2021 IEEE 14th International Conference on Cloud Computing (CLOUD) | 978-1-6654-0060-2/21/$31.00 ©2021 IEEE | DOI: 10.1109/CLOUD53861.2021.00038

2021 IEEE 14th International Conference on Cloud Computing (CLOUD)

Federated or Split? A Performance and Privacy Analysis
of Hybrid Split and Federated Learning Architectures

Valeria Turina
Computer Science
Saint Louis University
valeria.turina@slu.edu

Zongshun Zhang
Computer Science
Boston University
zhangzs @bu.edu

Abstract—Mobile phones, wearable devices, and other sensors
produce every day a large amount of distributed and sensitive
data. Classical machine learning approaches process these large
datasets usually on a single machine, training complex models
to obtain useful predictions. To better preserve user and data
privacy and at the same time guarantee high performance, dis-
tributed machine learning techniques such as Federated and Split
Learning have been recently proposed. Both of these distributed
learning architectures have merits but also drawbacks. In this
work, we analyze such tradeoffs and propose a new hybrid
Federated Split Learning architecture, to combine the benefits
of both in terms of efficiency and privacy. Our evaluation shows
how Federated Split Learning may reduce the computational
power required for each client running a Federated Learning and
enable Split Learning parallelization while maintaining a high
prediction accuracy with unbalanced datasets during training.
Furthermore, FSL provides a better accuracy-privacy tradeoff in
specific privacy approaches compared to Parallel Split Learning.

Index Terms—Split Learning, Federated Learning, Privacy.

[. INTRODUCTION

Several devices today, e.g., mobile phones and wearable
technologies, produce a vast amount of data. If processed
correctly with machine learning (ML) and deep neural network
algorithms, such data can be used to improve revenue, user
experience, and even our health.

Historically, it has been sufficient to train deep neural net-
works over centralized architectures. Recently, however, such
a centralized training approach is becoming unsustainable. Ap-
plications have been demanding more frequent retraining [1]
and the scale of the data to be processed has grown. Moreover,
a critical issue of many data-driven applications is privacy. It
is not always possible to share datasets with a third party, e.g.,
a cloud provider.

The limitation of centralized learning techniques has led
to the design of several distributed machine learning archi-
tectures [2]-[4], the first one being Federated Learning [4].
The design principle of such distributed learning architectures
assumes that the same (deep) learning model is sent to the
clients that have the data instead of sending the data to the
model as in centralized learning architectures. Each client
possesses or receives only a partition of the data though.
Subsequently, the different neural network weights, i.e., pa-
rameters, of each client are exchanged during the training
phase iteratively until the model converges. All clients send

Ibrahim Matta
Computer Science
Boston University

matta@bu.edu

Flavio Esposito
Computer Science
Saint Louis University
flavio.esposito @slu.edu

their weights to a Parameter Server at each iteration to then
receive back an average of such weights.

Distributed learning in general and Federated Learning, in
particular, became a necessity for many applications, such
as Natural Language Processing, e.g., on Google’s Gboard
mobile keyboard [5], [6], voice recognition for Apple’s Siri, or
keyword spotting [7]. In other applications, however, applying
federated learning is challenging: the clients required to run
the sub-training process may not have enough computational
capacity to train the entire neural network model, and the stor-
age may be insufficient for this goal. Finally, the privacy of the
data may be violated because the neural network’s weights are
being sent over the network during the training, exposing the
model to machine learning inference attacks [8]. To partially
overcome these limitations, recently, a new distributed learning
paradigm — Split Learning [2] — arose. In Split Learning,
multiple agents systematically split the deep neural network
(composed of many computational layers) and run a subset of
these layers, sharing over the network only the intermediate
data, i.e., the activation results of the last layer in clients.
SplitNN lowered the computing power required at each device
to train the neural network with respect to a classical federated
learning model. By offloading the first subset of layers to each
client, this method also prevents source data from being sent
over a network, hence (at least partially) limiting data-sharing
concerns. However, the challenge of this type of distributed
learning is that processes need to run sequentially by design
and hence are hard to parallelize. Furthermore, the training
process may not reach convergence sharply or may not reach
convergence at all if the dataset is unbalanced [9] [10].

In this work, we study how to improve the efficiency and
privacy of Split and Federated learning by proposing a new
learning architecture that combines both approaches. We call
this architecture Federated Split Learning. By merging the two
architectures, we can tune the neural network’s weights or data
that needs to be kept at every single data processing server or
device, due to computation capacity or privacy requirements,
as in Split Learning, but we also exploit the Federated Learn-
ing principle of parallelizing the training process.

We compare our learning architecture with the state of art
hybrid split-federated architecture — Parallel Split Learning
[3] — assessing both performance and (lack of) privacy. We
found interesting tradeoffs in tuning the distribution of data
available at each client, monitoring the computational time,

2159-6190/21/$31.00 ©2021 IEEE 250
DOI 10.1109/CLOUDS53861.2021.00038

Authorized licensed use limited to: BOSTON UNIVERSITY. Downloaded on August 09,2022 at 19:15:32 UTC from IEEE Xplore. Restrictions apply.

and estimating the level of privacy preserved. In particular,
we show that our Federated Split Learning architecture can
reach better performance in terms of computational time as it
can parallelize the training processes. Moreover, we analyze
different approaches to preserve the privacy of this architecture
under an inverse engineering attacker model. We also propose
a Client-Based Privacy Approach to preserve the privacy of
the source data.

QOur contributions. In this paper, we present three main
contributions: (1) We propose a new distributed machine
learning architecture called Federated Split Learning that is
advantageous in terms of efficiency and privacy with respect
to the state of art solutions. (2) We propose a general Client-
Based Privacy Approach as a countermeasure against machine
learning reverse engineering attacks. (3) We evaluate our
hybrid learning architecture using both simulations and a
prototype. Our simulations run on a single machine using
both the Pytorch [11] and the PySyft [12] libraries, while
our decentralized prototype implementation uses the PyGrid
library [13].

The rest of this paper is organized as follows. In Section II
we present some background on split and federated learning
and analyze related work dissecting solutions that combine
both learning architectures. In Section III, we discuss the
details of our Federated Split Learning (FSL) architecture. In
Section IV, we introduce our generic Client-Based Privacy
Approach, and we analyze the privacy guaranteed by our
FSL architecture with this enhancement. In Section V, we
discuss our evaluation in terms of computation time, memory
consumption, and accuracy for varying number of clients. In
Section VI we present our privacy evaluation experimental re-
sults, comparing our Client-Based Privacy Approach. Finally,
in Section VII we conclude the paper.

II. FEDERATED LEARNING AND SPLIT LEARNING:
BACKGROUND AND RELATED WORK

In this section, we give some background on Split learning
(SL) and Federated learning (FL), highlighting their architec-
ture’s advantages and limitations when used in isolation.

In a Split learning architecture [2] (Figure 1 left) a Deep
Neural Network is partitioned into two (or multiple) parts [14].
Each client runs the first partition of the Deep Neural Network
model (a few layers) while the second partition runs on a
single server, for example, at the edge of the network. During
the training phase, the first client sends the intermediate data
to a server in a so-called forward propagation; such forward
propagation is represented with a solid arrow in Figure 1
(left). During the gradient descent algorithm, the server sends
back to the client the value of the gradients (dashed arrow in
Figure 1 left) in the corresponding backward propagation. '
Then, the next client starts the training on its data partition
as described before, so the architecture runs a sequential
algorithm. While this learning architecture has merits [2], it

I Gradient Descent is an optimization technique that is used to improve
deep learning and neural network-based models by progressively minimizing
a cost function.

251

Split Learning Federated Learning

SERVER SERVER
2 a3
O O
CLIENT A CLIENT B CLIENT A CLIENT B
| — | — — | () () (. | o | e— — R S—
data data data data

seennnes WEIGHTS INTERMEDIATE RESULTS == = = GRADIENTS

Fig. 1: Layers partitioned in Neural Networks with Split (left)
and Federated (right) Learning. The numbers represent the
order of processing. The different types of lines show the
dataflow between computations.

==

B

0.9

°
®
]

Accuracy

°
o

m— ParallelSplit
FederatedSplit
—— SplitLearning

2

10

05

05

A(percentage of unbalance)

0.85 0.9 093 095 097 099

Fig. 2: Drawback of Split Learning: Unbalance of data in each
Client and level of accuracy.

suffers from two main drawbacks. First, the training process
is sequential, leading to inefficiencies and under-utilization
of the computational resources. Second, the model may not
converge to an accurate model if the dataset in each Client
has unbalanced features (i.e., non-IID).

We illustrate this second drawback with an experiment
(Figure 2). In particular, we used the well-known MNIST
dataset [15], in which a neural network is trained to recognize
hand-written digits. We split such neural network among two
clients, with an unbalanced distribution of training set images
between the two clients: Client 1 runs the training process with
the majority of even digits while Client 2 has more odd digits.
We then defined a parameter)\ to measure the percentage of
data unbalance on each client running the training process.
When the parameter A\ approaches one, i.e., Client 1 has a
larger number of even digits, the accuracy of the Split learning
model decreases dramatically (Figure 2), as we expected. This
is because the machine learning model attempts to fit on two
datasets with very different features (captured by \), and it
fails to converge to a correct single model.

Authorized licensed use limited to: BOSTON UNIVERSITY. Downloaded on August 09,2022 at 19:15:32 UTC from IEEE Xplore. Restrictions apply.

In Federated learning architectures [4] (Figure 1 right), the
entire deep learning model is sent to each client, that has an
amount of data. After each round, defined in FL, the clients
exchange the neural network weights with a server. This so-
called “parameter” server then computes and sends back to
the clients the average of such weights, and the process is
periodically repeated until the decentralized convergence pro-
cess terminates. An advantage of this architecture is scalability
in that each client can run in parallel. However, to train the
full model, clients may require computational power that is
hardly available at edge sites. Moreover, while the data is
local at every edge, the weights shared during the averaging
step can be used to reconstruct the source dataset. Prior work
has reported on this kind of attack [16] and [17]. We will
also use this averaging idea in our approach, but since there
are methods to defend against such attack [18], and our
approach does not share the weights over the public network,
this vulnerability is not present in our system.

Combining Split and Federated Learning. After intro-
ducing both architectures separately, we now discuss some
existing distributed techniques that merge Split Learning and
Federated Learning. We begin with SplitFed [19], a distributed
algorithm that combines the ideas of computing the weight
average, a characteristic of the Federated Learning architec-
ture, and the neural network split between client and server of
the Split Learning architecture. Each client starts the forward
propagation phase; the computation results are sent to the
server that completes the phase. SplitFed computes the for-
ward propagation of the server’s neural network sequentially,
choosing randomly the client’s output to use. The backward
propagation is computed within the server, and then the result
is backward-propagated to each client. Before updating the
clients’ weights, a (secure) server, called FedServer, computes
the average of the clients’ weights and then sends it back to
each client. One of the most notable drawbacks of the SplitFed
architecture is that the forward and backward propagation
process in the server is not scalable when the number of
clients grows. SplitFed assumes a single server or cluster with
sufficient capacity, which can become a bottleneck when the
number of clients grows. Furthermore, SplitFed may fail to
support latency-sensitive applications in WAN environments.

Another attempt to combine SL and FL is called Parallel
Split Learning (PSL) [3], whose architecture is shown in
Figure 3. Note the similar behavior in both SL. and PSL. PSL
also splits the deep neural network into two parts. The first
part is sent to [different clients and the second to a single
server. After an initialization phase, all clients and the single
server exchange intermediate data and the gradients during
the training process. > Unlike a Split Learning architecture,
the training phase of PSL is parallelized (see Algorithm 1).
Despite such parallelism, PSL relies on only one server, which
may become the training process’s performance bottleneck. In
the worst case, the training may become sequential, assuming

>The notion of intermediate data was introduced in split learning [2] and
represents the activation result of the forward propagation inside the client’s
neural network.

252

significant speed gaps between clients. The server cannot
start the backward propagation phase until all clients have
completed their forward propagation phase. The problem may
be exacerbated as the number of clients scales up. Aside
from time bottlenecks, such a “semi-sequential” process at
the server may require an unsustainable amount of memory
to temporarily store the intermediate data from all clients,
especially when the clients are producing training data faster
than the server can consume them.

Another interesting architecture that has been proposed is
FedSL [20]. FedSL was designed to work with ordered data
sequences, such as text or time series. FedSL can train a
Machine Learning model such as a Recurrent Neural Network
(RNN) in a distributed fashion. Our proposed Federated Split
Learning architecture, which we describe in the next section,
was designed to generalize the FedSL approach by extending
its advantages to other ML tasks in which the training data
does not need to be an ordered data stream.

Privacy-Aware Centralized and Distributed Learning.
Prior work analyzed how to prevent inference on the neural
network, considering a model to be private if it does not
allow reconstruction or inference of either the dataset used
for training or the neural network itself. Despite based on a
centralized learning architecture, the closest solution to ours is
NoPeek, a recent algorithm introduced in [21]. NoPeek aims at
preserving the privacy of the centralized learning architectures.
NoPeek adds a privacy increment, called Distance Correlation
(DC) [21], to the Cross-Entropy. Cross-Entropy is a widely
popular loss function in machine learning. Applying NoPeek to
distributed settings may result in a loss of privacy gain. This is
because we would be forced to expose too much information to
the attacker. By design of the NoPeek approach, the Distance
Correlation (DC) increment is added to the edge server’s
loss function. This could be a potential leak of information.
For example, it would be readily possible to reconstruct the
original data having both the Distance Correlation value and
the intermediate data sent over the network to the server during
the training process. It would be desirable to force clients and
servers to use different loss functions to avoid such privacy
leaks.

Another line of work [22] uses the notion of Differen-
tial Privacy in learning. For example, the Pytorch Opacus
library [23], which we used in our evaluation, adds a Gaussian
noise, controlled by parameters like noise multiplier (¢), to the
neural network gradients to preserve the privacy of the training
data. Our implementation enables centralized approaches like
NoPeek or Differential Privacy to be deployed in distributed
learning architectures.

III. PRIVACY-OBLIVIOUS FEDERATED SPLIT LEARNING

Motivated by the previously discussed suboptimalities of
current distributed learning architectures, in this Section we
discuss our proposed Federated Split Learning (FSL), shown
in Figure 3 (Right). We distinguish three types of nodes in our
architecture: clients, edge servers, and parameter servers. We
use edge servers to differentiate from the PSL architecture in

Authorized licensed use limited to: BOSTON UNIVERSITY. Downloaded on August 09,2022 at 19:15:32 UTC from IEEE Xplore. Restrictions apply.

Federated Split Learning
PARAMETER SERVER

AVG =13l w;
A H
3ty 3y

EDGE SERVER A EDGE SERVER B

Parallel Split Learning

SERVER

Il \\
4 \
L /. \2
72 I\ \
4 <
CLIENT A CLIENT B CLIENT A CLIENT B
s s s SO e s [o s s o s |
data data data data

meeee==sWEIGHTS INTERMEDIATE RESULTS = = = GRADIENTS

Fig. 3: Parallel Split Learning [3] [left]: clients send the intermediate data
to a single server (1). It computes the loss function and sends back to clients
weights’ gradient of the Neural network (2).

Federated Split Learning (our proposal) [right]: each pair of client and edge
server exchanges the intermediate data of the neural network and the gradients
(1,2); after the last batch of data (end of an epoch) owned by each client is
used for training, a parameter server averages the edge servers’ weights (3).
which a single logically centralized server is used. In FSL, the
deep neural network is logically split into two partitions. The
first partition containing the input layer of the learning model
is sent to a client, while the second partition runs within an
(edge) server.

We start by describing a Privacy-Oblivious Federated Split
Learning architecture (Algorithm 2), and we then compare
such version with Parallel Split Learning (PSL) [3], a related
hybrid architecture detailed in Algorithm 1. In our Federated
Split Learning, for each pair of client and edge server pro-
cesses, we start a forward propagation inside the client (line 7
of Algorithm 2). Then the client sends the intermediate data,
i.e., the activation results to its corresponding edge server (line
8), and the edge server continues the forward propagation
phase (line 9). After the edge server obtains its output, it
computes the value of the loss function (line 10) and it
starts the backward propagation (lines 11 and 12). When the
calculation of the gradients reaches the intermediate data, the
gradients are sent from the edge server to the client (line 13).
Finally, the privacy-oblivious FSL algorithm terminates the
backward propagation in the client with those gradients (line
14). When all pairs finish processing their batches of data,
the weights in the edge servers are averaged in a parameter
server’ and then sent back to each edge server (line 17).

We define all those steps starting at all clients as they begin
forward propagation until the averaging step finishes as one
epoch.

Remark. Most of the steps of Algorithms 1 and 2 are
similar; however, a key difference between the two is the
interaction between each client and server. In Algorithm 1,
each client runs the forward propagation and sends the inter-
mediate data in parallel (lines 8-9). When the server completes
processing the outputs of all clients, the gradients are sent

3In some machine learning library, what we call parameter server is also
called “worker”.

253

Variable Name Meaning in Algorithm

L; Neural network layer ¢
B; Batch of data in client 7
labels; Labels in client ¢
Interm_r; intermediate data in client ¢
Loss; Loss function result in server i(FSL)
Loss Loss function result in server(PSL)
gradient; loss function gradient in pair i(FSL)
gradient loss function gradient(PSL)
gradient’, gradient during backward propagation in pair ¢ (FSL)
gradient’ gradient during backward propagation (PSL)
DC Distance_Correlation function [21]
frequency Frequency to call Distance_Correlation
€ Random Noise (e.g. Laplace)

Function Name Meaning in Algorithm

Fe; Forward propagation in client i
s, Forward propagation in edge server i (FSL)
Fs Forward propagation in edge server (PSL)
T e
e i Backward propagation in client i
F, Backward propagation in edge server i (FSL)
FT Backward propagation in edge server (PSL)
€] Calculate Gradient of Loss function

Loss_funcs Loss function to be called in each server

Loss_funce Loss function to be called in each client

Constant Name Meaning in Algorithm

1 Number of clients

N Number of Neural Network layers

TABLE I: Notation used in the FSL (Federated Split Learning)
and PSL (Parallel Split Learning) algorithms.

to each corresponding client to terminate the backward step
(lines 17 and 18).

Unlike PSL, with our proposed FSL architecture, multiple
pairs of clients and edge servers could simultaneously run
training or inference processes. Each edge server only needs
to work with its client, decoupling the performance dependen-
cies on other clients. Moreover, the network communication
overhead caused by the transmissions between a client and
its edge server is small since we do not need to transfer the
training datasets. Furthermore, since FSL does not require
sharing clients’ neural network weights, it is more resilient
against some inversion attacks. Aside from these benefits, one
potential limitation of the Federated Split Learning architec-
ture is the higher overhead with respect to PSL due to the
additional weight averaging step (Algorithm 2, line 17).

We have discussed the privacy-oblivious FSL (Algorithm
2). It may be desirable to preserve privacy with respect to the
data exchanged between clients and edge servers during the
intermediate steps of the training phase. In the next section,
we describe a modification of Algorithm 2 to account for such
privacy constraint.

IV. PRIVACY-AWARE FEDERATED SPLIT LEARNING

To describe the design of our Privacy-Aware Federated Split
Learning, we first detail the privacy attacker model and then
explain the drawbacks of existing privacy-preserving methods
designed for distributed learning architectures [21]. In the
rest of this paper, we denote the machine learning models
as learner and the adversary as attacker.

Authorized licensed use limited to: BOSTON UNIVERSITY. Downloaded on August 09,2022 at 19:15:32 UTC from IEEE Xplore. Restrictions apply.

Algorithm 1 Parallel Split Learning [3] (PSL)
procedure PSL(Loss_funcy)
// split layers in clients and server.
// randomly initialize weights of layers.
results = array of Interm_r;
gradient’ = array of gradients
for epoch in epochs do:
in parallel for client; € clients do
Interm_r; < F.;(B;)
Send((Interm_r;,labels;), Server)
results.append(Interm_r;)
end for
output < Fy(results)
Loss < Loss_funcs(output, labels)
gradient < G(Loss)
gradient’ < FT (gradient)
in parallel for client; € clients do
Send(gradient!, client;)
FZ,(gradient;)
end for
end for
end procedure

Algorithm 2 Privacy-Oblivious Federated Split Learning
(FSL)
procedure FSL(Loss_func)
// split layers in clients and edge servers.
/I randomly initialize weights of layers.
for epoch in epochs do:
in parallel for each client;, edge_server; do
while client; has new data to train on do
Interm_r; < F. ;(B;)
Send((Interm_r;,labels;), edge_server;)
output; < Fs ;(Interm_r;)
Loss; < Loss_funcg(output;, labels;)
gradient; < G(Loss;)
gradient] « FI (gradient;)
Send(gradient}, client;)
FI,(gradient})
end while
end for
Avg(Weights layers of edge_servers)
end for
end procedure

A. Privacy Attacker Model and Assumptions

Let us consider an attack on the distributed neural net-
work, whose goal is to reconstruct the original data from
the intermediate data that a client sends to the edge server
during the training phase. We assume that an adversary can
intercept the unencrypted intermediate data that a client is

254

sending to the edge server*. During the training phase, the
attacker’s goal is to reconstruct the source data based on the
data observed at each intermediate step of the training. To
perform such reconstruction, the attacker needs a machine
learning model that learns the source data used in the training
phase. An example of such a machine learning model is an
encoder-decoder neural network [26]. We also assume that the
architecture of the neural network owned by each client is
known to the attacker. In particular, the attacker neural network
is constructed in such a way to reconstruct the data, using
the layers of the client(s)’ neural network as encoder. We
also assume that the attacker’s neural network is trained on
a similar dataset.

B. Our Solution: Client-Based Privacy in Distributed Setting
via Distance Correlation

In this subsection, we describe our privacy-preserving dis-
tributed learning solution. We assume that both client and
server processes run on different machines, and the data during
the training phase is exchanged over a computer network.
To overcome the limitation caused by a single global loss
function and bring privacy awareness into distributed settings,
we propose a new technique called Client-Based Privacy
Approach. The intuition behind such an approach is that we
want to compute two different loss functions. The first one is
privacy-aware (e.g., DC and differential privacy) and runs only
in clients. A second global loss function is computed on the
server and propagates across both client and server during the
training process. In the following text, we discuss the distance
correlation loss function using the DP-SGD algorithm [22] in
the clients. We named them as Client-Based Privacy Approach
via DC and Client-Based Privacy Approach via DP.

Our design is inspired by the NoPeek approach [21] but
applied in distributed settings; that is, we use a loss function
called Distance Correlation [21], to measure how the source
data is different from the intermediate data.

This approach is described in Algorithm 3. By controlling
how often the DC function is minimized and the weights
updated, we can tune the accuracy-privacy tradeoff.

Note how, unlike NoPeek, our solution minimizes two loss
functions: the Cross-Entropy computed within the server, and
the Distance Correlation, calculated in the client, indepen-
dently. By increasing the frequency at which both loss func-
tions are recomputed (Algorithm 3, line 8), we can increase
privacy, increasing the distance between the intermediate re-
sults and the original data (de facto adding noise to the training
process). The Distance Correlation solves an optimization
problem that maximizes the diversity between the original
training data and the intermediate result.

Analyzing further Algorithm 3, we note that lines 8-15 show
the Cross-Entropy computation and lines 17-19 show the steps
used to calculate the Distance Correlation loss. Note how we

4An authentication protocol [24], [25] is needed before communications
between entities take place to enhance the privacy guarantee, but that is
not the focus of this paper. Here we assume the adversary can bypass the
authentication process and read the data flowing over the wire.

Authorized licensed use limited to: BOSTON UNIVERSITY. Downloaded on August 09,2022 at 19:15:32 UTC from IEEE Xplore. Restrictions apply.

specify the learning frequency using the Distance Correlation
in the client in line 8.

Algorithm 3 Privacy Aware FSL with Distance Correlation
procedure FSL_PA(Loss_funcs, Loss_func. = DC')
/I split layers in clients and edge servers.
/I randomly initialize weights of layers.
for epoch in epochs do:
in parallel for each client;, edge_server; do
while client; has new data to train on do
Interm_r; < F,;(B;)
if (epoch mod frequency) == 0 then
Send((Interm_r;,labels;),
edge_server;)
output; < Fs;(Interm_r;)
Loss; = Loss_funcs(output;, labels;)
gradient; < G(Loss;)
gradient] « FI;(gradient;)
Send(gradient}, client;)
FTi(gradient})
else
Loss; <+
Loss_func.(data, Interm_r;)
gradient; < G(Loss_func)
FI.(gradient;)
end if
end while
end for
Avg(Weights layers of edge_servers)
end for
end procedure

V. EVALUATION OF PRIVACY-OBLIVIOUS HYBRID
FEDERATED-SPLIT LEARNING ARCHITECTURES

In this section, we analyze the performance of our proposed
Federated Split Learning (FSL) architecture, compared to
the existing Parallel Split Learning (PSL) [3], detailed in
Figure 3°. Note that in our FSL architecture, each client is
paired with an edge server, while in Parallel Split learning,
we only have one server. In particular, we first describe the
experimental setup (Subsection V-A), and then we discuss
the metrics and methodology used (Subsection V-B). Finally,
we show the performance evaluation in terms of training
completion time (Subsection V-C1), memory usage (Subsec-
tion V-C2), and learner accuracy (Subsection V-C3).

A. Experimental Setup and Use Case

To analyze the approaches introduced in the previous sec-
tion, we used a well-known machine learning application: a
digits classification task, using the MNIST dataset [15] © with
the Lenet Neural network [27]. We tested our privacy-oblivious

SWe did initially consider the case of a single ML process on a single
machine to ensure that the ML model converges before distributing the
computation, but this case is not the focus of this paper.

OIn this paper, we show results for only one dataset due to lack of space.

distributed learning architecture with a simulation campaign
and a prototype deployed over several bare metal machines
within the Chameleon Cloud testbed [28]. Each bare metal
instance reserved had 48 compute cores, 187 GB memory,
and one NVIDIA RTX6000 GPU.

B. Metrics and Methodology

We compare the PSL and FSL in terms of training time
evaluation (Subection V-C1). We move to an analysis of
the memory consumption (Subsection V-C2), and finally, we
study the learner accuracy of these two architectures (Subsec-
tion V-C3).

Empirically, we have determined that at the 20" epoch,
both distributed hybrid architectures PSL and FSL with three
different numbers of clients converge (Figure 5), i.e., after that,
each additional epoch enhances the learner accuracy less than
1%. Based on this observation, we define some metrics that
are used in the following section.

We define the training time as the time needed to compute
20 epochs of training by a client or a server.

By memory consumption, we mean the maximum (GPU)
memory allocated during the training process.

Finally, we plot the learner accuracy of both architectures,
varying the number of client and server pairs.

We evaluate the performance of both architectures by vary-
ing the number of clients from 20 to 500 and changing the
available data at each client.

The first two subsections show our results under a data
partition strategy designed to isolate the advantage of FSL
over PSL only thanks to the parallelism of pairs of client and
edge server. The expectation is that with more clients and
fewer data in each client, both architectures would reach a
lower learner accuracy; we want to assess how severe such
degradation could be, so we evaluate the training time and the
memory utilization (Figure 4).

C. Evaluation Results

1) Training Time Evaluation: In our privacy-oblivious
setup, we evaluated the performance in terms of training time.
In particular, in Figure 4 (left), we can see how the training
time of FSL for the (edge) servers (during the 20 epochs)
is shorter, and so better, than PSL for a different number of
clients.

Take-home message. The training time in our model is
also consistently shorter at the client-side, compared to the
Parallel Split learning architecture. We consider the reason to
be the overall more severe resource contention in the PSL
architecture.

Those two observations show that the FSL can better
parallelize training jobs among clients and edge servers.
The FSL architecture can be especially advantageous as the
number of clients increases. In the PSL architecture, the
single server could become a significant bottleneck during
training.

Authorized licensed use limited to: BOSTON UNIVERSITY. Downloaded on August 09,2022 at 19:15:32 UTC from IEEE Xplore. Restrictions apply.

Total Time Client

1.0 61 maw psi N
N FSL
5
0.8 \
FSL_20 a \
0.6 FSL_100 <}
& FSL_500 S
o -3¢ PSL_20 G3
0.4 —A- PSL_100 £ \
-@- PSL_500 =,
0.2 \
1 N
\ Y
00 oL = N
0.010 0.015 0.020 0.025 0.030 0.035 0.040 20 100 500
Time (s) Count of Clients

Total Time Server

x4

Max Memory Allocated

Max Memory Reserved

EWN PSL
Sow FSL

o.e>;<3A

FSL_20
FSL_100
FSL_500
¢ PSL_20
- PSL_100
- PSL_500

x 4

0.6

CDF

0.4

Memory (GB)

0.2

0.0

r
V//I///J//ﬂ

s
6

olmwm NN

20

5

=}

0

4 100
Time (s) Count of Clients

Fig. 4: Left: client’s and server’s total time at each epoch;
Right: Maximum reserved and allocated GPU memory. Note:
we randomly divided the full dataset to 500 partitions and for
each configuration of 20, 100 and 500 clients, we pick the 20,
100 or 500 from the 500 partitions, respectively.

2) Memory Consumption Evaluation: In this experiment,
we measure the maximum GPU memory reserved during
the training process for both processes, those running on the
clients and those running on the servers of the distributed split
architectures (Figure 4 Right). One important implementation
detail is that if some memory has been reserved by the
Caching Allocator of the PyTorch library, it is not available
for other GPU applications. This is why we use the Caching
Allocator to measure the memory demand of our architectures.

Take-home message Comparing the memory usage under a
different number of clients, we note how the maximum memory
allocated in our FSL is lower than that in PSL. We also
note that in Parallel Split Learning, the maximum memory
allocated or reserved is reached when all the intermediate data
from clients stay in the server queue waiting to be processed.
Such memory value depends on how many clients we have in
the system, the size of the gradients, and the computational
graph. Our analysis refers to a worst case, but on average, the
workloads may not be bounded by the available memory.

Note also that, since adding more clients impacts the
propagation graph of the training process, we expect to see
a larger memory increase as the number of clients grows. We
conclude that FSL is more scalable than PSL since it consumes
less memory when there are more clients.

3) Learner Accuracy Evaluation: In the previous subsec-
tions, we have shown how FSL is faster than PSL, while, at
the same time, it has a lower worst-case memory utilization.
This is because FSL can parallelize the training jobs better
than PSL. We now show a tradeoff analysis obtained from
comparing the two architectures.

256

1.0
B
PO T S ¢ N o T O .+ ==
X ke ke
f o
S / 4
008 I p
g |/ /.
H
g (* A
5 & .- .-
5 0.6 e e
g Vgl /. g0
©
g ”
o >,
i% o / FSL_20
g 1, FSL_100
- e FSL_500
0:2 / -~ PSL_20
/ -A&- PSL_100
d -@- PSL_500
[) 3 6) 2 T 5

Epochs

Fig. 5: Learner Accuracy (privacy oblivious) with different
number of clients. We randomly divided the full dataset to 20,
100 and 500 partitions, for each configuration of 20, 100 and
500 clients respectively.

Consider Figure 5. We evaluate the accuracy of both ar-
chitectures under a different number of clients. Given the
Neural Networks and the datasets that we used, both FSL and
PSL have high accuracy (from 87% to 93%) as long as each
client has enough data to train the machine learning model. In
our experiments, we used 60,000 images evenly distributed
across 20, 100, or 500 clients. The data used for training
was Independent and Identically Distributed (IID) across the
clients.

With a fixed training dataset of 60,000 images, we can see
a significant drop in the test-set accuracy in both architectures.
While with 20 or 100 clients, the accuracy of PSL is slightly
higher than FSL, with 500 clients, the accuracy is equivalent.
This result shows that there is a tradeoff between accuracy
and resource demand. The reason for such lower accuracy of
FSL over PSL is that the neural network weight averaging
step of our FSL, unlike FedAvg in Federated Learning, only
averages the weights in edge servers after each training epoch
to guarantee some privacy level on the training data. There
is hence a tradeoff between privacy and accuracy. In the next
section, we present the results of our experiments for privacy
guarantees.

VI. EXPERIMENTS FOR PRIVACY-AWARE FEDERATED
SPLIT LEARNING

In this set of experiments, we compare the privacy-
preserving properties of FSL versus PSL. By privacy, we mean
the ability to reconstruct the training dataset (in our case,
images) under the attacker model discussed in Section IV-A.
We evaluate the privacy-preserving properties using three
implementations of both FSL and PSL. The first implemented
both distributed architectures on a single machine, using the
PyTorch library. In such settings, we analyzed the impact
of our architecture when using the NoPeek [21], a logically
centralized privacy-preserving algorithm. In particular, we test
the following hypothesis: Is the NoPeek algorithm sufficient
to guarantee training data privacy in a distributed learning
setting? Our second implementation was instead logically

Authorized licensed use limited to: BOSTON UNIVERSITY. Downloaded on August 09,2022 at 19:15:32 UTC from IEEE Xplore. Restrictions apply.

Distance Correlation
Federated Split Learning

Differential Privacy

Parallel Split Learning Parallel Split Learning Federated Split Learning

DH+HdUREN PO+ UG EY
c73-a3smflc7 32035 m
asweifINJoivciEeC
XI9FNS500PRL I OFN 500>
DHUdUQEN POt UUREN
73 Emffo> 30 E ™
LEXPAR XN EFPAE XN
XIVFNSPIPEX I I NS00 >

Fig. 6: First and Second row: batch of 32 original images and
output images of the auto-encoder Neural Network. Third row:
(poorly) reconstructed batch images.

distributed; that is, we used several clients and edge servers
with processes. We implemented the Client-Based Privacy
Approach algorithm, our privacy-preserving approach, using
two techniques, the Distance Correlation function, and the Dif-
ferential Privacy. The third implementation is a real distributed
version of the second one. In all our implementations we used
PyTorch, PySyft [12] and the PyGrid [13] libraries.

To evaluate the privacy-preserving properties of our
two-hybrid split-federated learning architectures under
observation, we used our Client-based privacy approaches. In
the rest of this section, we first detail our evaluation settings
and then summarize our findings.

A. Evaluation Setup

1) Training the Attacker’s Auto-Encoder Neural Network:
Figure 6 shows the results obtained from the reconstruction
attack. We used Figure 6 to illustrate the steps of our ex-
periments and evaluate how different attacker settings may
impact the reconstruction results. To train the attacker’s auto-
encoder neural network, we used different random subsets of
training data, producing different reconstruction results. Then,
we computed the attack resilience 7, which represents the
probability that the attacker misclassifies the images based on
the reconstructed source data, and it is formally defined in
Section VI-B.

In Figure 6, we report the results obtained with seed no.
72. Each seed specifies a random subset of data for training
the attacker’s NN. In the first row of images in Figure 6 we
report the original batch of images at the 50" epoch of the
auto-encoder training. The second row shows how the output
obtained from the decoder partition of the attacker’s Neural
Network is clear and well-reconstructed, indicating that the
attacker neural network has been adequately trained. Finally,
the third row shows the images (poorly) reconstructed by the
attacker based on the intermediate data of the learner.

Running several experiments, we found that different seeds,
i.e., different subsets of the data used for training, lead to
significantly different reconstructions results. To quantify the
reconstruction ability of the attacker, we measure the attack

257

resilience 7. In the rest of this section, we detail our findings.

2) Privacy Evaluation: Experimental Settings and Method-
ology: To simulate a realistic use case, we train the attacker’s
auto-encoder on the EMNIST-letters dataset [29] that has
similar features as the source MNIST dataset of the learner.
The attacker is hence capable of distinguishing many but not
all the features in the source dataset.

To obtain an upper bound on the attack resilience, we used
a locally trained model that classifies all the reconstructed
images by the attacker. This experiment aims to evaluate the
frequency at which the attacker can reconstruct the source
images across different training conditions.

In particular, we first train the Lenet neural network [27]
with the first several layers in the client and the remaining part
running at the edge server, based on the full MNIST dataset.

While the training process is running, we saved the inter-
mediate data between clients and edge servers for each batch
of data at each epoch so that our attacker neural network can
try to reconstruct the original source file (that we wish to
keep private) based on the saved intermediate files. Next, the
attacker first trains on its auto-encoder on a subset of shuffled
images from the EMNIST-letters dataset. We used an auto-
encoder to reconstruct the first row in Figure 6; we show the
results in the second row. We then reconstructed the source
images from the intermediate data with this trained model. The
third row in Figure 6 are examples of those reconstructions.
Finally, we compute the predictions and verify the correctness
of the reconstructed images with the trained local learner’s
model. The random seed has a significant impact on the
reconstruction results; in the third row of Figure 6, we repeat
our experiment multiple times with different seeds to compute
an average accuracy that illustrates the privacy benefits of
our proposed architecture augmented with our Client-Based
Privacy Approach.

B. Privacy Evaluation Metrics and Parameters

The metrics that we use in this section are Learner accuracy
and attack resilience. We define the attack resilience T as
follows:

correct c

||reconstructed|| r
where ¢ = ||correct| denotes the amount of reconstructed
data being correctly classified by the learner neural network,
and r = ||reconstructed|| denotes the amount of total re-

constructed data. For example, 7 = 0 signifies no resilience
to the attack since the reconstructed images have the same
prediction result of the source images with the trained learner’s
model. Note that the definition of 7 can be generalized to
learning objectives different than classification, for example,
to regression problems.

The parameters that we tuned for the experiments are DC
frequency for the Client-Based Privacy via Distance Corre-
lation (DC) and noise multiplier € for Client-Based Privacy
via Differential Privacy (DP) over the full learner model. The

Authorized licensed use limited to: BOSTON UNIVERSITY. Downloaded on August 09,2022 at 19:15:32 UTC from IEEE Xplore. Restrictions apply.

—@- PSL Accuracy - PSL Resilience

Petancec) Client-Based Approach: DC Loss in Client e once
1.0 —) B] 090
] e
Sos 2
3 / =
S 0.8%
- g
0.4 / ~
5 0.2 / *7%
- v | | k=]
=1 <

0 5 10 5 20 25 30 35 40
DC Frequency
-@- PSL Accuracy - PSL Resilience

FsLacraey Client-Based Approach: DP-SGD in Client el e
> j 8 L]
goo7 < P -~ 10758
S - \-"_ s 4 g

f 0.96 - 2

0.70
%5 0.95 s =
-) = Y
©094| W o 652
i
0.0 0.5 1.0 15 2.0 2.5 3.0 3.5 4.0
Noise Multiplier

@ PSL Accuracy - PSLResilience

SRt Accuracy Differential Privacy (Client + Server) £ Resfllence
>1.0 075 ¢
] g
508 0.70 @
06 B
Zo. 0.65%
$0.4 =
E 0.600
502 2
- 0.55<C

0.0 0.5 1.0 15 4.0

¥ 2.0 2.5
Noise Multiplier

3.0 35

Fig. 7: Learner accuracy and attack resilience (7) with 20
clients for Client-Based Privacy Approaches (via DC (fop) and
via DP (middle)) and DP-SGD on the global learner model
(bottom). Our FSL with both client-based policies guarantee
high-level of privacy and accuracy.

DC frequency indicates how often we train the client with the
DC loss function. The noise multiplier is used to specify the
magnitude of each Gaussian noise we added in the gradient
during backward propagation (as required by the Differential
Privacy algorithm).

C. Approaches

To evaluate the privacy guarantee of the architectures under
consideration, we implemented them with our Client-Based
Privacy via DC Loss function that alternates the Distance
Correlation (DC) Loss Function with the computation of
the Cross-Entropy. Then, we compare our FSL with Client-
Based Privacy via DP applied only within each client. Such
an algorithm, also known as DP-SGD consists of changing
the direction of the Stochastic Gradient Descent using a
random perturbation €. Such a noise introduced into the model
also introduces noise into the intermediate data so that the
reconstruction of source data (i.e., images) becomes harder.
We implement Client-Based Privacy via DP by replacing line
14 in Algorithm 2 with the line in Algorithm 4.

Finally, we evaluated the privacy obtained by implementing
DP-SGD within the client and the server, that is, adding the
noise ¢ also to the backward propagation phase.

Algorithm 4 Client-Based-DP-Backward-Propagation
1. F CT .

X}

(gradient’ | €)

258

D. Privacy Evaluation Results

1) Privacy Evaluation using NoPeek Approach: In this
experiment, we evaluate the privacy of our architectures under
consideration using the NoPeek algorithm [21] within our local
implementation of both FSL and PSL architectures. The results
are shown in Table II. With the NoPeek method, we can see
how we obtain a very high level of privacy regardless of the
used learning architecture (both FSL and PSL architectures
reach higher than 95% learner accuracy). Moreover, the attack
resilience 7 based on the intermediate data generated with
the two models is above 97%. Thus, the NoPeek algorithm
would give excellent attack resilience and accuracy results
(a desirable outcome). However, implementing the NoPeek
algorithm in real distributed settings is impractical. To do
so, we would need to compute the loss function by sending
the distance correlation function over the network, therefore
risking a loss of privacy. Motivated by this limitation, in the
next section, we tested other approaches that are more suitable
for a distributed learning architecture. Table II only shows the
effectiveness of the Distance Correlation loss function used in
NoPeek, which we then adopt to realize our distributed client-
based privacy approach.

cases PSL FSL
attack_resilience(7) | 0.9733 | 0.9837
learner_accuracy 0.9702 | 0.9614

TABLE II: NoPeek stats with 20 clients after finishing 20%"
epoch of learner.

2) Evaluation Result using Client-Based Privacy via Dis-
tance Correlation: Consider Figure 7 (top). The left y-axis
shows the learner’s classification accuracy, and the right y-
axis shows the attack resilience. The x-axis indicates the DC
frequencies used. Notice that a value of DC_frequency = 0
signifies that a DC loss was never computed.

From the experiments in Figure 7 (top), we note that the
attack resilience grows with the DC frequency. Note also how
the trends of PSL and FSL architectures are different. When
the DC Frequency increases from 10 to 20, FSL has a higher
learner accuracy while the attack resilience is comparable to
the one achieved by PSL. In such DC frequency range, FSL
keeps a learner accuracy at about 95%, while the accuracy of
PSL decreases to about 80%. Although the attack resilience
of PSL reaches 0.9, which means 90% of the reconstructed
images were incorrectly classified by the attacker, we notice
that at the same time, the learner accuracy drops to zero.
This means that the PSL cannot classify the images anymore
because we make the intermediate data different from the
source data. So the intermediate data lost the essential features
necessary for the classification. We can see a similar behavior
for the FSL algorithm when we increase the frequency to 40.
However, we note that FSL gives us a more comprehensive
range of DC frequency to get both good learner accuracy and
good attack resilience, i.e., FSL beats PSL in DC frequency
range of [10, 35], while PSL beats FSL only at DC frequency

Authorized licensed use limited to: BOSTON UNIVERSITY. Downloaded on August 09,2022 at 19:15:32 UTC from IEEE Xplore. Restrictions apply.

of 5.

Take-home message. We conclude that FSL augmented with
our Client-Based Privacy Approach via DC can reach a higher
learner accuracy and provide good privacy guarantee more
stably than that of PSL.

The reason is that FSL is more stable: in PSL, we have only
one server, and so during the Learner training, PSL. computes
only one loss function. The weights in the server’s neural
network would be affected by the changes in clients’ weights
caused by Distance Correlation epochs. This means that the
Cross-Entropy loss would consider the sum of all changes
introduced by DC in different clients. On the contrary, in
FSL, we average all the loss functions computed by each edge
server. So each Cross-Entropy loss in the edge server only
considers the changes introduced by Distance Correlation in
the pairing client. So, FSL is more stable and easy to tune. On
the other hand, PSL is prone to noise introduced by DC loss,
i.e., the accuracy of PSL can drop to zero quickly if we do not
carefully tune the parameters to overcome this disadvantage.

3) Privacy Evaluation using the Differential Privacy Ap-
proach: 1In this subsection, we evaluate our Client-Based
Privacy Approach via DP instead of DC loss and compare
it with a commonly used DP-SGD algorithm [22] used in the
full learner model.

We summarize the results in Figure 7 (middle and bot-
tom). As in our prior experiments, the left y-axis shows the
learner’s classification accuracy, and the right y-axis shows
the attack resilience. The x-axis shows the noise multiplier,
the € parameter, representing how much noise we add to the
gradients during the training process. This noise is added
to randomly change the direction of the gradient descent to
preserve source data privacy. A value of zero on the x-axis
indicates that the Differential Privacy algorithm is not used
in that experiment. Figure 7 (middle) shows the experiments
where the Differential Privacy algorithm is applied in the
clients only. We can see that the learner accuracy is high and
similar to the case without privacy approaches, while the attack
resilience is a little higher than the privacy-oblivious case.

Comparing with PSL, for most data points, FSL has similar
learner accuracy and attack resilience. Also, the level of attack
resilience reached with our Client-Based Privacy Approach
via DP is lower than the one in the Client-Based Privacy
Approach via DC for both architectures. The difference is
that Differential Privacy adds random noise to the client’s
gradients. In contrast, Distance Correlation adds noise in
the gradients’ direction to maximize the difference between
source data and intermediate data. In this way, the latter
approach can guide the descent of the gradients in a better
way, maximizing an optimization function.

Take-home message. To conclude, we have found that
Client-Based Privacy Approaches can keep source data
private, regardless of the distributed learning architecture
employed.

259

We now compare the privacy guarantee when applying
DP-SGD in the global learner — Figure 7 (bottom). We note
that FSL does not work well with this privacy approach.
The learner accuracy drops to about zero for the same
noise multipliers used in the previous experiment. This set
of experiments show a drawback of our FSL architecture.
The averaging step would balance out the random noise
introduced to weights in the edge servers by the gradients
during the training epochs. Notice that unlike FedAvg in
federated learning, our averaging step only averages the
weights in the edge servers and leaves the client’s weights
intact for privacy-preserving purposes. So, the resulting
model may not be in the converged state right after the
averaging step, especially when applying a bigger noise
multiplier. In our FSL architecture, we do not want to make
the weights too different among edge servers in general
(either the differences come from source data or random
noise), and modifying the weights in small client’s models
is more efficient. Furthermore, this discussion also illustrates
why FSL consistently achieves a little lower learner accuracy
than PSL in all experiments.

Take-home message. To conclude, we can see that the
previously described Client-Based Privacy Approach via DC
can reach better performance in terms of both privacy and
accuracy for both the architectures than the Client-Based
Privacy Approach via DP. Also, our Client-Based Privacy
Approach is the only efficient algorithm to keep source data
private in FSL architectures.

VII. CONCLUSION

Recently, distributed machine learning techniques such as
Federated and Split Learning have been proposed in isolation
to better scale machine learning jobs and to preserve user and
data privacy. Both of these distributed learning architectures
have merits but also drawbacks. In this paper, we design a
hybrid Federated Split Learning architecture that can get the
best of both while limiting the drawbacks. We extensively
evaluated our proposed architecture with a tradeoff analysis
with simulations and a prototype evaluated over GPU-based
clouds. In particular, we assessed the learner accuracy, latency,
memory performance, and privacy guarantee of Federated
Split Learning, comparing it to a recently proposed hybrid
architecture called Parallel Split Learning. Our result shows
how our proposal is more efficient in terms of latency and
memory utilization. We also evaluated several privacy policies
and concluded that under our Client-Based Privacy Approach,
the Distance Correlation loss function achieves better privacy
regardless of the learning architecture used. Furthermore, we
assessed how, in some specific setups and prediction accuracy,
Differential Privacy (DP-SGD) could be a valid policy to
guarantee the accuracy of the learning model and resilience
to privacy attacks.

ACKNOWLEDGEMENTS

This work has been supported by National Science Foun-
dation Awards CNS-1908574 and CNS-1908677.

Authorized licensed use limited to: BOSTON UNIVERSITY. Downloaded on August 09,2022 at 19:15:32 UTC from IEEE Xplore. Restrictions apply.

[1]

[2]

[3]

[4]

[5]

[6]

[71

[8]

[9]

[10]

[11]

[12]

[13]
[14]
[15]

[16]

[17]

[18]

REFERENCES

P. Moritz, R. Nishihara, S. Wang, A. Tumanov, R. Liaw, E. Liang,
M. Elibol, Z. Yang, W. Paul, M. L. Jordan, and I. Stoica, “Ray: A
distributed framework for emerging ai applications,” in Proceedings
of the 13th USENIX Conference on Operating Systems Design and
Implementation, ser. OSDI’'18. USA: USENIX Association, 2018, p.
561-577.

O. Gupta and R. Raskar, “Distributed learning of deep neural network
over multiple agents,” Journal of Network and Computer Applications,
vol. 116, pp. 1-8, August 2018.

J. Jeon and J. Kim, “Privacy-sensitive parallel split learning,” in 2020
International Conference on Information Networking (ICOIN), 2020, pp.
7-9.

H. McMahan, E. Moore, D. Ramage, S. Hampson, and B. A. y Arcas,
“Communication-efficient learning of deep networks from decentralized
data,” in AISTATS, 2017.

F. Beaufays, K. Rao, R. Mathews, and S. Ramaswamy, “Federated
learning for emoji prediction in a mobile keyboard,” 2019. [Online].
Available: https://arxiv.org/abs/1906.04329

A. Hard, C. M. Kiddon, D. Ramage, F. Beaufays, H. Eichner,
K. Rao, R. Mathews, and S. Augenstein, “Federated learning
for mobile keyboard prediction,” 2018. [Online]. Available:
https://arxiv.org/abs/1811.03604

D. Leroy, A. Coucke, T. Lavril, T. Gisselbrecht, and J. Dureau, “Fed-
erated learning for keyword spotting,” in ICASSP 2019 - 2019 IEEE
International Conference on Acoustics, Speech and Signal Processing
(ICASSP), 2019, pp. 6341-6345.

C. Park, D. Hong, and C. Seo, “An attack-based evaluation method
for differentially private learning against model inversion attack,” IEEE
Access, vol. 7, pp. 124 988-124 999, 2019.

K. Hsieh, A. Phanishayee, O. Mutlu, and P. Gibbons, “The non-IID
data quagmire of decentralized machine learning,” in Proceedings of the
37th International Conference on Machine Learning, ser. Proceedings
of Machine Learning Research, H. D. IIl and A. Singh, Eds., vol.
119. PMLR, 13-18 Jul 2020, pp. 4387-4398. [Online]. Available:
http://proceedings.mlr.press/v119/hsieh20a.html

Y. Gao, M. Kim, S. Abuadbba, Y. Kim, C. Thapa, K. Kim, S. A. Camtep,
H. Kim, and S. Nepal, “End-to-end evaluation of federated learning and
split learning for internet of things,” in 2020 International Symposium
on Reliable Distributed Systems (SRDS), 2020, pp. 91-100.

A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan,
T. Killeen, Z. Lin, N. Gimelshein, L. Antiga, A. Desmaison,
A. Kopf, E. Yang, Z. DeVito, M. Raison, A. Tejani, S. Chilamkurthy,
B. Steiner, L. Fang, J. Bai, and S. Chintala, “Pytorch: An
imperative style, high-performance deep learning library,” in
Advances in Neural Information Processing Systems 32, H. Wallach,
H. Larochelle, A. Beygelzimer, F. d'Alché-Buc, E. Fox, and
R. Garnett, Eds. Curran Associates, Inc., 2019, pp. 8024—
8035. [Online]. Available: http://papers.neurips.cc/paper/9015-pytorch-
an-imperative-style-high-performance-deep-learning-library.pdf

T. Ryffel, A. Trask, M. Dahl, B. Wagner, J. Mancuso, D. Rueckert, and
J. Passerat-Palmbach, “A generic framework for privacy preserving deep
learning,” 11 2018.

(2020, oct) Pygrid.
https://github.com/OpenMined/PyGrid
A. Abedi and S. S. Khan, “Fedsl: Federated split learning on distributed
sequential data in recurrent neural networks,” 2020.

Y. LeCun and C. Cortes, “MNIST handwritten digit database,” 2010.
[Online]. Available: http://yann.lecun.com/exdb/mnist/

M. Fredrikson, S. Jha, and T. Ristenpart, “Model inversion attacks
that exploit confidence information and basic countermeasures,” in
Proceedings of the 22nd ACM SIGSAC Conference on Computer
and Communications Security, ser. CCS "15. New York, NY, USA:
Association for Computing Machinery, 2015, p. 1322-1333. [Online].
Available: https://doi.org/10.1145/2810103.2813677

S. Hidano, T. Murakami, S. Katsumata, S. Kiyomoto, and G. Hanaoka,
“Model inversion attacks for prediction systems: Without knowledge of
non-sensitive attributes,” in 2017 15th Annual Conference on Privacy,
Security and Trust (PST), 2017, pp. 115-11509.

Y. Zhang, R. Jia, H. Pei, W. Wang, B. Li, and D. Song, “The
secret revealer: Generative model-inversion attacks against deep neural
networks,” in Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition (CVPR), June 2020.

[Online]. Available:

[19]
[20]

[21]

[22]

[23]
[24]

[25]

[26]

[27]

[28]

[29]

C. Thapa, M. A. P. Chamikara, and S. Camtepe, “Splitfed: When
federated learning meets split learning,” 2020.

A. Abedi and S. S. Khan, “Fedsl: Federated split learning on distributed
sequential data in recurrent neural networks,” 2020.

P. Vepakomma, A. Singh, O. Gupta, and R. Raskar, “Nopeek: Informa-
tion leakage reduction to share activations in distributed deep learning,”
in 2020 International Conference on Data Mining Workshops (ICDMW),
2020, pp. 933-942.

M. Abadi, A. Chu, I. Goodfellow, H. B. McMahan, 1. Mironov,
K. Talwar, and L. Zhang, “Deep learning with differential privacy,”
in Proceedings of the 2016 ACM SIGSAC Conference on Computer
and Communications Security, ser. CCS *16. New York, NY, USA:
Association for Computing Machinery, 2016, p. 308-318. [Online].
Available: https://doi.org/10.1145/2976749.2978318

(2021, oct) Opacus. [Online]. Available: https://opacus.ai/

S. Qiu, D. Wang, G. Xu, and S. Kumari, “Practical and provably secure
three-factor authentication protocol based on extended chaotic-maps for
mobile lightweight devices,” IEEE Transactions on Dependable and
Secure Computing, pp. 1-1, 2020.

Q. Jiang, N. Zhang, J. Ni, J. Ma, X. Ma, and K.-K. R. Choo, “Unified
biometric privacy preserving three-factor authentication and key agree-
ment for cloud-assisted autonomous vehicles,” IEEE Transactions on
Vehicular Technology, vol. 69, no. 9, pp. 9390-9401, 2020.

G. E. Hinton and R. S. Zemel, “Autoencoders, minimum description
length and helmholtz free energy,” in Proceedings of the 6th Inter-
national Conference on Neural Information Processing Systems, ser.
NIPS’93. San Francisco, CA, USA: Morgan Kaufmann Publishers
Inc., 1993, p. 3-10.

Y. Lecun, L. Bottou, Y. Bengio, and P. Haffner, “Gradient-based learning
applied to document recognition,” Proceedings of the IEEE, vol. 86,
no. 11, pp. 2278-2324, 1998.

K. Keahey, J. Anderson, Z. Zhen, P. Riteau, P. Ruth, D. Stanzione,
M. Cevik, J. Colleran, H. S. Gunawi, C. Hammock, J. Mambretti,
A. Barnes, F. Halbach, A. Rocha, and J. Stubbs, “Lessons learned from
the chameleon testbed,” in Proceedings of the 2020 USENIX Annual
Technical Conference (USENIX ATC "20). USENIX Association, July
2020.

G. Cohen, S. Afshar, J. Tapson, and A. van Schaik, “Emnist: Extending
mnist to handwritten letters,” in 2017 International Joint Conference on
Neural Networks (IJCNN), 2017, pp. 2921-2926.

Authorized licensed use limited to: BOSTON UNIVERSITY. Downloaded on August 09,2022 at 19:15:32 UTC from IEEE Xplore. Restrictions apply.

