978-3-9819263-6-1/DATE22/©)2022 EDAA

Algorithm-Hardware Co-Design for Efficient Brain-Inspired
Hyperdimensional Learning on Edge

Yang Ni!, Yeseong Kim3*, Tajana Rosing? and Mohsen Imani'*

MUniversity of California Irvine, ?University of California San Diego, 3Daegu Gyeongbuk Institute of Science and Technology

*Corresponding authors: yeseongkim@dgist.ac.kr; m.imani @uci.edu

Abstract—Machine learning methods have been widely utilized to
provide high quality for many cognitive tasks. Running sophisticated
learning tasks requires high computational costs to process a large amount
of learning data. Brain-inspired Hyperdi ional Computing (HDC) is
introduced as an alternative solution for lightweight learning on edge
devices. However, HDC models still rely on accelerators to ensure real-
time and efficient learning. These hardware designs are not commercially
available and need a relatively long period to synthesize and fabricate
after deriving the new applications. In this paper, we propose an efficient
framework for accelerating the HDC at the edge by fully utilizing the
available computing power. We optimize the HDC through algorithm-
hardware co-design of the host CPU and existing low-power machine
learning accelerators, such as Edge TPU. We interpret the lightweight
HDC learning model as a hyper-wide neural network to take advantage
of the accelerator and machine learning platform. We further improve the
runtime cost of training by employing a bootstrap aggregating algorithm
called bagging while maintaining the learning quality. We evaluate the
performance of the proposed framework with several applications. Joint
experiments on mobile CPU and the Edge TPU show that our framework
achieves 4.5x faster training and 4.2x faster inference compared to
the baseline platform. In addition, our framework achieves 19.4x faster
training and 8.9 x faster inference as compared to embedded ARM CPU,
Raspberry Pi, that consumes similar power consumption.

I. INTRODUCTION

With the emergence of the Internet of Things (IoT), many ap-
plications run machine learning algorithms to perform learning and
cognitive tasks [1]. Examples are smart homes, smart cities, smart
manufacturing, and smart transportation. Today’s systems typically
rely on sending all the data to the cloud to complete learning
and training, which leads to a significant communication cost. This
communication cost can be eliminated by scaling the learning tasks
in a distributed fashion where different devices collect data. Edge
computing tries to realize such a distributed computing paradigm
by bringing the computation closer to the location where the data
are generated [2], [3]. A mainstream of the research is federated
learning [4] that trains a central model over multiple devices. However,
these techniques use complex algorithms, e.g., Deep Neural Networks
(DNNs), which require billions of parameters and many hours to train
in a powerful and reliable computing environment [5S]—[7]. Considering
memory and resource limitations of embedded devices on edge, which
also have potential issues of network noises and hardware failure due
to the unstable nature of IoT systems, current computing environments
are still far from real-time learning [8].

To better deploy deep learning applications to the edge environment,
recent efforts have focused on the energy-efficient accelerator designs,
e.g., Eyeriss [9] and UNPU [10]. Google also releases its standardized
DNN accelerator at the edge, i.e., the Edge TPU. However, they mainly
target DNN inference and thereby cannot handle the dynamics of
many IoT practices, which require model updates frequently to follow
the rapidly changing inputs. DNN training, however, heavily relies on
more powerful platforms like cloud servers. Thus, a lightweight model
design is needed to enable training at the edge.

In contrast to existing machine learning algorithms, the human brain
can train effortlessly and efficiently without much concern of noisy
and broken neuron cells [11]. To more closely model the human brain,
earlier researchers proposed HyperDimensional Computing (HDC)
as an alternative computing method, which mimics important brain
functionalities towards high-efficiency and noise-tolerant computa-

tion [12], [13]. HDC is motivated by the observation that the human
brain operates on high-dimensional representations of data. In HDC,
objects and data are thereby encoded with high-dimensional vectors,
called hypervectors, which have 10,000 or more elements. HDC can
then perform various learning tasks with computation in the high
dimensional space. HDC is well suited to address learning on edge
systems as HDC models are computationally efficient to train [14]—
[17], offer intuitive and human-interpretablity [18], provide strong
robustness to noise [19], [20], and support lightweight privacy [21],
[22]. These features make HDC a promising solution for today’s
embedded devices with limited storage, battery, and resources, as well
as embedded devices that often depend on the unreliable source of
battery.

To exploit the sparsity and orthogonality of high-dimensional space,
HDC operations are defined over long vectors with thousands of
elements, called hypervectors. Therefore, HDC requires many number
of multiplication and addition operations, which are significantly
costly for today’s low-power platforms. To ensure fast HDC operation,
most prior works rely on ASIC or emerging hardware acceleration.
However, these hardware designs are not commercially available and
need a relatively long period to synthesize and fabricate after deriving
the new applications. As such, to ease the deployment of HDC in the
real world, we need a framework solution to run HDC on a highly
parallel but general-purpose platform.

In this paper, we deploy HDC by exploiting and reusing readily
available and standardized DNN accelerators, which are already in
mass production. Particularly, we choose Google Edge TPU since it
works closely with one of the most widely-used machine learning
frameworks, i.e., TensorFlow (TF) [23]. We propose a framework
for efficient acceleration of the HDC in the edge environment by
optimizing its algorithm to fully utilize the low-power Edge TPU as
well as the host CPU. The main contributions of the paper are listed
as follows:

« We propose a framework to efficiently perform HDC by optimiz-
ing its algorithm via co-design of CPU and TPU procedures at
the edge. We interpret the lightweight HDC learning model as a
hyper-wide neural network to take advantage of the accelerator
and machine learning platform. Our framework maps the HDC
model to TensorFlow that works seamlessly with the Edge
TPU. The bulky matrix operations in HDC efficiently utilize the
hardware parallelism. We also explore how dataset parameters,
e.g., the number of input features, influence the performance of
our framework on the Edge TPU.

o We further accelerate the training runtime on the host CPU by
employing the ensemble methods called bagging. We optimize
the HDC training algorithm towards the host CPU since training
class hypervectors, i.e., weight updates, is not supported by
edge accelerators. The optimized algorithm accelerates the HDC
training runtime on the CPU by reducing the overall computation
costs. We present a training method employing the bootstrap
aggregating algorithm, i.e., bagging. It utilizes multiple learners
for a consensus-based prediction, which relaxes requirements for
the quality of each learner. Using the ensemble method, we can
reduce the training iterations and the hypervector width for each
model, which leads to faster HDC learning. More importantly, our
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Fig. 1: HDC training and inference procedures with acceleration
provided by our framework

method still achieves high-quality results with similar inference

accuracy.
We evaluate the performance of our proposed framework using five
large-scale datasets. Our method significantly improves the train-
ing/inference runtime of HDC on low-power edge platforms. We
further improve the runtime cost of training by employing a bootstrap
aggregating algorithm called bagging while maintaining the learning
quality. We evaluate the performance of the proposed framework with
several applications. Joint experiments on mobile CPU and the Edge
TPU show that our framework achieves 4.5 x faster training and 4.2 x
faster inference compared to the baseline platform. In addition, our
framework achieves 19.4x faster training and 8.9x faster inference
as compared to embedded ARM CPU, Raspberry Pi, that consumes
similar power consumption. We will provide a fully open source
library of our framework based on TensorFlow.

II. RELATED WORK

HDC, inspired by the large neural circuits inside the human
brain, is both efficient in the calculation and robust against noise.
Recent researchers have shown those advantages in multiple HDC
applications, e.g., gesture/object detection [24], [25], DNA pattern
matching [26], [27], regression [28], and manufacturing [29], and
clustering [30]. Recently, an increasing number of researchers focused
on the acceleration of HDC utilizing the parallelism of its hardware-
friendly operations. Multiple hardware platforms have been used to
accelerate the training and inference process. However, this simulated
design is not available as a physical chip due to the high manufacturing
cost. In this paper, we present an HDC acceleration framework based
on a readily available low-power platform, i.e., Google Edge TPU
accelerator.

Edge TPU is one of many accelerators that focus on low-power,
highly efficient computation to satisfy the increasing need for compu-
tation in the edge environment. The computation power of the Edge
TPU lies in its relatively large matrix multiplication unit (MXU),
which adopts a spacial architecture called the systolic array. This
architecture efficiently reuses all the inputs by pumping them through
each processing element [31]. For standardized accelerators like the
Edge TPU, Intel also released their own Movidius VPU [32]. Another
example is Eyeriss [9], an ASIC-based experimental accelerator that
utilizes a spatial architecture for minimal data movements with an
energy-efficient dataflow. All of them target low-power scenarios and
support several wide-used machine learning frameworks. Most of the
accelerators at the edge target traditional NN tasks. For example, the
Edge TPU only officially supports NN inference; however, in our
work, we accelerate the HDC using a co-design approach over both
Edge TPU and host CPU.
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Fig. 2: Interpretation of HDC as a wide NN: base hypervectors and
class hypervectors map to hidden layer weights

III. HYPERDIMENSIONAL COMPUTING AT THE EDGE

Figure 1 shows an overview of our proposed framework for acceler-
ating HDC training and inference on Edge TPU. During both training
and inference tasks, our key aim is to map the HDC operations to valid
DNN-like models such that they can be accelerated by low-power
Edge TPU. For training, base hypervectors are generated randomly
using the normal distribution. Then, our framework takes samples from
the training dataset and encodes them on Edge TPU. These encoded
hypervectors are sent to the host CPU for class hypervectors update.
For inference, our framework is based on an inference neural network
model with its parameters determined by trained class hypervectors
and base hypervectors. The model is loaded to the accelerator and takes
samples from the testing dataset. Our framework completely maps
the inference process to Edge TPU, enabling real-time and efficient
prediction.

A. Mapping the hyperdimensional computing to Edge TPU

Figure 2 shows how three major operations in HDC, i.e., input

vectors encoding, class hypervectors update, and classification, are
mapped to a three-layer wide neural network. First, the three-layer
network is sliced in half. The first part of the network includes the
input layer with n nodes and the wide hidden layer with d nodes, and it
maps the inputs to higher dimensions. The second part of the network
takes the hidden layer as inputs and generates the classification results
at the output layer with k& nodes.
Encoding: As the basis of HDC, encoding maps the input space to
higher dimensions. Suppose an n-feature input sample vector has the
form F = {f1, f2,..., fn}, and each component stands for a single
feature value. At present, this vector is in relatively lower dimensions,
and the information stores largely in those values rather than the
patterns, which is not ideal for HDC operations later. To achieve
better results, the inputs are mapped to hypervector with the width
d = 10,000. Most prior works have tried to encode the input using
linear mapping [21]. However, in this work, we adopt a non-linear
mapping which achieves higher learning accuracy. This encoding maps
linearly inseparable data to a higher dimension for possible linear
separation.

The mapping relies on randomly generated 1 X d base hypervectors
{]:3;1,]:);2, ...,]:D;n} for each input feature, and the randomness is
realized through the normal distribution for components in these hy-
pervectors, i.e., b ~ N(p, o) with 4 = 0 and & = 1. The components
of these random hypervectors follow a symmetric distribution around
zero so that the dot product between any two base hypervectors is
very close to zero. Thus, we also regard them as near orthogonal.
Then these hypervectors multiply with corresponding feature values,
and the outputs are aggregated as 1 x d encoded hypervectors:

]:j:tanh(fl><]§1+f2><]§2+...+fn><]§n)
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Fig. 3: HDC acceleration framework with multi-model bootstrap sampling (Bagging) for runtime reduction

We refer to this hypervector addition as the bundling operation,
which preserves the information of each hypervector. Especially for
non-linear encoding, we take the hyperbolic tangent value of each
component in the encoded hypervector.

To map the encoding process to Edge TPU, we notice that

bundling in the encoding process is essentially a large number of
MAC operations. In other words, the encoding is indeed a vector-
matrix multiplication that is ready to accelerate on most hardware
accelerators. We map these MAC operations to the first half of that
three-layer wide NN. Within that half, the input is the 1 x n sample
vector, and all the base hypervectors form the n x d weight matrix
for edges connecting the input layer and the hidden layer. The non-
linear term can be integrated into the NN as an activation function of
nodes in the wide hidden layer. Particularly for Edge TPU, these two
fully connected layers will be used to generate a TPU TensorFlow
Lite (TFlite) model for encoding acceleration. The output from this
model is the encoded hypervector samples.
Class hypervectors update: The process for generating and updating
k class hypervectors uses lightweight operations, i.e., bundling and
its reverse called detaching. Starting with all zeros in the 1 x d
class hypervectors {(_‘317 ég, EEEIN ék}, these hypervectors are updated
according to the classification correctness of each input. For instance,
if one encoded hypervector E,, that belongs to class a, is instead
classified to b incorrectly. Then the HDC training algorithm will update
the class hypervectors for both class a and b:

Bundling : (_ia = (_fa + )\Em
Detaching : C, =C, — A\En

A is the learning rate.

Class hypervector training is interpreted as weights update' for the

classification part of the neural network, which we will mention in the
next paragraph. Most edge accelerators are not designed for training or
weights update. For example, Edge TPU lacks the support for element-
wise operations, so the acceleration for class hypervectors update is
not available. In our framework, we deploy this part on the host CPU
due to this limitation. However, the ensemble method introduced in
Section B will help reduce the training computation cost on the CPU
and thus achieve a faster training speed.
Classification: In the final classification step of the HDC, the associa-
tive search checks the similarity between encoded query hypervectors
and class hypervectors. A common classification method is to calculate
the cosine similarity between two hypervectors:

6(]:5 C’: ) ]:jm . ék
my k)= T= = .
(1B 1| Cr |

!In this paper, we interchangeably refer to class hypervector training as the
weights update process in Edge TPU.

We approximate the similarity using the dot product: §(E,,, Ci) =
]_*]‘m . ék to accelerate it on Edge TPU. After repeating this for each
class hypervector, the final result is the class with the highest similarity.

Similarity check maps to the second half of that three-layer fully
connected network. The input to this half is the encoded hypervectors
coming out of the wide hidden layer, and the network parameters,
ie., the d x k weight matrix, are determined by the trained class
hypervectors. Through the network, the output is the sum of product
between hidden node outputs and the weight on edge, which is the
same calculation of the similarity check.

B. Boost the Efficiency with Bagging

As mentioned in Section III-A, a large portion of the training

process is not accelerated due to the limitation of Edge TPU, which has
no support for on-device weights update. Low-power host machines
at the edge also lack the computing power for fast training with
wide hypervectors. This leads to our idea behind the use of the
bagging method, which is to achieve more efficient training without
compromising the HDC learning quality. We take advantage of this
meta-learning method to reduce the overall computation cost of
weights update. Figure 3 is an overview of our framework with the
bagging method, which includes the training and inference process.
Comparing to the training without bagging, we need multiple groups
of base hypervectors to generate the sub-models, which take inputs
from different training subsets. These subsets are sampled from the
original training dataset through bootstrap sampling. Each subset
and sub-model go through the encoding process before the class
hypervector training in the host CPU. For the inference, a single
inference model is constructed using all the base hypervectors and
trained class hypervectors. In the following, we will discuss the details
of our proposed method.
Bagging for faster HDC training: As one of the ensemble methods,
bagging [33] aggregates multiple weak learners or models and takes
an average of them to produce a more stable model for unstable
procedures, e.g., NN and classification. Usually, the training of a
prediction model is based on a single learning dataset. However, the
bagging method aims at using weak models based on multiple sub-
datasets to provide better predictions. To generate multiple datasets for
training different models, bagging relies on bootstrap feature sampling
and dataset sampling. Feature sampling randomly chooses features of
each training sample, and dataset sampling randomly chooses samples
from the original dataset to form new training subsets.

Bagging and other ensemble methods provide higher accuracy with
the cost of longer training runtime because of the need for training
multiple sub-models. Thus, an unmodified implementation of the
bagging method is not ideal for efficient training in HDC. However,
we interpret its accuracy advantage from another angle. Because of
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the aggregation and the consensus-based prediction process, bagging
is able to improve the accuracy of each sub-model. In other words,
multiple smaller-sized models with fewer training iterations can still
provide similar accuracy comparing with fully-trained models. This
outcome aligns with our targets, i.e., lower runtime cost of weights
update. Our experimental results in Section IV show that the bagging
method indeed achieves our aims.

The cost of weights update is directly related to the class hyper-
vector width. However, training multiple sub-models significantly in-
creases the computation cost if the hypervector width stays unchanged.
Thus, we decrease the hypervector width to d’ = d/M, where d is
the original hypervector width and M is the number of sub-models
generated. We choose this relationship between sub-model and full
model dimensions mainly for a fairer comparison because it allows
us to generate an inference model of similar size after the training.
Next, we further reduce the runtime through fewer training iterations.
We utilize the property of bagging that it does not require fully-
trained sub-models. The bagging method achieves similar accuracy
with fewer than half iterations, which dramatically lowers the runtime.
Then through the bootstrap sampling in bagging, we also speed up the
training process. Both dataset and feature sampling generate a training
subset, which means less computation cost.

For weights update, we achieve a smaller computation cost C’
comparing to the original computation cost C'. We estimate the new
computation cost by:

U !
C/:CXMX%XIYXaXﬁ

I and I’ are the original and reduced training iterations, a and 3 are
the dataset and feature sampling ratios.
Inference model generation: Even though we utilize the bagging
method mainly for optimizing the training runtime on the host CPU,
the inference process on Edge TPU also needs to adapt accordingly.
As the bagging method trained multiple sub-models, which also take
inputs from different sub-datasets, accelerating these models on Edge
TPU in series is not efficient. Most Edge TPU only take one model
at a time, and the weights have to be loaded to the on-chip buffer
every time. This brings the overhead for preparing the accelerators
for multiple models. Also, these sub-models trained through bagging
are smaller, so running them in series may not fully utilize accelerator
hardware parallelism. Thus, we design a technique to combine multiple
trained sub-models as a single full-sized inference model.

For an n-feature input F', it first passes through the encoding
process, where its features are sampled and then different groups of
base hypervectors encode it. Suppose the bagging process uses M
different sub-models, and each _gf the_rp is based_’on an n X d’ matrix
of base hypervectors B = {B:n, By, .-, B,, }. For this matrix
of each sub-model, some of the columns are set to zero, because
they correspond to features that are not sampled. In this way, the
feature sampling process is automatically finished. Then we stack
these matrices horizontally to form a full n x d weight matrix B for
the encoding part of the inference model. The output 1 x d encoded
hypervector E is calculated as below:

E=FxB=Fx[B' B .. BY

Then these encoded hypervectors enter the second half of the
inference model for classification of k different classes. For the
different groups of class hypervectors trained through the bagging,
we also stack them vertically to form a bigger d x k matrix C with
the same dimension as before:

O=ExC=Exj[c'c® ... c"|"
where the d’ x k matrix C™ = {é;n, é;n, s (_j;n} Instead of

aggregating the results of similarity checks for each sub-model, i.e.,
multiple vector-matrix multiplications followed by an element-wise
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Fig. 4: Training and validation accuracy for CPU experiments

TABLE I: Details of the datasets used for experiments

Datasets \ # Sampl \ # Features \ # Classes \ Descriptions
FACE [34] 80854 608 2 Facial images
ISOLET [35] 7797 617 26 Speech Data
UCIHAR [36] 7667 561 12 Human Activity Logs
MNIST [37] 60000 784 10 Handwritten Digits
PAMAP2 [38] 32768 27 5 Human Activity Logs

addition, we could perform a single time vector-matrix multiplication
and the classification result is available directly from the output:

Class Prediction = arg max(O;)
1<i<k
Because the full inference NN model generated here has the same
dimensions as the one generated without using the bagging method,
we make the inference process free of extra overhead.

IV. EXPERIMENTAL RESULTS
A. Experimental setup

‘We implement our framework on the Google Edge TPU accelerator,
which is connected through USB 3.0 to a lower-end laptop. The laptop
has a mobile Intel CPU i5-5250U. We choose the Edge TPU for
its better compatibility with TENSORFLOW. All the experiments are
based on TENSORFLOW TFLITE_RUNTIME version 2.1.0. We first run
different learning tasks using HDC only on the host machine CPU
as the baseline for our framework. Then we perform the same tasks
using our proposed framework, which includes the acceleration of
the Edge TPU. In the following sections, we present three groups
of experimental results for different settings, i.e., the CPU baseline,
our proposed framework without bagging (the TPU baseline) and
with bagging. We compare and analyze the results from two aspects:
accuracy and runtime costs. We also present the parameter search
process for our choices of bagging parameters. At last, we discuss the
influence of input feature sizes on the performance of our framework.

For the CPU baseline experiments and those on TPU without
bagging, we train the model for 20 iterations to achieve fully trained
models as in Figure 4. For experiments on TPU with bagging, we
trained 4 sub-models with hypervector width d = 2500 for 6 iterations.
We choose the dataset sampling ratio as 0.6, i.e., using 60% of the
training dataset for each sub-model, and the feature sampling ratio is
disabled. Our choice is based on a simple parameter search to balance
accuracy and runtime, and it is applied to all datasets that may not be
optimal for every dataset we test. For the learning tasks of HDC, in
Table I, we choose five different datasets of practical applications.

B. Training Efficiency

In Figure 5, we include the runtime measurement for each com-
ponent of the training process in HDC. Our framework without
bagging, i.e., the TPU baseline, maps the training set encoding from
the host CPU to Edge TPU. Comparing with the CPU baseline, we
observe that the encoding time, with the acceleration of Edge TPU,
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significantly decreases for 4 out of 5 datasets except for PAMAP2. The
maximum encoding runtime speedup is 9.37x for the MNIST dataset.
For datasets such as FACE, the encoding runtime takes up a large
portion of the total training time, and our framework with the Edge
TPU significantly reduces the overall runtime with 2.95x speedup.
Our framework with bagging, i.e., TPU_B in the figure, achieves
dramatically lower runtime for class hypervector update in host CPU
with the optimized HDC training algorithm. For example, compared
to the CPU baseline, the bagging method brings a maximum 4.74x
speedup for the hypervector update process in the host CPU. Com-
paring with the overall training runtime in CPU baseline, our efficient
framework brings a maximum 4.49x speedup on the MNIST dataset
by optimizing operations on both the Edge TPU and host CPU. It also
achieves significantly faster training on FACE, ISOLET, and UCIHAR
datasets with 3.49%, 2.45x and 1.81x speedup, respectively. In the
figure, we include the runtime cost of generating Edge TPU models
on the host CPU. It includes the runtime for generating TFlite model
files and compiling those files for Edge TPU. The cost of transferring
models onto the accelerator is negligible. Thus, these extra runtime
for preparing TPU models are one-time costs, and we do not include
them for the inference runtime later.

C. Inference Efficiency and Accuracy

Figure 6 shows the runtime measurements for the inference process
of HDC on the Edge TPU. Besides our counterexample PAMAP2,
our framework significantly accelerates the inference process. For
example, the maximum inference speedup achieved on MNIST with
the bagging method is 4.19x. The speedups for other 3 datasets
are: 3.16x(FACE), 2.13x(ISOLET), 3.08 x(UCIHAR). The bagging
method, with a unified inference model, can achieve the inference
runtime with no extra overhead compared with the TPU baseline.

Figure 7 summarizes the accuracy results of our experiments on
five different datasets. The comparison illustrates that our proposed
method is able to achieve similar inference accuracy on the Edge
TPU. Because the ensemble method compensates for the possible
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Fig. 7: Inference accuracy for different framework settings

96%

94% %
|

92%

Inference Accuracy

90% )

TABLE II: Our Edge TPU-based efficiency vs. Raspberry Pi 3.

| FACE ISOLET UCIHAR MNIST PAMAP2
Training | 21.5 X 15.6x 17.9%x 23.6x 18.6x
Inference 11.4x 7.2% 7.9% 11.1x 6.8%

incorrect classification of each sub-model, the final inference model
even achieves higher accuracy than the full-sized, fully-trained model
for some datasets, e.g., ISOLET and PAMAP2.

We also compare our Edge TPU-based platform with an embedded
CPU which consumes similar average power consumption. Table II
shows the performance improvement of our framework as compared to
Raspberry Pi 3 using ARM Cortex A53 processor. Our results indicate
that our framework can provide 19.4x and 8.9x faster training and
inference compared to Raspberry Pi 3.

D. Parameter Search for Bagging

Figure 8 explains how we choose the sampling ratios for the bagging
process with a parameter search on ISOLET dataset. We recall the
accuracy changes over epochs in Figure 4, and temporally select 6
training iterations for searching the ratio parameters so that the learners
in bagging are relatively weak and do not consume a long time for
training. Focusing on the training runtime, we observe that the dataset
sampling ratio has a significant influence on runtime for both the
encoding and the class hypervector update. Thus, we choose o = 0.6
because it only needs about 70% of the training time comparing to
using the full dataset, and the accuracy does not decrease. We also
find that the feature sampling ratio does not provide the ideal runtime
reduction, rather compromises the accuracy when the feature sampling
ratio reaches 8 = 0.6. Thus, the feature sampling is disabled in our
following experiments. In Figure 9, we present the change of accuracy
and runtime for ISOLET with 3 to 8 training iterations, and we fix the
sampling ratios to our choices before. This parameter only affects the
runtime for class hypervector update in the host CPU. In the figure,
4 to 6 training iterations can save around 20% of runtime comparing
to that of 8 iterations with similar accuracy. Based on Figure 4 and 9,
we continue using 6 iterations in our experiments on all datasets.

E. Encoding Scalability with Number of Input Feature

In Figure 5 and Figure 6, it is obvious that the PAMAP2 dataset
does not perform well on our framework. From a simple analysis
of these figures with information from Table I, we notice that the
PAMAP?2 dataset has a significantly smaller number of features in
its samples. The ratio of feature numbers between the PAMAP2 and
MNIST dataset is only 3.4%. This shows that the number of input
features of a certain dataset will influence the performance.

We further investigate this by calculating the encoding runtime
speedup over the CPU baseline after mapping the encoding process
to Edge TPU. We construct a few synthetic datasets with a different
number of input features changing from 20 to 700. In Figure 10,
we observe that the speedup increases when the feature number is
larger. For example, our framework achieves an 8.25x speedup for the
encoding runtime when the input sample has 700 features. However,
the speedup decreases to 1.06x when the feature number is 20.
This observation shows that our framework is able to provide high
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encoding runtime speedup for datasets with large inputs. Therefore,
the PAMAP2 dataset with fewer features in inputs is not suitable
for acceleration on the Edge TPU. In addition, sampling a subset of
features for bagging settings is not an ideal design choice for our
proposed framework since we hardly obtain the appropriate runtime
and accuracy trade-off.

V. CONCLUSION

In this paper, we propose a framework for efficient acceleration
of HDC in the edge environment by optimizing its algorithm to fully
utilize the low-power Edge TPU as well as the host CPU. We interpret
the lightweight HDC learning model as a hyper-wide NN to take
advantage of the accelerator and machine learning platform. We further
accelerate the training runtime on the host CPU by employing the
ensemble methods called bagging. We test our framework on the
Google Edge TPU in the low-power scenario. Joint experiments on
mobile CPU and the Edge TPU show that our framework achieves
faster training and inference compared to the baseline platform as
well as embedded CPU platforms.
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