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Abstract—Machine learning methods have been widely utilized to
provide high quality for many cognitive tasks. Running sophisticated
learning tasks requires high computational costs to process a large amount
of learning data. Brain-inspired Hyperdimensional Computing (HDC) is
introduced as an alternative solution for lightweight learning on edge
devices. However, HDC models still rely on accelerators to ensure real-
time and efficient learning. These hardware designs are not commercially
available and need a relatively long period to synthesize and fabricate
after deriving the new applications. In this paper, we propose an efficient
framework for accelerating the HDC at the edge by fully utilizing the
available computing power. We optimize the HDC through algorithm-
hardware co-design of the host CPU and existing low-power machine
learning accelerators, such as Edge TPU. We interpret the lightweight
HDC learning model as a hyper-wide neural network to take advantage
of the accelerator and machine learning platform. We further improve the
runtime cost of training by employing a bootstrap aggregating algorithm
called bagging while maintaining the learning quality. We evaluate the
performance of the proposed framework with several applications. Joint
experiments on mobile CPU and the Edge TPU show that our framework
achieves 4.5× faster training and 4.2× faster inference compared to
the baseline platform. In addition, our framework achieves 19.4× faster
training and 8.9× faster inference as compared to embedded ARM CPU,
Raspberry Pi, that consumes similar power consumption.

I. INTRODUCTION

With the emergence of the Internet of Things (IoT), many ap-

plications run machine learning algorithms to perform learning and

cognitive tasks [1]. Examples are smart homes, smart cities, smart

manufacturing, and smart transportation. Today’s systems typically

rely on sending all the data to the cloud to complete learning

and training, which leads to a significant communication cost. This

communication cost can be eliminated by scaling the learning tasks

in a distributed fashion where different devices collect data. Edge

computing tries to realize such a distributed computing paradigm

by bringing the computation closer to the location where the data

are generated [2], [3]. A mainstream of the research is federated

learning [4] that trains a central model over multiple devices. However,

these techniques use complex algorithms, e.g., Deep Neural Networks

(DNNs), which require billions of parameters and many hours to train

in a powerful and reliable computing environment [5]–[7]. Considering

memory and resource limitations of embedded devices on edge, which

also have potential issues of network noises and hardware failure due

to the unstable nature of IoT systems, current computing environments

are still far from real-time learning [8].

To better deploy deep learning applications to the edge environment,

recent efforts have focused on the energy-efficient accelerator designs,

e.g., Eyeriss [9] and UNPU [10]. Google also releases its standardized

DNN accelerator at the edge, i.e., the Edge TPU. However, they mainly

target DNN inference and thereby cannot handle the dynamics of

many IoT practices, which require model updates frequently to follow

the rapidly changing inputs. DNN training, however, heavily relies on

more powerful platforms like cloud servers. Thus, a lightweight model

design is needed to enable training at the edge.

In contrast to existing machine learning algorithms, the human brain

can train effortlessly and efficiently without much concern of noisy

and broken neuron cells [11]. To more closely model the human brain,

earlier researchers proposed HyperDimensional Computing (HDC)

as an alternative computing method, which mimics important brain

functionalities towards high-efficiency and noise-tolerant computa-

tion [12], [13]. HDC is motivated by the observation that the human

brain operates on high-dimensional representations of data. In HDC,

objects and data are thereby encoded with high-dimensional vectors,

called hypervectors, which have 10,000 or more elements. HDC can

then perform various learning tasks with computation in the high

dimensional space. HDC is well suited to address learning on edge

systems as HDC models are computationally efficient to train [14]–

[17], offer intuitive and human-interpretablity [18], provide strong

robustness to noise [19], [20], and support lightweight privacy [21],

[22]. These features make HDC a promising solution for today’s

embedded devices with limited storage, battery, and resources, as well

as embedded devices that often depend on the unreliable source of

battery.

To exploit the sparsity and orthogonality of high-dimensional space,

HDC operations are defined over long vectors with thousands of

elements, called hypervectors. Therefore, HDC requires many number

of multiplication and addition operations, which are significantly

costly for today’s low-power platforms. To ensure fast HDC operation,

most prior works rely on ASIC or emerging hardware acceleration.

However, these hardware designs are not commercially available and

need a relatively long period to synthesize and fabricate after deriving

the new applications. As such, to ease the deployment of HDC in the

real world, we need a framework solution to run HDC on a highly

parallel but general-purpose platform.

In this paper, we deploy HDC by exploiting and reusing readily

available and standardized DNN accelerators, which are already in

mass production. Particularly, we choose Google Edge TPU since it

works closely with one of the most widely-used machine learning

frameworks, i.e., TensorFlow (TF) [23]. We propose a framework

for efficient acceleration of the HDC in the edge environment by

optimizing its algorithm to fully utilize the low-power Edge TPU as

well as the host CPU. The main contributions of the paper are listed

as follows:

• We propose a framework to efficiently perform HDC by optimiz-

ing its algorithm via co-design of CPU and TPU procedures at

the edge. We interpret the lightweight HDC learning model as a

hyper-wide neural network to take advantage of the accelerator

and machine learning platform. Our framework maps the HDC

model to TensorFlow that works seamlessly with the Edge

TPU. The bulky matrix operations in HDC efficiently utilize the

hardware parallelism. We also explore how dataset parameters,

e.g., the number of input features, influence the performance of

our framework on the Edge TPU.

• We further accelerate the training runtime on the host CPU by

employing the ensemble methods called bagging. We optimize

the HDC training algorithm towards the host CPU since training

class hypervectors, i.e., weight updates, is not supported by

edge accelerators. The optimized algorithm accelerates the HDC

training runtime on the CPU by reducing the overall computation

costs. We present a training method employing the bootstrap

aggregating algorithm, i.e., bagging. It utilizes multiple learners

for a consensus-based prediction, which relaxes requirements for

the quality of each learner. Using the ensemble method, we can

reduce the training iterations and the hypervector width for each

model, which leads to faster HDC learning. More importantly, our
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Fig. 1: HDC training and inference procedures with acceleration

provided by our framework

method still achieves high-quality results with similar inference

accuracy.

We evaluate the performance of our proposed framework using five

large-scale datasets. Our method significantly improves the train-

ing/inference runtime of HDC on low-power edge platforms. We

further improve the runtime cost of training by employing a bootstrap

aggregating algorithm called bagging while maintaining the learning

quality. We evaluate the performance of the proposed framework with

several applications. Joint experiments on mobile CPU and the Edge

TPU show that our framework achieves 4.5× faster training and 4.2×
faster inference compared to the baseline platform. In addition, our

framework achieves 19.4× faster training and 8.9× faster inference

as compared to embedded ARM CPU, Raspberry Pi, that consumes

similar power consumption. We will provide a fully open source

library of our framework based on TensorFlow.

II. RELATED WORK

HDC, inspired by the large neural circuits inside the human

brain, is both efficient in the calculation and robust against noise.

Recent researchers have shown those advantages in multiple HDC

applications, e.g., gesture/object detection [24], [25], DNA pattern

matching [26], [27], regression [28], and manufacturing [29], and

clustering [30]. Recently, an increasing number of researchers focused

on the acceleration of HDC utilizing the parallelism of its hardware-

friendly operations. Multiple hardware platforms have been used to

accelerate the training and inference process. However, this simulated

design is not available as a physical chip due to the high manufacturing

cost. In this paper, we present an HDC acceleration framework based

on a readily available low-power platform, i.e., Google Edge TPU

accelerator.

Edge TPU is one of many accelerators that focus on low-power,

highly efficient computation to satisfy the increasing need for compu-

tation in the edge environment. The computation power of the Edge

TPU lies in its relatively large matrix multiplication unit (MXU),

which adopts a spacial architecture called the systolic array. This

architecture efficiently reuses all the inputs by pumping them through

each processing element [31]. For standardized accelerators like the

Edge TPU, Intel also released their own Movidius VPU [32]. Another

example is Eyeriss [9], an ASIC-based experimental accelerator that

utilizes a spatial architecture for minimal data movements with an

energy-efficient dataflow. All of them target low-power scenarios and

support several wide-used machine learning frameworks. Most of the

accelerators at the edge target traditional NN tasks. For example, the

Edge TPU only officially supports NN inference; however, in our

work, we accelerate the HDC using a co-design approach over both

Edge TPU and host CPU.
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Fig. 2: Interpretation of HDC as a wide NN: base hypervectors and

class hypervectors map to hidden layer weights

III. HYPERDIMENSIONAL COMPUTING AT THE EDGE

Figure 1 shows an overview of our proposed framework for acceler-

ating HDC training and inference on Edge TPU. During both training

and inference tasks, our key aim is to map the HDC operations to valid

DNN-like models such that they can be accelerated by low-power

Edge TPU. For training, base hypervectors are generated randomly

using the normal distribution. Then, our framework takes samples from

the training dataset and encodes them on Edge TPU. These encoded

hypervectors are sent to the host CPU for class hypervectors update.

For inference, our framework is based on an inference neural network

model with its parameters determined by trained class hypervectors

and base hypervectors. The model is loaded to the accelerator and takes

samples from the testing dataset. Our framework completely maps

the inference process to Edge TPU, enabling real-time and efficient

prediction.

A. Mapping the hyperdimensional computing to Edge TPU

Figure 2 shows how three major operations in HDC, i.e., input

vectors encoding, class hypervectors update, and classification, are

mapped to a three-layer wide neural network. First, the three-layer

network is sliced in half. The first part of the network includes the

input layer with n nodes and the wide hidden layer with d nodes, and it

maps the inputs to higher dimensions. The second part of the network

takes the hidden layer as inputs and generates the classification results

at the output layer with k nodes.

Encoding: As the basis of HDC, encoding maps the input space to

higher dimensions. Suppose an n-feature input sample vector has the

form �F = {f1, f2, . . . , fn}, and each component stands for a single

feature value. At present, this vector is in relatively lower dimensions,

and the information stores largely in those values rather than the

patterns, which is not ideal for HDC operations later. To achieve

better results, the inputs are mapped to hypervector with the width

d = 10, 000. Most prior works have tried to encode the input using

linear mapping [21]. However, in this work, we adopt a non-linear

mapping which achieves higher learning accuracy. This encoding maps

linearly inseparable data to a higher dimension for possible linear

separation.

The mapping relies on randomly generated 1×d base hypervectors

{�B1, �B2, . . . , �Bn} for each input feature, and the randomness is

realized through the normal distribution for components in these hy-

pervectors, i.e., b ∼ N (μ, σ2) with μ = 0 and σ = 1. The components

of these random hypervectors follow a symmetric distribution around

zero so that the dot product between any two base hypervectors is

very close to zero. Thus, we also regard them as near orthogonal.

Then these hypervectors multiply with corresponding feature values,

and the outputs are aggregated as 1× d encoded hypervectors:

�E = tanh(f1 × �B1 + f2 × �B2 + . . .+ fn × �Bn)
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Fig. 3: HDC acceleration framework with multi-model bootstrap sampling (Bagging) for runtime reduction

We refer to this hypervector addition as the bundling operation,

which preserves the information of each hypervector. Especially for

non-linear encoding, we take the hyperbolic tangent value of each

component in the encoded hypervector.
To map the encoding process to Edge TPU, we notice that

bundling in the encoding process is essentially a large number of

MAC operations. In other words, the encoding is indeed a vector-

matrix multiplication that is ready to accelerate on most hardware

accelerators. We map these MAC operations to the first half of that

three-layer wide NN. Within that half, the input is the 1× n sample

vector, and all the base hypervectors form the n × d weight matrix

for edges connecting the input layer and the hidden layer. The non-

linear term can be integrated into the NN as an activation function of

nodes in the wide hidden layer. Particularly for Edge TPU, these two

fully connected layers will be used to generate a TPU TensorFlow

Lite (TFlite) model for encoding acceleration. The output from this

model is the encoded hypervector samples.
Class hypervectors update: The process for generating and updating

k class hypervectors uses lightweight operations, i.e., bundling and

its reverse called detaching. Starting with all zeros in the 1 × d
class hypervectors {�C1, �C2, · · · , �Ck}, these hypervectors are updated

according to the classification correctness of each input. For instance,

if one encoded hypervector �Em that belongs to class a, is instead

classified to b incorrectly. Then the HDC training algorithm will update

the class hypervectors for both class a and b:

Bundling : �Ca = �Ca + λ�Em

Detaching : �Cb = �Cb − λ�Em

λ is the learning rate.
Class hypervector training is interpreted as weights update1 for the

classification part of the neural network, which we will mention in the

next paragraph. Most edge accelerators are not designed for training or

weights update. For example, Edge TPU lacks the support for element-

wise operations, so the acceleration for class hypervectors update is

not available. In our framework, we deploy this part on the host CPU

due to this limitation. However, the ensemble method introduced in

Section B will help reduce the training computation cost on the CPU

and thus achieve a faster training speed.
Classification: In the final classification step of the HDC, the associa-

tive search checks the similarity between encoded query hypervectors

and class hypervectors. A common classification method is to calculate

the cosine similarity between two hypervectors:

δ(�Em, �Ck) =
�Em · �Ck

‖�Em‖‖�Ck‖

1In this paper, we interchangeably refer to class hypervector training as the
weights update process in Edge TPU.

We approximate the similarity using the dot product: δ(�Em, �Ck) =
�Em · �Ck to accelerate it on Edge TPU. After repeating this for each

class hypervector, the final result is the class with the highest similarity.

Similarity check maps to the second half of that three-layer fully

connected network. The input to this half is the encoded hypervectors

coming out of the wide hidden layer, and the network parameters,

i.e., the d × k weight matrix, are determined by the trained class

hypervectors. Through the network, the output is the sum of product

between hidden node outputs and the weight on edge, which is the

same calculation of the similarity check.

B. Boost the Efficiency with Bagging

As mentioned in Section III-A, a large portion of the training

process is not accelerated due to the limitation of Edge TPU, which has

no support for on-device weights update. Low-power host machines

at the edge also lack the computing power for fast training with

wide hypervectors. This leads to our idea behind the use of the

bagging method, which is to achieve more efficient training without

compromising the HDC learning quality. We take advantage of this

meta-learning method to reduce the overall computation cost of

weights update. Figure 3 is an overview of our framework with the

bagging method, which includes the training and inference process.

Comparing to the training without bagging, we need multiple groups

of base hypervectors to generate the sub-models, which take inputs

from different training subsets. These subsets are sampled from the

original training dataset through bootstrap sampling. Each subset

and sub-model go through the encoding process before the class

hypervector training in the host CPU. For the inference, a single

inference model is constructed using all the base hypervectors and

trained class hypervectors. In the following, we will discuss the details

of our proposed method.

Bagging for faster HDC training: As one of the ensemble methods,

bagging [33] aggregates multiple weak learners or models and takes

an average of them to produce a more stable model for unstable

procedures, e.g., NN and classification. Usually, the training of a

prediction model is based on a single learning dataset. However, the

bagging method aims at using weak models based on multiple sub-

datasets to provide better predictions. To generate multiple datasets for

training different models, bagging relies on bootstrap feature sampling

and dataset sampling. Feature sampling randomly chooses features of

each training sample, and dataset sampling randomly chooses samples

from the original dataset to form new training subsets.

Bagging and other ensemble methods provide higher accuracy with

the cost of longer training runtime because of the need for training

multiple sub-models. Thus, an unmodified implementation of the

bagging method is not ideal for efficient training in HDC. However,

we interpret its accuracy advantage from another angle. Because of
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the aggregation and the consensus-based prediction process, bagging

is able to improve the accuracy of each sub-model. In other words,

multiple smaller-sized models with fewer training iterations can still

provide similar accuracy comparing with fully-trained models. This

outcome aligns with our targets, i.e., lower runtime cost of weights

update. Our experimental results in Section IV show that the bagging

method indeed achieves our aims.

The cost of weights update is directly related to the class hyper-

vector width. However, training multiple sub-models significantly in-

creases the computation cost if the hypervector width stays unchanged.

Thus, we decrease the hypervector width to d′ = d/M , where d is

the original hypervector width and M is the number of sub-models

generated. We choose this relationship between sub-model and full

model dimensions mainly for a fairer comparison because it allows

us to generate an inference model of similar size after the training.

Next, we further reduce the runtime through fewer training iterations.

We utilize the property of bagging that it does not require fully-

trained sub-models. The bagging method achieves similar accuracy

with fewer than half iterations, which dramatically lowers the runtime.

Then through the bootstrap sampling in bagging, we also speed up the

training process. Both dataset and feature sampling generate a training

subset, which means less computation cost.

For weights update, we achieve a smaller computation cost C′

comparing to the original computation cost C. We estimate the new

computation cost by:

C′ = C ×M ×
d′

d
×

I ′

I
× α× β

I and I ′ are the original and reduced training iterations, α and β are

the dataset and feature sampling ratios.

Inference model generation: Even though we utilize the bagging

method mainly for optimizing the training runtime on the host CPU,

the inference process on Edge TPU also needs to adapt accordingly.

As the bagging method trained multiple sub-models, which also take

inputs from different sub-datasets, accelerating these models on Edge

TPU in series is not efficient. Most Edge TPU only take one model

at a time, and the weights have to be loaded to the on-chip buffer

every time. This brings the overhead for preparing the accelerators

for multiple models. Also, these sub-models trained through bagging

are smaller, so running them in series may not fully utilize accelerator

hardware parallelism. Thus, we design a technique to combine multiple

trained sub-models as a single full-sized inference model.

For an n-feature input �F , it first passes through the encoding

process, where its features are sampled and then different groups of

base hypervectors encode it. Suppose the bagging process uses M
different sub-models, and each of them is based on an n× d′ matrix

of base hypervectors B
m = {�B

m

1 , �B
m

2 , · · · , �B
m

n }. For this matrix

of each sub-model, some of the columns are set to zero, because

they correspond to features that are not sampled. In this way, the

feature sampling process is automatically finished. Then we stack

these matrices horizontally to form a full n× d weight matrix B for

the encoding part of the inference model. The output 1 × d encoded

hypervector �E is calculated as below:

�E = �F × B = �F × [B1
B

2 . . . B
M ]

Then these encoded hypervectors enter the second half of the

inference model for classification of k different classes. For the

different groups of class hypervectors trained through the bagging,

we also stack them vertically to form a bigger d × k matrix C with

the same dimension as before:

�O = �E× C = �E× [C1
C

2 · · · C
M ]T

where the d′ × k matrix C
m = {�C

m

1 , �C
m

2 , · · · , �C
m

k }. Instead of

aggregating the results of similarity checks for each sub-model, i.e.,

multiple vector-matrix multiplications followed by an element-wise
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Fig. 4: Training and validation accuracy for CPU experiments

TABLE I: Details of the datasets used for experiments

Datasets # Samples # Features # Classes Descriptions

FACE [34] 80854 608 2 Facial images
ISOLET [35] 7797 617 26 Speech Data
UCIHAR [36] 7667 561 12 Human Activity Logs
MNIST [37] 60000 784 10 Handwritten Digits

PAMAP2 [38] 32768 27 5 Human Activity Logs

addition, we could perform a single time vector-matrix multiplication

and the classification result is available directly from the output:

Class Prediction = argmax
1≤i≤k

(�Oi)

Because the full inference NN model generated here has the same

dimensions as the one generated without using the bagging method,

we make the inference process free of extra overhead.

IV. EXPERIMENTAL RESULTS

A. Experimental setup

We implement our framework on the Google Edge TPU accelerator,

which is connected through USB 3.0 to a lower-end laptop. The laptop

has a mobile Intel CPU i5-5250U. We choose the Edge TPU for

its better compatibility with TENSORFLOW. All the experiments are

based on TENSORFLOW TFLITE_RUNTIME version 2.1.0. We first run

different learning tasks using HDC only on the host machine CPU

as the baseline for our framework. Then we perform the same tasks

using our proposed framework, which includes the acceleration of

the Edge TPU. In the following sections, we present three groups

of experimental results for different settings, i.e., the CPU baseline,

our proposed framework without bagging (the TPU baseline) and

with bagging. We compare and analyze the results from two aspects:

accuracy and runtime costs. We also present the parameter search

process for our choices of bagging parameters. At last, we discuss the

influence of input feature sizes on the performance of our framework.

For the CPU baseline experiments and those on TPU without

bagging, we train the model for 20 iterations to achieve fully trained

models as in Figure 4. For experiments on TPU with bagging, we

trained 4 sub-models with hypervector width d = 2500 for 6 iterations.

We choose the dataset sampling ratio as 0.6, i.e., using 60% of the

training dataset for each sub-model, and the feature sampling ratio is

disabled. Our choice is based on a simple parameter search to balance

accuracy and runtime, and it is applied to all datasets that may not be

optimal for every dataset we test. For the learning tasks of HDC, in

Table I, we choose five different datasets of practical applications.

B. Training Efficiency

In Figure 5, we include the runtime measurement for each com-

ponent of the training process in HDC. Our framework without

bagging, i.e., the TPU baseline, maps the training set encoding from

the host CPU to Edge TPU. Comparing with the CPU baseline, we

observe that the encoding time, with the acceleration of Edge TPU,
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settings: CPU baseline, TPU (without bagging method) and TPU_B

(with bagging method). The runtime costs are normalized to the
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0

0.4

0.8

1.2

1.6

2

In
fe

re
n

ce
 R

u
n

ti
m

e CPU

TPU w/o Bagging
TPU w Bagging

Fig. 6: Inference runtime cost comparison: the runtime costs are

normalized to the measurement on CPU within each dataset.

significantly decreases for 4 out of 5 datasets except for PAMAP2. The

maximum encoding runtime speedup is 9.37× for the MNIST dataset.

For datasets such as FACE, the encoding runtime takes up a large

portion of the total training time, and our framework with the Edge

TPU significantly reduces the overall runtime with 2.95× speedup.

Our framework with bagging, i.e., TPU_B in the figure, achieves

dramatically lower runtime for class hypervector update in host CPU

with the optimized HDC training algorithm. For example, compared

to the CPU baseline, the bagging method brings a maximum 4.74×
speedup for the hypervector update process in the host CPU. Com-

paring with the overall training runtime in CPU baseline, our efficient

framework brings a maximum 4.49× speedup on the MNIST dataset

by optimizing operations on both the Edge TPU and host CPU. It also

achieves significantly faster training on FACE, ISOLET, and UCIHAR

datasets with 3.49×, 2.45× and 1.81× speedup, respectively. In the

figure, we include the runtime cost of generating Edge TPU models

on the host CPU. It includes the runtime for generating TFlite model

files and compiling those files for Edge TPU. The cost of transferring

models onto the accelerator is negligible. Thus, these extra runtime

for preparing TPU models are one-time costs, and we do not include

them for the inference runtime later.

C. Inference Efficiency and Accuracy

Figure 6 shows the runtime measurements for the inference process

of HDC on the Edge TPU. Besides our counterexample PAMAP2,

our framework significantly accelerates the inference process. For

example, the maximum inference speedup achieved on MNIST with

the bagging method is 4.19×. The speedups for other 3 datasets

are: 3.16×(FACE), 2.13×(ISOLET), 3.08×(UCIHAR). The bagging

method, with a unified inference model, can achieve the inference

runtime with no extra overhead compared with the TPU baseline.

Figure 7 summarizes the accuracy results of our experiments on

five different datasets. The comparison illustrates that our proposed

method is able to achieve similar inference accuracy on the Edge

TPU. Because the ensemble method compensates for the possible
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Fig. 7: Inference accuracy for different framework settings

TABLE II: Our Edge TPU-based efficiency vs. Raspberry Pi 3.

FACE ISOLET UCIHAR MNIST PAMAP2

Training 21.5 × 15.6× 17.9× 23.6× 18.6×
Inference 11.4× 7.2× 7.9× 11.1× 6.8×

incorrect classification of each sub-model, the final inference model

even achieves higher accuracy than the full-sized, fully-trained model

for some datasets, e.g., ISOLET and PAMAP2.

We also compare our Edge TPU-based platform with an embedded

CPU which consumes similar average power consumption. Table II

shows the performance improvement of our framework as compared to

Raspberry Pi 3 using ARM Cortex A53 processor. Our results indicate

that our framework can provide 19.4× and 8.9× faster training and

inference compared to Raspberry Pi 3.

D. Parameter Search for Bagging

Figure 8 explains how we choose the sampling ratios for the bagging

process with a parameter search on ISOLET dataset. We recall the

accuracy changes over epochs in Figure 4, and temporally select 6

training iterations for searching the ratio parameters so that the learners

in bagging are relatively weak and do not consume a long time for

training. Focusing on the training runtime, we observe that the dataset

sampling ratio has a significant influence on runtime for both the

encoding and the class hypervector update. Thus, we choose α = 0.6
because it only needs about 70% of the training time comparing to

using the full dataset, and the accuracy does not decrease. We also

find that the feature sampling ratio does not provide the ideal runtime

reduction, rather compromises the accuracy when the feature sampling

ratio reaches β = 0.6. Thus, the feature sampling is disabled in our

following experiments. In Figure 9, we present the change of accuracy

and runtime for ISOLET with 3 to 8 training iterations, and we fix the

sampling ratios to our choices before. This parameter only affects the

runtime for class hypervector update in the host CPU. In the figure,

4 to 6 training iterations can save around 20% of runtime comparing

to that of 8 iterations with similar accuracy. Based on Figure 4 and 9,

we continue using 6 iterations in our experiments on all datasets.

E. Encoding Scalability with Number of Input Feature

In Figure 5 and Figure 6, it is obvious that the PAMAP2 dataset

does not perform well on our framework. From a simple analysis

of these figures with information from Table I, we notice that the

PAMAP2 dataset has a significantly smaller number of features in

its samples. The ratio of feature numbers between the PAMAP2 and

MNIST dataset is only 3.4%. This shows that the number of input

features of a certain dataset will influence the performance.

We further investigate this by calculating the encoding runtime

speedup over the CPU baseline after mapping the encoding process

to Edge TPU. We construct a few synthetic datasets with a different

number of input features changing from 20 to 700. In Figure 10,

we observe that the speedup increases when the feature number is

larger. For example, our framework achieves an 8.25× speedup for the

encoding runtime when the input sample has 700 features. However,

the speedup decreases to 1.06× when the feature number is 20.

This observation shows that our framework is able to provide high
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Fig. 9: Inference accuracy and training runtime of different iterations:

the runtime costs are normalized to the value for 8 iterations

encoding runtime speedup for datasets with large inputs. Therefore,

the PAMAP2 dataset with fewer features in inputs is not suitable

for acceleration on the Edge TPU. In addition, sampling a subset of

features for bagging settings is not an ideal design choice for our

proposed framework since we hardly obtain the appropriate runtime

and accuracy trade-off.

V. CONCLUSION

In this paper, we propose a framework for efficient acceleration

of HDC in the edge environment by optimizing its algorithm to fully

utilize the low-power Edge TPU as well as the host CPU. We interpret

the lightweight HDC learning model as a hyper-wide NN to take

advantage of the accelerator and machine learning platform. We further

accelerate the training runtime on the host CPU by employing the

ensemble methods called bagging. We test our framework on the

Google Edge TPU in the low-power scenario. Joint experiments on

mobile CPU and the Edge TPU show that our framework achieves

faster training and inference compared to the baseline platform as

well as embedded CPU platforms.
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