data dependency between code
regions that are placed on different processing units, e.g., one
region on CPU and another on PIM. The second source is the
context switch, which mainly includes the overhead of saving
and restoring the processor states [18]. Different from the data
dependency cost, context switch has a more or less constant
cost, which is determined by the operating system.

Data dependency Cost. We analyze the data dependency
between program regions at cache line granularity, as memory
transfer is cache-line-grained. When the same cache line of
data is shared by two program regions that execute in different
places (PIM and CPU), we model a single data transfer as the
total cost of one cache line flush issued by the source, plus one
cache line fetch issued by the destination. Figure 5a shows a
code example with multiple program regions. Assume that we
execute region 0 on CPU and region 1 on PIM, and variables a

Design, Automation and Test in Europe Conference (DATE 2022)

and b are stored in different cache lines, then when we switch
between them, the memory locations of a and b each incurs
a data dependency cost. Because the values of a and b are
both updated by a WRITE in region 0, the CPU needs to flush
the updates back to memory and then the PIM unit fetches the
updated data from memory. The number of data dependency
instances increases if there are multiple shared locations. To
compute the total data dependency cost of a certain offloading
decision, a naive way is to go over all memory accesses, and
increase the cost wherever a data transfer happens. However,
this is not feasible for a real-world program as we need to iterate
over all possible decisions to find the best one. As a solution, we
apply a few optimizations to provide a good offloading decision
with reasonable overhead, as described in Section III-D.

Context Switch Cost. The context switch cost appears when
two neighboring regions are executed in different places. This
cost is usually constant, depending on the operating system.
To compute this type of cost, PIMProf keeps track of how
many times the program goes across the boundary of one region
to another when executing the program by using a weighted
directed graph. The weight of each edge is the number of times
the execution goes from one region to another. Figure 6a shows
an example of the context switch graph.

Example:

ent=5 'WRITE in region 0, followed by READ in region 1.
oW—1R This chai appears 5 times.

for(?nt i-o; ; < i) { |&a &b 2a & s &b sa_ &b
if(i% 4 == 0 cht=s ent=s cnt=s et
a=aq; 7/ Region @ oW cnt=5 .’em:crggs OWents oW B
b-a+1; oW I B oW
} else if { o } VRCMRY s o
EEEEVEOGECIIER T SEUAK Gmen e
b= s ag 1w L 1w J M 2r 3R
R R R = o R = = R = vess
i _ S,
q=a+b;// Region 2 |2R [R |21 BR1 R PR RN 23R
q=a+1; 2R 2R g cnt=10
; o= qz- 20 L;zw: H 2 3R BR OW—1R
else i i
g =a +b; // Region 3 3R BR 3R BRI \SR 3R () Sort by
} (o) Collect data- (¢) Split chain () Remove ~ (¢) Merge number of
b (@ Source code. into rcgments | repeated . same segments. occurrences

chain byWs. accesses. (cnt).

Fig. 5. Optimizations to the data dependency chain.

D. Solver for offloading decisions

The target of the solver is to find an offloading decision for
each region that minimizes the sum of the execution cost, the
data dependency cost, and the context switch cost. The solver
generates offline decisions so each region will not change its
place of execution during the runtime. Without the data depen-
dency cost, finding an offloading decision that minimizes the
other costs is straightforward. However, it becomes challenging
when the data dependency cost is considered. This section
discusses how we optimizes the computation of data dependency
cost and incorporate this method into the solver of PIMProf.

Model data-dependency as chains. To formalize the data
dependency of all memory accesses, we model them as the data
dependency chains, shown in Figure 5b. For each cache line, its
data dependency chain records the information of all memory
accesses to it, including the region ID that the access occurs
and the access type (READ/WRITE). An access to different
addresses but within the same cache line is recorded to the
same chain. Created in this way, all accesses to a cache line are
logged in a single data dependency chain. Though functioning,
this method is not storage-efficient. Next, we perform several
optimizations to reduce its storage overhead.

Authorized licensed use limited to: Univ of Calif San Diego. Downloaded on August 08,2022 at 19:07:30 UTC from IEEE Xplore. Restrictions apply.

857

858

Split data dependency chains into segments. There are a
few observations we can use to remove redundant information
in data dependency chains. First, data transfer will only occur
when we try to perform a READ in one place, but the data is
previously updated by a WRITE in the other place, i.e., read-
after-write (RAW) in different places. There will be no data
transfer at all if all READs between two consecutive WRITEs
are executed in the same place as the first WRITE, since the
second WRITE will overwrite the old value. So it is natural to
split a long chain into shorter segments that start with a WRITE
and end with the READ before the next WRITE (Figure 5c).
In this way, the total data dependency cost is equal to the
sum of the data dependency cost of all segments, where each
segment incurs a cost of at most one extra cache line flush
plus one cache line fetch when the segment contains regions
offloaded to different places. Second, subsequent READs from
the same region as the first READ/WRITE do not change the
data dependency cost of the segment. This is because the place
(PIM or CPU) that has executed the first READ/WRITE already
holds the latest data, so subsequent READs from the same
region will not trigger extra data transfer and can be removed
from the segment (Figure 5d). Third, since PIMProf tracks the
data dependency at cache line granularity, RAW to a cache
line in different places will always trigger one extra cache line
flush and one cache line fetch. By assuming that this cost is the
same for all cache lines, PIMProf merges the same segments
(segment with the same sequence of memory operations and
region IDs) from different cache lines (Figure 5e), and tracks
the number of occurrences using a counter (cnt in Figure 5).
PIMProf further merges the segments that are not exactly the
same but have the same prefixes using a trie (prefix tree) [19].

» Batch to permute after
Initial batch yqding context switch

i ent=5

1 {1,2} 01,2}
Process segments| “"fi%,op 3p {1.2.3) 1,23}
in the order of
theirent | 5% 50 2.3} 1,23}
| ent=10
i OW—1R 10,1} {0,1,2}
() Context switch graph () Find the corresponding batch using context switch graph, and permute
decisions for the batch of each segment
Assume max batch size = 3, find batch for segment: "t%,
entos 8 2W—3R Stop. Permute
N Add Region 1 decisions for
o 0 bateh (1,2, 3).
|:> cnt=4 nt=5 |:> cnt=4 nt=5

@Repeat until we reach max
batch size. Then permute the
decisions for current batch.

@ORepeatedly add regions that
have most context switch with
currently marked regions.

@Mark regions already
in the segment.

(c) Example of finding the batch to permute for a single
data segment using context switch graph

Fig. 6. Permute small batches of regions created from dependency segments
and context switch to find offloading decision that minimizes total cost.
Heuristic decision-solving algorithm. Our heuristic algo-
rithm takes the cost models as the input and finds a decision
that minimizes the total cost. However, this problem does not
have a general solution. It can be proved that a special case
of our problem where we only consider the execution cost and
context switch cost (and set all data dependency cost to 0), is
equivalent to the 0-1 quadratic programming problem, which is
already NP-complete [20]. Therefore, instead of using general-
purpose solvers for optimization problems, we create a heuristic
algorithm based on our observations on the data dependency:

The data dependency segment we collect is usually short (most
segments only have 2-3 nodes) because data remain in cache for
a limited time before it is evicted or flushed to memory, such
that it is feasible to test all decision combinations for regions in a
single segment. Based on this key idea, PIMProf uses a heuristic
method that permutes the decisions of all regions in a single
segment each time while keeping the other decisions the same,
and check if any of those changes in the decisions reduces the
total cost. To take context switch into account, PIMProf permute
the decisions of regions that have context switches with regions
in the segment at the same time. PIMProf will only consider a
segment when its occurrence exceeds a threshold (at least 0.01%
of the total execution time in our setup) to have enough impact
on the overall performance. Then it will start from segments
with fewer occurrences so that the decisions of more important
segments can have a chance to overwrite previous decisions
(sort the segments as shown in Figure 5f). PIMProf creates a
permutation batch for each segment and initialize it with all
regions in that segment. Then it keeps adding new regions that
have a context switch to/from the existing regions in the batch,
until the current batch reaches a pre-set threshold (15 regions
in our setup). The resulting batch of each segment is shown in
Figure 6b, and an example of finding the corresponding batch
of a segment is shown in Figure 6¢. PIMProf then permutes the
decisions of the corresponding batch for each segment and keeps
the decisions that achieve the local minimum the same from
the previous segments when proceeding to the next segment.

IV. EVALUATION

In this section, we first describe our evaluation methodology,
and then present the results of our evaluated workloads.

A. Methodology

Evaluated Configurations. We model several CPU and
PIM architectures on the Sniper simulator [17], as listed in
Table I. The baseline configuration consists of out-of-order
CPU cores similar to high-performance server processors. And,
the configuration of PIM contains Atom-like in-order general-
purpose cores [2]. We also provide sensitivity analysis by
varying the number of cores on both CPU and PIM.

TABLE 1
SYSTEM CONFIGURATION.
Out-of-Order CPU (baseline)
1/2/4 General purpose processors
3GHz, 4-way superscalar
32kB L1I, 32kB L1D, 256kB L2, 2MB L3
General-purpose in-order (PIM) [2]
16/32/64 general purpose cores
32kB L1I, 32kB L1D
Switching Cost
Cache line fetch/flush on CPU: 60 ns, on PIM: 30 ns
Context Switch: 2 us [18]

Evaluated Workloads. For evaluation, We use two widely-
used benchmark suites that contain a variety of workloads to
demonstrate the flexibility of PIMProf: (1) graph benchmark
suite (GAP) [10]— high memory intensity and parallelism. (2)
PARSEC benchmark suite [11]— irregular workloads that are
harder for manual offloading.

Design, Automation and Test in Europe Conference (DATE 2022)

Authorized licensed use limited to: Univ of Calif San Diego. Downloaded on August 08,2022 at 19:07:30 UTC from IEEE Xplore. Restrictions apply.

3477 92 28 59 162 "

00

Normalized Execution Time

NoDep-Fune
NoDep-BBL

MPKI-bas

& MPKI-based-BBL

a
>
]

PARSEC

Fig. 7. Geometric mean of the execu-
tion time of all design points, PIMProf
performance highlighted. (Execution time
normalized to CPU-only).

System Configurations. We evaluate four system configura-
tions as the baselines compared to PIMProf.

o CPU-only. The whole application runs on CPU.

o PIM-only. The whole application runs on PIM.

« MPKI-based: MPKI & parallelism-only. PIMProf detects
the MPKI and parallelism of the program and offloads the
regions to PIM if both the MPKI and parallelism of the
program region exceeds the threshold.

« NoDep: Execution-cost-aware-only. PIMProf decides where
to execute a region based on simply whether the execution
cost is smaller on CPU or PIM. It does not consider the data
dependency cost at all (usually suitable for applications with
multiple independent kernels).

« PIMProf: Data-dependency & context-switch-aware. PIM-
Prof decides whether to offload a region on CPU or PIM
based on the execution cost, the data dependency cost and
context switch cost.

All configurations including the baselines and PIMProf will be

evaluated with two different offloading granularities: function-

level offloading granularity (Func) and basic-block-level offload-
ing granularity (BBL).

B. Performance Analysis

We first demonstrate the performance of two different
benchmark suites when running on a CPU-PIM hybrid system
with a 1-core CPU and a 32-core HMC system. Figure 8§ further
breaks down the performance of PIMProf (basic-block-grained).

Performance of Graph Workloads. We evaluate the perfor-
mance of graph workloads with in-order PIM cores, as prior
work demonstrated that these kernels provide a significant
performance benefit when offloaded to PIM [8]. Figure 8
shows the latency breakdown of each cost category when
running these workloads on CPU, PIM, and CPU-PIM (under
different strategies). We draw three conclusions from the results.
First, offloading graph kernels as a whole to PIM (PIM-only)
provides on average 1.89x speedup as compared to the CPU-
only execution. Second, the MPKI-aware offloading method
(MPKI-based-Func) is only 3.9% better than the PIM-only
method because the switching overhead (data dependency and
context switch) offsets the benefits from PIM offloading. Third,
PIMProf (with awareness of switching overhead) provides 5.33 x
speedup over CPU-only (39% and 34% faster than PIM-only and
MPKI-aware offloading, respectively). We also show that using
PIMProf heuristics on function-level granularity (PIMProf-Func)

Design, Automation and Test in Europe Conference (DATE 2022)

SCPU <PIM mData-Dependency ® Context-Switch 177

%

N

727

RRARIERIRRIRIRK

Fig. 8. Execution time breakdown of GAP and PARSEC workloads using PIMProf offloading decisions. We
include four categories of costs: execution cost on CPU, execution cost on PIM, data-dependency cost and
context-switch cost. The data dependency and context switch cost in this graph are not significant because
PIMProf decisions remove most of them. (Execution time normalized to CPU-only).

provides a 13% improvement over PIM-only, since the GAP
workloads have simpler data dependency compared to PARSEC.
However, due to the coarser granualrity, PIMProf-Func misses
some offloading opportunities. Thus, it is slower than PIMProf-
BBL (19% slower). We conclude that the offloading decision
made by PIMProf reduces the switching cost, while still
exploiting the benefits of PIM architecture.

Performance of PARSEC Workloads. PARSEC workloads
have higher irregularity than the simpler graph workloads.
Therefore, it is usually hard to find out PIM-friendly regions
in PARSEC workloads by directly analyzing the MPKI and
parallelism. In this experiment, we examine them with PIMProf
to determine if PARSEC workloads contain PIM-friendly
regions. Figure 7 demonstrates the overall speedup with various
decision-making strategies for these workloads. First, PIMProf-
Func provides 2.22x speedup over CPU-only and 1.74x over
PIM-only. Second, we also notice that PIMProf-BBL is not
performing as well as PIMProf-Func. We found that the heuristic
search algorithm is limited by the maximum number of regions.
Because the number of functions is much less than that of
basic blocks, the function-grained scheme is less likely to be
constrained by the limit. Nonetheless, it provides 1.99x speedup
over CPU-only and 1.55x over PIM-only. Third, due to the
large switching cost of PARSEC workloads, MPKI-based and
NoDep methods are not performing well. Figure 8 shows the
PIMProf decision execution time breakdown of these workloads.
We make the following observations: First, PIMProf decides
to offload most regions to CPU for PIM-unfriendly workloads
(e.g., Ferret) to minimize the overhead but can only provide
marginal improvement over CPU-only. Second, PIMProf-Func
provides a 38% improvements on average for PIM-friendly
workloads (e.g., Bodytrack, Dedup, Streamcluster, Swaptions
and X264). Third, Blackscholes, Ferret, and Fluidanimate do
not show good performance with a naive PIM-only strategy, but
PIMProf-Func is able to figure out PIM/CPU-friendly regions
in these workloads and provides 2.50x speedup over the PIM-
only configuration. We conclude that PIMProf is effective in
determining the offloading decisions for irregular workloads and
can be used to profile real-world workloads to estimate their
expected performance improvements from PIM architectures.

C. Sensitivity Analysis

We next perform a sensitivity study on different CPU/PIM
core configurations.

Authorized licensed use limited to: Univ of Calif San Diego. Downloaded on August 08,2022 at 19:07:30 UTC from IEEE Xplore. Restrictions apply.

859

860

~

PIMProf
=W CPU

Coe PIM

i

Data-Dependency == Context-Switch
—e—PIM-only

3

Normalized Execution Time

= 00 S| = 00 S| = en &

EEN BRSNS N ﬁwe«v

Sy
an| swap x264|

Number of PIM Cores

Fig. 9. PIMProf-BBL execution time breakdown when fixing CPU core number
while varying PIM core number. (Normalized to CPU-only)

8161 PIMProf
aw CPU ©00¢ PIM
mmmm Data-Dependenc: s Context-Switch
—e— CPU-only

—

o

Normalized ExecutionTime
~ w - w

Number of CPU cores

Fig. 10. PIMProf-BBL execution time breakdown when fixing PIM core number
while varying CPU core number. (Normalized to PIM-only)

Parallelism. For multi-threading workloads, the performance
tightly depends on the parallelism provided by the underlying
hardware, including both the CPU and the PIM. Therefore, we
test PIMProf-BBL offloading decisions for graph kernels and
PARSEC workloads on architectures with variable numbers of
CPU and PIM cores. We first fix CPU core number to 1 and
vary the number of PIM cores, as shown in Figure 9. In general,
PIMProf-BBL provides better performance than CPU-only and
PIM-only in all configurations. However, the offloading benefit
is marginal in some scenarios (e.g., 16-core Ferret), as the CPU
performance is comparable with PIM and the benefit does not
compensate for the switching overhead. We also observe that
the decision of benchmarks, e.g., Pagerank and Bodytrack, swap
from “mainly execute on CPU” to “mainly execute on PIM”
as the number of PIM core increases. Likewise, in workloads
such as Bodytrack and Dedup, with PIM cores fixed to 32, as
the number of CPU cores increases, the decision moves from
“mainly execute on PIM” to “mainly execute on CPU” (shown
in Figure 10).

PIM Core Frequency. Unlike the CPU that typically contains
powerful cores, PIM architectures need to meet a tighter
hardware constraint, e.g., only allows light-weight in-order cores.
Therefore, we explore the design space of PIM cores and test the
efficiency of PIM offloading for a few PIM core configurations
that vary in core frequency. The results in Figure 11 shows that
PIMProf-BBL also tends to move more execution from CPU to
PIM as the frequency of PIM core increases.

V. CONCLUSIONS

In this work, we propose PIMProf, an automated profiling
and offloading tool to determine PIM offloading regions for
CPU-PIM hybrid architectures. PIMProf tackles the challenges
of PIM offloading through efficient cost modeling and optimiza-
tion algorithm. Our evaluation shows that PIMProf provides

o2 PIMProf
£ s~ CPU oo PIM
5 Data-Depedency = Context-Switch
k=4 —&—PIM-only
2 (]
g1 S
& §:§
=
3) Zoexe gz NSRS e
R e > ot S \x 553 SOMIEER
5 e e ~Nﬂ—~m—~m—<~m—<~m—<~m—~m.~~m [~ e
= be | bfs cc pr | sssp |black|body |[dedup|ferret| fluid freq tream| swap | x264
PIM Core Frequency (GHz)
Fig. 11. PIMProf-BBL execution time breakdown when fixing CPU core while

increasing PIM core frequency. (Normalized to CPU-only)

5.33x/1.39x speedup over CPU/PIM-only configuration for
graph benchmarks, and 2.22x/1.74x speedup over CPU/PIM-
only configuration for PARSEC benchmarks. A wide range
of future PIM-related research can benefit from PIMProf for
automatically profiling the emerging applications running on
PIM architectures and quickly generating efficient PIM-based
acceleration for general programs.

VI. ACKNOWLEDGEMENT

This work was supported in part by CRISP, one of six
centers in JUMP, a Semiconductor Research Corporation (SRC)
program, sponsored by DARPA. This work was also funded
by NSF grants (#1730158, #2100237, #1911095, #2112167,
#2052809, #1826967).

REFERENCES

[1] D. P. Zhang et al., “TOP-PIM: Throughput-oriented programmable
processing in memory,” in HPDC, 2014.

[2] J. Ahn et al., “A scalable processing-in-memory accelerator for parallel
graph processing,” in ISCA, 2015.

[3] K. Hsieh er al., “Transparent offloading and mapping (TOM): Enabling
programmer-transparent near-data processing in GPU systems,” in ISCA,
2016.

[4] M. Gao et al., “TETRIS: Scalable and efficient neural network acceleration
with 3D memory,” in ASPLOS, 2017.

[5]1 F. Gao et al., “ComputeDRAM: In-Memory compute using off-the-shelf
DRAMSs,” in MICRO, 2019.

[6] V. Seshadri et al., “Ambit: In-memory accelerator for bulk bitwise
operations using commodity dram technology,” in MICRO, 2017.

[7] Hybrid Memory Cube Consortium, “HMC Specification 2.0,” 2014.

[8] J. Ahn et al., “PIM-Enabled Instructions: A low-overhead, locality-aware
processing-in-memory architecture,” in ISCA, 2015.

[9] R. Hadidi et al., “Cairo: A compiler-assisted technique for enabling

instruction-level offloading of processing-in-memory,” TACO, 2017.

S. Beamer et al., “The GAP benchmark suite,” CoRR, 2015. [Online].

Available: http://arxiv.org/abs/1508.03619

C. Bienia et al., “The PARSEC benchmark suite: Characterization and

architectural implications,” in PACT, 2008.

W. A. Wulf and S. A. McKee, “Hitting the memory wall: Implications of

the obvious,” ACM SIGARCH computer architecture news, vol. 23, no. 1,

pp. 20-24, 1995.

Intel, “Intel vtune profiler,” https:/software.intel.com/content/www/us/en/

develop/tools/oneapi/components/vtune-profiler.html, 2021.

C.-K. Luk et al., “Pin: Building customized program analysis tools with

dynamic instrumentation,” in PLDI, 2005.

“The 1lvm compiler infrastructure,” https:/llvm.org, 2021.

F. E. Allen, “Control flow analysis,” in Proceedings of a Symposium on

Compiler Optimization, 1970.

T. E. Carlson et al., “An evaluation of high-level mechanistic core models,

TACO, 2014.

J. Litton et al., “Light-weight contexts: An OS abstraction for safety and

performance,” in OSDI, 2016.

R. De La Briandais, “File searching using variable length keys,”

Joint Computer Conference (IRE-AIEE-ACM), 1959.

A. Caprara, “Constrained 0-1 quadratic programming: Basic approaches

and extensions,” European Journal of Operational Research, 2008.

[10]
[11]
[12]

[13

[14]

[15
[16

5

[17]

[18

[19] in Western

[20

Design, Automation and Test in Europe Conference (DATE 2022)

Authorized licensed use limited to: Univ of Calif San Diego. Downloaded on August 08,2022 at 19:07:30 UTC from IEEE Xplore. Restrictions apply.

