
A Hardware Accelerator for Protocol Buffers
Sagar Karandikar
UC Berkeley, Google

USA

Chris Leary
Google
USA

Chris Kennelly
Google
USA

Jerry Zhao
UC Berkeley

USA

Dinesh Parimi
UC Berkeley

USA

Borivoje Nikolić
UC Berkeley

USA

Krste Asanović
UC Berkeley

USA

Parthasarathy Ranganathan
Google
USA

ABSTRACT
Serialization frameworks are a fundamental component of scale-out
systems, but introduce significant compute overheads. However,
they are amenable to acceleration with specialized hardware. To
understand the trade-offs involved in architecting such an accel-
erator, we present the first in-depth study of serialization frame-
work usage at scale by profiling Protocol Buffers (“protobuf”) us-
age across Google’s datacenter fleet. We use this data to build Hy-
perProtoBench, an open-source benchmark representative of key
serialization-framework user services at scale. In doing so, we iden-
tify key insights that challenge prevailing assumptions about seri-
alization framework usage.

We use these insights to develop a novel hardware accelerator
for protobufs, implemented in RTL and integrated into a RISC-V
SoC. Applications can easily harness the accelerator, as it integrates
with a modified version of the open-source protobuf library and
is wire-compatible with standard protobufs. We have fully open-
sourced our RTL, which, to the best of our knowledge, is the only
such implementation currently available to the community.

We also present a first-of-its-kind, end-to-end evaluation of our
entire RTL-based system running hyperscale-derived benchmarks
and microbenchmarks. We boot Linux on the system using FireSim
to run these benchmarks and implement the design in a commercial
22nm FinFET process to obtain area and frequency metrics. We
demonstrate an average 6.2× to 11.2× performance improvement
vs. our baseline RISC-V SoC with BOOM OoO cores and despite the
RISC-V SoC’s weaker uncore/supporting components, an average
3.8× improvement vs. a Xeon-based server.

CCS CONCEPTS
• Computer systems organization → Architectures; Cloud
computing; •Hardware→ Communication hardware, inter-
faces and storage; Application-specific VLSI designs.

This work is licensed under a Creative Commons Attribution International
4.0 License.

MICRO ’21, October 18–22, 2021, Virtual Event, Greece
© 2021 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-8557-2/21/10.
https://doi.org/10.1145/3466752.3480051

KEYWORDS
serialization, deserialization, hardware-acceleration, warehouse-
scale computing, hyperscale systems, profiling
ACM Reference Format:
Sagar Karandikar, Chris Leary, Chris Kennelly, Jerry Zhao, Dinesh Parimi,
Borivoje Nikolić, Krste Asanović, and Parthasarathy Ranganathan. 2021.
A Hardware Accelerator for Protocol Buffers. In MICRO’21: 54th Annual
IEEE/ACM International Symposium on Microarchitecture (MICRO ’21), Octo-
ber 18–22, 2021, Virtual Event, Greece. ACM, New York, NY, USA, 17 pages.
https://doi.org/10.1145/3466752.3480051

1 INTRODUCTION
As traditional hardware scaling slows, scale-out systems become
increasingly attractive for resource-intensive workloads. However,
harnessing the power of scale-out platforms requires dealing with
datacenter-specific overheads, collectively dubbed the “datacenter
tax” [28]. Many of these overheads stem from the fundamental need
to communicate between software components (i.e., services) in a
distributed environment, which is commonly achieved via remote
procedure call (RPC). Because the remote callee cannot directly
access the caller’s memory space to read arguments and supply
a response, and may even be written in a different programming
language, exchanged data must undergo conversion to and from
a shared interchange format, via serialization and deserialization
operations. In addition to inter-service communication via RPC,
serialization and deserialization are also commonly used when
persisting data to durable storage.

To ensure that serialization and deserialization are handled in a
principled way across the multitude of services and data producer-
s/consumers running in a warehouse-scale computer, service devel-
opers employ a common serialization framework, which ensures
interoperability between components by pairing a standardized
wire format with language-specific APIs that allow applications to
produce and consume serialized objects. A vast number of these
frameworks have been created [1, 5, 7–11, 13], constituting a large
design space encompassing trade-offs in performance, flexibility,
ease-of-use, backwards compatibility, and schema evolution. In a
hyperscale context, backwards compatibility and schema evolution
become particularly important to manage complexity, build reliable
systems, and ensure long-term accessibility of data persisted to
durable storage [12, 14].

Naturally, this functionality comes at a performance cost—prior
work has shown that around 5% of fleet-wide cycles in Google’s

462

https://www.acm.org/publications/policies/artifact-review-and-badging-current
https://www.acm.org/publications/policies/artifact-review-and-badging-current
https://www.acm.org/publications/policies/artifact-review-and-badging-current
https://orcid.org/0000-0003-3145-776X
https://orcid.org/0000-0001-6889-4889
https://orcid.org/0000-0002-9404-7875
https://orcid.org/0000-0002-9307-2956
https://orcid.org/0000-0002-6024-4045
https://orcid.org/0000-0003-2324-1715
https://orcid.org/0000-0003-0754-3975
https://orcid.org/0000-0002-9751-5902
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1145/3466752.3480051
https://doi.org/10.1145/3466752.3480051

MICRO ’21, October 18–22, 2021, Virtual Event, Greece S. Karandikar, C. Leary, C. Kennelly, J. Zhao, D. Parimi, B. Nikolić, K. Asanović, and P. Ranganathan

Warehouse Scale Computers (WSCs) were spent in the Protocol
Buffers (“protobuf”) serialization framework in 2015 [28]. In 2020,
Facebook identified that serialization and deserialization consume
on average over 6% of cycles across seven key microservices in their
fleet [40].

Fortunately, the warehouse-scale context is a natural environ-
ment for hardware specialization [2, 19, 21, 22, 27, 31, 38] as the cost
of building custom processors is amortized over the high volume of
deployed hardware systems. To understand the trade-offs and op-
portunities in hardware acceleration for serialization frameworks,
we present the first in-depth study of serialization framework usage
at scale by characterizing protobufs usage across Google’s datacen-
ter fleet (Section 3) and use this data to construct HyperProtoBench,
an open-source1 benchmark representative of key serialization-
framework user services at scale (Section 5.2). In doing so, we also
identify key insights that challenge common assumptions about
serialization framework usage (Section 3.9).

We use these insights to co-design hardware and software to
develop a novel hardware accelerator for protobuf message seri-
alization and deserialization, implemented in Chisel RTL [18] and
integrated into a Linux-capable RISC-V SoC [15] (Section 4). Ap-
plications can easily harness the accelerator, as it integrates with a
modified version of the open-source protobuf library and is wire-
compatible with standard protobufs. We have fully open-sourced2
our RTL, which, to the best of our knowledge, is the only such
implementation currently available to the community.

We also present a first-of-its-kind end-to-end evaluation of our
entire RTL-based system running hyperscale-derived benchmarks
and microbenchmarks (Section 5 and Appendix A). We boot Linux
on the system using FireSim [29] to run these benchmarks and
implement the design in a commercial 22nm FinFET process to
obtain area and frequency metrics. We demonstrate an average 6.2×
to 11.2× performance improvement vs. our baseline RISC-V SoC
with BOOM OoO cores [43] and despite the RISC-V SoC’s weaker
uncore/supporting components, an average 3.8× improvement vs.
a Xeon-based server.

In addition to advancing the state-of-the-art in serialization
framework acceleration, this work is the first to demonstrate the
power of combining a data-driven hardware-software co-design
methodology based on large-scale profiling with the promise of ag-
ile, open hardware development methodologies [24, 30]. In this vein,
our entire evaluation flow (RTL, benchmarks, including hyperscale-
derived benchmarks, and supporting software and simulation in-
frastructure) has been open-sourced for the benefit of the research
community and our results have been reproduced by external arti-
fact evaluators (Appendix A).

2 PROTOBUF BACKGROUND
The protobuf library is an open-source, schema-oriented, data and
service description system [11]. Protobufs are widely used for
service-oriented design in modern hyperscale systems, including at
Google. Protobufs are also used for in-memory data representation,
persisting data to durable storage, and as a schema for columnar
storage (e.g. Google’s Dremel/BigQuery [32, 33]). A protobuf user

1https://github.com/google/HyperProtoBench. See Appendix A for archival URL.
2https://github.com/ucb-bar/protoacc. See Appendix A for archival URL.

.proto

.cc

key len data
(varints)

code usage

message definition

wire format

Figure 1: Encodings with repeated and recursive types.
Empty messages (inmost) take no bytes in encoded form.

Performance-
similar Types

Protobuf Type (includes
repeated of each type)

Sizes
(bytes)

bytes-like bytes, strings See Fig. 4c
buckets

varint-like {s,u}int{64,32},
int{64,32}, enum, bool

1-10, by 1

float-like float 4
double-like double 8
fixed32-like fixed32, sfixed32 4
fixed64-like fixed64, sfixed64 8

Table 1: Classification of protobuf field types.

defines the contents of a message in a .proto file written in the
protobuf language, either proto2 or proto33. The protobuf com-
piler (protoc) ingests .proto files and generates language-specific
code to allow user programs to populate, read, and perform other
operations on protobuf messages.

2.1 Message structure
2.1.1 Schema and message definition. A protobuf message is a
collection of fields. In the protobuf schema, each message field
has a type, name, field number, and potential qualifiers including
optional, required, and repeated (with packed for a more effi-
cient encoding). Scalar field types include doubles, floats, various
variable and fixed-width integer types, bools, strings, and bytes.
The “Protobuf Type” column in Table 1 lists these types. A field’s
type can also be a user-defined message type, allowing for messages
to contain sub-messages; messages may be nested arbitrarily deeply
and recursively structured. The repeated qualifier marks that a
field is a vector of elements of its assigned type, which can also be
a user-defined message type. The top row of Figure 1 shows two
example message definitions.

This structure enables forward portability and schema evolu-
tion. Namely, fields are numbered for stability across field name
changes, and fields may be optionally present, enabling sparsity
for deprecated/unused fields. Schema evolution, upgrade paths,
and host language integration are critical for productively using
a serialization framework at hyperscale, where services cannot be

3As discussed in Section 3.3, the vast majority of protobuf usage in Google’s fleet is
proto2. Thus, “protobufs” implicitly refers to proto2 in the rest of this paper.

463

https://github.com/google/HyperProtoBench
https://github.com/ucb-bar/protoacc

A Hardware Accelerator for Protocol Buffers MICRO ’21, October 18–22, 2021, Virtual Event, Greece

monolithically upgraded, and persisted data must be highly avail-
able for long periods of time [14].

2.1.2 Wire format. Before we discuss the wire format, it is impor-
tant to note that variable-length integers (“varints”) are used heavily
in the protobuf wire format. The protobuf varint algorithm repeat-
edly consumes 7 bits at-a-time in a loop from the least-significant
side of a fixed-width input value until no non-zero bits remain. For
each 7-bit group, it outputs a byte containing the original bits and
a continuation bit, which if set, indicates that more bytes follow. As
we will see, varint handling is a prime candidate for acceleration—
fixed-function hardware can easily handle varint encoding/decod-
ing in a single cycle.

On the wire, protobuf messages appear as a sequence of bytes
containing a set of (key, value) pairs that represent fields in the
message. Each field’s key is a varint-encoded version of the field
number concatenated with a three-bit wire type. Wire types can be
one of: varint (field types {s,u}int{64,32}, int{64,32}, enum,
and bool), 64-bit (field types double and (s)fixed64), length-
delimited (field types string, bytes, sub-messages, and packed
repeated fields), start group (deprecated), end group (deprecated),
and 32-bit (field types float and (s)fixed32). A critical observa-
tion from this mapping is that the wire type is not sufficient to
determine the language/schema type of a field. For the 32-bit and
64-bit wire types, C++ values are directly copied into the wire for-
mat. For the varint wire type, the varint encoding is applied to the
C++ values before they are copied to the wire format. The values
of the length-delimited wire type first contain a varint-encoded
length in bytes, which represents either the length of a string or
byte array, the length of a sub-message, or the length of a packed
repeated field. This length is followed by either the string or bytes
data, the wire-format version of a sub-message, or encoded values
in a packed repeated field. Finally, unpacked repeated fields appear
on the wire as multiple (key, value) pairs that all have the same
key. The bottom row of Figure 1 shows examples of two messages
encoded in the wire format.

2.1.3 In-memory format. As previously mentioned, given a mes-
sage schema, the protobuf compiler will generate language-specific
code for each message type. For example, for C++, the compiler
generates a class for each message type which encapsulates the field
data. Users expect to work with protobuf messages as standard C++
objects: scalar fields are stored as the expected C++ primitive type,
string/byte fields are stored as std::strings, repeated fields are
stored similar to vectors, and sub-messages are stored as pointers
to objects of their corresponding type. All members are wrapped in
accessors (e.g., setters, getters). The middle row of Figure 1 shows
examples of two messages used in C++ code.

2.2 Serialization and deserialization
The two key operations in protobufs are serialization and deseri-
alization. Serialization converts the in-memory, language-specific
protobuf message representation (Section 2.1.3) to the standard
protobuf wire format (Section 2.1.2). This wire-format version of
a message can then be exchanged with any other program that
uses protobufs, regardless of programming language, host machine,
operating system, and compiler. To unpack the wire format into

a usable object again, the deserialization process converts a wire-
format message back to the in-memory language-specific protobuf
object.

Serialization and deserialization are inverse operations, but dese-
rialization ismore complex for two reasons. Firstly, deserialization is
inherently a serial process: the deserializer receives a single stream
of bytes and the key (and potentially, value) of the N th field in
the encoded format must be decoded before the (N + 1)th field,
as the location of the (N + 1)th field is unknown until the size of
the N th field is known (based on wire-type or explicit length). On
the other hand, serialization has ample opportunity for parallelism:
serialization of individual fields can be performed in parallel with
one final serial step that concatenates the serialized fields into one
output buffer.

Secondly, deserialization requires the accelerator to construct ob-
jects in the in-memory language format (including e.g., std::string
objects in C++) and allocate memory for them; serialization only
needs to traverse language-format objects.

2.3 Arena allocation
One notable performance optimization available in upstream pro-
tocol buffers is arena allocation [4], which reduces message con-
struction/destruction overheads by pre-allocating a large chunk
of memory called the arena. Allocation of individual messages in
the arena is simplified to a pointer increment. The accelerator we
implement uses its own form of arena allocation, as discussed in
Section 4.3.

3 PROFILING PROTOBUF USAGE AT SCALE
In this section, we explore the usage of Protocol Buffers at scale
across Google’s datacenter fleet to motivate requirements for a hard-
ware accelerator for serialization and deserialization, and quantify
accelerator design trade-offs.

3.1 Data sources
We rely on three internal data sources at Google to glean insights
on protobuf usage at scale: Google-Wide Profiling (GWP) CPU cycle
profiles, protobufz, and protodb.

3.1.1 Google-Wide Profiling (GWP) CPU cycle profiles. CPU cycle
profiles are collected from machines across Google’s fleet using
Google-Wide Profiling (GWP) [39]. The collected profiles include
workload names, stack traces, and cycle counts, which allow us to
identify where CPU time is spent in software. In particular, this
data allows us to identify how much time is spent in different
operations inside the protobuf library and generated code, including
serialization, deserialization, and others.

3.1.2 protobufz. The protobufz sampler provides dynamic (i.e.,
runtime) information about the structure of protobuf messages
that are serialized and deserialized throughout the software stack
running on Google’s datacenter fleet. GWP randomly chooses ma-
chines to visit; when a machine is visited, the protobuf message
sampler runs for several seconds and randomly selects top-level
messages to be sampled. A top-level message is defined as a mes-
sage on which deserialize or serialize is called directly; that is, a
sub-message only appears in the data if its parent is also chosen.

464

MICRO ’21, October 18–22, 2021, Virtual Event, Greece S. Karandikar, C. Leary, C. Kennelly, J. Zhao, D. Parimi, B. Nikolić, K. Asanović, and P. Ranganathan

Figure 2: Fleet-wide C++ protobuf cycles by operation.

When a top-level message is sampled, complete information about
the message and its sub-messages is captured. This includes sizes
and types of all present fields, including fully-qualified names for
sub-message types. The protobufz data also includes the path of
the .proto file in which the protobuf message is defined. This
allows reconstruction of the complete hierarchy of a sampled mes-
sage and joining the dynamic protobuf structure data with other
data sources.

3.1.3 protodb. The protodb database provides static information
about all .proto files defined in Google’s codebase. This allows us
to collect detailed information about each defined message type,
such as the version of the protobufs language a message is defined
against, whether repeated fields are packed, and the range of field
numbers defined in a message.

3.2 What is the opportunity for fleet-wide CPU
cycle savings?

Using GWP CPU cycle profiles, we find that protobuf operations
constitute 9.6% of fleet-wide CPU cycles in Google’s infrastructure.
These cycles are dominated by C++ protobuf usage: 88% of fleet-
wide protobuf cycles are spent in C++ protobufs. As a result, we will
focus on C++ protobufs in the rest of this work. Section 7 discusses
future support for other languages.

Figure 2 shows the classification of cycles spent within C++ pro-
tobufs, by operation. A few notable items are immediately visible.
Firstly, deserialization alone is a significant contributor to overall
CPU cycles—2.2% of fleet-wide CPU cycles are spent in C++ pro-
tobuf deserialization. Serialization cycles are also significant, with
serialization in C++ consuming 1.25% of fleet-wide CPU cycles4.
Because these are relatively coarse-grained operations, they are nat-
ural avenues to explore for acceleration opportunities. The “other”
operator in Figure 2 represents a miscellany of glue code that is
not clearly amenable to acceleration. This work focuses on the task
of accelerating C++ protobuf serialization and deserialization, pre-
senting the opportunity to accelerate/offload 3.45% of CPU cycles
across Google’s fleet. Section 7 discusses several other protobuf
operations, which are relatively straightforward to accelerate once
deserialization and serialization are handled.

4Virtually all calls to Byte Size occur during serialization, so this accounts for Serial-
ization’s 8.8% of protobuf cycles and Byte Size’s 6.0% of protobuf cycles in Figure 2.

Figure 3: Fleet-wide top-level message size distribution.

3.3 Which proto version should we implement?
As discussed in Section 2, two versions of the Protocol Buffers
language are currently supported, proto2 and proto3. Although
proto3 was released in mid-2016, 96% of protobuf bytes serial-
ized/deserialized in Google’s fleet remain defined in the proto2
language. Therefore, we target proto2 in our accelerator design.
This also suggests that usage of serialization framework APIs and
formats tends to be stable over time, making hardware acceleration
viable.

3.4 Should we optimize accelerator placement
for the RPC stack?

To understand where to place a protobuf accelerator in the system
(e.g., in-core, near-core, as a bus peripheral, CXL, PCIe, etc.), we
would like to know how serializations and deserializations are initi-
ated. One commonly assumed source of protobuf usage is the RPC
stack. In Google’s fleet, we find that only 16.3% of deserialization
cycles are from the RPC stack and only 35.2% of serialization cycles
are from the RPC stack. This challenges the common assumption
that a protobuf accelerator should be placed on a PCIe-attached NIC.
Instead, it is clear that other serialization and deserialization users
(e.g. storage users) must be accounted for when deciding where to
place a protobuf accelerator in the system.

3.5 What is the granularity of operations the
accelerator needs to handle?

Another factor when deciding accelerator placement is understand-
ing the offloading overhead that can be tolerated, which depends on
offload granularity. While we do not have a mechanism to directly
attribute cycle counts to individual serialization and deserialization
operations, we can observe the distribution of top-level message
sizes (including their sub-messages) as a proxy.

Figure 3 shows the distribution of message sizes observed in
Google’s fleet. Buckets are labeled with their inclusive byte bounds;
that is, the [0 - 8] bucket counts the number of messages where
the total encoded message size (including all sub-messages) was
0 to 8 bytes. Interestingly, the vast majority of messages are very
small: 24% of messages are 8 bytes or less, 56% of messages are
32 bytes or less, and 93% of messages are 512 bytes or less. Based
on this distribution, a near-core accelerator is likely necessary to
efficiently handle the vast majority of messages. Also notable is
that protobuf benchmarks used by prior work [36] tend to focus
on only a small part (e.g., one bucket) of this distribution.

While message count is important, it is also important to keep in
mind the volume of data in each of the message-size buckets. While

465

A Hardware Accelerator for Protocol Buffers MICRO ’21, October 18–22, 2021, Virtual Event, Greece

we cannot directly collect this data due to infrastructure limitations,
we can see that the [32769 - inf] bucket, which represents 0.08%
of messages, contains at least 13.7× as many message bytes as the
[0 - 8] bucket. This volume of data encoded in large messages
could tolerate a higher offload overhead, while still observing a
speedup. We will return to the discussion of accelerator placement
trade-offs in Section 3.9.

3.6 What types of data movement and field
encodings should the accelerator support?

In addition to the acceleration opportunities inherent in parsing or
constructing protobuf message structure in hardware, there may be
opportunities to speed up the processing of individual field values,
depending on the commonly used field types in the fleet.

3.6.1 Which field types are most commonly used? The various pro-
tobuf field types discussed in Section 2 present differing opportuni-
ties for acceleration. For example, handling an int64 field requires
encoding or decoding two varints, the key and value, which is ex-
pensive in compute-per-byte terms on a CPU. On the other hand,
handling a large bytes field is relatively cheap as it only requires
encoding or decoding two varints, the key and length, and then
memcpying a large amount of useful data.

Figure 4a shows the proportion of observed fields of the most
frequently used primitive types across Google’s fleet. In this plot,
sub-messages are accounted for via the primitive fields they contain,
but are not noted as separate fields themselves. Looking at field
counts, we see very promising avenues for acceleration. Firstly,
over 56% of fields are a form of varint (int32, int64, enum, bool,
uint64), which are well-suited to acceleration. There are also a
significant number of string and bytes fields, which can benefit
from acceleration depending on field size.

3.6.2 Which field types account for the most data volume? Field
counts do not necessarily present the full picture. Ideally, we would
like to know the total number of CPU cycles spent serializing and
deserializing each field type. Unfortunately, the fleet-wide profiling
mechanisms do not provide this level of detail. However, as a proxy,
we can instead obtain the number of bytes of data attributed to
each field type, fleet-wide. Figure 4b presents this data.

Startlingly, we see a very different picture when looking at the
weighted (by bytes of data) field-type breakdown. Bytes, string,
and repeated bytes and string fields constitute over 92% of the
bytes of protobuf messages handled. If these fields tend to be very
large, then the cost of handling a varint (for the field’s key) is
relatively small compared to the cost of performing a memcpy and
therefore there is less opportunity for acceleration beyond memcpy
acceleration and offloading.

3.6.3 How large are bytes fields? To better understand the break-
down of this large amount of bytes and string data in protobuf
messages, we collect data on the distribution of bytes field sizes,
as shown in Figure 4c. Figure 4c uses the same bucket bounds as
Figure 3; a slice labeled 0-8 in Figure 4c represents the percentage
of bytes fields that were 0 to 8 bytes (inclusive) in size. Not labeled
are the 4097-32768 and 32769-inf buckets, which constitute 1.3%
and 0.06% of observed fields respectively. In this view, we can see
that small bytes fields dominate in terms of count, but data volume

is a different story; the 32769-inf bucket contains at least 7.2× as
many bytes of data as the 0-8 bucket.

3.6.4 Which field types are responsible for the most CPU cycles in
serialization and deserialization? The data so far paints a murky
picture of where opportunities for protobuf acceleration lie. To
better understand how time is spent in protobuf serialization and
deserialization fleet-wide, we develop a model that converts from
counts and bytes of different field types into CPU cycles (or time)
spent handling each type. To enable this, we first group together
protobuf field types that require a similar amount of “work” to be
serialized or deserialized, as shown in Table 1. Within the bytes-
like and varint-like groups, we subdivide by field size since as
discussed earlier, size can have a significant impact on serialization
and deserialization performance. For varint-like fields, the fleet-
wide protobufz histogram data provides exact labels on size bins,
so we can directly determine how much data each of the varint
sizes (1 to 10 bytes) contribute to the overall number of protobuf
message bytes. For bytes-like fields, the profiling system collects 10
buckets with ranges shown in Figure 4c. To interpolate field sizes
from the buckets for bytes-like fields, we select the midpoint of
each bucket to represent the size of each field in the bucket, and
then adjust the size of the largest bucket (32769 to infinity bytes)
as necessary to obtain the total number of bytes of bytes-like fields.
Altogether, this process classifies the fleet-wide bytes-of-protobuf
message data into 24 slices based on pairs of [field-type-like,
size].

Next, for each of these 24 pairs, we construct a protobuf mi-
crobenchmark to measure serialization and deserialization perfor-
mance in terms of time spent per-byte of encoded data. Combining
these results with the fleet-wide bytes-per-field-type data, we obtain
estimated deserialization and serialization time (or cycles) spent
per-field-type across Google’s fleet.

Figure 5 shows the estimated breakdown of deserialization time
across the fleet. Several important insights can be derived from this
analysis. Firstly, we notice that there is no single silver-bullet—the
accelerator will need to improve deserialization performance across
the swath of field types and sizes. Furthermore, the cases where the
CPU performs best (large bytes-like fields) are a relatively small
proportion of overall deserialization cycles—only 14% of time is
spent deserializing protobuf data at higher than 1GB/s. While some-
what counter-intuitive, the difference in bytes-percentage between
Figure 4b (amount of data) and Figure 5 (cycles) arises precisely be-
cause handling of large bytes-like fields on a CPU is so much faster
per-byte than for example, a small varint-like or small bytes-like
field; in our microbenchmarks, the large bytes-like field is 100-
500x faster to handle per-byte. Figure 6 paints a similar picture for
serialization. Although the largest byte bucket is relatively more
significant than in the deserialization case, there is still ample op-
portunity in other field types. Overall, this analysis demonstrates
that there are significant opportunities for acceleration in protobuf
deserialization and serialization apart from fast memcpy.

3.7 What is the ideal accelerator programming
interface?

To enable serialization frameworks to generate programming infor-
mation for a serialization/deserialization accelerator, priorwork [36]

466

MICRO ’21, October 18–22, 2021, Virtual Event, Greece S. Karandikar, C. Leary, C. Kennelly, J. Zhao, D. Parimi, B. Nikolić, K. Asanović, and P. Ranganathan

(a) % of fields observed by type. (b) % of message bytes observed by type. (c) % of bytes fields observed by field size.

Figure 4: Fleet-wide field type and bytes field breakdowns.

Figure 5: Estimated deser. time by field type, fleet-wide.

Figure 6: Estimated ser. time by field type, fleet-wide.

has suggested dynamically constructing per-message-instance pro-
gramming tables of type/address (with implicit field presence) in-
formation for each populated field in a message to be serialized.
While this can simplify accelerator implementation, this requires
the protobuf compiler to add computationally expensive schema-
management code to all generated field setters and clear methods
that previously consisted of only cheap loads and stores. In contrast,
our approach is to produce one Accelerator Descriptor Table (ADT)
per-message-type (Section 4.2), resulting in a drastic reduction in
programming table state. Our ADTs are automatically generated
by the protobuf compiler and fully populated when the program

is loaded, removing the need to inject costly schema-management
code into all field setters and clear methods.

With our fixed, per-message-typeADTs, however, separate state is
required to maintain field-presence information (i.e., whether or not
a field has been set in a particular message object) for serialization
purposes. We modify the internal per-message-instance hasbits
bit field already generated by the protobuf compiler, to a sparse
representation, so that the accelerator can directly index into it by
field number.

More quantitatively, while prior work [36] writes an extra 64
bits per-present-field (a conservative assumption for the size of a
schema entry) compared to our design, our design reads an extra
bit per-field in the range of defined field numbers (due to the sparse
hasbits representation) compared to the prior work. Thus, a field
number usage density (= average # of present fields for a message
type divided by the range of defined field numbers for that type)
value of greater than 1

64 (which falls in the “0.00” bucket in Fig-
ure 7) favors our accelerator design; Figure 7 shows that at least
92% of observed messages fleet-wide have a density greater than 1

64 ,
heavily favoring our accelerator design. We will build on this dis-
cussion in Sections 4.2 and 4.5.3, where we discuss our accelerator
programming tables and serializer frontend design.

3.8 How do we size sub-message metadata
tracking structures in the accelerator?

Another important question that will arise when designing a pro-
tobuf accelerator is that of handling sub-messages. Recursing into
a sub-message in hardware requires maintaining additional state
per-level of hierarchy (Section 4.4.9 and Section 4.5.3), which can
become expensive. Fortunately, we find that across Google’s fleet,
99.9% of bytes of protobuf data handled are at depth 12 or less,
with 99.999% at depth 25 or less. We also find that the maximum
observed depth is less than 100. This suggests that a small amount
of state can be allocated on-chip in the accelerator to handle the
vast majority of message data, while trapping or spilling to DRAM
is acceptable to handle less common cases.

3.9 Key insights for accelerator design
To conclude this section, we outline the key insights from our
profiling study that impact the design of a protobuf accelerator:

467

A Hardware Accelerator for Protocol Buffers MICRO ’21, October 18–22, 2021, Virtual Event, Greece

Figure 7: Field number usage density distribution for all message types, weighted by # of observed msgs. of each type.

• A hardware accelerator for protobuf serialization/deserialization
could eliminate up to 3.45% of fleet-wide cycles at Google, a signifi-
cant savings at scale (Section 3.2).
• Usage of serialization framework APIs and formats tends to be
stable over time, making hardware acceleration viable (Section 3.3).
• A protobuf accelerator is most amenable to being placed near
the CPU core. A common proposal is to place the accelerator on a
PCIe-attached NIC. This is unlikely to be fruitful for several reasons:
– Over 83% of deserialization cycles and over 64% of serialization
cycles in Google’s fleet are not RPC-related and offloading them
over PCIe would introduce significant unnecessary data move-
ment (Section 3.4).

– Accesses into the in-memory protobuf representation performed
during serialization and deserialization are ill-suited to being per-
formed over PCIe (due to its high latency [34]). The accesses
are commonly small and irregularly strided (e.g. ints, floats)
or require multiple chained pointer dereferences (strings/bytes/
repeated/sub-messages). This is particularly problematic for dese-
rialization, which must process the serialized input sequentially,
field-by-field (Section 3.6.4).

– The in-memory representation is commonly sparsely populated,
so an optimization such as bulk-copying an entire in-memory
protobuf object over PCIe is too wasteful. In a similar analysis
as Section 3.7, we find that over 90% of messages fleet-wide only
contain values for less than 52% of their defined fields, on average.

– To make on-NIC acceleration truly worthwhile, a SmartNIC must
also handle all encapsulations between protobuf serialization/de-
serialization and frame egress/ingress.

• Trying to achieve acceleration at individual field-granularity
(only accelerating varint processing or memcpy) is unlikely to be
fruitful—a protobuf accelerator will need to understand complete
message structure (e.g. processing fields in parallel during serializa-
tion), handle a wide variety of field types efficiently (Section 3.6.4),
and be able to handle fast memcpy (Section 3.6.3).
• To program our accelerator, we will use fixed, per-type schema
tables combined with dynamic, per-instance presence-tracking bit
fields. This scheme is more memory and CPU efficient than prior
work [36] (Section 3.7).
• To handle submessages in our accelerator, we will only need to
maintain on-chip sub-message context stacks of depth 25 for most
messages (Section 3.8).

4 ACCELERATOR DESIGN
This section details the design and implementation of our protobuf
accelerator, consisting of the deserializer and serializer units, as well

Ti
le

Li
nk

 S
ys

te
m

 B
us L2

 $
C

or
e

C
om

pl
ex

P
er

ip
h-

er
al

s

LL
C

D
R

A
M

 C
ha

nn
el

s

Tile

BOOM OoO
Superscalar
RISC-V Core

Protobuf Accelerator
(Deserializer and
Serializer Units)

PTW
RoCC
Request

TLBs

L1 I$

L1 D$

RoCC
Response

Figure 8: Top-level block diagram of our RISC-V SoC with
an OoO superscalar core and protobuf accelerator.

as the software modifications required to exercise the accelerator
within the context of our complete accelerated RISC-V SoC design.

4.1 System overview
The protobuf accelerator is implemented in Chisel RTL [18] and in-
corporated into the Chipyard RISC-V SoC generator ecosystem [15].
Figure 8 shows the overall architecture of the accelerated SoC. We
configure the SoC to use BOOM, an OoO superscalar RISC-V core
with performance comparable to ARM A72-like cores [43].

The accelerator receives commands directly from the BOOM
application core in the SoC via the RoCC interface [3, 16], which
allows the CPU to directly dispatch custom RISC-V instructions in
its instruction stream to the accelerator with low latency (ones-of-
cycles). These RoCC instructions [16] can supply two 64-bit register
values from the core to the accelerator. The accelerator accesses the
same unified main memory space as the CPU using the coherent
128 bit-wide TileLink system bus [25]. Accesses to main memory
made by accelerator components go through the memory interface
wrappers shown in Figures 9 and 10. These maintain TLBs and
interact with the page-table walker (PTW) to perform translation
and thus allow the accelerator to use virtual addresses. These also
manage tracking OoO responses from the system bus and sup-
port a configurable number of outstanding requests, depending on
memory system characteristics and resource constraints. Lastly, as
shown in Figure 8, all memory accesses made by the accelerator
go through the L2 and LLC, which are shared with the application
core. Putting these pieces together, offload overhead is minimal:
apart from the custom instructions that perform a serialization or
deserialization, only a fence instruction is required between the

468

MICRO ’21, October 18–22, 2021, Virtual Event, Greece S. Karandikar, C. Leary, C. Kennelly, J. Zhao, D. Parimi, B. Nikolić, K. Asanović, and P. Ranganathan

user program operating on a protobuf and the accelerator operating
on a protobuf.

4.2 Software changes to the protobuf library
We modify the protoc compiler to automatically generate Acceler-
ator Descriptor Tables (ADTs), which encode the layout of a proto-
buf message type in application memory and information about its
fields. There is one ADT per-message-type, rather than per-message-
instance, and ADTs are populated when the program is loaded,
avoiding adding code to the critical path of setting or clearing mes-
sage fields in user code. When the serialization or deserialization
of a message is dispatched to the accelerator, the message’s type’s
ADT is also passed to the accelerator.

Each ADT contains three regions. The 64B header region con-
tains layout information at the message-level, consisting of: (1) a
pointer to a default instance (or vptr value) of the message type,
(2) the size of C++ objects of the message type, (3) an offset into
message objects for an array of field-presence bit fields (hasbits),
and (4) the min and max field number defined in the message. The
second ADT region consists of 128-bit wide entries that represent
each field in the message type, indexed by field number. Each entry
consists of the following details for a field: (1) the field’s C++ type
and whether the field is repeated, (2) the offset where the field
begins in the in-memory C++ representation of the message, and
(3) for sub-message fields, a pointer to the sub-message type’s ADT.
The final ADT region is the is_submessage bit field, an array of
bits that indicates if a field is a sub-message. This is used to reduce
complexity in the serializer, since it can know when it needs to
switch contexts into a sub-message without waiting for a full ADT
entry read.

In addition to ADT information, the serialization unit in the
accelerator must also know which fields in a given C++ protobuf
message are actually populated. The protobuf library tracks this
information using the private hasbits member of each C++ proto-
buf message object. Each bit in the hasbits bit field represents the
“presence” of a particular field. protoc represents hasbits densely,
but supporting a dense packing in the accelerator would require
significant overhead (e.g. a mapping table indexed by field num-
ber, introducing an additional 32-bit read per-field). Based on our
profiling insights in Section 3.7, we find that the dense packing
optimization is not significantly helpful in the common cases seen
at scale. Thus, to improve accelerator efficiency, we make a different
hardware/software co-design trade-off for the accelerator context;
we modify the representation of the hasbits bit field such that the
accelerator can directly index into it, based on field number. To save
memory in the common case where field numbers are contiguous
but start at a large number, we provide the accelerator with the
minimum defined field number in a message type, with respect to
which it calculates field-number offsets.

4.3 Accelerator memory management
To remove the CPU from the critical path of serialization and dese-
rialization, the accelerator will need to manage a memory region
in which it allocates and populates deserialized C++ message ob-
jects and serialized message outputs. Similar to how an arena is

TileLink System Bus (L2) / PTW

R
oC

C
 R

eq
ue

st
 /

R
es

po
ns

e

C
M

D
 R

ou
te

r

Mem Interface Wrappers

Memloader
Unit

Field Handler Unit

Combo Varint
Decoder

Control

Hasbits
Writer

ADT
Loader

Field Data
Writer

...

Figure 9: Deserializer unit top-level block diagram.

constructed in advance when using arena allocation for software-
only protobuf processing (Section 2.3), the application program
pre-allocates arena memory regions for the accelerator and passes
their pointers to the accelerator via two custom RoCC setup in-
structions ({ser,deser}_assign_arena). In the rest of this paper,
we will refer to standard upstream protobuf arenas (i.e., those from
Section 2.3) as software arenas and arenas given to the accelerator
as accelerator arenas.

4.4 Deserializer unit
The deserializer unit is responsible for receiving a serialized proto-
buf (as a pointer to a sequence of bytes) and decoding it to populate
a corresponding C++ object of that message’s type. Figure 9 shows
the block-level design of the deserializer unit.

To maintain compatibility with standard protobuf software APIs,
we expect that the top-level C++ protobuf message object is allo-
cated by the user code (e.g. in the software arena). Any internal
objects (sub-messages, strings, and repeated fields) are allocated by
the accelerator in the accelerator arena.

4.4.1 Dispatching a deserialization from the CPU. To begin dese-
rialization of a message, the CPU issues two custom instructions
through the RoCC interface. The first instruction, deser_info, sup-
plies a pointer to the ADT of the message type being deserialized
and a pointer to the top-level destination message object for the
accelerator to populate. The second instruction, do_proto_deser,
supplies a pointer to the serialized input buffer, the smallest de-
fined field number in the message type, and the length of the input
buffer, and kicks off deserialization in the accelerator. Once these in-
structions are issued, the CPU can perform other work, issue more
deser_info and do_proto_deser pairs, or issue a block_for_
deser_completion instruction, which is committed after all in-
flight deserializations are completed. This is a flexiblemiddle ground
that allows for batching deserializations, without requiring SW to
unnecessarily poll for completion.

4.4.2 Memloader unit. Once a do_proto_deser instruction is dis-
patched to the accelerator, the accelerator begins loading serialized
buffer contents from memory using the memloader unit. The mem-
loader exposes a decoupled streaming interface to the rest of the
pipeline that allows the consumer to accept a consumer-dictated
amount of data per-cycle, up to 16B. A full 16 bytes of buffered data
are always exposed on this interface, since the number of bytes the
consumer will wish to consume is data-dependent.

469

A Hardware Accelerator for Protocol Buffers MICRO ’21, October 18–22, 2021, Virtual Event, Greece

4.4.3 Field-handler unit. The field-handler unit implements the
core parsing logic required to convert the serialized buffer contents
into an in-memory C++ object for the user program to consume.
The field handler control is implemented as a state machine that, in
a loop, parses a field’s key (the parseKey state), blocks for detailed
type information from the ADT entry for the field (the typeInfo
state), and then moves into a set of states that handle parsing and
writing the field’s value based on its detailed type information.

4.4.4 Field-handler unit: parseKey state. Each key is encoded as a
varint, which can be up to 10B wide. The field-handler unit contains
a combinational varint decoder, which can directly peek at the next
10B of the serialized buffer via the memloader’s variable-width
consumer interface. The varint parser emits the decoded key (as
a 64-bit-wide uint) and the encoded length N , so the memloader
can discard the N -byte key at the end of the cycle. As described
in Section 2, the key consists of two components, the field type
and the field number. At the end of the parseKey cycle, the field
handler dispatches a request to the ADT loader containing the ADT
base address for this message type and the field number of the field.
The field handler also dispatches a request to the hasbits writer,
which will set the appropriate bit in the C++ object’s hasbits bit
field to indicate that the field is present in the message.

4.4.5 Field-handler unit: typeInfo state. After the parseKey state,
the accelerator moves to the typeInfo state. This state serves to
block on the response from the ADT loader in order to obtain
detailed type information. Once the response is received, the logic
in this state dispatches to one of four state classes: final write states
for scalar fields, string allocation and copy states, repeated-field
handling states, or sub-message handling states.

4.4.6 Field-handler unit: final write states for scalar fields. This set
of states handles writes for scalar field types: the varint, 64-bit, and
32-bit protobuf wire types. At the end of this stage, the decoded
field data is written into memory. The write address is available
from the ADT entry previously received in the typeInfo state. The
decoded value and size depend on the detailed type being handled,
which is known from the loaded ADT entry.

To handle the varint wire type, the same combinational varint
parser from the parseKey state generates a fixed-width value and
supplies the number of bytes consumed back to the memloader
consumer interface. The ADT entry distinguishes whether the out-
put type is 32-bits or 64-bits wide and signed or unsigned. For
signed varints, the decoded value is passed through an additional
combinational zig-zag [6] decoding unit.

4.4.7 Field-handler unit: string allocation and copy states. String
and byte fields and the other field types we will discuss in the
remainder of this section introduce a new wrinkle into the deseri-
alization process—instead of relying on user code to have allocated
destination memory, the accelerator must handle memory alloca-
tion in the accelerator arena assigned to it by the user program.

Our accelerator constructs string objects that are compatible
with modern versions of libstdc++, which allows user code to
directly operate on strings in the deserialized protobuf message
as if it were deserialized by the software protobuf library. The
accelerator first decodes and consumes the varint-encoded string
length. It then constructs the string object and depending on the

length, a separate array for the string contents (i.e. the common
small string optimization). A pointer to the newly allocated string
object is written into the offset in the C++ message object that is
obtained from reading the field’s ADT entry. Next, the accelerator
consumes the string contents from the memloader and writes them
into the allocated buffer in memory.

4.4.8 Field-handler unit: repeated-field handling states. Our accel-
erator also handles packed and unpacked repeated fields. Packed
repeated fields are handled in a similar vein as strings, since they are
also represented as length-delimited values. Unpacked values are
handled by creating a tagged open-allocation region when the first
element in an unpacked repeated field is seen. As more key-value
pairs with the same tag are received in the serialized representation,
they are copied into the open allocation region. When the accelera-
tor encounters either the end of the current message or a different
unpacked repeated field, it closes-out the open allocation region
and writes out a final length in elements into the repeated-field
object in application memory.

4.4.9 Field-handler unit: sub-message handling states. As described
in Section 2.1, protobuf messages can contain sub-messages. So far,
the accelerator has relied on several pieces of information that are
supplied by the CPU via RoCC instructions to perform deserializa-
tion: the ADT pointer for the top-level message’s type, a pointer to
the user-allocated C++ object in which the deserialized top-level
message should be written, the smallest defined field number in the
message type, and the length of the serialized top-level message
input in bytes. Going forward, we will refer to these elements as
message-level metadata.

The deserialization process for sub-messages requires consum-
ing the serialized sub-message content in a depth-first manner,
which means we must preserve message-level metadata for each
message on the path between the current sub-message and the
top-level message. Given the depth-first parsing order, we maintain
a hardware stack to track message-level metadata during deserial-
ization. The accelerator always uses the message-level metadata at
the top of the metadata stack, allowing reuse of the entire pipeline
for sub-message decoding.

Putting these pieces together, the sub-message parsing state
prepares the accelerator to consume the serialized sub-message
output by modifying the stack entries and by performing memory
allocation. In this state, the accelerator first decodes the serial-
ized sub-message field’s header, which contains the varint-encoded
length of the serialized message in bytes. As with other fields, the
ADT entry for the field has already been fetched and contains a
pointer to the ADT of the sub-message’s type. Using this pointer, the
accelerator fetches metadata from the aforementioned header re-
gion of the ADT for the sub-message type, which contains a pointer
to a default instance (or vptr) of the type and the size of the type.
Given this information, the accelerator allocates and initializes a
new C++ object for the deserialized sub-message data and writes
a pointer to the newly allocated object into the parent object’s
field pointer. Finally, the accelerator pushes new entries onto the
message-level metadata stacks. When the setup is completed, the
accelerator returns to the parseKey state, where it begins parsing
and populating the sub-message.

470

MICRO ’21, October 18–22, 2021, Virtual Event, Greece S. Karandikar, C. Leary, C. Kennelly, J. Zhao, D. Parimi, B. Nikolić, K. Asanović, and P. Ranganathan

TileLink System Bus (L2) / PTW

R
oC

C
 R

eq
ue

st
 /

R
es

po
ns

e

C
M

D
 R

ou
te

r

Mem Interface Wrappers

Frontend

...

R
R

 O
p

D
is

pa
tc

h

R
R

 F
S

U
 O

ut
pu

t S
eq

.

Field
Serializer

Units
Memwriter

Unit
... ...

...
B

it
Fi

el
d

Lo
ad

er

A
D

T
Lo

ad
er

Figure 10: Serializer unit top-level block diagram.

As the sub-message is being processed and input data is con-
sumed, the accelerator updates the total consumed serialized input
length. When this length is equal to the top entry in the stack of the
serialized message lengths, the sub-message parsing is completed.
Popping an entry from each stack returns the accelerator to parsing
the parent message.

4.5 Serializer unit
The protobuf accelerator’s serializer unit converts a C++ protobuf
object populated by a user application into a serialized sequence of
bytes. Figure 10 shows the block-level design of the serializer unit.

4.5.1 Field serialization order and serializer memory management.
One counter-intuitive but critical note about field serialization or-
der is that the accelerator iterates through fields in reverse field
number order and writes the serialized output from high-to-low
addresses. This produces byte-wise identical output as a software
serializer serializing in increasing field number order and writing
output from low-to-high addresses, but drastically simplifies the
process of populating the length of sub-messages (which appear
before the fields in a sub-message). The accelerator arena internally
contains two memory regions for serialization: (1) a buffer in which
to allocate and write serialized output data and (2) a buffer in which
to store pointers to the start of each serialized output in (1).

4.5.2 Dispatching a serialization from the CPU. To dispatch a seri-
alization operation, like before, the user program issues two RoCC
instructions. The ser_info instruction supplies the offset of the
hasbits field in the C++ protobuf message object to serialize and
the largest and smallest defined field numbers for the message type.
The do_proto_ser instruction supplies a pointer to the top-level
ADT of the protobuf message to serialize and a pointer to the C++
representation of the protobuf message to serialize and kicks off
a serialization. Like deserialization, the CPU can perform other
work, issue more ser_info and do_proto_deser pairs, or issue a
block_for_ser_completion instruction, which is committed after
all in-flight serializations are completed. After completion, the user
program can call a function to get a pointer to the N th serialized
output (and its length) from the arena.

4.5.3 Frontend. When the accelerator receives the RoCC instruc-
tions to initiate a serialization, the accelerator frontend uses the
supplied register values to initialize a set of stacks (for sub-message

support) that maintain context information for the message being
serialized.

Next, the accelerator frontend loads the is_submessage and
hasbits bit fields from memory in parallel, iterates through the
fields bit-by-bit, and issues an ADT load request whenever a field
is present. For non-sub-message fields, the frontend simply loads
ADT information and issues a handle-field-op to the remainder of
the pipeline. If a present field is a sub-message, the frontend first up-
dates the current message’s context information in the stack. Then,
the frontend loads the ADT entry for the sub-message field and the
sub-message pointer itself. This information is then pushed onto
the context stacks. The handle-field-ops issued to the rest of the
pipeline contain a depth field, which allows the memwriter unit to
determine when a new sub-message has started. Once these house-
keeping steps are completed, the frontend then resumes regular
field handling as described previously. After the frontend handles
the message’s smallest defined field number, it issues a special
handle-field-op with field number zero (which the protobuf specifi-
cation prevents from being used for a user-defined field) to indicate
to the remainder of the pipeline that the (sub-)message has been
completed. When the end of a (sub-)message is reached, the fron-
tend pops from the context stacks and continues with the parent
message (or signals top-level message completion).

4.5.4 Field serializer units. Next, the individual handle-field-ops
from the frontend are dispatched round-robin to a set of field serial-
izer units, which produce serialized key, value pairs for individual
fields. They load the C++ representation of the field data to serial-
ize from memory, encode it if necessary (e.g. encoding integers as
varints), and then make the serialized field data available to their
output ports in chunks of parameterizable width. The field serializ-
ers also construct and emit the key for each non-sub-message field
that is part of the serialized output. Due to space constraints, we
do not detail how each individual field type is handled. However,
the process of serializing values of each field type is effectively the
reverse of deserializing a field of the corresponding type (without
needing to perform allocation and C++ object construction), which
is discussed in depth in Sections 4.4.6 to 4.4.9.

4.5.5 Memwriter unit. The next stage of the pipeline consumes
serialized field data from the parallel set of field serializer units
in round-robin fashion and sequences the output into one output
stream to feed to the memwriter unit, which writes data to memory.
The memwriter also handles the aforementioned special handle-
field-ops that indicate the beginning and end of (sub-)messages.
The memwriter maintains a stack of the lengths of the messages
currently being handled and pushes and pops from the stack as the
handle-field-ops with a new depth or with field number zero are
received. When an op with field number zero is received (which
signals end-of-message), the memwriter injects the sub-message’s
key, which includes the sub-message’s serialized length. The need
to inject this key affirms why the output buffer is populated from
high-to-low address—we must see all serialized sub-message fields
before we know the length of the entire serialized sub-message.
When an end-of-message op is received for a top-level-message,
the memwriter also writes the current output pointer (the address
of the front of the completed serialized message) into the next slot
in the buffer of serialized message pointers.

471

A Hardware Accelerator for Protocol Buffers MICRO ’21, October 18–22, 2021, Virtual Event, Greece

5 EVALUATION
We evaluate our complete accelerated system implemented in RTL
using two sets of benchmarks: (1) microbenchmarks that exercise
a variety of protobuf features/types and (2) HyperProtoBench, a
benchmark suite representative of key serialization framework
users at scale. To enable running these benchmarks directly on our
RTL design, we run FPGA-accelerated simulations of the design
using FireSim [29], which provides high-performance, deterministic,
and cycle-exact5 modeling of the design, while cycle-accurately
modeling I/O, including DRAM [20].

For comparison, each benchmark is run on three systems: the
baseline single-core BOOM-based6 RISC-V system modeled at 2
GHz core frequency (“riscv-boom”), the same RISC-V system with
our accelerator attached (“riscv-boom-accel”), also modeled at 2
GHz core and accelerator frequency (based on the critical path
results in Section 5.3), and one core (2 HT) of a Xeon E5-2686
v4-based server (“Xeon”), running at 2.3 GHz base/2.7 GHz turbo.

5.1 Microbenchmarks
To understand accelerator performance on the various field types
supported by protobufs, we developed a set of microbenchmarks
that test the performance-similar field types shown in Table 1. We
also created µbenchmarks to evaluate performance on messages
containing sub-messages and repeated fields. Where appropriate
(e.g. varints and strings), we also break-down benchmarks by field
size. Each µbenchmark tests either serialization or deserialization of
messages containing a fixed number of fields of a particular protobuf
field type. For varints, doubles, floats, and their repeated equivalents,
we set this to five fields per message, so that the middle-sized non-
repeated varint’s µbenchmark message falls roughly at the median
of message sizes shown in Figure 3. All other µbenchmarks use
one field per-message. Each benchmark performs a timed batch of
deserializations and serializations, operating on a pre-populated
set of serialized messages or C++ message objects respectively,
and reports throughput by dividing the total amount of serialized
message data consumed/produced by the time to process the batch.

5.1.1 Deserialization. Figure 11a shows the results of running dese-
rialization µbenchmarks for field types that do not require memory
allocation in the accelerator. To some degree, all examined systems
exhibit the behavior that deserialization throughput of varints in-
creases with the size of the varint field. This is due to a variety
of factors, including underutilization of memory bandwidth with
small loads, fixed-overhead of handling a field (e.g. key handling),
and in the case of the accelerator, single-cycle decoding of all var-
ints. Summarizing these results, we find that our accelerated system
performs on average 7.0× faster than the BOOM-based system and
2.6× faster than the Xeon.

Figure 11c shows the results of running deserializationmicrobench-
marks for field types that require the accelerator to performmemory
allocation, including repeated fields, strings, and sub-messages. In

5All components of the RISC-V SoC written in RTL, including our accel. design, are
modeled bit-by-bit and cycle-by-cycle exactly as they would perform in silicon taped-
out using the same RTL.
6In particular, we use a high-end configuration of SonicBOOM, which performs com-
parably on IPC with ARM Cortex A72-like cores when running SPEC2017 and achieves
higher CoreMarks/MHz than A72-like cores running CoreMark [43].

this figure we also see performance improvements across the board.
A key reason for improved performance in these benchmarks is the
accelerator’s ability to directly allocate memory without requiring
CPU intervention. Also, as mentioned in Section 3, the long-string
deserialization case essentially becomes a memcpy, which the ac-
celerator handles well. Summarizing these results, we find that
the accelerated system performs on average 14.2× faster than the
BOOM-based system and 6.9× faster than the Xeon-based system.

5.1.2 Serialization. Figure 11b shows the results of running se-
rialization µbenchmarks for field types that are “inline” in C++
message objects. In practice, this is the exact distinction between
non-allocated and allocated field types discussed in the deserial-
izer results, however we do not re-use this terminology for clarity.
While other platforms show a less consistent increase in through-
put based on varint size, the accelerated system shows increased
performance as varint size increases. This is similarly due to the
improved bandwidth utilization due to larger loads as well as the
accelerator’s ability to encode fixed-width C++ integer formats into
a varint in a single-cycle. We also note that due to this fact, floats
and doubles perform similarly to equivalently sized varint fields.
Summarizing these results, we find that the accelerated system
performs on average 15.5× faster than the BOOM-based system
and 4.5× faster than the Xeon.

Figure 11d shows the results of running serialization µbenchmarks
for field types that are not “inline” in the top-level C++ message
object. Similarly to deserialization, one notable result is the very-
long and long sizes of string fields, which both essentially become
memcpy operations. The accelerator again performs well here, but it
is interesting to note that the Xeon also performs extremely well on
the very-long-string benchmark, notably better than the deserial-
ization case. Summarizing these results, we find that the accelerated
system performs on average 10.1× faster than the BOOM-based
system and 2.8× faster than the Xeon.

5.1.3 Overall microbenchmark results. To get a sense of the overall
performance improvement our accelerator achieves across a variety
of field types, we take the geometric mean of the results reported
for the four classes of µbenchmark shown above, for each of the two
hosts we compare against. We find that on average, the accelerated
system performs 11.2× better than the BOOM-based system and
3.8× better than the Xeon-based system.

5.2 HyperProtoBench: Open-source Google
fleet-representative protobuf benchmarks

To gain a better understanding of how our design behaves at scale
and to enable more productive research in serialization frameworks
by providing insight on how these frameworks are used in a hyper-
scale context, we have open-sourced HyperProtoBench, a collection
of benchmarks that represent a significant portion of fleet-wide
protobuf deserialization and serialization cycles at Google.

To construct these benchmarks, we collect samples fromGoogle’s
live production fleet that describe the “shape” of protobuf messages
used, per service, using the same mechanisms as described in Sec-
tion 3. This shape data includes information about which messages
are being serialized/deserialized, which fields are set in those mes-
sages, the sizes and types of those fields, and the message hierarchy.

472

MICRO ’21, October 18–22, 2021, Virtual Event, Greece S. Karandikar, C. Leary, C. Kennelly, J. Zhao, D. Parimi, B. Nikolić, K. Asanović, and P. Ranganathan

var
int-0

var
int-1

var
int-2

var
int-3

var
int-4

var
int-5

var
int-6

var
int-7

var
int-8

var
int-9

var
int-1

0
double

floa
t

geom
ean

Benchmark

0

5

10

15

Gb
its

/s

riscv-boom
Xeon
riscv-boom-accel

(a) Deser., field types that do not require in-accel. memory allocation.

var
int-0

var
int-1

var
int-2

var
int-3

var
int-4

var
int-5

var
int-6

var
int-7

var
int-8

var
int-9

var
int-1

0
double

floa
t

geom
ean

Benchmark

0

20

40

60

Gb
its

/s

riscv-boom
Xeon
riscv-boom-accel

(b) Ser., field types “inline” in top-level C++ message objects.

50
100
150

riscv-boom
Xeon
riscv-boom-accel

var
int-0

-R

var
int-1

-R

var
int-2

-R

var
int-3

-R

var
int-4

-R

var
int-5

-R

var
int-6

-R

var
int-7

-R

var
int-8

-R

var
int-9

-R

var
int-1

0-R
str

ing

str
ing_15

str
ing_lo

ng

str
ing_ve

ry_
lon

g

double-R
floa

t-R

bool
-SUB

double-S
UB

str
ing-SUB

geom
ean

Benchmark

0

10

20

Gb
its

/s

(c) Deser., field types that require in-accel. memory allocation.

100

200
riscv-boom
Xeon
riscv-boom-accel

var
int-0

-R

var
int-1

-R

var
int-2

-R

var
int-3

-R

var
int-4

-R

var
int-5

-R

var
int-6

-R

var
int-7

-R

var
int-8

-R

var
int-9

-R

var
int-1

0-R
str

ing

str
ing_15

str
ing_lo

ng

str
ing_ve

ry_
lon

g

double-R
floa

t-R

bool
-SUB

double-S
UB

str
ing-SUB

geom
ean

Benchmark

0

20

40

Gb
its

/s

(d) Ser., field types not “inline” in top-level C++ message objects.

Figure 11: Protobuf microbenchmark results.

bench0 bench1 bench2 bench3 bench4 bench5 geomean
Benchmark

0
10
20
30
40

Gb
its

/s

riscv-boom
Xeon
riscv-boom-accel

Figure 12: HyperProtoBench deserialization results.

bench0 bench1 bench2 bench3 bench4 bench5 geomean
Benchmark

0
20
40
60
80

100

Gb
its

/s

riscv-boom
Xeon
riscv-boom-accel

Figure 13: HyperProtoBench serialization results.

Given this input, an internal synthetic protobuf benchmark genera-
tor fits a distribution to the input data and then samples from it to
produce a benchmark that is representative of a selected production
service. For each service, the generator produces a .proto file with
message definitions representative of those used in the production
service and generates a C++ benchmark that constructs, mutates,
and serializes/deserializes the protobuf messages appropriately.

To cover as many of the total fleet-wide protobuf serialization
and deserialization cycles as possible, we use fleet-wide profiling
data to determine the five heaviest users of protobuf deserialization
and the five heaviest users of protobuf serialization. In aggregate,
these services cover over 13% of fleet-wide deserialization cycles
and 18% of fleet-wide serialization cycles. For each of these services,
we construct a synthetic benchmark representative of its protobuf
usage. This collection of benchmarks comprises HyperProtoBench.

Figures 12 and 13 show the results of running the HyperProto-
Bench deserialization and serialization benchmarks respectively,
on the same collection of three systems (“riscv-boom”, “riscv-boom-
accel”, and “Xeon”). We find that our accelerated system achieves on
average 6.2× performance improvement compared to our baseline
RISC-V SoC with OoO (ARM A72-like) cores and 3.8× performance
improvement compared to the Xeon-based system. Extrapolating

from the fleet-wide cycles spent in serialization and deserialization,
this would result in a savings of over 2.5% of fleet-wide cycles,
which at scale translates to hundreds of millions of dollars in sav-
ings, across the industry [17, 40].

5.3 ASIC critical path and area
To estimate the ASIC critical path and area results for our accelera-
tor design, we run the design through synthesis for a commercial
22nm process. The deserializer achieves a frequency of 1.95 GHz
with a silicon area of 0.133 mm2. The serializer achieves a frequency
of 1.84 GHz with a silicon area of 0.278 mm2.

6 RELATEDWORK
Optimus Prime [36] presents an accelerator for serialization/deseri-
alization. Their design requires adding code to all protobuf setters
and clear methods to construct/manage their per-message-instance
schema tables for accelerator programming, which introduces sig-
nificant memory/compute overhead. As discussed in-depth in Sec-
tions 3.7, 4.2, and 4.5.3, our work instead uses per-message-type
ADTs (created once at program load-time) for accelerator program-
ming and uses the existing per-message-instance hasbits bit field
in protobufs to track field presence, avoiding the overheads intro-
duced by Optimus Prime. Further in contrast to our work, Optimus
Prime focuses on the serialization process and does not cover the
deserialization process in-depth, especially the complexity of man-
aging memory and allocating/constructing C++ objects. Also, our
work produces an open-source RTL design which is used as the
single source of truth for all evaluation purposes; the RTL design is
simulated at high performance using FireSim to gather benchmark
performance data and evaluated for area/critical path. Finally, Opti-
mus Prime uses three microbenchmarks for protobufs, part of the
DeathStarBench benchmark [23] for Apache Thrift, and compares
against ARM A57 cores while our work runs protobuf benchmarks
derived from key Google services and compares against an (ARM
A72-like) OoO RISC-V core and a Xeon server. As discussed earlier,
the real-world data suggest several non-intuitive design trade-offs.

473

A Hardware Accelerator for Protocol Buffers MICRO ’21, October 18–22, 2021, Virtual Event, Greece

Cereal [26] presents an accelerator for serialization/deserializa-
tion of Java objects. Cereal requires modifications to the JVM and
uses a custom wire format that is amenable to hardware accel-
eration. In contrast, our work maintains compatibility with the
existing protobuf wire format and does not require modifications
to the language implementation. Additionally, directly serializing
language objects is not practical in a production-WSC running
many services, since backwards compatibility becomes challenging.
For example, fields are commonly added or removed from a mes-
sage over time, which would alter object layout, requiring services
to update in lock-step. The schema and compiler-based design of
protobufs (Section 2) prevents these issues.

Two recent proposals, Zerializer [41] and Breakfast of Champi-
ons [37], suggest adding serialization and deserialization support
to PCIe-attached NICs. The former suggests adding (but does not
implement) a custom hardware accelerator, while the latter imple-
ments a proof-of-concept that re-uses existing NIC scatter-gather
functionality to handle serialization and deserialization, but re-
quires a custom zero-copy-friendly serialization API/format. While
we place our accelerator near the CPU, it could easily be placed on a
PCIe-attached NIC. We discuss placement trade-offs in Section 3.9.

HGum [42] and Fletcher [35] generate serialization/deserializa-
tion hardware for FPGA-CPU/FPGA communication. Unlike our
work, HGum implements a custom serialization formatwhile Fletcher
generates hardware pipelines specific to a message schema that
must be specified when hardware is constructed.

7 DISCUSSION AND FUTUREWORK
Instruction cache and branch predictor benefits. Reduced I$ pressure
and reduced pressure on branch-prediction resources are often
overlooked as benefits of protobuf offloading. protoc generates
large amounts of branch-heavy code to handle serializations and
deserializations in software. In some cases, a call to serialize or
deserialize can even effectively act like an I$ and branch predictor
flush. Offloading serialization and deserialization to an accelerator
eliminates both of these pressures. This can save significant CPU
cycles, potentially as many as accelerating protobufs itself.

Accelerating other protobuf operations. Figure 2 shows several
other protobuf operations that consume a non-trivial number of
CPU cycles, including merge, copy, clear, constructors, and destruc-
tors. Re-using the hardware building blocks from serialization and
deserialization and adding new custom instructions for each, a fu-
ture version of our accelerator would be able to handle merge, copy,
and clear, addressing another 17.1% of fleet-wide C++ protobuf
cycles. While we did not claim constructors (6.4% of fleet-wide pro-
tobuf cycles) as part of the fleet-wide acceleration opportunity for
our accelerator, the accelerator does address some of these cycles,
by constructing sub-message objects during deserialization. A small
change to the protobuf API (software accepting a top-level message
pointer from the accelerator) would allow the accelerator to fully
offload all deserialization-related constructor cycles. Destructor
cost (13.9% of protobuf cycles) can be addressed in software by fully
migrating to arenas, which the accelerator already supports.

Future support for proto3 and non-C++ host languages. To our
knowledge, the only change needed for proto3 support in our ac-
celerator is adding support for UTF-8 validation of string fields

during deserialization. Adding support for other host languages
would require the accelerator to understand the layout of and con-
struct in-memory protobuf message objects for new languages and
their standard library components, like strings.

8 CONCLUSION
This work presented an end-to-end study of profiling and accel-
erating serialization and deserialization, two key datacenter tax
components. To understand the trade-offs and opportunities in
hardware acceleration for serialization frameworks, we presented
the first in-depth study of serialization framework usage at scale
by characterizing Protocol Buffers usage across Google’s WSC fleet
and used this data to construct HyperProtoBench, an open-source
benchmark representative of key serialization-framework user ser-
vices at scale. In doing so, we identified key insights that challenge
prevailing assumptions about serialization framework usage.

We used these insights to develop a novel hardware-accelerator
for protobufs, implemented in RTL and integrated into a RISC-V
SoC. We have fully open-sourced our RTL, which, to the best of our
knowledge, is the only such implementation currently available to
the community.

We also presented a first-of-its-kind, end-to-end evaluation of
our entire RTL-based system running hyperscale-derived bench-
marks and microbenchmarks. We booted Linux on the system using
FireSim to run these benchmarks and pushed the design through
a commercial 22nm process to obtain area and frequency metrics.
We demonstrated an average 6.2× to 11.2× performance improve-
ment (sometimes up to 15.5×) vs. our baseline RISC-V SoC with
BOOM OoO (ARM A72-like) cores and despite the RISC-V SoC’s
weaker uncore/supporting components, an average 3.8× improve-
ment (sometimes up to 6.9×) vs. a Xeon-based server.

In addition to advancing the state of the art in serialization frame-
work acceleration, this work is the first to demonstrate the power
of combining a data-driven hardware-software co-design method-
ology based on large-scale profiling with the promise of agile, open
hardware development methodologies. In this vein, our entire eval-
uation flow (RTL, benchmarks, including hyperscale-derived bench-
marks, and supporting software and simulation infrastructure) has
been open-sourced for the benefit of the research community and
our results have been reproduced by external artifact evaluators.

ACKNOWLEDGMENTS
This work builds on profiling infrastructure work done by several
engineering teams at Google (e.g., GWP, protobufz, and protodb)
and we would like to thank our current and former colleagues in
those teams, including Darryl Gove, Martijn Vels, and Chris Cum-
mins. We would also like to thank Liqun Cheng, Aamer Mahmood,
Tipp Moseley, Deepti Raghavan, Don Stark, and the anonymous
reviewers and artifact evaluators for their paper feedback. We also
thank Shane Knapp for helping to provide external evaluation plat-
form access for artifact evaluation.

The information, data, or work presented herein was funded
in part by ADEPT and RISE Lab industrial sponsors and affiliates
and by NSF CCRI ENS Chipyard Award #2016662. The views and
opinions of authors expressed herein do not necessarily state or
reflect those of the United States Government or any agency thereof.

474

MICRO ’21, October 18–22, 2021, Virtual Event, Greece S. Karandikar, C. Leary, C. Kennelly, J. Zhao, D. Parimi, B. Nikolić, K. Asanović, and P. Ranganathan

A ARTIFACT APPENDIX
A.1 Abstract
This artifact appendix describes how to reproduce the protobuf ac-
celerator evaluation results in Section 5 of this paper. As in Section 5,
we will use FireSim FPGA-accelerated simulations to cycle-exactly
simulate the entire RISC-V SoC containing the protobuf accelerator.
We will boot Linux on this system and run both microbenchmarks
and HyperProtoBench to collect accelerator performance metrics.

A.2 Artifact check-list (meta-information)
• Run-time environment: AWS FPGA Developer AMI 1.6.1.
• Hardware: AWS EC2 instances: 1× c5.9xlarge, 1× f1.16xlarge,
1× m4.large.

• Metrics: Protobuf serialization/deserialization throughput (Gbits/s).
• Output: Serialization/deserialization performance plots.
• Experiments: FireSim simulations of protobuf accelerator incor-
porated into a RISC-V SoC, running serialization/deserialization
microbenchmarks and HyperProtoBench.

• How much disk space is required?: 200 GB (on EC2 instance).
• Howmuch time is needed to prepareworkflow?: 2 hours (scripted
installation).

• Howmuch time is needed to complete experiments?: 3.5 hours
(scripted run).

• Publicly available: Yes.
• Code licenses: Several, see download.
• Archived: https://doi.org/10.5281/zenodo.5433464, https://doi.org/
10.5281/zenodo.5433448, https://doi.org/10.5281/zenodo.5433434, https:
//doi.org/10.5281/zenodo.5433410, and https://doi.org/10.5281/zenodo.
5433364.

A.3 Description
A.3.1 How to access. The artifact consists of five git repositories
preserved on Zenodo:

(1) firesim-protoacc-ae: Top-level FireSim simulation environ-
ment. (https://doi.org/10.5281/zenodo.5433464)
(2) chipyard-protoacc-ae: Chipyard RISC-V SoC generation en-
vironment. (https://doi.org/10.5281/zenodo.5433448)
(3) protoacc-ae: Protobuf accelerator design, software, and scripts.
(https://doi.org/10.5281/zenodo.5433434)
(4) protobuf-library-for-accel-ae: Fork of protobuf library
modified for accelerator support. (https://doi.org/10.5281/zenodo.
5433410)
(5) HyperProtoBench: Protobuf serialization/deserialization bench-
marks representative of key serialization-framework user services
at scale, open-sourced for this paper. This is a fork of our up-
stream release (https://github.com/google/HyperProtoBench) cus-
tomized for accelerator benchmarking. (https://doi.org/10.5281/
zenodo.5433364)

Users need not download the latter four repositories manually—
they will be obtained automatically from Zenodo when the first
repository is set up in the next section.

A.3.2 Hardware dependencies. OneAWSEC2 c5.9xlarge instance
(also referred to as the “manager” instance), one f1.16xlarge in-
stance, and one m4.large instance are required. The latter two will
be launched automatically by FireSim’s manager.

To optionally run FPGA builds (see Section A.7.2), two additional
z1d.6xlarges are required, however we provide pre-built FPGA
images to avoid the long latency (~10 hours) of this process.

A.3.3 Software dependencies. Installing mosh (https://mosh.org/)
on your local machine is highly recommended for reliable access to
EC2 instances. All other requirements are automatically installed
by scripts in the following sections.

A.4 Installation
First, follow the instructions on the FireSim website7 to create a
manager instance on EC2. You must complete up to and including
“Section 2.3.1.2: Key Setup, Part 2”, with the following changes in
“Section 2.3.1”:

(1) When instructed to launch a c5.4xlarge instance, choose a
c5.9xlarge instead.

(2) When entering the root EBS volume size, use 1000GB rather
than 300GB.

Once you have completed up to and including “Section 2.3.1.2”
in the FireSim docs, you should have a manager instance set up,
with an IP address and key. Use either ssh or mosh to login to the
instance.

From this point forward, all commands should be run on the
manager instance.

Begin by downloading the top-level repository from Zenodo,
like so:

$ cd ~/
Enter as a single line:
$ wget -O firesim-protoacc-ae.zip https://zenodo.org/

record/5433465/files/firesim-protoacc-ae.zip
$ unzip firesim-protoacc-ae.zip

Next, run the following, which will initialize all dependencies
and run basic FireSim and Chipyard setup steps (RISC-V toolchain
installation, matching host toolchain installation, etc.):

$ cd firesim-protoacc-ae
$./scripts/first-clone-setup-fast.sh

This step should take around 1.5 hours. Upon successful comple-
tion, it will print:

first-clone-setup-fast.sh complete.

Once this is complete, run:

$ source sourceme-f1-manager.sh

Sourcing this file will have set up your environment to run the
protobuf accelerator simulations.

Finally, in the FireSim docs, follow the steps in (only) “Section
2.3.3: Completing Setup Using the Manager”8. Once you have com-
pleted this, your manager instance is fully set up to run protobuf
accelerator simulations.

7https://docs.fires.im/en/1.12.0/Initial-Setup/index.html
8https://docs.fires.im/en/1.12.0/Initial-Setup/Setting-up-your-Manager-
Instance.html#completing-setup-using-the-manager

475

https://doi.org/10.5281/zenodo.5433464
https://doi.org/10.5281/zenodo.5433448
https://doi.org/10.5281/zenodo.5433448
https://doi.org/10.5281/zenodo.5433434
https://doi.org/10.5281/zenodo.5433410
https://doi.org/10.5281/zenodo.5433410
https://doi.org/10.5281/zenodo.5433364
https://doi.org/10.5281/zenodo.5433364
https://doi.org/10.5281/zenodo.5433464
https://doi.org/10.5281/zenodo.5433448
https://doi.org/10.5281/zenodo.5433434
https://doi.org/10.5281/zenodo.5433410
https://doi.org/10.5281/zenodo.5433410
https://github.com/google/HyperProtoBench
https://doi.org/10.5281/zenodo.5433364
https://doi.org/10.5281/zenodo.5433364
https://mosh.org/
https://docs.fires.im/en/1.12.0/Initial-Setup/index.html
https://docs.fires.im/en/1.12.0/Initial-Setup/Setting-up-your-Manager-Instance.html#completing-setup-using-the-manager
https://docs.fires.im/en/1.12.0/Initial-Setup/Setting-up-your-Manager-Instance.html#completing-setup-using-the-manager

A Hardware Accelerator for Protocol Buffers MICRO ’21, October 18–22, 2021, Virtual Event, Greece

A.5 Experiment workflow
Now that our environment is set up, we will run the full artifact
evaluation script, which does the following:

(1) On the manager instance, build the FireSim host-side drivers
required to drive the FPGA simulation.

(2) On themanager instance, build ourmodified protobuf library,
cross-compile all benchmarks we will run, and construct a
Buildroot-based Linux distribution containing these bench-
marks, which will be booted on the accelerated system.

(3) For isolated Xeon runs, launch an m4.large, run bench-
marks on it and collect results, and terminate the m4.large.

(4) Run FireSim simulations, repeat the following for the three
classes of benchmarks (accelerated serialization, accelerated
deserialization, and plain BOOM):

(a) Launch an f1.16xlarge instance.
(b) Copy all simulation infrastructure to the F1 instance.
(c) Run the set of benchmarks on 6 or 7 simulated systems in

parallel (one f1.16xlarge has 8 FPGAs).
(d) Copy results back to the manager instance.
(e) Terminate the f1.16xlarge instance.

(5) On the manager instance, re-generate the accelerator per-
formance plots in this paper, with data collected from your
runs.

Note that this script will not rebuild FPGA images for the sys-
tem by default, since each build takes around 10 hours. We in-
stead provide pre-built images by default (see config_hwdb.ini
in $PROTOACC_FSIM). If you would like to build your own images,
see Section A.7.2, then return here.

Now, let’s run the aforementioned full artifact evaluation script:

$ cd $PROTOACC_FSIM
$./run-ae-full.sh

This will take around 3.5 hours. When complete, it will print:

run-ae-full.sh complete.

The FireSim manager will have automatically terminated any
instances it launched during this process, but please confirm in your
AWS EC2 management console that no instances remain besides
the manager.

A.6 Evaluation and expected results
Next, we will step through the plots generated from your run of
run-ae-full.sh in the previous section.

A.6.1 Microbenchmark results. Results from your run will be lo-
cated in the $UBENCH_RESULTS directory:

(1) Figure 11a: nonalloc.pdf
(2) Figure 11c: allocd.pdf
(3) Figure 11b: nonalloc-serializer.pdf
(4) Figure 11d: allocd-serializer.pdf
(5) Final speedup results: at the end of process.py.log and

process-serialize.py.log

A.6.2 HyperProtoBench results. Results from your run will be lo-
cated in the $HYPER_RESULTS directory:

(1) Figure 12: hyper-des.pdf

(2) Figure 13: hyper-ser.pdf
(3) Final speedup results for serialization and deserialization:

near the end of the SPEEDUPS file

Once your evaluation is complete, manually terminate your man-
ager instance in the EC2 management console and confirm that no
other instances from the evaluation process are left running.

A.7 Experiment customization
A.7.1 Customizing the design. Since the protobuf accelerator is
written in Chisel RTL, incorporated into the Chipyard RISC-V
SoC generator ecosystem, and modeled at high-performance using
FireSim, it can be experimented with in a wide-variety of contexts,
including in multi-core systems, attached to in-order processors (in-
stead of the superscalar OoO BOOM used here), and with different
memory hierarchy configurations, to name a few. These parame-
ters are too numerous to list here; see the FireSim docs9, Chipyard
docs10, and tutorial slides11 for these configuration options.

The protobuf accelerator RTL is located in the $PROTOACC_SRC
directory and can be customized and improved as necessary.

A.7.2 Rebuilding FPGA images. We provide pre-built FPGA images
for the designs in this paper (generated from the included RTL),
encoded in the configuration files in the artifact.

Regenerating the supplied FPGA images can also be done bymod-
ifying the S3 bucket name in $PROTOACC_FSIM/config_build.ini
to an unused bucket name (that the manager will create), then run-
ning ./buildafi.sh in the $PROTOACC_FSIM directory. This will
take around 10 hours, require two z1d.6xlarge instances, gener-
ate two new AGFIs (i.e., FPGA bitstreams on EC2 F1), and place
their config_hwdb.ini entry in $BUILT_HWDB_ENTRIES/[config
name]. To use the new AGFI, replace the existing entry in the
config_hwdb.ini file in $PROTOACC_FSIM (or, for a new config,
add it). If generating your own FPGA images, you must also set the
correct value for customruntimeconfig in the config_hwdb.ini
entry to obtain correct memory system performance:

customruntimeconfig=2GHz-runtime-conf-32MBLLC-qc.conf

When an FPGA build completes, the FireSim manager will au-
tomatically terminate the instances it launched during the build
process, but please confirm in your AWS EC2 management con-
sole that no instances remain besides the manager. More details
about the FireSim FPGA build process can be found in the FireSim
docs12. Note that many of the FireSim manager build configuration
files are in a non-standard location to simplify scripting for artifact
evaluation. Open buildafi.sh to see their locations.

A.8 Methodology
Submission, reviewing and badging methodology:
• https://www.acm.org/publications/policies/artifact-review-badging
• http://cTuning.org/ae/submission-20201122.html
• http://cTuning.org/ae/reviewing-20201122.html

9https://docs.fires.im/en/1.10.0/
10https://chipyard.readthedocs.io/en/1.3.0/
11https://fires.im/isca-2021-tutorial/
12https://docs.fires.im/en/1.10.0/Building-a-FireSim-AFI.html

476

https://www.acm.org/publications/policies/artifact-review-badging
http://cTuning.org/ae/submission-20201122.html
http://cTuning.org/ae/reviewing-20201122.html
https://docs.fires.im/en/1.10.0/
https://chipyard.readthedocs.io/en/1.3.0/
https://fires.im/isca-2021-tutorial/
https://docs.fires.im/en/1.10.0/Building-a-FireSim-AFI.html

MICRO ’21, October 18–22, 2021, Virtual Event, Greece S. Karandikar, C. Leary, C. Kennelly, J. Zhao, D. Parimi, B. Nikolić, K. Asanović, and P. Ranganathan

REFERENCES
[1] [n. d.]. Apache Thrift. https://thrift.apache.org/.
[2] [n. d.]. AWS Nitro System. https://aws.amazon.com/ec2/nitro/.
[3] [n. d.]. Building Custom RISC-V SoCs in Chipyard. https://fires.im/micro19-

slides-pdf/03_building_custom_socs.pdf.
[4] [n. d.]. C++ Arena Allocation Guide | Protocol Buffers | Google Developers.

https://developers.google.com/protocol-buffers/docs/reference/arenas.
[5] [n. d.]. Cap’n Proto. https://capnproto.org/.
[6] [n. d.]. Encoding | Protocol Buffers | Google Developers. https://developers.

google.com/protocol-buffers/docs/encoding#signed_integers.
[7] [n. d.]. Extensible Markup Language (XML). https://www.w3.org/XML/.
[8] [n. d.]. Flatbuffers. https://google.github.io/flatbuffers/.
[9] [n. d.]. FlexBuffers. https://google.github.io/flatbuffers/flexbuffers.html.
[10] [n. d.]. Introducing JSON. https://www.json.org/json-en.html.
[11] [n. d.]. Protocol Buffers | Google Developers. https://developers.google.com/

protocol-buffers.
[12] [n. d.]. Updating a Message Type | Language Guide | Protocol Buffers | Google De-

velopers. https://developers.google.com/protocol-buffers/docs/proto#updating.
[13] [n. d.]. YAML: YAML Ain’t Markup Language. https://yaml.org/.
[14] Heather Adkins, Betsy Beyer, Paul Blankinship, Piotr Lewandowski, Ana Oprea,

and Adam Stubblefield. 2020. Building Secure and Reliable Systems: Best Practices
for Designing, Implementing, and Maintaining Systems. O’Reilly Media.

[15] Alon Amid, David Biancolin, Abraham Gonzalez, Daniel Grubb, Sagar Karandikar,
Harrison Liew, Albert Magyar, Howard Mao, Albert Ou, Nathan Pemberton,
Paul Rigge, Colin Schmidt, John Wright, Jerry Zhao, Yakun Sophia Shao, Krste
Asanović, and Borivoje Nikolić. 2020. Chipyard: Integrated Design, Simulation,
and Implementation Framework for Custom SoCs. IEEE Micro 40, 4 (2020), 10–21.
https://doi.org/10.1109/MM.2020.2996616

[16] Krste Asanović, Rimas Avižienis, Jonathan Bachrach, Scott Beamer, David Bian-
colin, Christopher Celio, Henry Cook, Daniel Dabbelt, John Hauser, Adam Izraele-
vitz, Sagar Karandikar, Ben Keller, Donggyu Kim, John Koenig, Yunsup Lee, Eric
Love, Martin Maas, Albert Magyar, Howard Mao, Miquel Moreto, Albert Ou,
David A. Patterson, Brian Richards, Colin Schmidt, Stephen Twigg, Huy Vo,
and Andrew Waterman. 2016. The Rocket Chip Generator. Technical Report
UCB/EECS-2016-17. EECS Department, University of California, Berkeley.

[17] Grant Ayers, Nayana Prasad Nagendra, David I. August, Hyoun Kyu Cho, Svilen
Kanev, Christos Kozyrakis, Trivikram Krishnamurthy, Heiner Litz, Tipp Moseley,
and Parthasarathy Ranganathan. 2019. AsmDB: Understanding and Mitigat-
ing Front-End Stalls in Warehouse-Scale Computers. In Proceedings of the 46th
International Symposium on Computer Architecture (ISCA ’19). Association for
Computing Machinery, New York, NY, USA, 462–473. https://doi.org/10.1145/
3307650.3322234

[18] Jonathan Bachrach, Huy Vo, Brian Richards, Yunsup Lee, Andrew Waterman, Ri-
mas Avižienis, John Wawrzynek, and Krste Asanović. 2012. Chisel: Constructing
hardware in a Scala embedded language. In DAC Design Automation Conference
2012. 1212–1221. https://doi.org/10.1145/2228360.2228584

[19] Luiz André Barroso, Urs Hölzle, and Parthasarathy Ranganathan. 2018. The
Datacenter as a Computer: Designing Warehouse-Scale Machines, Third Edition.
Synthesis Lectures on Computer Architecture 13, 3 (2018), i–189. https://doi.org/
10.2200/S00874ED3V01Y201809CAC046

[20] David Biancolin, Sagar Karandikar, Donggyu Kim, Jack Koenig, Andrew Water-
man, Jonathan Bachrach, and Krste Asanovic. 2019. FASED: FPGA-Accelerated
Simulation and Evaluation of DRAM. In Proceedings of the 2019 ACM/SIGDA
International Symposium on Field-Programmable Gate Arrays (FPGA ’19). As-
sociation for Computing Machinery, New York, NY, USA, 330–339. https:
//doi.org/10.1145/3289602.3293894

[21] Daniel Firestone, Andrew Putnam, Sambhrama Mundkur, Derek Chiou, Alireza
Dabagh, Mike Andrewartha, Hari Angepat, Vivek Bhanu, Adrian Caulfield, Eric
Chung, Harish Kumar Chandrappa, Somesh Chaturmohta, Matt Humphrey, Jack
Lavier, Norman Lam, Fengfen Liu, Kalin Ovtcharov, Jitu Padhye, Gautham Pop-
uri, Shachar Raindel, Tejas Sapre, Mark Shaw, Gabriel Silva, Madhan Sivakumar,
Nisheeth Srivastava, Anshuman Verma, Qasim Zuhair, Deepak Bansal, Doug
Burger, Kushagra Vaid, David A. Maltz, and Albert Greenberg. 2018. Azure Accel-
erated Networking: SmartNICs in the Public Cloud. In 15th USENIX Symposium
on Networked Systems Design and Implementation (NSDI 18). USENIX Association,
Renton, WA, 51–66. https://www.usenix.org/conference/nsdi18/presentation/
firestone

[22] Jeremy Fowers, Kalin Ovtcharov, Michael Papamichael, Todd Massengill, Ming
Liu, Daniel Lo, Shlomi Alkalay, Michael Haselman, Logan Adams, Mahdi Ghandi,
Stephen Heil, Prerak Patel, Adam Sapek, Gabriel Weisz, Lisa Woods, Sitaram
Lanka, Steven K. Reinhardt, Adrian M. Caulfield, Eric S. Chung, and Doug Burger.
2018. A Configurable Cloud-Scale DNN Processor for Real-Time AI. In 2018
ACM/IEEE 45th Annual International Symposium on Computer Architecture (ISCA).
1–14. https://doi.org/10.1109/ISCA.2018.00012

[23] Yu Gan, Yanqi Zhang, Dailun Cheng, Ankitha Shetty, Priyal Rathi, Nayan Katarki,
Ariana Bruno, Justin Hu, Brian Ritchken, Brendon Jackson, Kelvin Hu, Meghna
Pancholi, Yuan He, Brett Clancy, Chris Colen, Fukang Wen, Catherine Leung,

Siyuan Wang, Leon Zaruvinsky, Mateo Espinosa, Rick Lin, Zhongling Liu, Jake
Padilla, and Christina Delimitrou. 2019. An Open-Source Benchmark Suite
for Microservices and Their Hardware-Software Implications for Cloud and
Edge Systems. In Proceedings of the Twenty-Fourth International Conference on
Architectural Support for Programming Languages and Operating Systems (ASPLOS
’19). Association for Computing Machinery, New York, NY, USA, 3–18. https:
//doi.org/10.1145/3297858.3304013

[24] John Hennessy and David Patterson. 2018. A new golden age for computer
architecture: Domain-specific hardware/software co-design, enhanced security,
open instruction sets, and agile chip development. In 2018 ACM/IEEE 45th Annual
International Symposium on Computer Architecture (ISCA). 27–29. https://doi.
org/10.1109/ISCA.2018.00011

[25] SiFive Inc. 2019. SiFive TileLink Specification. https://sifive.cdn.prismic.io/sifive%
2Fcab05224-2df1-4af8-adee-8d9cba3378cd_tilelink-spec-1.8.0.pdf.

[26] Jaeyoung Jang, Sung Jun Jung, Sunmin Jeong, Jun Heo, Hoon Shin, Tae Jun Ham,
and Jae W. Lee. 2020. A Specialized Architecture for Object Serialization with
Applications to Big Data Analytics. In 2020 ACM/IEEE 47th Annual International
Symposium on Computer Architecture (ISCA). 322–334. https://doi.org/10.1109/
ISCA45697.2020.00036

[27] Norman P. Jouppi, Cliff Young, Nishant Patil, David Patterson, Gaurav Agrawal,
Raminder Bajwa, Sarah Bates, Suresh Bhatia, Nan Boden, Al Borchers, Rick Boyle,
Pierre-luc Cantin, Clifford Chao, Chris Clark, Jeremy Coriell, Mike Daley, Matt
Dau, Jeffrey Dean, Ben Gelb, Tara Vazir Ghaemmaghami, Rajendra Gottipati,
William Gulland, Robert Hagmann, C. Richard Ho, Doug Hogberg, John Hu,
Robert Hundt, Dan Hurt, Julian Ibarz, Aaron Jaffey, Alek Jaworski, Alexander
Kaplan, Harshit Khaitan, Daniel Killebrew, Andy Koch, Naveen Kumar, Steve
Lacy, James Laudon, James Law, Diemthu Le, Chris Leary, Zhuyuan Liu, Kyle
Lucke, Alan Lundin, Gordon MacKean, Adriana Maggiore, Maire Mahony, Kieran
Miller, Rahul Nagarajan, Ravi Narayanaswami, Ray Ni, Kathy Nix, Thomas Norrie,
Mark Omernick, Narayana Penukonda, Andy Phelps, Jonathan Ross, Matt Ross,
Amir Salek, Emad Samadiani, Chris Severn, Gregory Sizikov, Matthew Snelham,
Jed Souter, Dan Steinberg, Andy Swing, Mercedes Tan, Gregory Thorson, Bo
Tian, Horia Toma, Erick Tuttle, Vijay Vasudevan, Richard Walter, Walter Wang,
Eric Wilcox, and Doe Hyun Yoon. 2017. In-datacenter performance analysis of a
tensor processing unit. In 2017 ACM/IEEE 44th Annual International Symposium
on Computer Architecture (ISCA). 1–12. https://doi.org/10.1145/3079856.3080246

[28] Svilen Kanev, Juan Pablo Darago, Kim Hazelwood, Parthasarathy Ranganathan,
Tipp Moseley, Gu-Yeon Wei, and David Brooks. 2015. Profiling a Warehouse-
Scale Computer. In Proceedings of the 42nd Annual International Symposium on
Computer Architecture (ISCA ’15). Association for Computing Machinery, New
York, NY, USA, 158–169. https://doi.org/10.1145/2749469.2750392

[29] Sagar Karandikar, Howard Mao, Donggyu Kim, David Biancolin, Alon Amid,
Dayeol Lee, Nathan Pemberton, Emmanuel Amaro, Colin Schmidt, Aditya Chopra,
Qijing Huang, Kyle Kovacs, Borivoje Nikolic, Randy Katz, Jonathan Bachrach, and
Krste Asanovic. 2018. FireSim: FPGA-Accelerated Cycle-Exact Scale-Out System
Simulation in the Public Cloud. In 2018 ACM/IEEE 45th Annual International
Symposium on Computer Architecture (ISCA). 29–42. https://doi.org/10.1109/
ISCA.2018.00014

[30] Yunsup Lee, Andrew Waterman, Henry Cook, Brian Zimmer, Ben Keller, Alberto
Puggelli, Jaehwa Kwak, Ruzica Jevtic, Stevo Bailey, Milovan Blagojevic, Pi-Feng
Chiu, Rimas Avizienis, Brian Richards, Jonathan Bachrach, David Patterson, Elad
Alon, Bora Nikolic, and Krste Asanovic. 2016. An Agile Approach to Building
RISC-V Microprocessors. IEEE Micro 36, 2 (2016), 8–20. https://doi.org/10.1109/
MM.2016.11

[31] Ikuo Magaki, Moein Khazraee, Luis Vega Gutierrez, and Michael Bedford Taylor.
2016. ASIC Clouds: Specializing the Datacenter. In 2016 ACM/IEEE 43rd Annual
International Symposium on Computer Architecture (ISCA). 178–190. https://doi.
org/10.1109/ISCA.2016.25

[32] Sergey Melnik, Andrey Gubarev, Jing Jing Long, Geoffrey Romer, Shiva Shiv-
akumar, Matt Tolton, and Theo Vassilakis. 2010. Dremel: Interactive Analy-
sis of Web-Scale Datasets. Proc. VLDB Endow. 3, 1–2 (Sept. 2010), 330–339.
https://doi.org/10.14778/1920841.1920886

[33] Sergey Melnik, Andrey Gubarev, Jing Jing Long, Geoffrey Romer, Shiva Shiv-
akumar, Matt Tolton, Theo Vassilakis, Hossein Ahmadi, Dan Delorey, Slava
Min, Mosha Pasumansky, and Jeff Shute. 2020. Dremel: A Decade of Interactive
SQL Analysis at Web Scale. Proc. VLDB Endow. 13, 12 (Aug. 2020), 3461–3472.
https://doi.org/10.14778/3415478.3415568

[34] Rolf Neugebauer, Gianni Antichi, José Fernando Zazo, Yury Audzevich, Sergio
López-Buedo, and Andrew W. Moore. 2018. Understanding PCIe Performance
for End Host Networking. In Proceedings of the 2018 Conference of the ACM
Special Interest Group on Data Communication (SIGCOMM ’18). Association for
Computing Machinery, New York, NY, USA, 327–341. https://doi.org/10.1145/
3230543.3230560

[35] Johan Peltenburg, Jeroen van Straten, Lars Wijtemans, Lars van Leeuwen, Zaid
Al-Ars, and Peter Hofstee. [n. d.]. Fletcher: A Framework to Efficiently Integrate
FPGA Accelerators with Apache Arrow. In 29th International Conference on Field
Programmable Logic and Applications. https://doi.org/10.1109/FPL.2019.00051

477

https://thrift.apache.org/
https://aws.amazon.com/ec2/nitro/
https://fires.im/micro19-slides-pdf/03_building_custom_socs.pdf
https://fires.im/micro19-slides-pdf/03_building_custom_socs.pdf
https://developers.google.com/protocol-buffers/docs/reference/arenas
https://capnproto.org/
https://developers.google.com/protocol-buffers/docs/encoding#signed_integers
https://developers.google.com/protocol-buffers/docs/encoding#signed_integers
https://www.w3.org/XML/
https://google.github.io/flatbuffers/
https://google.github.io/flatbuffers/flexbuffers.html
https://www.json.org/json-en.html
https://developers.google.com/protocol-buffers
https://developers.google.com/protocol-buffers
https://developers.google.com/protocol-buffers/docs/proto#updating
https://yaml.org/
https://doi.org/10.1109/MM.2020.2996616
https://doi.org/10.1145/3307650.3322234
https://doi.org/10.1145/3307650.3322234
https://doi.org/10.1145/2228360.2228584
https://doi.org/10.2200/S00874ED3V01Y201809CAC046
https://doi.org/10.2200/S00874ED3V01Y201809CAC046
https://doi.org/10.1145/3289602.3293894
https://doi.org/10.1145/3289602.3293894
https://www.usenix.org/conference/nsdi18/presentation/firestone
https://www.usenix.org/conference/nsdi18/presentation/firestone
https://doi.org/10.1109/ISCA.2018.00012
https://doi.org/10.1145/3297858.3304013
https://doi.org/10.1145/3297858.3304013
https://doi.org/10.1109/ISCA.2018.00011
https://doi.org/10.1109/ISCA.2018.00011
https://sifive.cdn.prismic.io/sifive%2Fcab05224-2df1-4af8-adee-8d9cba3378cd_tilelink-spec-1.8.0.pdf
https://sifive.cdn.prismic.io/sifive%2Fcab05224-2df1-4af8-adee-8d9cba3378cd_tilelink-spec-1.8.0.pdf
https://doi.org/10.1109/ISCA45697.2020.00036
https://doi.org/10.1109/ISCA45697.2020.00036
https://doi.org/10.1145/3079856.3080246
https://doi.org/10.1145/2749469.2750392
https://doi.org/10.1109/ISCA.2018.00014
https://doi.org/10.1109/ISCA.2018.00014
https://doi.org/10.1109/MM.2016.11
https://doi.org/10.1109/MM.2016.11
https://doi.org/10.1109/ISCA.2016.25
https://doi.org/10.1109/ISCA.2016.25
https://doi.org/10.14778/1920841.1920886
https://doi.org/10.14778/3415478.3415568
https://doi.org/10.1145/3230543.3230560
https://doi.org/10.1145/3230543.3230560
https://doi.org/10.1109/FPL.2019.00051

A Hardware Accelerator for Protocol Buffers MICRO ’21, October 18–22, 2021, Virtual Event, Greece

[36] Arash Pourhabibi, Siddharth Gupta, Hussein Kassir, Mark Sutherland, Zilu Tian,
Mario Paulo Drumond, Babak Falsafi, and Christoph Koch. 2020. Optimus Prime:
Accelerating Data Transformation in Servers. In Proceedings of the Twenty-Fifth
International Conference on Architectural Support for Programming Languages and
Operating Systems (ASPLOS ’20). Association for Computing Machinery, New
York, NY, USA, 1203–1216. https://doi.org/10.1145/3373376.3378501

[37] Deepti Raghavan, Philip Levis, Matei Zaharia, and Irene Zhang. 2021. Breakfast
of Champions: Towards Zero-Copy Serialization with NIC Scatter-Gather. In
Proceedings of the Workshop on Hot Topics in Operating Systems (HotOS ’21).
Association for Computing Machinery, New York, NY, USA, 199–205. https:
//doi.org/10.1145/3458336.3465287

[38] Parthasarathy Ranganathan, Daniel Stodolsky, Jeff Calow, Jeremy Dorfman,
Marisabel Guevara, Clinton Wills Smullen IV, Aki Kuusela, Raghu Balasubrama-
nian, Sandeep Bhatia, Prakash Chauhan, Anna Cheung, In Suk Chong, Niranjani
Dasharathi, Jia Feng, Brian Fosco, Samuel Foss, Ben Gelb, Sara J. Gwin, Yoshiaki
Hase, Da-ke He, C. Richard Ho, Roy W. Huffman Jr., Elisha Indupalli, Indira Ja-
yaram, Poonacha Kongetira, Cho Mon Kyaw, Aaron Laursen, Yuan Li, Fong Lou,
Kyle A. Lucke, JP Maaninen, Ramon Macias, Maire Mahony, David Alexander
Munday, Srikanth Muroor, Narayana Penukonda, Eric Perkins-Argueta, Devin
Persaud, Alex Ramirez, Ville-Mikko Rautio, Yolanda Ripley, Amir Salek, Sathish
Sekar, Sergey N. Sokolov, Rob Springer, Don Stark, Mercedes Tan, Mark S. Wach-
sler, Andrew C. Walton, David A. Wickeraad, Alvin Wijaya, and Hon Kwan
Wu. 2021. Warehouse-Scale Video Acceleration: Co-Design and Deployment

in the Wild. In Proceedings of the 26th ACM International Conference on Archi-
tectural Support for Programming Languages and Operating Systems (ASPLOS
2021). Association for Computing Machinery, New York, NY, USA, 600–615.
https://doi.org/10.1145/3445814.3446723

[39] Gang Ren, Eric Tune, Tipp Moseley, Yixin Shi, Silvius Rus, and Robert Hundt.
2010. Google-Wide Profiling: A Continuous Profiling Infrastructure for Data
Centers. IEEE Micro 30, 4 (2010), 65–79. https://doi.org/10.1109/MM.2010.68

[40] Akshitha Sriraman and Abhishek Dhanotia. 2020. Accelerometer: Understanding
Acceleration Opportunities for Data Center Overheads at Hyperscale. In Pro-
ceedings of the Twenty-Fifth International Conference on Architectural Support for
Programming Languages and Operating Systems (ASPLOS ’20). Association for
Computing Machinery, New York, NY, USA, 733–750. https://doi.org/10.1145/
3373376.3378450

[41] Adam Wolnikowski, Stephen Ibanez, Jonathan Stone, Changhoon Kim, Rajit
Manohar, and Robert Soulé. 2021. Zerializer: Towards Zero-Copy Serialization.
In Proceedings of the Workshop on Hot Topics in Operating Systems (HotOS ’21).
Association for Computing Machinery, New York, NY, USA, 206–212. https:
//doi.org/10.1145/3458336.3465283

[42] Sizhuo Zhang, Hari Angepat, and Derek Chiou. 2017. HGum: Messaging frame-
work for hardware accelerators. In 2017 International Conference on ReConFig-
urable Computing and FPGAs (ReConFig). 1–8. https://doi.org/10.1109/RECONFIG.
2017.8279799

[43] Jerry Zhao, Ben Korpan, Abraham Gonzalez, and Krste Asanovic. 2020. Sonic-
BOOM: The 3rd Generation Berkeley Out-of-Order Machine. (May 2020).

478

https://doi.org/10.1145/3373376.3378501
https://doi.org/10.1145/3458336.3465287
https://doi.org/10.1145/3458336.3465287
https://doi.org/10.1145/3445814.3446723
https://doi.org/10.1109/MM.2010.68
https://doi.org/10.1145/3373376.3378450
https://doi.org/10.1145/3373376.3378450
https://doi.org/10.1145/3458336.3465283
https://doi.org/10.1145/3458336.3465283
https://doi.org/10.1109/RECONFIG.2017.8279799
https://doi.org/10.1109/RECONFIG.2017.8279799

	Abstract
	1 Introduction
	2 Protobuf Background
	2.1 Message structure
	2.2 Serialization and deserialization
	2.3 Arena allocation

	3 Profiling Protobuf Usage at Scale
	3.1 Data sources
	3.2 What is the opportunity for fleet-wide CPU cycle savings?
	3.3 Which proto version should we implement?
	3.4 Should we optimize accelerator placement for the RPC stack?
	3.5 What is the granularity of operations the accelerator needs to handle?
	3.6 What types of data movement and field encodings should the accelerator support?
	3.7 What is the ideal accelerator programming interface?
	3.8 How do we size sub-message metadata tracking structures in the accelerator?
	3.9 Key insights for accelerator design

	4 Accelerator Design
	4.1 System overview
	4.2 Software changes to the protobuf library
	4.3 Accelerator memory management
	4.4 Deserializer unit
	4.5 Serializer unit

	5 Evaluation
	5.1 Microbenchmarks
	5.2 HyperProtoBench: Open-source Google fleet-representative protobuf benchmarks
	5.3 ASIC critical path and area

	6 Related Work
	7 Discussion and Future Work
	8 Conclusion
	Acknowledgments
	A Artifact Appendix
	A.1 Abstract
	A.2 Artifact check-list (meta-information)
	A.3 Description
	A.4 Installation
	A.5 Experiment workflow
	A.6 Evaluation and expected results
	A.7 Experiment customization
	A.8 Methodology

	References

