
Improved Throughput for All-or-Nothing

Multicommodity Flows with Arbitrary Demands

Anya Chaturvedi 1 Chandra Chekuri 2 Andréa W. Richa 1

Matthias Rost 3 Stefan Schmid 4 Jamison Weber 1

ABSTRACT

Throughput is a main performance objective in communi-
cation networks. This paper considers a fundamental maxi-
mum throughput routing problem — the all-or-nothing mul-
ticommodity flow (ANF) problem — in arbitrary directed
graphs and in the practically relevant but challenging setting
where demands can be (much) larger than the edge capaci-
ties. Hence, in addition to assigning requests to valid flows
for each routed commodity, an admission control mechanism
is required which prevents overloading the network when
routing commodities.

We make several contributions. On the theoretical side
we obtain substantially improved bi-criteria approximation
algorithms for this NP-hard problem. We present two non-
trivial linear programming relaxations and show how to con-
vert their fractional solutions into integer solutions via ran-
domized rounding. One is an exponential-size formulation
(solvable in polynomial time using a separation oracle) that
considers a “packing” view and allows a more flexible ap-
proach, while the other is a generalization of the compact LP
formulation of Liu et al. (INFOCOM’19) that allows for easy
solving via standard LP solvers. We obtain a polynomial-
time randomized algorithm that yields an arbitrarily good
approximation on the weighted throughput while violating
the edge capacity constraints by only a small multiplicative
factor. We also describe a deterministic rounding algorithm
by derandomization, using the method of pessimistic esti-
mators. We complement our theoretical results with a proof
of concept empirical evaluation.

1. INTRODUCTION

The study of routing and multicommodity flow problems

1Arizona State U., USA. Research partially supported under
NSF CCF-1637393 and CCF-1733680 and DoD-ARO MURI
No.W911NF-19-1-0233 awards.
2U. of Illinois at Urbana-Champaign, USA. Partially supported
by NSF grant CCF-1910149
3TU Berlin, Germany.
4Faculty of Computer Science, Univesity of Vienna, Austria; TU
Berlin, Germany; and Fraunhofer SIT, Germany. Research sup-
ported by the ERC Consolidator project AdjustNet, grant agree-
ment No. 864228.

Copyright is held by author/owner(s).

is motivated by many real-world applications. In this paper,
we are interested in throughput optimization in the context
of communication networks serving multiple commodities.
We are particularly interested in the practically relevant
scenario where flows have certain minimal performance or
quality-of-service requirements, in the sense that they need
to be served in an all-or-nothing manner according to their
respective demands.

In contrast to most existing literature on this all-or-nothing
(splittable) multicommodity flow problem, we consider a more
realistic model in the following respects:

• The underlying communication graph can be directed. This
is motivated by the fact that in most practical communi-
cation networks (e.g., optical or wireless networks), the
available capacities in the di↵erent link directions can dif-
fer.

• A single commodity demand can be larger than the capac-
ity of a single link or path. Consider for example a bulk
transfer, or the fact that traffic patterns are often highly
skewed, with a small number of elephant flows consuming
a significant amount of bandwidth resources [16]. Only
splittable flows can serve such demands.

• The total demand can be larger than the network capac-
ity. To make efficient use of the given network resources,
we hence need a clever admission control mechanism, in
addition to a routing algorithm.

We define the All-or-Nothing (Splittable) Multicommodity
Flow (ANF) problem as follows: It takes as input a flow
network modeled as a capacitated directed graph G(V,E),
where V is the set of nodes, E is the set of edges, and each
edge e has a capacity ce > 0. Let n = |V | and m = |E|.
We are given a set of source-destination pairs (si, ti), where
si, ti 2 V , i 2 [k]1, each with a given (non-uniform) de-
mand di > 0 and weight wi > 0. The edge capacities ce,
the demands di and the weights wi can be arbitrary pos-
itive functions on n and k, for any e 2 E or i 2 [k]. A
valid set of flows for commodities 1, . . . , k in G (i.e., a valid
multicommodity flow), must satisfy standard flow conserva-
tion constraints for each commodity i, which imply that the
amount of flow for commodity i entering a node v has to
be equal to the flow for commodity i leaving v, if v 6= si, ti.
The load of an edge e, given by the sum of the flows for all
commodities on e, must not exceed the edge’s capacity ce.
Commodity i is satisfied if di units of flow of this commodity
can be successfully routed from si to ti in the network. (See
also our mixed integer program formulations later).

1Let [x] denote the set {1, . . . , x}, for any positive integer x.

22 Performance Evaluation Review, Vol. 49, No. 3, December 2021

http://crossmark.crossref.org/dialog/?doi=10.1145%2F3529113.3529121&domain=pdf&date_stamp=2022-03-25

We aim to maximize the total profit of a subset of com-
modities that can be concurrently satisfied in a valid mul-
ticommodity flow. Specifically, the goal is to find a subset
K0 ✓ [k] of commodities to be concurrently satisfied such
that the (weighted) throughput, given by

P
i2K0 wi, is max-

imized over all possible K0. The flow can be split arbitrarily
along many branching routes (subject to flow conservation
and edge capacity constraints) and does not have to be in-
tegral.

The ANF problem was introduced in [7] as a relaxation of
the classical Maximum Edge-Disjoint Paths problem (MEDP)
and is known to be NP-Hard and APX-hard even in the re-
stricted setting of unit demands and when the underlying
graph is a tree [7, 9]. In directed graphs, even with unit
demands, the problem is hard to approximate to within an
n⌦(1/c) factor even when edge capacities are allowed to be
violated by a factor c [8]. When demands can exceed the
minimum capacity, strong approximation lower bounds ex-
ist even in very restricted settings [17]. Hence, the literature
has followed a bi-criteria optimization approach where edge
capacities can be violated slightly. Namely, in this paper
we seek an (↵,β)-approximation algorithm: For parameters
↵ 2 (0, 1] and β ≥ 1, we seek a polynomial time algorithm
that outputs a solution to the ANF problem whose through-
put is at least an ↵ fraction of the maximum throughput and
whose load on any edge e is at most β times the edge ca-
pacity ce, with high probability2. The parameter β hence
provides an upper bound on the edge capacity violation ra-
tio (or congestion) incurred by the algorithm.

1.1 Our Contributions

On the theoretical side, we obtain substantially improved
bi-criteria approximation algorithms for this NP-hard prob-
lem. More specifically,

• We present two non-trivial linear programming relaxations:
One is an exponential-size formulation (solvable in poly-
nomial time using a separation oracle) that considers a
“packing” view and allows a more flexible approach, while
the other is a generalization of the compact edge-flow LP
formulation of Liu et al. [10] that allows for arbitrary non-
uniform demands and weights and that also allows for easy
solving via standard LP solvers. We prove the ”equiva-
lence” of the two relaxations and highlight the advantages
of each of the two approaches.

• Via these relaxations, we obtain a polynomial-time ran-
domized rounding algorithm that yields an (1−✏) through-
put approximation, for any 1/m < ✏ < 1, with an edge ca-
pacity violation ratio ofO(min{k, log n/ log log n}), w.h.p.2

• We also present a deterministic rounding algorithm by de-
randomization, using the method of pessimistic estimators.
Contrary to most algorithms obtained this way, our deran-
domized algorithm is simple enough to be also of relevance
in practice.

As a proof of concept, we show how to engineer our algo-
rithms for practical scenarios, and provide a short evalua-
tion. In addition, our packing framework for ANF has in-
teresting networking applications, beyond the specific model
considered in this paper. In [3], we discuss di↵erent exam-
ples, related to unsplittable flows, flows that are split into a

2With high probability, i.e., with probability at least 1 −
1/nc, for some constant c > 0.

small number of paths, routing along disjoint paths for fault-
tolerance, using few edges for the flow, or routing flow along
and short paths.
Many details, including all the proofs and more at length

discussions of the algorithms, were omitted here due to space
limitations; we refer to [3] for the full version of the paper.

1.2 Novelty and Related Work

Liu et al. [10] presented a (1/3, O(
p
k log n))-approximation

algorithm for the ANF problem for the case of uniform de-
mands and weights in directed graphs, where k is the num-
ber of commodities. Our current work significantly improves
and generalizes the randomized rounding framework out-
lined in [10], in several ways: (a) We are able to achieve an
arbitrarily good throughput approximation bound; (b) our
bound on the edge capacity violation does not depend on
the number of commodities k,3 and significantly improves
on the bound of O(

p
k log n) in [10]; and (c) we were also

able to accommodate arbitrary non-uniform demands and
commodity weights. In addition, we provide a derandom-
ized algorithm for the ANF problem and a more flexible
packing MIP formulation for the ANF problem that leads
to several interesting extensions of practical interest.

Other work on bi-criteria (↵,β)-approximation schemes
for the ANF problem that are closely related to ours aims
at keeping β constant, while letting ↵ be a function of n.
The work of Chekuri et al. [7, 6, 5] is the most relevant
and was also the first to formalize the ANF problem. Their
work implies an approximation algorithm for the general
(weighted, non-uniform demands) ANF problem in undi-
rected graphs with ↵ = ⌦(1/ log3 k) and β = 1. A require-
ment of their algorithm is that maxi di  mine ce. This
is a strong assumption, since it eliminates all (undirected)
networks G where the above assumption fails, such as for
example complete graphs with unit edge capacities and de-
mands 2  di  n − 1, for all i. Hence, besides the fact
that our approximation guarantees di↵er from those of [7]
(we have constant ↵ and logarithmic β, while they achieve
constant β at the expense of a polylogarithmic 1/↵), our
results also apply to any directed graph G, without any as-
sumptions on how di compares to individual edge capacities.
We note that even in undirected graphs and unit demand
the ANF problem does not admit a constant factor approxi-
mation if constant congestion is allowed [1]. Thus, obtaining
a good throughput approximation even in restricted settings
requires congestion violation.

The ANF problem gets considerably more challenging in
directed graphs. Chuzhoy et al. [8] show that, even if re-
stricted to unit demands, the problem is hard to approxi-
mate to within polynomial factors in directed graphs when
constant congestion is allowed. In [4], Chekuri and Ene pre-
sented a a poly-logarithmic approximation with constant
congestion for a special case of the ANF problem — the
Symmetric All or Nothing Flow (SymANF) problem — in
directed graphs with symmetric unit demand pairs and unit
edge capacities. In SymANF, the input pairs are unordered
and a pair siti is routed if and only if both the ordered pairs
(si, ti) and (ti, si) are routed; the goal is to find a maximum
subset of the given demand pairs that can be routed. How-
ever, their approach, like the one for undirected graphs is
limited to the setting where maxi di  mine ce.

3Unless k is very small o(log n/ log log n), in which case we
get an approximation bound of k.

Performance Evaluation Review, Vol. 49, No. 3, December 2021 23

Finally, our work leverages randomized rounding tech-
niques presented by Rost et al. [15, 14] in the di↵erent con-
text of virtual network embedding problems (i.e., in their
context, flow endpoints are subject to optimization).

2. A PACKING FRAMEWORK FOR ANF

We develop two non-trivial mixed integer programming
(MIP) formulations for the ANF problem: One is a pack-
ing formulation presented in this section, and the other is a
generalization of the compact edge-flow formulation of [10],
presented in Figure 1(c) and described in detail in [3, 10].
In our approach, we compute a solution to the relaxed lin-
ear program (LP) in polynomial time and then convert this
solution into an integer solution via appropriate random-
ized rounding. The “packing view” of the ANF problem
presented allows for a more flexible approach, that can also
solve several extensions of interest in the networking domain,
such as the ones listed in Section 1.1. In this formulation,
we will be packing an entire flow assignment for each com-
modity i, selected from the set of all possible valid flows
between si and ti. Since the number of possible flows will
be exponential, this formulation has exponential size, but we
show that its LP relaxation can still be solved in polynomial
time via a separation oracle. This is akin to use the path
formulation for flows rather than the edge-based flow for-
mulation. This perspective allows one to easily see why the
randomized rounding framework for rounding paths easily
generalizes to rounding “flows.”

We assume that all commodities can be routed to satisfy
their demands in isolation in G, since if pair i cannot be
routed at a value of di in isolation, then we may as well dis-
card it (since there are no flows that can satisfy the demand
for i in G). Let Fi denote the set of all valid flows for pair
i. Each Fi is not necessarily a finite set. However, we can
restrict attention to a finite set of flows by considering the
polyhedron of all feasible si-ti flows in G and considering
only the finitely many vertices of that polyhedron; any valid
flow can be expressed as a convex combination of the flows
defined by the polyhedron’s vertices.

In Figure 1(a), we describe our packing MIP formulation
for the ANF problem. This formulation is very large: In
general it can be exponential in n,m and k. For each i, we
have a binary variable xi to indicate whether commodity i
is routed or not. For each i and each valid flow f 2 Fi, we
have a variable y(f) to indicate the fraction of xi that is
routed using the flow f . For a flow f we let f(e) denote the
amount of flow on e used by f ; note that f(e) is fixed, for
each f and e, and hence is not a variable.
In [3], we prove that the linear programming (LP) re-

laxation of the ANF packing formulation presented in Fig-
ure 1(b) is equivalent to the relaxation of the compact edge-
flow MIP in Figure 1(c). By equivalence of LPs in this con-
text we specifically mean the following: For any feasible so-
lution to one LP, there exists a feasible solution to the other
LP that routes the exact same amount of flow for each com-
modity in each edge, and vice-versa. This of course also im-
plies that the values of the corresponding feasible solutions
for the two LPs must be the same, and that the approx-
imation bicriteria results that we will prove based on the
relaxation of the packing formulation also apply if instead
we used the relaxation of the compact edge-flow formulation,
which we do in the simulations.

6 Anya Chaturvedi, Chandra Chekuri, Andréa W. Richa, Ma�hias Rost, Stefan Schmid, and Jamison Weber

max
:’
8=1

F8G8

’
5 2F8

~ (5) = G8 1  8  :

:’
8=1

’
5 2F8

5 (4)~ (5)  2 (4) 4 2 ⇢

~ (5) ≥ 0 5 2 F8 , 1  8  :

G8 2 {0, 1} 1  8  : .

(a) Mixed integer programming formulation for ANF
based on “flow” variables.

max
:’
8=1

F8

’
5 2F8

~ (5)

’
5 2F8

~ (5)  1 1  8  :

:’
8=1

’
5 2F8

5 (4)~ (5)  2 (4) 4 2 ⇢

~ (5) ≥ 0 5 2 F8 , 1  8  : .

(b) LP Relaxation.

2.1 Solving the Packing LP Relaxation
It is not at �rst obvious that the LP relaxation of the ANF MIP can be solved in polynomial time.
There are two ways to see why this is indeed possible. One is to show via the Ellipsoid method
that the dual has an e�cient separation oracle for the dual LP and the other is to describe an
equivalent compact (polynomial-size) formulation to the ANF LP. In this section, we will present the
former approach, which gives us a more �exible formulation that leads to interesting extensions
and that also leads to simpler proofs. In Section 3, we will present the compact formulation, of
size polynomial in = and : , and show that its relaxation is equivalent to the relaxation of the
formulation in Figure 1b(b). The bene�ts of the compact formulation are that it directly leads to
simple randomized and derandomized algorithms, that can be e�ciently implemented, as we show
in Section 8.
In Figure 2, we present the dual LP to the formulation in Figure 1b(b). There are two types of

variables: First, for each of the capacity constraints, we associate a dual variable ✓4 and for each
constraint limiting the total �ow to 1 we associate a dual variable I8 . (Recall that the value 5 (4) is a
constant and not a variable.)
The following lemma shows that one can use a polynomial-time separation oracle for solving

the dual LP.

L���� 2.2. There is a polynomial-time separation oracle for the dual LP.

P����. The dual LP is easily seen to reduce to B-C minimum-cost �ow. Given non-negative values
for the variables ✓4 , 4 2 ⇢ and I8 , 1  8  : we compute the minimum-cost �ow for each pair (B8 , C8)

(a)

39:6 Anya Chaturvedi, Chandra Chekuri, Andréa W. Richa, Ma�hias Rost, Stefan Schmid, and Jamison Weber

max
:’
8=1

F8G8

’
5 2F8

~ (5) = G8 1  8  :

:’
8=1

’
5 2F8

5 (4)~ (5)  2 (4) 4 2 ⇢

G8 2 {0, 1} 1  8  : .

(a) Mixed integer programming formulation for ANF
based on “flow” variables.

max
:’
8=1

F8

’
5 2F8

~ (5)

’
5 2F8

~ (5)  1 1  8  :

:’
8=1

’
5 2F8

5 (4)~ (5)  2 (4) 4 2 ⇢

~ (5) ≥ 0 5 2 F8 , 1  8  : .

(b) LP Relaxation.

2.1 Solving the Packing LP Relaxation
It is not at �rst obvious that the LP relaxation of the ANF MIP can be solved in polynomial time.
There are two ways to see why this is indeed possible. One is to show via the Ellipsoid method
that the dual has an e�cient separation oracle for the dual LP and the other is to describe an
equivalent compact (polynomial-size) formulation to the ANF LP. In this section, we will present the
former approach, which gives us a more �exible formulation that leads to interesting extensions
and that also leads to simpler proofs. In Section 3, we will present the compact formulation, of
size polynomial in = and : , and show that its relaxation is equivalent to the relaxation of the
formulation in Figure 1b(b). The bene�ts of the compact formulation are that it directly leads to
simple randomized and derandomized algorithms, that can be e�ciently implemented, as we show
in Section 8.
In Figure 2, we present the dual LP to the formulation in Figure 1b(b). There are two types of

variables: First, for each of the capacity constraints, we associate a dual variable ✓4 and for each
constraint limiting the total �ow to 1 we associate a dual variable I8 . (Recall that the value 5 (4) is a
constant and not a variable.)
The following lemma shows that one can use a polynomial-time separation oracle for solving

the dual LP.

L���� 2.2. There is a polynomial-time separation oracle for the dual LP.

P����. The dual LP is easily seen to reduce to B-C minimum-cost �ow. Given non-negative values
for the variables ✓4 , 4 2 ⇢ and I8 , 1  8  : we compute the minimum-cost �ow for each pair (B8 , C8)
of 38 units with edge costs given by ✓4 , 4 2 ⇢. Let this cost be @8 . The values are feasible for the dual

(b)

39:10 Anya Chaturvedi, Chandra Chekuri, Andréa W. Richa, Ma�hias Rost, Stefan Schmid, and Jamison Weber

an edge 4 to the total �ow of that commodity does not exceed the capacity of 4 : These constraints
are actually redundant for the MIP formulation, but will strengthen the LP relaxation of Figure 3,
obtained by allowing each 58 to assume any real value in [0, 1]. In fact, (5) is crucial to establish the
"equivalence" between the LP relaxation of the ANF packing formulation (Figure 1b(b)) and the LP
relaxation of the compact edge-�ow MIP.
This formulation has size polynomial in = and : and hence can be solved in polynomial time

(e.g., using the Ellipsoid method). Moreover, given the compact nature of the LP, one can use a
standard LP solver in practice.

max
:’
8=1

F8 58 (1)
’

(B8 ,E)2⇢
58,(B8 ,E) = 58 88 2 [:] (2)

’
(D,E)2⇢

58,(D,E) =
’

(E,D)2⇢
58,(E,D) 88 2 [:],8E 2 + − {B8 , C8 } (3)

:’
8=1

58,(D,E) · 38  2 (D,E) 8(D, E) 2 ⇢ (4)

58,(D,E) · 38  58 · 2 (D,E) 88 2 [:],8(D, E) 2 ⇢ (5)
58,(D,E) ≥ 0 88 2 [:],8(D, E) 2 ⇢ (6)

58 2 {0, 1} 88 2 [:] (7)

Fig. 3. Compact Edge-Flow ANF Formulation

Equivalence with Packing Formulation. Here we prove that the packing formulation in
Figure 1b(b) is “equivalent” to the compact formulation given in Figure 3. When we say equivalent
we mean the following: Given a feasible solution to one LP we can obtain a feasible solution to the
other LP of the same value. We prove both directions below.
First, consider a feasible solution to the compact formulation. Let 58 2 [0, 1] be the amount to

which commodity 8 is routed and let 58,4 2 [0, 1] be value on edge 4 2 ⇢. We �rst construct a �ow
68 : ⇢ ! R+ of 38 units from B8 to C8 : we set 68 (4) = 38 58,4/58 . It is easy to verify that 68 is a �ow of 38
units from B8 to C8 . Moreover by the strengthening constraint (5) in Figure 3, we see that 68 (4)  2 (4)
for all 4 and hence 68 is a feasible �ow in the capacities. Putting together these facts, 68 2 F8 . We
obtain a feasible solution to the packing formulation as follows. For each 8 we set G8 = 58 and we set
~ (5) = G8 for 5 = 68 and ~ (5) = 0 for every other 5 2 F8 . In other words we are using only one �ow
for each commodity 8 . The only non-trivial fact to check is that this solution is feasible. For this
we need to verify that

Õ
8 ~ (68)68 (4)  2 (4) but this easily follows from our de�nition of 68 ’s and

constraint (4) in Figure 3. Since G8 = 58 for all 8 , we see that the two solutions have the same value.
Second, consider a feasible solution G,~ to the packing formulation in Figure 1b(b). Let G8 be the

amount routed for commodity 8 and for each �ow 5 2 F8 , ~ (5) is the amount routed on 5 withÕ
5 2F8 = G8 . We construct a feasible solution to the compact LP as follows. For each commodity

8 we set 58 = G8 . For each 4 2 ⇢ and each 8 2 [:], we set 58,4 = 1
38

Õ
5 2F8 5 (4)~ (5). Note that

58 is simply scaling by 38 the total �ow on 4 from all 5 2 F8 . Since each 5 2 F8 is a �ow of 38
units from B8 to C8 and

Õ
5 2F8 ~ (5) = G8 we see that 58,4 , 4 2 ⇢ corresponds to sending a total of

G8 units of �ow from B8 to C8 . We focus on constraints (4) and (5) in Figure 3. We observe that

(c)

Figure 1: (a) Mixed integer programming (MIP) packing
formulation for ANF, based on “flow” variables; (b) its LP
relaxation; (c) compact edge-flow formulation.

Solving the Packing LP. It is not at first obvious that the
LP relaxation of the ANF MIP can be solved in polynomial
time. There are two ways to see why this is indeed possible.
One is to show via the Ellipsoid method that there is an effi-
cient separation oracle for the dual LP of the LP-relaxation
in Figure 1(b) and the other is to solve the equivalent com-
pact (polynomial-size) formulation to the ANF LP. In this
section, we will discuss the former approach, which gives us
a more flexible formulation that leads to interesting exten-
sions and also to simpler proofs. The compact edge-flow
formulation has size polynomial in n and k and hence its
relaxation can be directly solved in polynomial time.

One can use a polynomial-time separation oracle for solv-
ing the dual of the relaxation of the packing ANF MIP pre-
sented in Figure 1(b), as shown in [3]. Standard techniques
allow one to obtain an optimal solution to the primal LP
from an optimum solution to the dual LP. However, since
the Ellipsoid method is impractical, one could use the gener-
alization of the compact edge-flow formulation in [10] or the
algorithm presented in Section 3 to more efficiently solve
the ANF packing LP in practice, which we will do in our
implementations.

Rounding the Packing LP. In this section, we show how

24 Performance Evaluation Review, Vol. 49, No. 3, December 2021

to round a (fractional) solution to the packing ANF MIP
formulation. Randomly rounding a feasible solution to the
LP relaxation is straightforward, and is very similar to the
standard rounding via the path formulation for the Maxi-
mum Edge Disjoint Problem (MEDP) pioneered in the work
of Raghavan and Thompson [13]. Once the LP relaxation is
solved, we consider the support of the solution. For each pair
i, the LP relaxation identifies some hi flows fi1 , fi2 , . . . , fihi

2
Fi along with non-negative values y(fi1), . . . , y(fihi

) such
that their sum is at most 1. The randomized algorithm sim-
ply picks for each i independently, at most one of the flows
in its support where the probability of picking fij is exactly
y(fij). Note that the probability that one chooses to route
pair i is exactly

P
f2Fi

y(f)  1.
We will analyze the algorithm with respect to the weight

of the LP solution
Pk

i=1 wi

Phj

j=1 y(fi,j). We refer to this
quantity as WLP. We refer to the value of an optimum
LP solution as OPTLP and the value of an optimum inte-
ger solution as OPTIP. We observe that OPTLP ≥ OPTIP

and OPTLP ≥ WLP. Note that when solving the formu-
lation in Figure 1(b) or the compact formulation in Fig-
ure 1(c), the LP solution obtained will be optimal and hence
WLP = OPTLP; however, the solution obtained via the
multiplicative-weight update algorithm of Section 3 may
only approximate OPTLP and hence one could indeed have
OPTLP > WLP. We will also assume that OPTLP ≥ wmax,
since we can discard from consideration any commodity i
that cannot be routed alone in the network, as it will never
be part of a feasible solution of the MIP formulation, and
hence wmax  OPTIP  OPTLP. Using standard Cherno↵
bounds [11], we get

Lemma 2.1. Let Z be the (random) weight of the pairs
chosen to be routed by the algorithm. Then E[Z] = WLP

and Pr[Z < (1−δ)WLP] < e
− δ2

2
WLP
wmax . In particular, Pr[Z <

(1− δ)WLP] < e−δ2/2.

Furthermore, we can show

Lemma 2.2. For m ≥ 9 and b > 1 the probability that
the total flow on an edge e is more than (3b lnm

ln lnm
)c(e) is at

most e−1.5b lnm−3b ln b lnm/ ln lnm−1. Via the union bound,
the probability that the total flow on any edge e is more than
(3b lnm
ln lnm

)c(e) is at most e−(1.5b−1) lnm−3b ln b lnm/ ln lnm−1.

We can now put together the preceding lemmas to derive
our bicriteria approximation, stated in our main theorem.
We will henceforth assume that m ≥ 9, with all proofs ap-
pearing in [3].

Theorem 2.3. For m ≥ 9 and any fixed ✏ > 0 there is
a polynomial-time randomized algorithm that yields a (1 −
✏, O(lnm/ ln lnm+ln(1/✏)/ lnm))-approximation w.h.p. Fur-
thermore, we guarantee a (1−1/m,O(lnm/ ln lnm))-approx-
imation w.h.p., by setting ✏ = 1/m.

Noting that it is trivial to get a (1, k)-approximation by
simply routing all the commodities at full demand, we get
the following corollary, stating our full approximation guar-
antees:

Corollary 2.4. For m ≥ 9 and any ✏ ≥ 1/m (or any
fixed 0 < ✏ < 1) there is a polynomial-time randomized
algorithm that yields a (1 − ✏,min{k,O(lnm/ ln lnm)}))-
approximation w.h.p.

3. MWU ALGORITHM

While the compact edge-flow formulation can always be
solved in polynomial time, one may run into space issues
when attempting to solve it in practice: The disadvantage
of using a standard LP solver to solve the compact edge-flow
LP relaxation is that the number of variables is km which is
quadratic in the input size, and the number of constraints is
m. Standard LP solvers often require space proportional to
km2 which can be prohibitive even for moderate instances
(since it is almost cubic in input size). One advantage of
the packing LP formulation to the compact formulation is
that one can use well-known multiplicative weight update
(MWU) based Lagrangean relaxation approaches to obtain
a (1 − γ)-approximation, for any 0 < γ < 1. Although the
convergence time can be slow depending on the accuracy
required, the space requirement is O(k +m) which is linear
in the input size. In addition, there are several optimization
heuristics based on the MWU algorithm that can result in
very efficient implementations in practice. Since the MWU
framework is standard [2], we refer to [3] for a full description
of the specific MWU algorithm that we implement for the
ANF packing formulation and just state the performance
guarantees of the algorithm here.

It is known that the MWU algorithm, as suggested above,
terminates in O(m logm/γ2) iterations [2]. In our imple-
mentation of the MWU algorithm, each iteration requires
computing k minimum-cost flows. Many algorithms are
known for minimum-cost flow ranging from strongly polyno-
mial-time algorithms to polynomial-time scaling algorithms
as well as practically fast algorithms based on network sim-
plex. Instead of listing these we can upper bound the run-
time by O(MCF(n,m)km logm/γ2) where MCF(n,m) is
min-cost flow running time on a graph with n nodes and
m edges. In terms of space we observe that the algorithm
only maintains the total flow on each edge and for each com-
modity the total flow it has routed as well as the lengths on
the edges. This is O(k+m). The algorithm also needs space
to compute minimum-cost flow and that depends on the al-
gorithm used for it. Most algorithms for minimum-cost flow
use space near-linear in the input graph.

4. RANDOMIZED ROUNDING

Algorithm 1 describes the actual randomized rounding al-
gorithm that we use in our simulations. This algorithm per-
forms randomized rounding on the total flow variables of the
compact LP and is therefore a special case of the randomized
rounding algorithm outlined in Section 2 (since any feasible
solutions to the compact LP can trivially be viewed as a fea-
sible solutions to the packing LP). This algorithm leads to a
simpler, more streamlined implementation (also because the
randomized rounding approach will be based on a number of
variables that is linear in the number of commodities) than
if we were using the approach based on the rounding of the
variables of the packing LP directly. We assume, as we did
in Section 2, that we discard any commodity i that cannot
be routed by itself in G.

We use randomized rounding to round the total fraction
f̃i of di that the compact LP routes for commodity i to
fi = 1, with probability f̃i, and to 0 otherwise. If we set fi
to 1, then in order to satisfy flow conservation constraints
for each commodity, we need to re-scale all the f̃i,e values

by 1/f̃i, obtaining the flows fi,e (if fi = 0 then fi,e = 0, for

Performance Evaluation Review, Vol. 49, No. 3, December 2021 25

Algorithm 1: Randomized Rounding Algorithm

Input : Directed graph G(V,E) with edge
capacities ce > 0, 8e 2 E; set of k pairs of
commodities (si, ti), each with demand
di ≥ 0 and weight wi ≥ 0; ✏ 2 (0, 1]

Output: The final values of fi and fi,e and
P

wifi
1 Let f̃i, f̃i,e, 8i 2 [k], 8e 2 E, be a feasible solution to

compact LP.
2 For each i 2 [k], independently, set fi = 1 with

probability f̃i, otherwise set fi = 0.
3 Rescale the fractional flow f̃i,e from the LP solution

on edge e for commodity i by 1

f̃i
: I.e., fi,e =

f̃i,e

f̃i
· fi

and the flow for commodity i on e is given by fi,edi.

4 If
P

i wifi ≥ (1− ✏)
P

wif̃i andP
i fi,edi  (3b lnm/ ln lnm)c(e) for all e 2 E,

return the corresponding flow assignments given by
fi and fi,e, 8i 2 [k] and e 2 E. Otherwise, repeat
steps 2 and 3, O((lnm)/✏2) times.

all e 2 E). We repeat Steps 2-3 of Algorithm 1 ⇥((lnm)/✏2)
times or until we obtain the desired ((1−✏), 3b lnm/ ln lnm)-
approximation bounds, amplifying the probability of getting
a desired outcome.

Given the equivalence between the packing and the com-
pact LP, which implied among other things that any fea-
sible solution to the packing LP can be translated into a
feasible solution to the compact LP of equal objective func-
tion value and that Algorithm 1 corresponds to the packing
randomized rounding approach described in Section 2 when
restricted to the subset of solutions to the compact LP, we
get the following corollary to Theorem 2.3:

Corollary 4.1. Algorithm 1, when run on an optimum
solution to the ANF LP, achieves a ((1−✏), 3b lnm/ ln lnm)-
approximation for the ANF problem on arbitrary networks
w.h.p, for a suitable constant b > 1/m, e.g. b = 1.85, and
any 1/m < ✏ < 1.

In our implementations, we will also run Algorithm 1 us-
ing the solution output by the MWU algorithm, which only
guarantees a (1 − γ) approximation on the throughput for
γ 2 (0, 1). Note that the throughput approximation guar-
antee for Algorithm 1 using MWU will be (1− ✏)(1− γ).

Another advantage of Algorithm 1 is that it leads to a sur-
prisingly simple derandomized algorithm, which we describe
in full in [3] and which we also implemented.

5. SIMULATION RESULTS

In this section we study the performance of our approxi-
mation algorithms for the ANF problem on real-world net-
works. Our proof-of-concept computational evaluation is
meant to provide general guidelines about the relative effi-
cacy of the algorithms in terms of the achieved throughput
approximation factor ↵ and the edge capacity violation ratio
β. The achieved throughput approximation ratio is taken as
the solution obtained by the run divided by the optimal LP
solution (which is a lower bound on the exact approxima-
tion ratio based on the optimal IP solution). Notably, due
to the bi-criteria nature of our approximations, that allows
violations of edge capacities, solutions may yield empirical
throughput approximation factors of ↵ > 1.

Beyond analyzing the performance of our randomized round-
ing and derandomized algorithms, we also investigate the
impact of varying the methodology by which the LP is solved.
Specifically, we study the performance of solving the com-
pact LP formulation directly, of the multiplicative weight
update algorithm (MWU), and of a MWU-based Permuta-
tion Routing (PR) heuristic. While the runtime of our proto-
typical MWU implementation generally exceeds the runtime
of solving the compact LP formulation using a commercial
solver, our MWU implementation serves as a proof of con-
cept of its practical applicability and will also enable certain
extensions that depend on the packing formulation, as men-
tioned in Section 1.1. In addition, we remark that MWU
may be useful for larger networks in practice (larger than
the ones considered here), as it does not su↵er from the
same space complexity limitations as solving the compact
LP via standard LP solvers.

Note that the simulation results for the current state-of-
the-art algorithm for constant-throughput approximations
for the ANF problem [10] — adapted here to handle non-
uniform demands, edge capacities and weights — have been
reproduced when running the randomized rounding algo-
rithm with the compact edge-flow LP, since this algorithm
is in essence the same as the algorithm in [10] (albeit some
fine tuning optimizations). Our theoretical approximation
results in this paper actually also validate the experimental
results in [10], that already suggested that the logarithmic
edge capacity violations.

Methodology. Following [10], we study real-world net-
works together with corresponding real-world source-sink
pairs obtained from the survivable network design library
(SNDlib) [12]. We randomly perturb the uniform weights,
demands and edge capacities of the chosen networks to test
our algorithms’ ability to accommodate variable weights and
demands on networks with varying edge capacities. Due
to this choice, we find that only a (non-trivial) fraction of
the given commodities can be routed. Moreover, the choice
ensures that few (if any) commodities can be fully routed
through a single path without over-saturating the network.
We selected networks from the SNDlib that cover several
general scenarios. We chose independent uniform random
network capacities from 20 to 60, commodity demands from
25 to 75, and commodity weights from 1 to 10 (the bench-
mark SNDlib data has all edge capacities at 40, demands at
50, and weights at 1).

We have implemented both the randomized and deran-
domized rounding algorithms. We solve the compact for-
mulation optimally via CPLEX V12.10.0, and the packing
LP approximately via the MWU algorithm or the faster
permutation routing heuristic. We choose ✏ = 1

9
and b =

1.85, implying target throughput approximation factor of
↵ ≥ 1 − ✏ = 8

9
and edge capacity violation ratio of β 

3b lnm/ln lnm = 5.5 lnm/ln lnm, where m is the number
of network edges. More specifically, for the Germany50 net-
work, we target an edge capacity violation β  17.47.

We define an experiment as the execution of a higher level
algorithm (either randomized rounding or derandomized al-
gorithm) in concert with an LP-solving subroutine (CPLEX
for compact LP or our MWU and PR implementations) on
a particular network. For an experiment that includes ran-
domized rounding, we execute this algorithm 10 times to ob-
tain a total of 10 di↵erent samples per experiment. For each

26 Performance Evaluation Review, Vol. 49, No. 3, December 2021

of these 10 executions, 100 rounds of rounding are recorded
and of these rounded solutions, we report on the solution of
highest throughput whose capacity violations lie below our
theoretical bounds. We consider three di↵erent γ values,
namely 0.15, 0.2, and 0.3, to study performance vs. run-
time trade o↵s of the MWU algorithm and the PR heuris-
tic. Due to the slow convergence of MWU, we introduce
speed-up mechanisms where (i) during any iteration, if the
post-update smallest MCF solution is not at least 50 per-
cent larger than the respective pre-update MCF solution,
then we do not recompute this in the subsequent iteration,
and (ii) the maximum number of iterations is capped at 10k.

Figure 2: Experimental results on the Germany50 network;
RR refers to the randomized and DR to the derandomized
rounding algorithms.

Experimental Results. We report results of our exper-
iments in terms of the achieved throughput factor ↵, edge
capacity violation factor β, and the wall-clock running times.
The results of the experiments specifically on the Germany50
network from [12] are summarized visually in Figure 2. The
qualitative plots show the empirical throughput and edge
capacity violation ratios obtained by executions of the vari-
ous algorithms. Note that we report on 10 data points when
applying randomized rounding in contrast to the single data
point for the derandomized algorithm. The red star on the
graph serves a reference point, since it indicates the optimal
LP solution. Although in this paper we show only the re-
sults from the Germany50 network, [3] presents results for
three other networks from [12] with comparable findings.

We see for the Germany50 network that the compact LP
solver combined with both the randomized and derandom-
ized algorithms produces β values that are well within our
established theoretical bounds, although we see noticeably
larger values of ↵ and marginally larger values of β when the
derandomized rounding is employed. The values of ↵ and
β obtained from MWU are similarly concentrated around
their means. Interestingly, in combination with the MWU
algorithm, the deterministic rounding shows a significant
increase in edge capacity violations while also achieving a
much higher throughput. For the deterministic rounding
of MWU, we observe that ↵ increases as γ decreases under
roughly constant capacity violations. With respect to the
permutation routing subroutines, we observe more variance
over the parameter space, and we typically see much higher
capacity violation without a significant gain in throughput.

Regarding the runtimes, we remark that the compact LP
solver is in general significantly faster than our MWU or PR
implementations. Furthermore, the randomized rounding
algorithm significantly outperforms our efficient determinis-

tic rounding algorithm. We believe this to be mainly due
to our näıve implementation of the pessimistic estimators,
that does not cache intermediate results.

Concluding, we see our results as a first step towards effi-
ciently approximating the ANF and its potential extensions.
While randomized rounding wins in terms of runtime, the
deterministic rounding generally achieves higher through-
puts at the expense of higher edge capacity violations. Fur-
thermore, the proposed MWU algorithm will render tackling
problem extensions tractable and our proposed permutation
routing heuristic can substantially reduce runtimes in prac-
tice. See [3] for more comprehensive simulation results.

6. REFERENCES
[1] M. Andrews, J. Chuzhoy, V. Guruswami, S. Khanna,

K. Talwar, and L. Zhang. Inapproximability of
edge-disjoint paths and low congestion routing on
undirected graphs. Combinatorica, 30(5):485–520, 2010.

[2] S. Arora, E. Hazan, and S. Kale. The multiplicative weights
update method: a meta-algorithm and applications. Theory

of Computing, 8(1):121–164, 2012.
[3] A. Chaturvedi, C. Chekuri, A. W. Richa, M. Rost,

S. Schmid, and J. Weber. Improved bi-criteria approxi-
mation for the all-or-nothing multicommodity flow problem
in arbitrary networks. CoRR, abs/2005.04533, 2021.

[4] C. Chekuri and A. Ene. The all-or-nothing flow problem in
directed graphs with symmetric demand pairs. Math.

Program., 154(1-2):249–272, 2015.
[5] C. Chekuri, S. Khanna, and F. B. Shepherd.

Multicommodity flow, well-linked terminals, and routing
problems. In ACM STOC, pages 183–192, 2005.

[6] C. Chekuri, S. Khanna, and F. B. Shepherd. The
all-or-nothing multicommodity flow problem. SIAM

Journal on Computing, 42(4):1467–1493, 2013.
[7] C. Chekuri, S. Khanna, and F. Bruce Shepherd. The

all-or-nothing multicommodity flow problem. In ACM

STOC, page 156–165, 2004.
[8] J. Chuzhoy, V. Guruswami, S. Khanna, and K. Talwar.

Hardness of routing with congestion in directed graphs. In
ACM STOC, pages 165–178, 2007.

[9] N. Garg, Vijay V. Vazirani, and M. Yannakakis.
Primal-dual approximation algorithms for integral flow and
multicut in trees. Algorithmica, 18(1):3–20, 1997.

[10] M. Liu, A. Richa, M. Rost, and S. Schmid. A constant
approximation for maximum throughput multicommodity
routing and its application to delay-tolerant network
scheduling. In IEEE INFOCOM, pages 46–54, 2019.

[11] Rajeev Motwani and Prabhakar Raghavan. Randomized

algorithms. Chapman & Hall/CRC, 2010.
[12] S. Orlowski, R. Wessäly, M. Pióro, and A. Tomaszewski.

Sndlib 1.0—survivable network design library. Netw.,
55(3):276–286, 2010.

[13] P. Raghavan and C. D. Tompson. Randomized rounding: A
technique for provably good algorithms and algorithmic
proofs. Combinatorica, 7(4):365–374, 1987.

[14] M. Rost, E. Döhne, and S. Schmid. Parametrized
complexity of virtual network embeddings: Dynamic &
linear programming approximations. ACM SIGCOMM,
49:3–10, 2019.

[15] M. Rost and S. Schmid. Virtual network embedding
approximations: Leveraging randomized rounding. In IFIP

Networking, pages 1–9, 2018.
[16] A. Roy, H. Zeng, J. Bagga, G. Porter, and A. C. Snoeren.

Inside the social network’s (datacenter) network. In ACM

Conference on Special Interest Group on Data

Communication, pages 123–137, 2015.
[17] F. Bruce Shepherd and A. Vetta. The inapproximability of

maximum single-sink unsplittable, priority and confluent
flow problems. CoRR, abs/1504.00627, 2015.

Performance Evaluation Review, Vol. 49, No. 3, December 2021 27

