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Abstract—Small unmanned aerial vehicles (UAVs) equipped
with sensors offer an effective way to perform high-resolution
environmental monitoring in remote areas but suffer from limited
battery life. In order to perform large-scale remote sensing, a
UAV must cover the area using multiple discharge cycles. A
practical and efficient method to achieve full coverage is for the
sensing UAV to rendezvous with a mobile recharge vehicle (MRV)
for a battery exchange, which is an NP-hard problem. Existing
works tackle this problem using slow genetic algorithms or
greedy heuristics. We propose an alternative approach: a two-stage
algorithm that iterates between dividing a region into independent
subregions aligned to MRV travel and a new diffusion heuristic
that performs a local exchange of points of interest between
neighboring subregions. The algorithm outperforms existing state-
of-the-art planners for remote sensing applications, creating more
fuel efficient paths that better align with MRV travel.

I. INTRODUCTION

As costs continue to drop for sensors and sensing prod-

ucts, remote sensing is transforming a range of industries,

including energy transfer, border security, climate monitoring,

and environmental surveying and management [1]. Remote

sensing missions face a trade off between access constraints and

resolution requirements. High-altitude aerial or satellite surveys

permit coverage of remote areas but lack the required resolution

while higher resolution measurements from deploying station-

ary sensors or low-altitude craft are limited by road access and

difficult terrain [2], [3].

An emerging application for high-resolution remote monitor-

ing is reducing the economic costs of forest fires, which were

estimated at more than $140B in California in 2018 [4]. Costs

can be reduced and damage mitigated through increased remote

sensing, including powerline monitoring [5], [6], surveying fire

breaks [7], [8], and early detection of forest fires [9]–[11].

Multi-rotor unmanned aerial vehicles (UAVs) equipped with

cameras and relevant sensors offer a cost-effective solution,

enabling close inspection of points of interest (POIs) with

flexible launch and recovery due to vertical take-off and landing

capabilities. Despite their high resolution sensing, UAVs are

limited in aerial endurance and range by their battery life.

For large-scale remote monitoring, trajectories must be planned

over multiple cycles, in between which the UAV must replenish

its energy by either recharging or replacing its battery. Recharg-

ing is a slow process (hours) but can be performed reliably

by autonomous stations. Conversely, replacing a battery is fast

(minutes) but requires complex mechanical solutions. Either
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Fig. 1. Overview of remote sensing paths for a UAV and MRV team, including
rendezvous locations, subregion divisions, and subregion fuel costs, after being
generated by CAR-Diff, the proposed algorithm.

recharging or replacement can be effective depending on the

desired operational tempo.

One option is to rendezvous with static recharge stations that

either recharge or replace the battery [12]–[14]. Static recharge

stations are most useful when a fixed area is persistently

monitored, such as power plants [15] or regional borders [16],

but would be expensive and inefficient across large regions,

requiring many recharging stations, or at long intervals, such as

monitoring firebreaks [7], [8] or powerline corridor surveying

[5], [6] that are performed on monthly to yearly schedules.

We take an alternate approach of refuel rendezvous with

mobile recharge vehicles (MRVs). A single MRV can replace

an entire network of static recharge stations by traveling along

existing road networks to provide refuelling capabilities as

needed. The MRV-UAV refuelling rendezvous problem is a

form of the Mobile Depot Vehicle Routing problem, an ex-

tension of the canonical NP-hard traveling salesman problem.

Exact solutions can be computed for small problems [17], [18]

but heuristics are necessary for real-world problem sizes of

hundreds to thousands of POIs [17]–[24].

Current state-of-the-art algorithms are insufficient for land-

based refuelling rendezvous, developing MRV paths without

regard to potential travel constraints [19]–[21] or harboring an

inherent assumption that the MRV can get close to the POIs

[17]–[19], which is invalid for remote monitoring missions

where the UAV may travel far from the rendezvous locations.

We propose an algorithm that generates trajectories for

minimum-time remote sensing of a set of POIs by a UAV with

UAV-MRV refuelling rendezvous called Clustering Aligned to

Roadways with Diffusion Heuristic (CAR-Diff). CAR-Diff is

an iterative two-stage algorithm that first transforms the mobile-

depot vehicle routing problem (VRP) problem into independent

TSPs by clustering the POIs based their aligned distance to the
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roadway. The paths through each subregion can then be solved

independently and unconstrained for which efficient methods

exist. Second, we apply our proposed Diffusion Heuristic to

perform local search and exchange between subregions in

order to meet fuel constraints. The Diffusion Heuristic can

be easily tuned between greedy and random behavior through

the adjustment of several parameters. We compare CAR-Diff

against the existing state-of-the-art [18], [24] and report an

improvement of 7.8% avg. (25.6% max.) in monitoring time

and more efficient rendezvous for real-world examples.

II. RELATED WORK

Our specific problem of remote sensing with a fuel-

constrained UAV initially stems from two related research

areas: trajectory planning for an MRV for an already prescribed

set of UAV trajectories [25] and trajectory planning for a fuel-

constrained UAV traveling between static refuelling stations

[13], [14]. The combined problem forms the mobile-depot VRP

(MoD-VRP), a known NP-hard problem [18].

A common approach is to constrain rendezvous to a set of

discretized locations along the path, converting the problem

from a Mobile-Depot VRP to a Multi-Depot VRP. Early work

solved for a single path and a single MRV-UAV pair using a

genetic algorithm to maximizing POIs visited [26] or iterative

heuristics to improve upon an initial approximation [22]. Others

solved with a split heuristic problem, which creates a single

UAV tour and splits it into feasible ones given the UAV’s range

[19]. Maini et al. [18] follow a similar approach with their cut-

and-repair heuristic.

The addition of more autonomous agents beyond a single

UAV-MRV team dramatically increases the solution space. For

situations that do not have constraints on MRV travel, heuristics

based on genetic algorithms have shown promise [20], [21],

[24], but while a solution can be generated, the solution quality

is typically worse, requiring additional heuristics to fix pathing,

and the solution is very dependent on hyperparameters.

The closest works to our problem of remote sensing are

by Maini et al. [18] and Li et al. [24]. Maini [18] proposes

two exact formulations to solve a VRP with MRV-UAV ren-

dezvous, which can be solved exactly for small problem sizes.

For refuelling rendezvous, the MRV is constrained to a road

network while UAV is only constrained by a inter-rendezvous

travel distance. To solve larger problems, the authors propose

a cut-and-repair heuristic (Repair 2019) that solves for an

approximate path with no constraints and applies constraints

afterwards in an iterative greedy process. Li [24] utilizes a

genetic algorithm termed the memetic algorithm (Memetic

2021). Due to the high complexity of the problem, the algorithm

first attempts to cluster the POIs into subregions, enabling the

memetic algorithm to better explore the solutions space.

The Repair algorithm suffers from an inherent assumption

that the cost of traveling from any POI to a valid roadway

will be minimal due to the greedy nature of selecting return

paths. CAR-Diff addresses the issue by representing rendezvous

locations by a supernode when generating paths with costs

equivalent to the minimum required to travel from a POI to

any rendezvous location. The Memetic algorithm clusters the

POIs but each cluster can be far away from a valid rendezvous

location. CAR-Diff remedies this by creating subregions that

are aligned with the MRV path.

III. PROBLEM FORMULATION

Consider a problem where a set of N POIs Gq :=
{q1, . . . , qN} where qi ∈ R

2 must all be visited in minimal

time by a UAV equipped with appropriate sensors. The UAV

is limited by maximum velocity Vu and fuel F , and we are

interested in the scenario where the region to be covered

exceeds the capacity of a UAV for a single flight cycle and

the UAV must rendezvous with a MRV for refuelling.

The MRV is limited by a maximum velocity Vg but has

unlimited fuel, and during each rendezvous, the UAV energy is

replenished through a battery swap, which requires a constant

time of τr. MRV travel is constrained to a path represented by

the set of Np points and linear interpolation between successive

points Gp := {λpi + (1 − λ)pj | 0 ≤ λ < 1, j = i + 1 ∀ i =
{1, . . . Np − 1} } where pi ∈ R

2. We model the MRV path as

a supernode, which has full connectivity to all POIs with the

edge cost equal to the fuel cost between the POI and the closest

point in Gp.

The POIs and rendezvous supernode form a graph {G, E}
with vertices representing sensing and refuelling locations

G := Gq ∪ Gp and edges E representing fuel cost for traveling

between those locations. Note: to simplify notation, we use a

generic index i when referencing a vertex of the graph, such

that i ∈ G can represent either qi or the closest point within

the supernode Gp.

The path between two recharge rendezvous locations is

termed a cycle, and the set of all cycles is denoted as C :=
{1, . . . ,Kc}. In order to achieve complete coverage, a single

drone must travel multiple cycles or multiple drones can travel

one or more cycles, depending on the drone availability. The

continuity constraints ensure that each POI is visited once:
∑

i∈G\{j}
x
(c)
ij =

∑
i∈G\{j}

x
(c)
ji ∀j ∈ G, c ∈ C

∑
c∈C

∑
i∈G

x
(c)
ij = 1 ∀ j ∈ Gp (1)

Fuel costs for a given cycle are tracked using the variable z
(c)
i ,

which is the cost of reaching POI i during cycle c.

z
(c)
i =

∑
j∈G

(z
(c)
j + fj→i)x

(c)
ji 0 ≤ z

(c)
i ≤ F ∀ i ∈ G

z
(c)
k = 0 ∀ k ∈ Gp (2)

For this work, we assume a linear relationship between fuel

consumption and flight time:

fj→i = kf tj→i (3)

where fj→i is the fuel consumed, kf is a constant relating fuel

consumption, and tj→i is travel time between POIs j and i. As

discussed in Sec. IV, our algorithm solves an unconstrained

TSP and then checks for fuel constraint violations during the

Diffusion Heuristic, allowing other more complex models of

energy consumption [27] to be applied without issue.
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To ensure a continuous path for each route, a subtour elimi-

nation constraint should be applied each time the optimization

is run and a subtour is found. For a subset of vertices υ ⊂ G,

we can define the set of edges leaving the subgroup as follows:
∑

(i,j)∈N (υ)

x
(d)
ij ≥ 1 , N (υ) = {(i, j) : i ∈ υ, j /∈ υ} (4)

Problem 1: The objective is to visit every POI while minimiz-

ing the mission total time, which includes the time required to

travel between all POIs and the time for each refuel rendezvous,

and being subject to a fuel constraint.

max
xij

∑
c∈C,i,j∈G

ti→jx
(c)
ij + |C|τr (5)

s.t. Eqs. (1) - (4)

where x
(c)
ij ∈ [0, 1]N×N indicate if an edge was travelled on

a given cycle c, ti→j is the time cost to travel between qi
and qj , and τr is the time required for a battery swap during

rendezvous.

IV. CAR-DIFF ALGORITHM

To generate a solution for the Problem 1, we propose

the Clustering Aligned to Roadways with Diffusion Heuristic

(CAR-Diff) algorithm with an overview presented in Alg. 1.

CAR-Diff is an iterative two-stage algorithm that first clusters

the POIs based on distance to a set of subregion generator

points that balance road travel with the density of nearby

points (Sec. IV-A). Each cluster represents a single cycle of

travel for the UAV and a shortest path is found using existing

TSP solvers without fuel constraints (Sec. IV-B). Then, our

Diffusion Heuristic is applied to balance the fuel costs of

each subregion (Sec. IV-C). If fuel constraints are met for all

subregions, the set of paths is returned. Otherwise, the number

of generator points is incremented and the process repeats.

A. Path-Aligned Clustering

Voronoi tessellation (VT) is an efficient method to subdivide

a region based on a set of generator points V := {vc | c ∈
C} where vc ∈ Gp where the union of subregions cover the

entire space. Each generator point vc defines one subregion

Rc that consists of the area closest to the generator point as

defined by the L2-norm, such that Rc = {p | ‖p− vm‖2 ≤
‖p− vn‖2 ∀ m 
= n}. All POIs are assigned to exactly one

unique subregion corresponding to a generator point and all

points in the subregion must be visited in a single cycle.

When clustering, special attention must be given to the

distance of the cluster to the nearest rendezvous location. Un-

necessary distance between clusters and rendezvous locations

can have a significant impact on fuel consumption. To enforce

that each cycle can form an efficient path, CAR-Diff selects

generator points along the MRV path distributed evenly across

the values of an objective function J , which balances the

number of nearby POIs and the distance traveled by the MRV.

Prior to calculating the objective function, the minimum-fuel

rendezvous location p̃i ∈ Gp and required fuel di to reach p̃i

Algorithm 1 CAR-Diff Algorithm Overview

Input: POIs, Fuel Constraint, MRV Path Constraint, Initial

Subregion Count

Output: UAV Paths, MRV Path

1: Compute clustering objective function (Sec. IV-A, Eq. (6))

2: for Kc in Kc0 to N do
3: Create Kc subregions (Sec. IV-A)

4: Compute TSP path for each subregion (Sec. IV-B)

5: while Subregion cost not stabilized and H > 1 do
6: Perform Diffusion Heuristic (Sec. IV-C, Alg. 2)

7: Recompute TSP path for each subregion (Sec. IV-B)

8: if Subregion cost stabilized then
9: Reduce H by decay factor

10: end if
11: end while
12: if All subregions meet fuel constraint (Eq. (2)) then
13: break

14: end if
15: end for
16: return UAV Paths, MRV Path

are calculated for each POI (Alg. 1, Line 1). The values are

used to compute J as defined per unit MRV path length l as:

J(l) =
wj

L
l +

(1− wj)∑
i di

∑
i

xi(l)di (6)

where wj balances placement of generator points along the

road with placement dependent on nearby point density, L is

the total length of the road, l is the travel distance from the

the first MRV point p1 to the current linearized position on the

path, xi(l) is a binary indicator if the nearest road intersection

point p̃i has been passed, and di is the distance from POI

at qi to the nearest rendezvous point. Setting wj = 1 places

generator points evenly along the MRV path while wj = 0
places generator points in proportion to nearby POIs. In our

experimentation, setting 0 < wj < 1 is appropriate as including

both terms balances the increased cycles for servicing dense

regions with the added distance required visit sparse points.

From the objective function J , Kc generator points are

selected to evenly divide the range of J , resulting in subregions

that are aligned with the road. Note that the computation to

form the objective function is only performed once and J
does not change for successive iterations. An example of the

process is provided in Figure 2, which illustrates the initial POI

distribution, the assignment of each POI to a nearest rendezvous

location, the formation of the objective function J , and the

final subregion divisions derived from Kc generator points. The

Kc subregions are passed to a TSP solver, which generates a

minimum-cost path for all POIs within each subregion.

B. Pathing

For each subregion, a path is generated that services all points

and begins and ends along the MRV path using OR-Tools [28].

The path starts and ends at the road supernode with actual

rendezvous locations p̃i generated as the closest road locations

to the first and last POI in the sequence. CAR-Diff solves for

the optimal path without applying fuel constraints, enabling the
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Fig. 2. Illustrated example of path-aligned clustering using 300 POIs, wj = 0.1, and Kc = 5. (a) Initial distribution of POIs (gray) and road (blue). (b)
Direction and scaled distance to nearest road point from Alg. 1. (c) Flattened road with associated distances. (d) Objective function J (shown in black) and Kc

evenly selected generator points where the the red dotted lines illustrate evenly spaced values. (e) Initial segmentation from generator points.

formation of infeasible paths. The fuel cost for each subregion

is used as input for the next stage, the Diffusion Heuristic.

C. Diffusion Heuristic

With a path cost z(c) for each subregion Rc, CAR-Diff

applies the Diffusion Heuristic, a local search technique that

exchanges POIs between neighboring subregions to: first, re-

duce maximum subregion cost below the fuel constraint, and

second, reduce the total time cost for the current cycle count.

The Diffusion Heuristic is run for multiple rounds of updates,

iterating between exchanging POIs between subregions and

resolving the visitation order by re-pathing (Sec. IV-B).

Algorithm 2 Diffusion Heuristic

Input: Rc, H , wp, wb

Output: Rc, z(c)

1: pm,n ← Eq. (7)

2: for h in 1 to H do
3: m,n

U← {pm,n}
4: p

(m,n)
i ← Eq. (8)

5: i
U← {p(m,n)

i }
6: Rm ← Rm \ qi, Rn ← Rn + qi
7: z(m) ← remove(Rm, qi), z(n) ← insert(Rn, qi)
8: end for
9: return Rc, z(c)

where i
U← {pi} indicates randomly selecting index i in

proportion to probability pi from the set of probabilities {pi},

remove reduces the cost of subregion m, and insert increase

the cost of subregion n by a minimum cost insertion. Note that

Rc denotes all C subregions and that Rc is updated by the

diffusion heuristic, resulting in new subregion membership due

to insertion and removal in Line 7.

POIs are selected for exchange stochastically with two coeffi-

cients wb and wp that can be tuned to tradeoff between greedy

and random search, the classic tradeoff between exploitation

and exploration. Each round consists of H exchanges of a POI

between neighboring subregions. First, the exchange border and

direction is selected stochastically. Then, a POI is selected for

exchange based on its proximity to the exchange border.

The border and exchange direction are selected stochastically

in proportion to the probability pij defined by the difference

of fuel costs for each region proportional to the border length

and scaled by a softmax function as follows:

pij ∼ exp (wbCij)∑
m,n∈{1,...,Kc} exp (wbCmn)

Cij = bij

(
z(i) − z(j)

)
wb =

w′
b

F bavg
(7)

where pij is the exchange probability of a POI from subregion

i to j using scaling factor wb, Cij is the scaled cost difference

between neighboring subregions, bij = bji is the border length

between subregion i and j, F is the maximum fuel constraint,

and bavg is the average border length between subregions. For

subregions that do not share a border, the possibility of selecting

the border for exchange is removed by setting Cij = −∞.

Similar to diffusion, the exchange rate scales with the difference

in fuel cost across and the size of the border where higher

difference in neighboring subregion costs and larger borders

result in a higher probability of POI exchange.
The scaling factor wb controls the greediness of the border

selection. As wb → 0, the exchange approaches uniformly

random behavior. Conversely, as wb → ∞, the exchange

selection becomes greedy and pij → 1 for the border between

subregion i and j that has the highest scaled cost difference.
After the border and direction of exchange are selected, a

POI is selected based on its proximity to the exchange border.

For a transfer from subregion i to subregion j, let d⊥i be the

distance to the border for all points in i. The POI is selected

randomly using probabilities generated from a softmax function

on the distance to the border weighted by wp:

p(i,j)m =
exp(wpd

⊥
m)∑

n exp(wpd⊥n )
(8)

where d⊥m is the distance from POI m to the border between

subregions i and j. Unlike the probabilities in Eq. (7), which

must be normalized, p
(i,j)
m from Eq. (8) does not require

normalization since only the points from a single region are

considered at a time for exchange.
The POI selected for exchange is inserted into the path of

the receiving subregion to minimize the increase in total length
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from a simple insertion. The direct insertion may result in a

suboptimal path, so after H updates, the path through each

subregion is recomputed using the previously solved path with

insertions as the initial solution to improve convergence.

Once the cost of each subregion stabilizes as defined by

the best known solution not improving for Ki iterations, the

number of updates H contracts by a decay factor λ, such that

H ← λH . If the cost of any region is above the fuel restriction

F and H = 1, then the constraints are deemed to not have been

met and the number of subregions Kc is incremented. A new

set of generator points are selected according to the method

outlined in Sec. IV-A and the algorithm proceeds until the

minimum Kc that meets the fuel constraints. The end result is

a set of Kc trajectories, one for each subregion, and an ordered

set of 2Kc points along the road that signify the rendezvous

points between the UAV and MRV.

V. RESULTS

The effectiveness of CAR-Diff for remote sensing was tested

by simulation over one synthetic (circular path with POIs

internal) and one realistic scenario (72 km loop near ignition

point of 2003 Cedar Fire in San Diego). For each, we performed

5 runs of uniformly random distributed 100, 300, 600, and 1000

POIs in the sensing region that were within 2 km to 5 km of

the MRV path. We assume the UAV has a constant velocity of

10 m/s for a 15 km fuel capacity in line with commercially

available UAV systems [29] and a recovery, battery exchange,

and launch time of τr = 600 s.

We configure CAR-Diff in Random (wb = 0.2), Balanced

(wb = 2.0), and Greedy (wb = 20) exchange configurations and

compare against two state-of-the-art methods: a Repair Heuris-

tic [18] (Repair 2019) and a memetic algorithm [24] (Memetic

2021). For all tests, each algorithm was run sequentially on

the same PC with an Intel i5-8600k CPU at 3.6 GHz and

computation time was limited to 25 min, the maximum time for

a single cycle. The best trajectory found over that time frame

or the final trajectory if the algorithm completed is reported.

A. Comparison Algorithms

The Repair Heuristic [18] solves for an initial tour with

no constraints using the Lin-Kernighan-Helsgaun heuristic.

Progressing along the tour, when the fuel constraint is violated,

a direct path is found by attempting to connect the current tour

point to a rendezvous location, iterating backwards until the

constraint is satisfied. The Memetic Algorithm [24] performs

initial K-means clustering of the regions before application of

a genetic algorithm and local search, iteratively optimizing at

a cluster and local level. We use the recommended parameters

from the original publication ( [24], Table II) with an incre-

menting number of clusters until the fuel constraint is met. All

reported times are for the last run of the algorithm, assuming

the correct number of clusters was initially selected.

B. Experimental Results

Improvement in total path cost was normalized to the best

performing state-of-the-art algorithm (Repair 2019). CAR-Diff

outperformed Repair 2019 by 7.8% avg. (25.6% max.) in

Fig. 3. Summary of Repair 2019 [18], Memetic 2021 [24], and CAR-Diff
algorithms for path planning of 1000 POIs near the origin of Cedar Creek
Fire. (left) Total cost reduction normalized to Repair 2019. (right) Relative
time compared to Repair 2019 as the number of POIs increases from 100 to
1000.

Fig. 4. Comparison of Repair 2019 [18] (top-left), Memetic 2021 [24] (top-
right), and CAR-Diff Balanced (bot-left) methods for N = 300 POIs near the
origin of Cedar Creek Fire. Note the inefficient pathing for rendezvous with
the Maini algorithm and the inefficiency of clustering using Euclidean distance
when selecting subsets. (bot-right) Performance summary for 100-1000 POIs.

monitoring time across both the synthetic and real-world sce-

narios. For the synthetic example of a circular path, the highest

improvement was achieved for POIs that were distributed up

to 5 km from the MRV path (6.9% average improvement) as

opposed to when POIs were distributed closer to the MRV

path (5.2% average improvement). CAR-Diff was designed for

remote sensing applications where POIs are far or difficult

to access from paths, which these results support. For small

problem sizes of 100 POIs, Repair 2019 and CAR-Diff produce

similar solutions as seen in Fig. 4 (bot-right). The plot was

included to show the limited results that Memetic 2021 could

produce within the time limits of the simulation.

Due to inefficient clustering of POIs that was not aligned to

MRV paths and an inability to perform local swaps between

subregions, the Memetic 2021 algorithm planned more cycles

on average compared to Repair 2019 and CAR-Diff. For 100
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POIs in the Cedar Fire loop, Memetic 2021 required an average

of 12.2 refuel rendezvous compared to 7.8 and 8.4 for Repair

2019 and CAR-Diff, respectively. The effect of the design

decisions of Repair 2019, Memetic 2021, and CAR-Diff can

be viewed in Fig. 4, which shows a set of example paths for

the Cedar Fire monitoring example. Note the small clusters

generated by Mimemtic 2021 and the difference in path quality

formed without (Repair 2019) and with (CAR-Diff) clustering.

Computation time for the algorithms is not critical for the

operational tempo of typical surveying missions as this can be

done offline, but it does offer insight into how the clustering of

CAR-Diff results in competitive computation times for larger

problem sizes. For 1000 POIs, the average computation time for

Repair 2019 was 46 s, nearly all on computing an initial path for

repair and average time for CAR-Diff was 117 s (random), 114

s (balanced), and 111 s (greedy). The time to compute CAR-

Diff approaches Repair 2019 for larger problem sizes due to

the exponential complexity of solving the TSP in Fig. 3(bot).

CAR-Diff solves the TSP many more times than Repair 2019,

but each problem instance is smaller and can be computed

in parallel due to the road-aligned clustering. Memetic 2021

was unable to generate a solution within the allotted time for

any problem size greater than 100 POIs, which required 5000-

7500x the time required by Repair 2019.

VI. CONCLUSION

We proposed CAR-Diff, a two-stage algorithm to plan tra-

jectories for UAV remote sensing with refuelling rendezvous.

By aligning clustering with the mobile recharging vehicle

path, CAR-Diff can generate subregions with low-cost paths

to rendezvous locations. The proposed algorithm can be con-

figured for a tradeoff between computation time and solution

quality with the adjustment of two parameters. CAR-Diff was

compared against existing works [18], [24] and showed up to

25.6% improvement in monitoring time, enabling more efficient

surveying of the environment.
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