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Abstract—Mobile phones, wearable devices, and other sensors
produce every day a large amount of distributed and sensitive
data. Classical machine learning approaches process these large
datasets usually on a single machine, training complex models
to obtain useful predictions. To better preserve user and data
privacy and at the same time guarantee high performance, dis-
tributed machine learning techniques such as Federated and Split
Learning have been recently proposed. Both of these distributed
learning architectures have merits but also drawbacks. In this
work, we analyze such tradeoffs and propose a new hybrid
Federated Split Learning architecture, to combine the benefits
of both in terms of efficiency and privacy. Our evaluation shows
how Federated Split Learning may reduce the computational
power required for each client running a Federated Learning and
enable Split Learning parallelization while maintaining a high
prediction accuracy with unbalanced datasets during training.
Furthermore, FSL provides a better accuracy-privacy tradeoff in
specific privacy approaches compared to Parallel Split Learning.

Index Terms—Split Learning, Federated Learning, Privacy.

I. INTRODUCTION

Several devices today, e.g., mobile phones and wearable

technologies, produce a vast amount of data. If processed

correctly with machine learning (ML) and deep neural network

algorithms, such data can be used to improve revenue, user

experience, and even our health.

Historically, it has been sufficient to train deep neural net-

works over centralized architectures. Recently, however, such

a centralized training approach is becoming unsustainable. Ap-

plications have been demanding more frequent retraining [1]

and the scale of the data to be processed has grown. Moreover,

a critical issue of many data-driven applications is privacy. It

is not always possible to share datasets with a third party, e.g.,

a cloud provider.

The limitation of centralized learning techniques has led

to the design of several distributed machine learning archi-

tectures [2]–[4], the first one being Federated Learning [4].

The design principle of such distributed learning architectures

assumes that the same (deep) learning model is sent to the

clients that have the data instead of sending the data to the

model as in centralized learning architectures. Each client

possesses or receives only a partition of the data though.

Subsequently, the different neural network weights, i.e., pa-

rameters, of each client are exchanged during the training

phase iteratively until the model converges. All clients send

their weights to a Parameter Server at each iteration to then

receive back an average of such weights.

Distributed learning in general and Federated Learning, in

particular, became a necessity for many applications, such

as Natural Language Processing, e.g., on Google’s Gboard

mobile keyboard [5], [6], voice recognition for Apple’s Siri, or

keyword spotting [7]. In other applications, however, applying

federated learning is challenging: the clients required to run

the sub-training process may not have enough computational

capacity to train the entire neural network model, and the stor-

age may be insufficient for this goal. Finally, the privacy of the

data may be violated because the neural network’s weights are

being sent over the network during the training, exposing the

model to machine learning inference attacks [8]. To partially

overcome these limitations, recently, a new distributed learning

paradigm — Split Learning [2] — arose. In Split Learning,

multiple agents systematically split the deep neural network

(composed of many computational layers) and run a subset of

these layers, sharing over the network only the intermediate

data, i.e., the activation results of the last layer in clients.

SplitNN lowered the computing power required at each device

to train the neural network with respect to a classical federated

learning model. By offloading the first subset of layers to each

client, this method also prevents source data from being sent

over a network, hence (at least partially) limiting data-sharing

concerns. However, the challenge of this type of distributed

learning is that processes need to run sequentially by design

and hence are hard to parallelize. Furthermore, the training

process may not reach convergence sharply or may not reach

convergence at all if the dataset is unbalanced [9] [10].

In this work, we study how to improve the efficiency and

privacy of Split and Federated learning by proposing a new

learning architecture that combines both approaches. We call

this architecture Federated Split Learning. By merging the two

architectures, we can tune the neural network’s weights or data

that needs to be kept at every single data processing server or

device, due to computation capacity or privacy requirements,

as in Split Learning, but we also exploit the Federated Learn-

ing principle of parallelizing the training process.

We compare our learning architecture with the state of art

hybrid split-federated architecture — Parallel Split Learning

[3] — assessing both performance and (lack of) privacy. We

found interesting tradeoffs in tuning the distribution of data

available at each client, monitoring the computational time,

250

2021 IEEE 14th International Conference on Cloud Computing (CLOUD)

2159-6190/21/$31.00 ©2021 IEEE
DOI 10.1109/CLOUD53861.2021.00038

20
21

 IE
EE

 1
4t

h 
In

te
rn

at
io

na
l C

on
fe

re
nc

e 
on

 C
lo

ud
 C

om
pu

tin
g 

(C
LO

U
D)

 |
 9

78
-1

-6
65

4-
00

60
-2

/2
1/

$3
1.

00
 ©

20
21

 IE
EE

 |
 D

O
I: 

10
.1

10
9/

CL
O

U
D5

38
61

.2
02

1.
00

03
8

Authorized licensed use limited to: BOSTON UNIVERSITY. Downloaded on August 09,2022 at 19:15:32 UTC from IEEE Xplore.  Restrictions apply. 



and estimating the level of privacy preserved. In particular,

we show that our Federated Split Learning architecture can

reach better performance in terms of computational time as it

can parallelize the training processes. Moreover, we analyze

different approaches to preserve the privacy of this architecture

under an inverse engineering attacker model. We also propose

a Client-Based Privacy Approach to preserve the privacy of

the source data.

Our contributions. In this paper, we present three main

contributions: (1) We propose a new distributed machine

learning architecture called Federated Split Learning that is

advantageous in terms of efficiency and privacy with respect

to the state of art solutions. (2) We propose a general Client-

Based Privacy Approach as a countermeasure against machine

learning reverse engineering attacks. (3) We evaluate our

hybrid learning architecture using both simulations and a

prototype. Our simulations run on a single machine using

both the Pytorch [11] and the PySyft [12] libraries, while

our decentralized prototype implementation uses the PyGrid

library [13].

The rest of this paper is organized as follows. In Section II

we present some background on split and federated learning

and analyze related work dissecting solutions that combine

both learning architectures. In Section III, we discuss the

details of our Federated Split Learning (FSL) architecture. In

Section IV, we introduce our generic Client-Based Privacy

Approach, and we analyze the privacy guaranteed by our

FSL architecture with this enhancement. In Section V, we

discuss our evaluation in terms of computation time, memory

consumption, and accuracy for varying number of clients. In

Section VI we present our privacy evaluation experimental re-

sults, comparing our Client-Based Privacy Approach. Finally,

in Section VII we conclude the paper.

II. FEDERATED LEARNING AND SPLIT LEARNING:

BACKGROUND AND RELATED WORK

In this section, we give some background on Split learning
(SL) and Federated learning (FL), highlighting their architec-

ture’s advantages and limitations when used in isolation.

In a Split learning architecture [2] (Figure 1 left) a Deep

Neural Network is partitioned into two (or multiple) parts [14].

Each client runs the first partition of the Deep Neural Network

model (a few layers) while the second partition runs on a

single server, for example, at the edge of the network. During

the training phase, the first client sends the intermediate data

to a server in a so-called forward propagation; such forward

propagation is represented with a solid arrow in Figure 1

(left). During the gradient descent algorithm, the server sends

back to the client the value of the gradients (dashed arrow in

Figure 1 left) in the corresponding backward propagation. 1

Then, the next client starts the training on its data partition

as described before, so the architecture runs a sequential

algorithm. While this learning architecture has merits [2], it

1Gradient Descent is an optimization technique that is used to improve
deep learning and neural network-based models by progressively minimizing
a cost function.

Fig. 1: Layers partitioned in Neural Networks with Split (left)

and Federated (right) Learning. The numbers represent the

order of processing. The different types of lines show the

dataflow between computations.

Fig. 2: Drawback of Split Learning: Unbalance of data in each

Client and level of accuracy.

suffers from two main drawbacks. First, the training process

is sequential, leading to inefficiencies and under-utilization

of the computational resources. Second, the model may not

converge to an accurate model if the dataset in each Client

has unbalanced features (i.e., non-IID).

We illustrate this second drawback with an experiment

(Figure 2). In particular, we used the well-known MNIST

dataset [15], in which a neural network is trained to recognize

hand-written digits. We split such neural network among two

clients, with an unbalanced distribution of training set images

between the two clients: Client 1 runs the training process with

the majority of even digits while Client 2 has more odd digits.

We then defined a parameter λ to measure the percentage of

data unbalance on each client running the training process.

When the parameter λ approaches one, i.e., Client 1 has a

larger number of even digits, the accuracy of the Split learning

model decreases dramatically (Figure 2), as we expected. This

is because the machine learning model attempts to fit on two

datasets with very different features (captured by λ), and it

fails to converge to a correct single model.
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In Federated learning architectures [4] (Figure 1 right), the

entire deep learning model is sent to each client, that has an

amount of data. After each round, defined in FL, the clients

exchange the neural network weights with a server. This so-

called “parameter” server then computes and sends back to

the clients the average of such weights, and the process is

periodically repeated until the decentralized convergence pro-

cess terminates. An advantage of this architecture is scalability

in that each client can run in parallel. However, to train the

full model, clients may require computational power that is

hardly available at edge sites. Moreover, while the data is

local at every edge, the weights shared during the averaging

step can be used to reconstruct the source dataset. Prior work

has reported on this kind of attack [16] and [17]. We will

also use this averaging idea in our approach, but since there

are methods to defend against such attack [18], and our

approach does not share the weights over the public network,

this vulnerability is not present in our system.
Combining Split and Federated Learning. After intro-

ducing both architectures separately, we now discuss some

existing distributed techniques that merge Split Learning and

Federated Learning. We begin with SplitFed [19], a distributed

algorithm that combines the ideas of computing the weight

average, a characteristic of the Federated Learning architec-

ture, and the neural network split between client and server of

the Split Learning architecture. Each client starts the forward

propagation phase; the computation results are sent to the

server that completes the phase. SplitFed computes the for-

ward propagation of the server’s neural network sequentially,

choosing randomly the client’s output to use. The backward

propagation is computed within the server, and then the result

is backward-propagated to each client. Before updating the

clients’ weights, a (secure) server, called FedServer, computes

the average of the clients’ weights and then sends it back to

each client. One of the most notable drawbacks of the SplitFed

architecture is that the forward and backward propagation

process in the server is not scalable when the number of

clients grows. SplitFed assumes a single server or cluster with

sufficient capacity, which can become a bottleneck when the

number of clients grows. Furthermore, SplitFed may fail to

support latency-sensitive applications in WAN environments.
Another attempt to combine SL and FL is called Parallel

Split Learning (PSL) [3], whose architecture is shown in

Figure 3. Note the similar behavior in both SL and PSL. PSL

also splits the deep neural network into two parts. The first

part is sent to I different clients and the second to a single

server. After an initialization phase, all clients and the single

server exchange intermediate data and the gradients during

the training process. 2 Unlike a Split Learning architecture,

the training phase of PSL is parallelized (see Algorithm 1).

Despite such parallelism, PSL relies on only one server, which

may become the training process’s performance bottleneck. In

the worst case, the training may become sequential, assuming

2The notion of intermediate data was introduced in split learning [2] and
represents the activation result of the forward propagation inside the client’s
neural network.

significant speed gaps between clients. The server cannot

start the backward propagation phase until all clients have

completed their forward propagation phase. The problem may

be exacerbated as the number of clients scales up. Aside

from time bottlenecks, such a “semi-sequential” process at

the server may require an unsustainable amount of memory

to temporarily store the intermediate data from all clients,

especially when the clients are producing training data faster

than the server can consume them.

Another interesting architecture that has been proposed is

FedSL [20]. FedSL was designed to work with ordered data

sequences, such as text or time series. FedSL can train a

Machine Learning model such as a Recurrent Neural Network

(RNN) in a distributed fashion. Our proposed Federated Split
Learning architecture, which we describe in the next section,

was designed to generalize the FedSL approach by extending

its advantages to other ML tasks in which the training data

does not need to be an ordered data stream.

Privacy-Aware Centralized and Distributed Learning.
Prior work analyzed how to prevent inference on the neural

network, considering a model to be private if it does not

allow reconstruction or inference of either the dataset used

for training or the neural network itself. Despite based on a

centralized learning architecture, the closest solution to ours is

NoPeek, a recent algorithm introduced in [21]. NoPeek aims at

preserving the privacy of the centralized learning architectures.

NoPeek adds a privacy increment, called Distance Correlation
(DC) [21], to the Cross-Entropy. Cross-Entropy is a widely

popular loss function in machine learning. Applying NoPeek to

distributed settings may result in a loss of privacy gain. This is

because we would be forced to expose too much information to

the attacker. By design of the NoPeek approach, the Distance

Correlation (DC) increment is added to the edge server’s

loss function. This could be a potential leak of information.

For example, it would be readily possible to reconstruct the

original data having both the Distance Correlation value and

the intermediate data sent over the network to the server during

the training process. It would be desirable to force clients and

servers to use different loss functions to avoid such privacy

leaks.

Another line of work [22] uses the notion of Differen-

tial Privacy in learning. For example, the Pytorch Opacus

library [23], which we used in our evaluation, adds a Gaussian

noise, controlled by parameters like noise multiplier (ε), to the

neural network gradients to preserve the privacy of the training

data. Our implementation enables centralized approaches like

NoPeek or Differential Privacy to be deployed in distributed

learning architectures.

III. PRIVACY-OBLIVIOUS FEDERATED SPLIT LEARNING

Motivated by the previously discussed suboptimalities of

current distributed learning architectures, in this Section we

discuss our proposed Federated Split Learning (FSL), shown

in Figure 3 (Right). We distinguish three types of nodes in our

architecture: clients, edge servers, and parameter servers. We

use edge servers to differentiate from the PSL architecture in
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Fig. 3: Parallel Split Learning [3] [left]: clients send the intermediate data
to a single server (1). It computes the loss function and sends back to clients
weights’ gradient of the Neural network (2).
Federated Split Learning (our proposal) [right]: each pair of client and edge
server exchanges the intermediate data of the neural network and the gradients
(1,2); after the last batch of data (end of an epoch) owned by each client is
used for training, a parameter server averages the edge servers’ weights (3).

which a single logically centralized server is used. In FSL, the

deep neural network is logically split into two partitions. The

first partition containing the input layer of the learning model

is sent to a client, while the second partition runs within an

(edge) server.

We start by describing a Privacy-Oblivious Federated Split

Learning architecture (Algorithm 2), and we then compare

such version with Parallel Split Learning (PSL) [3], a related

hybrid architecture detailed in Algorithm 1. In our Federated
Split Learning, for each pair of client and edge server pro-

cesses, we start a forward propagation inside the client (line 7

of Algorithm 2). Then the client sends the intermediate data,

i.e., the activation results to its corresponding edge server (line

8), and the edge server continues the forward propagation

phase (line 9). After the edge server obtains its output, it

computes the value of the loss function (line 10) and it

starts the backward propagation (lines 11 and 12). When the

calculation of the gradients reaches the intermediate data, the

gradients are sent from the edge server to the client (line 13).

Finally, the privacy-oblivious FSL algorithm terminates the

backward propagation in the client with those gradients (line

14). When all pairs finish processing their batches of data,

the weights in the edge servers are averaged in a parameter

server3 and then sent back to each edge server (line 17).

We define all those steps starting at all clients as they begin

forward propagation until the averaging step finishes as one

epoch.

Remark. Most of the steps of Algorithms 1 and 2 are
similar; however, a key difference between the two is the
interaction between each client and server. In Algorithm 1,
each client runs the forward propagation and sends the inter-
mediate data in parallel (lines 8-9). When the server completes
processing the outputs of all clients, the gradients are sent

3In some machine learning library, what we call parameter server is also
called “worker”.

Variable Name Meaning in Algorithm
Li Neural network layer i
Bi Batch of data in client i

labelsi Labels in client i
Interm ri intermediate data in client i

Lossi Loss function result in server i(FSL)
Loss Loss function result in server(PSL)

gradienti loss function gradient in pair i(FSL)
gradient loss function gradient(PSL)
gradient′i gradient during backward propagation in pair i (FSL)
gradient′ gradient during backward propagation (PSL)

DC Distance Correlation function [21]
frequency Frequency to call Distance Correlation

ε Random Noise (e.g. Laplace)

Function Name Meaning in Algorithm
Fc,i Forward propagation in client i
Fs,i Forward propagation in edge server i (FSL)
Fs Forward propagation in edge server (PSL)

FT
c,i Backward propagation in client i

FT
s,i Backward propagation in edge server i (FSL)

FT
s Backward propagation in edge server (PSL)
G Calculate Gradient of Loss function

Loss funcs Loss function to be called in each server
Loss funcc Loss function to be called in each client

Constant Name Meaning in Algorithm
I Number of clients
N Number of Neural Network layers

TABLE I: Notation used in the FSL (Federated Split Learning)

and PSL (Parallel Split Learning) algorithms.

to each corresponding client to terminate the backward step
(lines 17 and 18).

Unlike PSL, with our proposed FSL architecture, multiple

pairs of clients and edge servers could simultaneously run

training or inference processes. Each edge server only needs

to work with its client, decoupling the performance dependen-

cies on other clients. Moreover, the network communication

overhead caused by the transmissions between a client and

its edge server is small since we do not need to transfer the

training datasets. Furthermore, since FSL does not require

sharing clients’ neural network weights, it is more resilient

against some inversion attacks. Aside from these benefits, one

potential limitation of the Federated Split Learning architec-

ture is the higher overhead with respect to PSL due to the

additional weight averaging step (Algorithm 2, line 17).

We have discussed the privacy-oblivious FSL (Algorithm

2). It may be desirable to preserve privacy with respect to the

data exchanged between clients and edge servers during the

intermediate steps of the training phase. In the next section,

we describe a modification of Algorithm 2 to account for such

privacy constraint.

IV. PRIVACY-AWARE FEDERATED SPLIT LEARNING

To describe the design of our Privacy-Aware Federated Split

Learning, we first detail the privacy attacker model and then

explain the drawbacks of existing privacy-preserving methods

designed for distributed learning architectures [21]. In the

rest of this paper, we denote the machine learning models

as learner and the adversary as attacker.
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Algorithm 1 Parallel Split Learning [3] (PSL)

procedure PSL(Loss funcs)

// split layers in clients and server.

// randomly initialize weights of layers.

results = array of Interm ri
gradient′ = array of gradients

for epoch in epochs do:

in parallel for clienti ∈ clients do
Interm ri ← Fc,i(Bi)
Send((Interm ri, labelsi), Server)
results.append(Interm ri)

end for
output ← Fs(results)
Loss ← Loss funcs(output, labels)
gradient ← G(Loss)
gradient′ ← FT

s (gradient)
in parallel for clienti ∈ clients do

Send(gradient′i, clienti)
FT
c,i(gradient

′
i)

end for
end for

end procedure

Algorithm 2 Privacy-Oblivious Federated Split Learning

(FSL)

procedure FSL(Loss func)
// split layers in clients and edge servers.

// randomly initialize weights of layers.

for epoch in epochs do:

in parallel for each clienti, edge serveri do
while clienti has new data to train on do

Interm ri ← Fc,i(Bi)
Send((Interm ri, labelsi), edge serveri )

outputi ← Fs,i(Interm ri)
Lossi ← Loss funcs(outputi, labelsi)
gradienti ← G(Lossi)
gradient′i ← FT

s,i(gradienti)
Send(gradient′i, clienti)
FT
c,i(gradient

′
i)

end while
end for
Avg(Weights layers of edge servers)

end for
end procedure

A. Privacy Attacker Model and Assumptions

Let us consider an attack on the distributed neural net-

work, whose goal is to reconstruct the original data from

the intermediate data that a client sends to the edge server

during the training phase. We assume that an adversary can

intercept the unencrypted intermediate data that a client is

sending to the edge server4. During the training phase, the

attacker’s goal is to reconstruct the source data based on the

data observed at each intermediate step of the training. To

perform such reconstruction, the attacker needs a machine

learning model that learns the source data used in the training

phase. An example of such a machine learning model is an

encoder-decoder neural network [26]. We also assume that the

architecture of the neural network owned by each client is

known to the attacker. In particular, the attacker neural network

is constructed in such a way to reconstruct the data, using

the layers of the client(s)’ neural network as encoder. We

also assume that the attacker’s neural network is trained on

a similar dataset.

B. Our Solution: Client-Based Privacy in Distributed Setting
via Distance Correlation

In this subsection, we describe our privacy-preserving dis-

tributed learning solution. We assume that both client and

server processes run on different machines, and the data during

the training phase is exchanged over a computer network.

To overcome the limitation caused by a single global loss

function and bring privacy awareness into distributed settings,

we propose a new technique called Client-Based Privacy
Approach. The intuition behind such an approach is that we

want to compute two different loss functions. The first one is

privacy-aware (e.g., DC and differential privacy) and runs only

in clients. A second global loss function is computed on the

server and propagates across both client and server during the

training process. In the following text, we discuss the distance

correlation loss function using the DP-SGD algorithm [22] in

the clients. We named them as Client-Based Privacy Approach
via DC and Client-Based Privacy Approach via DP.

Our design is inspired by the NoPeek approach [21] but

applied in distributed settings; that is, we use a loss function

called Distance Correlation [21], to measure how the source

data is different from the intermediate data.

This approach is described in Algorithm 3. By controlling

how often the DC function is minimized and the weights

updated, we can tune the accuracy-privacy tradeoff.

Note how, unlike NoPeek, our solution minimizes two loss

functions: the Cross-Entropy computed within the server, and

the Distance Correlation, calculated in the client, indepen-

dently. By increasing the frequency at which both loss func-

tions are recomputed (Algorithm 3, line 8), we can increase

privacy, increasing the distance between the intermediate re-

sults and the original data (de facto adding noise to the training

process). The Distance Correlation solves an optimization

problem that maximizes the diversity between the original

training data and the intermediate result.

Analyzing further Algorithm 3, we note that lines 8-15 show

the Cross-Entropy computation and lines 17-19 show the steps

used to calculate the Distance Correlation loss. Note how we

4An authentication protocol [24], [25] is needed before communications
between entities take place to enhance the privacy guarantee, but that is
not the focus of this paper. Here we assume the adversary can bypass the
authentication process and read the data flowing over the wire.

254

Authorized licensed use limited to: BOSTON UNIVERSITY. Downloaded on August 09,2022 at 19:15:32 UTC from IEEE Xplore.  Restrictions apply. 



specify the learning frequency using the Distance Correlation

in the client in line 8.

Algorithm 3 Privacy Aware FSL with Distance Correlation

procedure FSL PA(Loss funcs, Loss funcc = DC)

// split layers in clients and edge servers.

// randomly initialize weights of layers.

for epoch in epochs do:

in parallel for each clienti, edge serveri do
while clienti has new data to train on do

Interm ri ← Fc,i(Bi)
if (epoch mod frequency) == 0 then

Send((Interm ri, labelsi),
edge serveri)

outputi ← Fs,i(Interm ri)
Lossi = Loss funcs(outputi, labelsi)
gradienti ← G(Lossi)
gradient′i ← FT

s,i(gradienti)
Send(gradient′i, clienti)
FT
c,i(gradient

′
i)

else
Lossi ←

Loss funcc(data, Interm ri)
gradienti ← G(Loss func)
FT
c,i(gradienti)

end if
end while

end for
Avg(Weights layers of edge servers)

end for
end procedure

V. EVALUATION OF PRIVACY-OBLIVIOUS HYBRID

FEDERATED-SPLIT LEARNING ARCHITECTURES

In this section, we analyze the performance of our proposed

Federated Split Learning (FSL) architecture, compared to

the existing Parallel Split Learning (PSL) [3], detailed in

Figure 35. Note that in our FSL architecture, each client is

paired with an edge server, while in Parallel Split learning,

we only have one server. In particular, we first describe the

experimental setup (Subsection V-A), and then we discuss

the metrics and methodology used (Subsection V-B). Finally,

we show the performance evaluation in terms of training

completion time (Subsection V-C1), memory usage (Subsec-

tion V-C2), and learner accuracy (Subsection V-C3).

A. Experimental Setup and Use Case

To analyze the approaches introduced in the previous sec-

tion, we used a well-known machine learning application: a

digits classification task, using the MNIST dataset [15] 6 with

the Lenet Neural network [27]. We tested our privacy-oblivious

5We did initially consider the case of a single ML process on a single
machine to ensure that the ML model converges before distributing the
computation, but this case is not the focus of this paper.

6In this paper, we show results for only one dataset due to lack of space.

distributed learning architecture with a simulation campaign

and a prototype deployed over several bare metal machines

within the Chameleon Cloud testbed [28]. Each bare metal

instance reserved had 48 compute cores, 187 GB memory,

and one NVIDIA RTX6000 GPU.

B. Metrics and Methodology

We compare the PSL and FSL in terms of training time

evaluation (Subection V-C1). We move to an analysis of

the memory consumption (Subsection V-C2), and finally, we

study the learner accuracy of these two architectures (Subsec-

tion V-C3).

Empirically, we have determined that at the 20th epoch,

both distributed hybrid architectures PSL and FSL with three

different numbers of clients converge (Figure 5), i.e., after that,

each additional epoch enhances the learner accuracy less than

1%. Based on this observation, we define some metrics that

are used in the following section.

We define the training time as the time needed to compute

20 epochs of training by a client or a server.

By memory consumption, we mean the maximum (GPU)

memory allocated during the training process.

Finally, we plot the learner accuracy of both architectures,

varying the number of client and server pairs.

We evaluate the performance of both architectures by vary-

ing the number of clients from 20 to 500 and changing the

available data at each client.

The first two subsections show our results under a data

partition strategy designed to isolate the advantage of FSL

over PSL only thanks to the parallelism of pairs of client and

edge server. The expectation is that with more clients and

fewer data in each client, both architectures would reach a

lower learner accuracy; we want to assess how severe such

degradation could be, so we evaluate the training time and the

memory utilization (Figure 4).

C. Evaluation Results

1) Training Time Evaluation: In our privacy-oblivious
setup, we evaluated the performance in terms of training time.

In particular, in Figure 4 (left), we can see how the training

time of FSL for the (edge) servers (during the 20 epochs)

is shorter, and so better, than PSL for a different number of

clients.

Take-home message. The training time in our model is
also consistently shorter at the client-side, compared to the
Parallel Split learning architecture. We consider the reason to
be the overall more severe resource contention in the PSL

architecture.

Those two observations show that the FSL can better

parallelize training jobs among clients and edge servers.

The FSL architecture can be especially advantageous as the

number of clients increases. In the PSL architecture, the

single server could become a significant bottleneck during

training.
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Fig. 4: Left: client’s and server’s total time at each epoch;

Right: Maximum reserved and allocated GPU memory. Note:

we randomly divided the full dataset to 500 partitions and for

each configuration of 20, 100 and 500 clients, we pick the 20,

100 or 500 from the 500 partitions, respectively.

2) Memory Consumption Evaluation: In this experiment,

we measure the maximum GPU memory reserved during

the training process for both processes, those running on the

clients and those running on the servers of the distributed split

architectures (Figure 4 Right). One important implementation

detail is that if some memory has been reserved by the

Caching Allocator of the PyTorch library, it is not available

for other GPU applications. This is why we use the Caching

Allocator to measure the memory demand of our architectures.

Take-home message Comparing the memory usage under a
different number of clients, we note how the maximum memory
allocated in our FSL is lower than that in PSL. We also

note that in Parallel Split Learning, the maximum memory

allocated or reserved is reached when all the intermediate data

from clients stay in the server queue waiting to be processed.

Such memory value depends on how many clients we have in

the system, the size of the gradients, and the computational

graph. Our analysis refers to a worst case, but on average, the

workloads may not be bounded by the available memory.

Note also that, since adding more clients impacts the

propagation graph of the training process, we expect to see

a larger memory increase as the number of clients grows. We

conclude that FSL is more scalable than PSL since it consumes

less memory when there are more clients.

3) Learner Accuracy Evaluation: In the previous subsec-

tions, we have shown how FSL is faster than PSL, while, at

the same time, it has a lower worst-case memory utilization.

This is because FSL can parallelize the training jobs better

than PSL. We now show a tradeoff analysis obtained from

comparing the two architectures.

Fig. 5: Learner Accuracy (privacy oblivious) with different

number of clients. We randomly divided the full dataset to 20,

100 and 500 partitions, for each configuration of 20, 100 and

500 clients respectively.

Consider Figure 5. We evaluate the accuracy of both ar-

chitectures under a different number of clients. Given the

Neural Networks and the datasets that we used, both FSL and

PSL have high accuracy (from 87% to 93%) as long as each

client has enough data to train the machine learning model. In

our experiments, we used 60, 000 images evenly distributed

across 20, 100, or 500 clients. The data used for training

was Independent and Identically Distributed (IID) across the

clients.

With a fixed training dataset of 60, 000 images, we can see

a significant drop in the test-set accuracy in both architectures.

While with 20 or 100 clients, the accuracy of PSL is slightly

higher than FSL, with 500 clients, the accuracy is equivalent.

This result shows that there is a tradeoff between accuracy

and resource demand. The reason for such lower accuracy of

FSL over PSL is that the neural network weight averaging

step of our FSL, unlike FedAvg in Federated Learning, only

averages the weights in edge servers after each training epoch

to guarantee some privacy level on the training data. There

is hence a tradeoff between privacy and accuracy. In the next

section, we present the results of our experiments for privacy

guarantees.

VI. EXPERIMENTS FOR PRIVACY-AWARE FEDERATED

SPLIT LEARNING

In this set of experiments, we compare the privacy-

preserving properties of FSL versus PSL. By privacy, we mean

the ability to reconstruct the training dataset (in our case,

images) under the attacker model discussed in Section IV-A.

We evaluate the privacy-preserving properties using three

implementations of both FSL and PSL. The first implemented

both distributed architectures on a single machine, using the

PyTorch library. In such settings, we analyzed the impact

of our architecture when using the NoPeek [21], a logically

centralized privacy-preserving algorithm. In particular, we test

the following hypothesis: Is the NoPeek algorithm sufficient
to guarantee training data privacy in a distributed learning
setting? Our second implementation was instead logically
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Fig. 6: First and Second row: batch of 32 original images and

output images of the auto-encoder Neural Network. Third row:
(poorly) reconstructed batch images.

distributed; that is, we used several clients and edge servers

with processes. We implemented the Client-Based Privacy

Approach algorithm, our privacy-preserving approach, using

two techniques, the Distance Correlation function, and the Dif-

ferential Privacy. The third implementation is a real distributed

version of the second one. In all our implementations we used

PyTorch, PySyft [12] and the PyGrid [13] libraries.

To evaluate the privacy-preserving properties of our

two-hybrid split-federated learning architectures under

observation, we used our Client-based privacy approaches. In

the rest of this section, we first detail our evaluation settings

and then summarize our findings.

A. Evaluation Setup

1) Training the Attacker’s Auto-Encoder Neural Network:
Figure 6 shows the results obtained from the reconstruction

attack. We used Figure 6 to illustrate the steps of our ex-

periments and evaluate how different attacker settings may

impact the reconstruction results. To train the attacker’s auto-

encoder neural network, we used different random subsets of

training data, producing different reconstruction results. Then,

we computed the attack resilience τ , which represents the

probability that the attacker misclassifies the images based on

the reconstructed source data, and it is formally defined in

Section VI-B.

In Figure 6, we report the results obtained with seed no.

72. Each seed specifies a random subset of data for training

the attacker’s NN. In the first row of images in Figure 6 we

report the original batch of images at the 50th epoch of the

auto-encoder training. The second row shows how the output

obtained from the decoder partition of the attacker’s Neural

Network is clear and well-reconstructed, indicating that the

attacker neural network has been adequately trained. Finally,

the third row shows the images (poorly) reconstructed by the

attacker based on the intermediate data of the learner.

Running several experiments, we found that different seeds,

i.e., different subsets of the data used for training, lead to

significantly different reconstructions results. To quantify the

reconstruction ability of the attacker, we measure the attack

resilience τ . In the rest of this section, we detail our findings.

2) Privacy Evaluation: Experimental Settings and Method-
ology: To simulate a realistic use case, we train the attacker’s

auto-encoder on the EMNIST-letters dataset [29] that has

similar features as the source MNIST dataset of the learner.

The attacker is hence capable of distinguishing many but not

all the features in the source dataset.

To obtain an upper bound on the attack resilience, we used

a locally trained model that classifies all the reconstructed

images by the attacker. This experiment aims to evaluate the

frequency at which the attacker can reconstruct the source

images across different training conditions.

In particular, we first train the Lenet neural network [27]

with the first several layers in the client and the remaining part

running at the edge server, based on the full MNIST dataset.

While the training process is running, we saved the inter-

mediate data between clients and edge servers for each batch

of data at each epoch so that our attacker neural network can

try to reconstruct the original source file (that we wish to

keep private) based on the saved intermediate files. Next, the

attacker first trains on its auto-encoder on a subset of shuffled

images from the EMNIST-letters dataset. We used an auto-

encoder to reconstruct the first row in Figure 6; we show the

results in the second row. We then reconstructed the source

images from the intermediate data with this trained model. The

third row in Figure 6 are examples of those reconstructions.

Finally, we compute the predictions and verify the correctness

of the reconstructed images with the trained local learner’s

model. The random seed has a significant impact on the

reconstruction results; in the third row of Figure 6, we repeat

our experiment multiple times with different seeds to compute

an average accuracy that illustrates the privacy benefits of

our proposed architecture augmented with our Client-Based

Privacy Approach.

B. Privacy Evaluation Metrics and Parameters

The metrics that we use in this section are Learner accuracy

and attack resilience. We define the attack resilience τ as

follows:

τ = 1− ‖correct‖
‖reconstructed‖ = 1− c

r
, (1)

where c = ‖correct‖ denotes the amount of reconstructed

data being correctly classified by the learner neural network,

and r = ‖reconstructed‖ denotes the amount of total re-

constructed data. For example, τ = 0 signifies no resilience

to the attack since the reconstructed images have the same

prediction result of the source images with the trained learner’s

model. Note that the definition of τ can be generalized to

learning objectives different than classification, for example,

to regression problems.

The parameters that we tuned for the experiments are DC

frequency for the Client-Based Privacy via Distance Corre-
lation (DC) and noise multiplier ε for Client-Based Privacy
via Differential Privacy (DP) over the full learner model. The
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Fig. 7: Learner accuracy and attack resilience (τ ) with 20

clients for Client-Based Privacy Approaches (via DC (top) and

via DP (middle)) and DP-SGD on the global learner model

(bottom). Our FSL with both client-based policies guarantee

high-level of privacy and accuracy.

DC frequency indicates how often we train the client with the

DC loss function. The noise multiplier is used to specify the

magnitude of each Gaussian noise we added in the gradient

during backward propagation (as required by the Differential

Privacy algorithm).

C. Approaches

To evaluate the privacy guarantee of the architectures under

consideration, we implemented them with our Client-Based

Privacy via DC Loss function that alternates the Distance

Correlation (DC) Loss Function with the computation of

the Cross-Entropy. Then, we compare our FSL with Client-

Based Privacy via DP applied only within each client. Such

an algorithm, also known as DP-SGD consists of changing

the direction of the Stochastic Gradient Descent using a

random perturbation ε. Such a noise introduced into the model

also introduces noise into the intermediate data so that the

reconstruction of source data (i.e., images) becomes harder.

We implement Client-Based Privacy via DP by replacing line

14 in Algorithm 2 with the line in Algorithm 4.

Finally, we evaluated the privacy obtained by implementing

DP-SGD within the client and the server, that is, adding the

noise ε also to the backward propagation phase.

Algorithm 4 Client-Based-DP-Backward-Propagation

1: FT
c,i(gradient

′, ε)

D. Privacy Evaluation Results

1) Privacy Evaluation using NoPeek Approach: In this

experiment, we evaluate the privacy of our architectures under

consideration using the NoPeek algorithm [21] within our local

implementation of both FSL and PSL architectures. The results

are shown in Table II. With the NoPeek method, we can see

how we obtain a very high level of privacy regardless of the

used learning architecture (both FSL and PSL architectures

reach higher than 95% learner accuracy). Moreover, the attack

resilience τ based on the intermediate data generated with

the two models is above 97%. Thus, the NoPeek algorithm

would give excellent attack resilience and accuracy results

(a desirable outcome). However, implementing the NoPeek

algorithm in real distributed settings is impractical. To do

so, we would need to compute the loss function by sending

the distance correlation function over the network, therefore

risking a loss of privacy. Motivated by this limitation, in the

next section, we tested other approaches that are more suitable

for a distributed learning architecture. Table II only shows the

effectiveness of the Distance Correlation loss function used in

NoPeek, which we then adopt to realize our distributed client-

based privacy approach.

cases PSL FSL
attack resilience(τ ) 0.9733 0.9837

learner accuracy 0.9702 0.9614

TABLE II: NoPeek stats with 20 clients after finishing 20th

epoch of learner.

2) Evaluation Result using Client-Based Privacy via Dis-
tance Correlation: Consider Figure 7 (top). The left y-axis

shows the learner’s classification accuracy, and the right y-

axis shows the attack resilience. The x-axis indicates the DC

frequencies used. Notice that a value of DC frequency = 0
signifies that a DC loss was never computed.

From the experiments in Figure 7 (top), we note that the

attack resilience grows with the DC frequency. Note also how

the trends of PSL and FSL architectures are different. When

the DC Frequency increases from 10 to 20, FSL has a higher

learner accuracy while the attack resilience is comparable to

the one achieved by PSL. In such DC frequency range, FSL

keeps a learner accuracy at about 95%, while the accuracy of

PSL decreases to about 80%. Although the attack resilience

of PSL reaches 0.9, which means 90% of the reconstructed

images were incorrectly classified by the attacker, we notice

that at the same time, the learner accuracy drops to zero.

This means that the PSL cannot classify the images anymore

because we make the intermediate data different from the

source data. So the intermediate data lost the essential features

necessary for the classification. We can see a similar behavior

for the FSL algorithm when we increase the frequency to 40.

However, we note that FSL gives us a more comprehensive

range of DC frequency to get both good learner accuracy and

good attack resilience, i.e., FSL beats PSL in DC frequency

range of [10, 35], while PSL beats FSL only at DC frequency
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of 5.

Take-home message. We conclude that FSL augmented with
our Client-Based Privacy Approach via DC can reach a higher
learner accuracy and provide good privacy guarantee more
stably than that of PSL.

The reason is that FSL is more stable: in PSL, we have only

one server, and so during the Learner training, PSL computes

only one loss function. The weights in the server’s neural

network would be affected by the changes in clients’ weights

caused by Distance Correlation epochs. This means that the

Cross-Entropy loss would consider the sum of all changes

introduced by DC in different clients. On the contrary, in

FSL, we average all the loss functions computed by each edge

server. So each Cross-Entropy loss in the edge server only

considers the changes introduced by Distance Correlation in

the pairing client. So, FSL is more stable and easy to tune. On

the other hand, PSL is prone to noise introduced by DC loss,

i.e., the accuracy of PSL can drop to zero quickly if we do not

carefully tune the parameters to overcome this disadvantage.

3) Privacy Evaluation using the Differential Privacy Ap-
proach: In this subsection, we evaluate our Client-Based

Privacy Approach via DP instead of DC loss and compare

it with a commonly used DP-SGD algorithm [22] used in the

full learner model.

We summarize the results in Figure 7 (middle and bot-

tom). As in our prior experiments, the left y-axis shows the

learner’s classification accuracy, and the right y-axis shows

the attack resilience. The x-axis shows the noise multiplier,

the ε parameter, representing how much noise we add to the

gradients during the training process. This noise is added

to randomly change the direction of the gradient descent to

preserve source data privacy. A value of zero on the x-axis

indicates that the Differential Privacy algorithm is not used

in that experiment. Figure 7 (middle) shows the experiments

where the Differential Privacy algorithm is applied in the

clients only. We can see that the learner accuracy is high and

similar to the case without privacy approaches, while the attack

resilience is a little higher than the privacy-oblivious case.

Comparing with PSL, for most data points, FSL has similar

learner accuracy and attack resilience. Also, the level of attack

resilience reached with our Client-Based Privacy Approach

via DP is lower than the one in the Client-Based Privacy

Approach via DC for both architectures. The difference is

that Differential Privacy adds random noise to the client’s

gradients. In contrast, Distance Correlation adds noise in

the gradients’ direction to maximize the difference between

source data and intermediate data. In this way, the latter

approach can guide the descent of the gradients in a better

way, maximizing an optimization function.

Take-home message. To conclude, we have found that
Client-Based Privacy Approaches can keep source data
private, regardless of the distributed learning architecture
employed.

We now compare the privacy guarantee when applying

DP-SGD in the global learner — Figure 7 (bottom). We note

that FSL does not work well with this privacy approach.

The learner accuracy drops to about zero for the same

noise multipliers used in the previous experiment. This set

of experiments show a drawback of our FSL architecture.

The averaging step would balance out the random noise

introduced to weights in the edge servers by the gradients

during the training epochs. Notice that unlike FedAvg in

federated learning, our averaging step only averages the

weights in the edge servers and leaves the client’s weights

intact for privacy-preserving purposes. So, the resulting

model may not be in the converged state right after the

averaging step, especially when applying a bigger noise

multiplier. In our FSL architecture, we do not want to make

the weights too different among edge servers in general

(either the differences come from source data or random

noise), and modifying the weights in small client’s models

is more efficient. Furthermore, this discussion also illustrates

why FSL consistently achieves a little lower learner accuracy

than PSL in all experiments.

Take-home message. To conclude, we can see that the
previously described Client-Based Privacy Approach via DC
can reach better performance in terms of both privacy and
accuracy for both the architectures than the Client-Based
Privacy Approach via DP. Also, our Client-Based Privacy
Approach is the only efficient algorithm to keep source data
private in FSL architectures.

VII. CONCLUSION

Recently, distributed machine learning techniques such as

Federated and Split Learning have been proposed in isolation

to better scale machine learning jobs and to preserve user and

data privacy. Both of these distributed learning architectures

have merits but also drawbacks. In this paper, we design a

hybrid Federated Split Learning architecture that can get the

best of both while limiting the drawbacks. We extensively

evaluated our proposed architecture with a tradeoff analysis

with simulations and a prototype evaluated over GPU-based

clouds. In particular, we assessed the learner accuracy, latency,

memory performance, and privacy guarantee of Federated

Split Learning, comparing it to a recently proposed hybrid

architecture called Parallel Split Learning. Our result shows

how our proposal is more efficient in terms of latency and

memory utilization. We also evaluated several privacy policies

and concluded that under our Client-Based Privacy Approach,

the Distance Correlation loss function achieves better privacy

regardless of the learning architecture used. Furthermore, we

assessed how, in some specific setups and prediction accuracy,

Differential Privacy (DP-SGD) could be a valid policy to

guarantee the accuracy of the learning model and resilience

to privacy attacks.
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