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Abstract

We consider quasi-static nonlinear poroelastic systems with applications in biomechanics
and, in particular, tissue perfusion. The nonlinear permeability is taken to be dependent
on solid dilation, and physical types of boundary conditions (Dirichlet, Neumann, and
mixed) for the fluid pressure are considered. The system under consideration represents
a nonlinear, implicit, degenerate evolution problem, which falls outside of the well-known
implicit semigroup monotone theory. Previous literature related to proving existence of
weak solutions for these systems is based on constructing solutions as limits of approxima-
tions, and energy estimates are obtained only for the constructed solutions. In comparison,
in this treatment we provide for the first time a direct, fixed point strategy for proving the
existence of weak solutions, which is made possible by a novel result on the uniqueness of
weak solutions of the associated linear system (where the permeability is given as a func-
tion of space and time). The uniqueness proof for the associated linear problem is based
on novel energy estimates for arbitrary weak solutions, rather than just for constructed
solutions. The results of this work provide a foundation for addressing strong solutions,
as well as uniqueness of weak solutions for nonlinear poroelastic systems.
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1 Introduction

The fully dynamic Biot model in poroelasticity is a coupled, mixed hyperbolic-parabolic sys-
tem that describes the behavior of a deformable saturated porous medium. The momentum
balance equations for the elastic displacement u of the medium and the mass balance equation
for the fluid pressure p, under the assumptions of full saturation and small deformations for
the homogeneous porous medium, are given by

{putt—MAu— A+ V(Y1) +aVp = F(z,1), (1.1)

(cop+aV - -u)y =V - -kVp = S(z,t).

The key parameters in the system are: the density of the porous and permeable medium p > 0,
the Lamé parameters A and u, the Biot-Willis constant a > 0 which accounts for the pressure-
deformation coupling, and the constrained storage coefficient ¢y > 0 which combines the
porosity of the medium and the compressibility of both the fluid and solid constituents [41].
The given function F represents an elastic body force, while S is a given fluid source. This
coupled system can describe the settlement of soils under load, wave propagation in fluid-
saturated porous media, as well as perfusion in tissues and organs. Consequently, it has
received a lot of attention in geophysics and civil engineering, and industrial and biomedical
applications [2—4,9,11,12,14,17-19, 30, 35-37,46,48, 50].

In most biological and biomechanical applications, the inertial effects (the accelerations of
both fluid and solid) are negligible, so that one can focus on an elastic quasi-static deformation
of the fluid-saturated porous medium [7,11,15,19,25,29,38]. In this scenario, the coupling is
of elliptic-parabolic type, where the small deformations of the solid matrix are described by
the Navier equations of linear elasticity, and the diffusive fluid flow is described by Duhamel’s
equation:

{5u+an =F(x,t) (12)
[cop + aV -u]; + Ap = S(z, 1),

where £ is an appropriate “elasticity” operator (described precisely in Section 4.1), while
A = —V-[kV]is the diffusion operator. Moreover, due to the fact that biological tissues have
a mass density close to that of water, one can work under the assumption of incompressible
solid and fluid constituents.! Mathematically, this assumption translates into the following
parameter simplifications: ¢o = 0 and o = 1 [19]. In this case, the pressure equation in (1.2)
can degenerate where V - u = 0. The coupled system (1.2) can be reduced to an implicit
evolution equation by solving the elliptic equation for displacement u in terms of pressure p.
There has been great interest in implicit evolution equations [39-42] (and references therein).
In fact, general theories have been developed for implicit systems of monotone type

[Bpl: + Ap > S, (1.3)

'The solid and the fluid phases cannot undergo volume changes at the microscale.



where the operator A and the pressure-to-dilation operator B may in fact be nonlinear [20,43].
As noted above, when B has a non-trivial kernel, this abstract system (1.3) is referred to as
degenerate [41]. In the case of compressible constituents ¢y > 0, the operator ¢oI + B becomes
coercive [1] and invertible on L?, which permits simplification upon inversion. This case is
referred to in [26,40,42] as a “regular” implicit equation. Thus the case of fluid-solid mixtures
with compressible constituents (cy > 0) is fundamentally different from the scenario with
incompressible fluid and solid constituents (see [6] for more detailed discussion).

A new challenge present in systems like (1.2), motivated by biological structures like
tissues, organs, cartilages and bones, is the fact that the permeability k£ is not a constant
parameter; rather, it is a function that depends on the pore architecture inside the body as
well as the properties of the fluid [49]. For example, if a Newtonian fluid flows in the interstitial
spaces of a pack of spherical particles, then the Carman-Kozeny formula is used, which states
that k is a nonlinear function of the solid dilation V - u, given by k(y) ~ 33(1 —y)~2 [27].
On the other hand, if a Newtonian fluid flows inside cylindrical pores, then the formula for
capillary beds states that permeability is proportional to a quadratic function of V - u [11].
This nonlinear dependence of permeability on solid dilation introduces a quasilinearity into
the dynamics that is not monotone in nature [6,7,13]. The latter fact disqualifies the nonlinear
theory which has been developed in the above mentioned mathematical works [20,40,43],
where the nonlinearity is monotone and depends directly on the pressure p.

Main Contributions. In this treatment we focus on quasi-static systems like (1.2) with
incompressible constituents (¢p = 0), nonlinear permeability k& dependent on solid dilation,
and physically-motivated pressure boundary conditions (Dirichlet, Neumann, and mixed). For
a complete description of the PDE system under consideration, see Section 2.1. Existence and
uniqueness criteria for weak solutions to these systems have been addressed recently in [6,7].
The proof presented in [7] is constructive, and based on Rothe’s method. The reference [6]
shows existence of weak solutions through a multi-valued map fixed point argument in the
simplified scenario of homogeneous boundary conditions for both solid displacement and fluid
pressure. In comparison, the present treatment provides a straightforward approach based on
a fixed point map strategy, made possible by a novel result on the uniqueness of weak solution
to the associated linear coupled system with given permeability K (x,t). More specifically, as a
preliminary step, we consider the analysis of a linear, time-dependent poroelasticity system,
where the nonlinearity can be replaced with a given function of space and time:

—div[k(V-u)V] — —div[K(x,t)V].
Then one deals with an implicit, time-dependent linear parabolic problem

where the abstract work in [40, Chapter II1.3] can be invoked to obtain existence of weak
solutions. Regarding the issue of uniqueness of weak solution, from the point of view of
abstract variational theory [40] or discretization approaches [7,13,51], one inherits the critical



problem that only constructed weak solutions satisfy energy estimates. Existing theory requires
additional smoothness (time differentiability) of k in order to circumvent this issue [40, pp.115—
117], which unfortunately is not available for the nonlinear problem of interest.

The crux of the matter here in proving uniqueness of weak solutions for the linear problem
(without extra regularity assumptions) is obtaining an appropriate energy estimate for arbi-
trary weak solutions, rather than for just constructed solutions (as in [6,40]). Formally, one
can see from the dynamic Biot system (1.2) that the “natural” elasticity multiplier is u;, as
it elicits cancellation of “cross” coupled terms; u; remains the desired multiplier even in the
quasi-static scenario. However, there is no clear temporal regularity associated to u; in the
latter case. Additionally, the implicit presentation (1.3) demonstrates a peculiarity in passing
between temporal and spatial regularity in the equation, which must take place through the
pressure-to-dilation B operator. To address these issues, inspired by [1,41,42], we effectively
“mod out” Ker(B) in the variational structure of the problem, in conjunction with a time
mollification in the appropriate operator-theoretic framework. We also take advantage of the
connection between the reduced, implicit formulation and the full quasi-static Biot formula-
tion, to exploit the divergence structure (embedded Stokes problem) of the equations.

To summarize, we obtain these novel results: (i) uniqueness of weak solution for the time-
dependent linear poroelasticity problem with A(t) = —V - [K(x,t)V], without requiring
additional time regularity on the permeability by providing (ii) a priori estimates for arbi-
trary weak solutions, rather than for just the constructed solutions. The aforementioned linear
uniqueness problem is resolved in a way that can be utilized in order to obtain (iii) a direct
fixed-point argument for the Biot system with permeability depending nonlinearly on the
solid dilation, as was not possible in previous literature [6,7,13]. Additionally, we provide the
first, clear functional framework for weak solutions, including a justification of the regularity
and type of initial data taken, while addressing the degeneracy induced by the incompressible
constituents (cop = 0) through appropriate modifications of the pressure state space.

2 Main Results and Discussion

2.1 PDE Model of Nonlinear Poroelasticity

We relegate our attention to the physical assumptions of full saturation of the porous media,
negligible inertia, small deformations, and incompressible mixture components [7] (and ref-
erences therein). Let 2 C R3 be the fluid-solid mixture domain, of class C2, with boundary
I' =00 =T'p UI'y and unit outward normal n. Here I'p and I'y are Dirichlet and Neumann
parts of the boundary (with respect to the pressure variable), respectively, and Ty N Tp = ()
(although we permit their closures to intersect). The balance of momentum for the fluid-solid
mixture and the balance of mass for the fluid are given by

-V -T(u,p)=F in Qx(0,7) (2.1)
G+V-v=_5 in Qx(0,7). (2.2)



The notation used for the system variables along with the constitutive relations are described
below. The variable u represents the solid displacement, while p is the Darcy fluid pressure
and v is the associated Darcy velocity of the fluid.

We work here in the mathematically simplified framework of homogeneous Dirichlet con-
ditions for the displacement, and we permit Dirichlet, Neumann, and mixed type conditions
for the pressure. The total stress of the fluid-solid mixture is given by T = o(u) — pI. The lin-
earized stress tensor field o(u) is given by o(u) = 2ue(u) + A(V - u) I, where the symmetrized
gradient £(u) = (Vu + Vu?)/2 represents the linearized strain tensor field, and A and yu are
the standard Lamé parameters. We use Vu to denote the Jacobian of u, i.e., Vu = (8jui),
with Vu? = (9;u’). The balance of linear momentum for the mixture (2.1) can be written
equivalently as —pAu — (A + p)V(V-u)+ Vp=F.

The so called fluid content is given here by the constitutive relation ¢ = V - u. This is
a simplification of the general Biot formula ¢ = cgp + aV - u where ¢q is the constrained
specific storage coefficient and « is the Biot-Willis coefficient [1-4,41]; due to the fact that we
have incompressible mixture components (as discussed above), we have that ¢p = 0 and o = 1
[7,19]. The discharge velocity has the following dependence on pressure and permeability: v =
—k(V -u)Vp, where the permeability k(-) is a nonlinear scalar function. In this consideration,
we take a continuous function k, with positive lower and upper bounds (see Assumption 1).
The body force F and source S are given functions of space and time.

Taking the above into account, the formulation of our problem becomes: Given data dy,
F, and S, find solution (u,p) that satisfies:

(—Au—2V(V-u)+Vp=F in Q x (0,7)

V-ouly =V -[k(V-u)Vpl=5 inQx(0,7)

u=20 on I'x(0,7) (2.3)
EVp-n=0 on I'y x(0,T)

p=20 on I'px(0,T)
L[V -u](0) =do in Q.

The Lamé parameters A and u have been set equal to 1, without loss of generality.
In using a fixed point argument (Section 5), we will consider linearizing the above system,
taking k = k(z), for a given z € L?(0,T; L?(2)). We refer to this linear system as (2.3)j,.

—Au—-2V(V-u)=-Vp+F inQx(0,7T)

[V-ul; = V- [k(2)Vp] =8 in Qx (0,7)

u=20 on I'x(0,T) (23)m
EVp-n=20 on I'y x(0,7)

p=0 on I'px(0,T)

[V -u](0) =do in Q.



Finally, for ease of discussion, let us denote an arbitrary linear system corresponding to
a given permeability K (x,t). We will take (2.3)gen to be identical to the (2.3)},, but with
pressure equation replaced by

[V -ul; — V- [K(x,t)Vp]=5in Q x (0,7).

2.2 Notation and Function Spaces

The Sobolev space of order s defined on a domain D will be denoted by H*(D), with H(D)
denoting the closure of test functions C5°(D) := D(D) in the H*(D) norm (which we denote
by || - [zs(py or [| - [|s,p). When s = 0 we may further abbreviate the notation to || - [|. Vector
valued spaces will be denoted as L2(Q) = [L?(Q2)]" and H*(Q2) = [H*(Q)]". We make use of
the standard notation for the trace of functions y[w] as the map from H'(D) to H'/?(dD). We
will make use of the spaces L?(0,T;U) and H*(0,T;U), when U is a Hilbert space. Associated
norms (and inner products) will be denoted with the appropriate subscript, e.g., || - |[z2(0,7:0)5
though we will simply denote L? inner products by (-,-) when the context is clear.

We introduce the following notation for a variable state space for the fluid pressure, as a
function of the pressure boundary conditions:

{ Vp={pe H'(Q):plr, =0}, when Tp#0, (2.4)

Vy = HY(Q) N [L?(Q)/R], when T'p=0.

Note that T'p =T = V = H}(Q). The space L?(2)/R is isomorphic to the subspace of
L?(9) functions with zero average

L3(Q) = {u e L*(Q) : /Qu dx = 0}.

The gradient seminorm is a norm on V in all cases, first, by the Poincaré inequality when
I'p # 0, and then by the Poincaré-Wirtinger inequality when I'p = (0 [10, 28]. Thus we

topologize V in all cases by ||p||3 := / IVp|2.
Q

Then the primary spaces in our analysis are thus denoted by
1% V =H}(Q), V=V xV, (2.5)

for the pressure p , displacement u, and state (p,u), respectively.
We define the (standard) linear operator £ € £ (V,V’) and bilinear form associated to
elasticity as

Eu(v):e(u,v):/ o(u) ) dQY = /Tr r(e(v)) + 2¢e(u)..e(v)] d (2.6)
(V-u,V-v)+ (Vu,Vv) + (Vu, Vv’).



Above A..B stands for the Frobenius scalar product for tensors, i.e., A.B = A;;B;; taken
with the Einstein convention.

2.3 Formal Statement of Results and Relationship to the Literature

In the literature there are different definitions of weak solution for Biot type systems [1,7,13,
34,41,51]. We provide a straightforward definition with clear utility in the analysis to follow.

Definition 1. [Weak Solution] A solution to (2.3) is a pair of functions
(p,u) € L*(0,T3V)

for which ¢; € L*(0,T;V"), such that:
(a) the following variational form is satisfied in L*(0,T) for any (q,v) € V:

d
e(u,v) + (vpa V) + (k(C)va VQ) + a(ga Q) = <F7V>V/><V + <Sa Q>V’><V7 (27)
(b) the initial condition ((0) = dy is satisfied in the sense of C([0,T); V'), i.e.,

lim ((t) =dy € V.

tl\H(l)C (t) =do €
Remark 2.1. The definition of a weak solution to (2.3)}, and (2.3)gen are obtained mutatis
mutandis by replacing k(¢) with k(z(x,t)) and K(x,t).

To be consistent with other works that consider nonlinear (or time-dependent) perme-
ability [6,7,13,21], we assume continuity and L type bounds on the permeability, as well as
continuity to permit k(-) to considered as a Nemytskii operator.

Assumption 1. [Assumptions on Permeability] The permeability function k : R — R is
continuous and there exist constants k1 > 0 and ko > 0 such that

0<k‘1§k‘($)§k‘2, Vr € R.

In the discussion that follows, we recall the distinction made in the Introduction between
the case of compressible Biot constituents (cop > 0) and the incompressible constituents case
(co = 0). From a formal point of view, taking ¢y = 0 destroys the formal parabolic appearance
of the equation, removing a conserved quantity that provides temporal regularity.

At this point, we note that several existence results are available for (2.3) and (2.3)gen. Let
us point out that, in the linear, time-dependent case for (2.3)gen with A(t) = —V-[K(x,t)V |,
existence of weak solutions was obtained in [39] (later exposited in [40, p.116]). The conditions
for existence in these references are quite general and permit ¢y > 0. Moreover, uniqueness
results are available with the additional hypothesis that K; € L'(0,7; L>(Q)). (See also the
more recent [26,31] for a poroelastic plate model and construction of weak solutions.) The
works [1,41] provide an abstract framework for the case of constant permeability k = const.,



but, in spirit, are close to the linear analysis we present here. The reference [1] considers
only the compressible case ¢y > 0 with homogeneous boundary data and no forcing terms;
the later [41] utilizes implicit semigroup theory and accommodates ¢y > 0 as well as more
general boundary conditions. Again, for constant permeability, [34] makes additional regularity
hypotheses on the data and constructs solutions (partially smoother than in Definition 1) in
a Galerkin framework.

The more recent works [6-8,13] provide existence results for weak solutions to (a version of)
the nonlinear problem (2.3). First, [13] works explicitly with ¢y > 0 and fully homogeneous
Dirichlet boundary conditions; [7] considers mixed boundary conditions in all variables (a
Lipschitz domain) and boundary sources, obtaining weak solutions for ¢y = 0, as well as
accommodating the case of viscoelasticity in the porous matrix. Further work incorporating
and analyzing viscoelasticity in Biot can be found in [5,21,44,47]. Both nonlinear works [7,13]
utilize Rothe’s method for the construction of weak solutions. The only available uniqueness
results (before the treatment at hand) for the linear poroelastic problem (2.3)gen necessitate
additional regularity for the permeability, precluding their ability to be used in constructing
weak solutions for the nonlinear problem. Thus, without resolving the issue of uniqueness
of weak solutions for the linear problem, one is forced to work in the context of multiple
solutions. More recently, [6] considers the fully homogeneous Dirichlet boundary conditions
in all variables and provides existence of weak solutions for ¢y > 0 using a multi-valued
fixed point approach, and for ¢y = 0 via a limiting procedure. In [6], regularity criteria is
given for uniqueness of smooth solutions, though such (strong) solutions are not constructed
there, nor is a regularity theory developed. We note that in all cases for poroelastic dynamics,
uniqueness of weak solutions was left open for (2.3)gen without making the strong assumption
of time differentiability of the permeability K. Moreover, there is no unified treatment of the
nonlinear poroelastic problem (2.3) in the literature, based on clear a priori energy estimates.?

This brings us to the principal results for systems (2.3) and (2.3)};, in the treatment at
hand. The first results are for (2.3),, where a given 2z € L2(0,7T;L?(f2)) yields a given
permeability k(z(x,t)). Several of the aforementioned existence results (e.g. [6,40]) construct
weak solutions with the properties below, including satisfying an energy inequality. Our first
result states that any weak solution, with u continuous in time into V, satisfies an energy
inequality. This will permit us to obtain, in the standard way, the first uniqueness result for
(2.3)1in that does not place additional smoothness assumptions on the permeability. Namely,
the energy estimate holds in an entire class of weak solutions, rather than for a particular
solution constructed as a subsequential limit point. Additionally, this uniqueness will permit
a well-defined fixed point mapping for the construction of weak solutions to the nonlinear
system (2.3).

We note that the proofs of the linear results for (2.3)y, below are directly adapted to
the situation of (2.3)gen when K(x,t) in L*((0,7) x §2). We choose the z(x,t) — k(z(x,t))
framework for our proofs because it is a direct step in obtaining a fixed point for the physically-

In the case of nonlinear poro-visco-elasticity, viable energy estimates on constructed weak solutions are
obtained in [7], from which uniqueness can be deduced. See also [5,47].



motivated nonlinear problem. See Corollary 2.3 and Corollary 2.5.

Theorem 2.1. Suppose that the permeability k(-) satisfies Assumption 1. Let ug € V with
dy = V-uy € L3(Q), z € L*(0,T;L*Q)), F € HY0,T; V'), and S € L*(0,T;V"). Then
any weak solution to (2.3)yy, with additional reqularity such that u € C([0,T]; V) satisfies the
estimate:

T 1 T T
[l +2 [ [ K9 < 2RO+ 2P0+ 2ol + - [ 181+ [ 1FIR) T 28)
In particular, (2.3)5, has a unique weak solution satisfying the assumptions above.

Remark 2.2. We note that, owing to the built in hypothesis that u € C([0,T]; V), we will
immediately have that, given a weak solution as above, 7%1\]@[(1) u = ug.

We first point to the assumption on the data that dy € L?(f) specifically emanates
from a up € V such that V - ug = dg. This assumption is the same as the one taken in
[6,7,39,40,51], and is typically a byproduct of the construction of the solution. We note that
this condition seems somewhat peculiar, as the only term appearing under the time derivative
in the dynamics (2.3))i, is V - u, and thus the natural data would be [V - u](0) = dp.

Remark 2.3. In the above estimate, taking dy = 0 (as well as S = 0 and F = 0) does not
necessarily ensure that u or p are identically zero.

We address these issues, and resolve them, through the next result. Working abstractly
on the reduced form of (2.3)1, (given later in (4.9)), we can improve Theorem 2.2 and remove
the excessive requirement that ug € V.

Theorem 2.2. Suppose that the permeability k(-) satisfies Assumption 1. Let dy € L(Q)(Q),
2z € L*(0,T; L*(Q)), F € HY(0,T; V'), and S € L?(0,T;V"). Then:

(i) There ezists a weak solution to (2.3)y, satisying the following estimate:
HUHQLOO(O,T;V) + Hp||2L2(0,T;v) + [V - u]tHZL?(o,T;V/) < Hd0||2L2(Q) + ||SH2L2’(0,T;V/) + HFH%{l(O,T;V’)' (2.9)

(ii) Moreover, any weak solution to (2.3)yy, in the sense of Definition 1 has the property that
ue C([0,T;V).

The above theorem can be used to resolve the issue of uniqueness of arbitrary weak
solutions in either case of V"= Vp or V = Vj. Indeed, we show that any weak solution, for
do € L3(9), will (a posteriori) have the property that u € C([0,T]; V). Thus, extracting u(0),
we can apply Theorem 2.1 to obtain uniqueness of the particular solution that satisfies (2.9).

Corollary 2.3. Assume that the permeability k(-) satisfies Assumption 1. Let dy € L3(12),
2z € L*(0,T; L*(Q)), F € HY(0,T; V'), and S € L*(0,T;V'). Then there exists a unique weak
solution to (2.3)u, that satisfies (2.9).

With the results for the general linear problem established, we can simplify our proofs
in [6,7] and obtain the first direct fixed point construction for the existence of solutions to
the quasilinear problem (2.3).



Theorem 2.4. Let all assumptions of Theorem 2.2 hold. Assume additionally that F €
L?(0,T; L?(S)). Then there exists a weak solution to the nonlinear problem (2.3) that sat-
isfies estimate (2.9). In addition, we have that ||ul[z2 mm2(0)) < C(data).

Remark 2.4. The above theorem depends upon elliptic regularity for elasticity in the fixed
point construction (to obtain compactness of the fixed point mapping). This is why also we
require more regularity on the source of linear momentum F than the two previous results
obtained for the linear problem. (See Section 2.4 for more discussion.)

We mention that the regularity criterion (in fact, a weak-strong uniqueness result) pre-
sented in [6, 8] remains valid here. A future work will explicitly use these results to construct
strong solutions to the nonlinear problem (2.3) satisfying the requisite regularity to be unique.

Lastly, we present the linear result available in the general setting for a given permeability
K(x,t), corresponding to (2.3)gen-

Corollary 2.5. Assume that the permeability K has the property that
0 < |[K|| oo (@x(0,7)) < +00.

Let dy € L3(2) and F € HY(0,T; V"), and S € L*(0,T;V'). Then there exists a unique weak
solution to (2.3)gen that satisfies (2.9).

2.4 Remarks on Regularity of ()

For all results presented above we take the standing hypothesis that € is of class C2. However,
this assumption is made for simplicity of exposition and can be relaxed without significantly
changing the proofs.

More precisely, we use smoothness of the domain only to apply elliptic regularity for the
elasticity equations. Since we do not use elliptic regularity in the proof of Theorem 2.1, this
theorem is valid for arbitrary Lipschitz domains. Moreover, in the proofs of Theorems 2.2
and 2.4 elliptic regularity is only used for interpolation to prove Bp € C([0,T]; L3(£2)) and
for spatial compactness in Aubin-Lions lemma, respectively. Note that, in both instances,
full elliptic regularity is not needed, as it is enough to prove just € gain of regularity over
H'(Q) of the elastic displacement, i.e., V-u € L?(0,T; H¢(2)) for some € > 0. Such regularity
results are available in a variety of situation, e.g., polyhedral domains and mixed boundary
condition for the elastic displacement (see e.g. [24,32,33]). Furthermore, some regularity of F
can be sacrificed. Therefore, our analysis covers cases previously considered in the literature
(e.g. [7,41]), including those motivated by applications.

3 Energy Estimates for Weak Solutions: Proof of Theorem 2.1

We forgo the explicit construction of a weak solution for (2.3)y,. Several viable and direct
approaches are available, perhaps the most useful are [40, Chapter II1.3] and [6]. The former
utilizes a generalization of Lax-Millgram on an equivalent formulation of the problem, and
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the latter is explicitly based on a spatial Galerkin’s method. In either case, weak solutions
are constructed and the constructed weak solution satisfies an energy inequality. Here, we are
focusing on a general energy inequality itself. Moreover, with any a priori energy estimate
holding (for approximants), a construction of weak solutions (as in Definition 1) follows.

Formally, the desired energy inequality in Theorem 2.1 is proved by formally taking the
pair (Oyu, p) as a test function in a weak form (2.7). While p has sufficient regularity to be used
as such, the quasi-static nature of the Biot dynamics does not permit d;u as a multiplier in the
elasticity equation for an arbitrary weak solution. Hence, we seek a mollification mechanism
by which to allow such multiplication in the framework of any given weak solution.

In this argument, we are working with the full system as opposed to the reduced system,
which we will use in the next section. We are attempting to gain L°°(0,7"; V) bounds on the
displacement u, and thus we assume that u(0) = ug € V, from which we will require that the
initial condition V-u(0) = dy € L3(Q) is compatible, as discussed in the previous section. We
will eliminate this requirement in the sequel.

We first prove a small mollification argument, followed by the desired energy estimate
through mollification; finally, we conclude the uniqueness result directly.

3.1 Temporal V' x VV Mollification

Let h > 0 and j, € D(R) such that supp{jn} C (—h,h), and [ jn = 1. For a locally
integrable function f we denote by f, its temporal regularization (mollification):

falt) = /R F(s)jn(t — s)ds.

In order to apply the regularization procedure to the linear Biot system, we need to extend
all variables from (0,7") to R. With a slight abuse of notation, we denote the extension in the
same way as the original functions. The extensions are given in the following way:

ug t<0 F(0) t<0 p(0) t<0
u(t)—{u(t) O0<t<T , F(t)_{F(t) o<t<T | p(t)—{p(t) 0<t<T . (3.1)
u(T) t>T F(T) t>T p(T) t>T

Note that by our assumption on the data F, and that weak solutions from Theorem 2.1
have that u € C([0,7]; V), we conclude that the elasticity equation (2.3); is satisfied in V’
for every ¢, and thus Vp € C([0,T]; V') for weak solutions corresponding to Theorem 2.1.
From this, we infer that p € C([0,T]; L?>(Q2)) through the characterization of V.= H~1().
Therefore, all extensions in (3.1) are well-defined. For such extensions we have:

Lemma 3.1. For extended functions as the ones defined in (3.1), we have the following
identity:

T T
/ (V- dyn, Py = / (¥ -y, prdvrscy + O(h).
0 0

3This is the traditional mollifier, sometimes denoted by n [22,28].
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Proof. Let f =V -0yu € L?(0,T;V’). Then

/ (fu(t),p()vrxvdt = / /:Jrh (Gt —8)f(s),p(t))yr<vdsdt

_ (/_T+hds/i+hdt/_h ds/:hdt/ﬂh / ), (s — Op(E)yrey
:/0 (f(s),pn(s))vrxvds— /ds/ dt+/T . / s), jn(s—=t)p(t))yruy (3.2)

since f(s) = 0 outside of [0, T].

Now we have the following claims:

/ ds/ dt{f(s),jn(s —t)p(t))y'xy — 0 as h— 0 and (3.3)

I, = / / ]h(S — t)p(t)>vl><v —0 as h—0. (34)
T—h

We prove here only (3.3), as (3.4) follows similarly. First, assume that p(0) € V and recall
that f(s) = 0sV - u. Therefore we use IBP and rewrite I as follows:

h h 0
L= /0 (V- u(s), p(0)jn(=h))yry ds + /0 (V-u(s), p(0) / (= )b}y ds

0
(V) = V- u(0).000) [ 3n(0)dt)y

0

h 0
:/0 (V -u(s), p(0) /S_hj;l(t—s)dt>V,des—|—<V-u(h)—V-u(O),p(O)/ (e, .

—h

Note that each term in the last equality has L? spatial regularity, and thus all of the V/ x V
duality pairings may be replaced by L?(£2) inner products and then estimated as follows:

| / (V- us).00) / Jh(t = s)dt)ds| < Cllp(0)|zz(@yhsup [fully  — 0
s—h (0,77 h—0

0
(V00 =7 u0).p(0) [ (00| < Oz lfuh) —u@)lly 0
where in the last line we used the fact that u € C([0,7]; V).

In the case where p(0) € L%*(Q) only, by density, take p,(0) € V to be such that
pn(0) — p(0) € L%(Q), and denote p,(t) as the extension analogous to (3.1). Perform

the computations listed above with p,(0) € V, and then pass with the limit in n in the final
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step.This finishes the proof of the claims.

Lastly, combining (3.2) with (3.3) and (3.4), we obtain that

T T
/0 (V- B, ) vy = /0 IV - wles o) vy

Moreover, we have that (V - 9yu);, = V - 9yuy. This concludes the proof of the lemma. O

We now apply the temporal mollification directly to the elasticity equation to obtain:
—Auy —2V(V -uy) = —Vp, + Fy,. (3.5)

By the above discussion, this equation holds for every ¢ in the sense of V.
We recall the bilinear form e(-,-) associated with elasticity given in (2.6), and the corre-
sponding norm on V
HuH%/ = <5u7 u>V’><V = 6(11, 11).

We may test the regularized elasticity equation by dyuy, € C*°([0,T]; H}(2)). The pressure
equation (2.3)2 (which holds in the sense of L2(0,T;V’)) may be tested against p; which is
similarly smooth in time into V. Summing the results of these integrations, we obtain the
following equality which is valid in L2(0,T') (and hence a.e. t):

1d
5%”1’%”% + (Vpn, Ocun) + ([V - ule, pr)vixv + (KVp, Vpr) = (Fu, Opun)vixv + (S, pr)veisv. (3.6)
Upon integration in time fOT dt and a temporal integration by parts we obtain:

T

1 T T
Sl @I+ [ oo+ [ v + [ 690)

0
_ / (O F ns W)y — (F(T), un (v sy + (Fa(0), un (0))vr ey
OT 1
+ [ vy + 5l Ol (3.7

We observe that all terms above are well-defined for the regularity classes associated to a
weak solution in the sense of Definition 1.

3.2 Limit Passage
We now note convergences that will allow us to pass with the limit in the equality (3.6).

Proposition 3.2. Suppose (u,p) is a weak solution as in Definition 1 and k is as in Assump-
tion 1. The following limits hold as h ™\, 0:

T t
" / (kVp,Vph)%/ 162V p 2.
0 0
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T
2/ ((Vph,atuh)+<V'3tuvph>wxv)—>0-
0

3. 3lu@IF = sllu@®I3 in C((0,T]).

Proof. The first claim is a direct consequence of the elementary properties of convolution with
the standard mollifiers [10,22,45]. Indeed, we note that p € L?(0,7;V) as well as the fact
that the permeability function k(-) is strictly bounded from below and above by Assumption
1.

Secondly, since p, and Oyuy, are sufficiently smooth in space (owing to the fact that u €
L?(0,T;V) = 0wy, € L?(0,T;V)) we can directly apply integration by parts with d;uy, ‘F =

0 to obtain:
T T
/ /vPh‘atuh: —/ /Ph(v'atuh).
0o Jo 0o Ja

With this observation, the claim reduces to:

T
/ (V- (0ra — 0puyp) ,pr)vixv — 0.
0

This is equivalent to

T T
/ <v : (8{[1 - atuh) yPh — p>V’><V _/ <v . (atu — 8tU.h) Jp>V’><V — 0.
0 0

I 17

We estimate the first term in the following way:

| < IV - (Ora — Opun) [ L2 0,03v) IP — PrllL20,0v) — 0,

<C —0

where the latter convergence follows again via the standard LP mollifier property [10,22]. Here
we have also used V - u; € L2(0,7; V") in Definition 1. For the second term, I1, we first use
the previous Lemma 3.1 to arrive at

/OT/Q(V.atuh)p:/(]T<V'3tuaph>v'xv+0(h).

Therefore the integral I1 can be treated in an analogous way as the first one:

T
U=/ (V- 0pa,p—pp)vixy — 0.
0

Finally, let us prove the third property. By the assumption on the solution of Theorem 2.1,
we have u € C([0,7]; V) and again by the standard properties of mollification [10, Theorem.
4.21] we have that wu, — u strongly in C([0,7]; V). Therefore by continuity of norm we
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have the uniform convergence

Slw @I = S} i C(o,7]).

3.3 Concluding the Proof of Theorem 2.1

Now we can proceed with the proof of Theorem 2.1. Using Proposition 3.2 and equation (3.6),
and by taking h — 0, we obtain that weak solution (u,p) from Theorem 2.1 satisfies the
energy equality:

T s=T T 1 )
+ / (S, vev + = [uoll?.
0 0 0 2

IR+ [ [ 1957 == [0 vy = (B uls)) vy

s=

We estimate:
2 r 2 r 2 T 2 2 2
la(T)|% +4 /0 /Q KVl < 2 /0 |0 (|12 ds +2 /0 Ju(s)[[%ds + 2 F(0) |3, + 4IF (D)3

2 2 4 2 4 2
ol + o [ IS +2 [ mlelf
1Jo 0

The last term on the right-hand side can be absorbed into the left-hand side. Finally, by using
the Gronwall inequality we obtain:

T T T
1
[a(r) 2 [ [ Kp? < 2( RO, +2AF @R+ 2ally + - [ 181+ [ 10FIR )T
(3.8)

Since the above can be applied to any weak solution in the sense of Defintion 1 having
also the additional property that u € C([0,7]; V), we can apply it to the difference of two
such solutions. This provides a continuous dependence estimate. The standard argument then
yields uniqueness of these solutions through the above estimate, if all data and sources are
identified for two weak solutions.

This concludes the proof of Theorem 2.1.

Remark 3.1. At this juncture, uniqueness requires that all of the data for uy vanish in order
to deduce that the solution is identically zero; it is not sufficient (yet) that only the divergence
V - ug vanish to deduce that the solution is zero.

4 Reduced Problem and Proof of Theorem 2.2

As mentioned above, existence of weak solutions for the linear time-dependent problem in
(2.3)1in can be obtained, for instance, from [39] in the context of implicit equations (see
also [40]). Here we summarize the principal operators and the reduction of the linear system

15



to an implicit evolution equation (1.3), as they are essential in the exposition and proof of
Theorem 2.2, which we give later in this section.

4.1 Operators and Functional Setup

Elasticity Operator. We will define an elasticity operator in the balance-of-momentum equa-

tion to invert, and thus write the solid displacement u as a direct function of p. Recall that,
for u € V and a smooth function v,

—(div o(u),v) = —(div[2pe(u) + A(V -u) I],v) = e(u, v).

Thus, if we let v € V be an arbitrary test function in (2.1), we obtain the variational form of
the elasticity equation (2.3)y,:

e(u,v) = /QpI..e(v) dQ + (F,Vv)vixv. (4.1)

We note that e(-, ) is symmetric, continuous and coercive on V. If welet f(v) = [, pI..€(v) dQ+
(F,Vv)vixv, then f € V' directly, as we have the following estimate:

[V < Clipllzaelle)l 2@) + ClIF[v[lv]lv < C(HPHL?(Q) + ||F||V’> [viv.  (42)

By direct application of Lax-Milgram, there exists unique solution u = u(p,F) € V to (4.1).
Note that even though p € V. C H*(Q) (for all boundary conditions considered), (4.1) allows
us to define u as a function of p for all p € L?(Q), since H!(Q) is dense in L?*()) and the
above estimate (4.2) depends only on the L*(Q)-norm of p.

Hereafter we denote the resulting elasticity operator above by £(u) = f, ie., £: V =V’
is the linear operator determined by the bilinear form e(-,-) on V. We have that £ is an
isomorphism in this setting. We summarize the above discussion in the following lemma.

Lemma 4.1. Consider the elasticity problem:

(4.3)

—V.o(u)=G onQ
u=20 onT.

with distributed source G € V'. Then there exists a unique weak solution w € V [16, 28] that
satisfies the stability estimate

lullv < C[IG[lv/, VueV.

Moreover, since we have assumed € is of class C2, classical elliptic regularity applies
[16,45]. Hence, if G € L*(Q2), then the solution u € H*(Q) NV, and ||[ullg2(q) < C||G||r2(q).

Pressure-to-Dilation Map. The pressure-to-dilation map was introduced in the setting of Biot
poroelasticity in [1,40,41]. Motivated by the elasticity problem in Lemma 4.1, we define the
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operator B : L?(Q2) — L?(Q) by
Bp=-V-&1Vp)=V-u (4.4)

When p € H*(Q) we have that Vp € H*~1(Q) [10,28,45], with p — Vp continuous in this
setting. In the specific case when p € L2(2), then Vp € H~(Q) = V’. Invoking the properties
of the elliptic operator £, we see that B € .Z(L?(f)).

If p € V (either Vp or V), with Q is smooth here, we have that

Vpe () = E(u)=-VpecL*(Q) = ucH*(Q)NV = V.-ueV-V=",

where in the last equality we used that the divergence operator is surjective onto L%(Q),
e.g. [23, Theorem II1.3.3].

Remark 4.1. Therefore, only in the case of purely Neumann boundary conditions for the fluid
pressure, is the pressure solution space invariant under the pressure-to-dilation map. This is a
key difference between the two cases considered for V', and has ramifications in the analysis.

We summarize the discussion of B in this setting where elliptic regularity holds for the

pair (£, Q) in the following lemma:

Lemma 4.2. Given p € V and F € L2(Q), the corresponding solver E1(~Vp + F) €
H?(Q) NV with associated bound. When F = 0 and p € V, we have Bp = V -u € Vy for
E(u) = —=Vp. From this we obtain that

B:V — Vy, continuously.

We note some important kernel and range properties of the B operator [7,41,45]:

Lemma 4.3. Considered as a mapping on L*(), Ker(B) = {constants}, and hence B is
injective on L3()) as well as on V. With respect to ranges, we have B(L*(Q2)) C L3(1).
Thus B € Z(L3(Q)) and B € £ (V). Finally, we have that B is a self-adjoint, monotone
operator when considered on L?(Q) or L3(Q).

Remark 4.2. B € £ (L?(f2)), but it need not be coercive in that setting. B can be extended to
a linear operator (still denoted by B) which lies in .#(V};). Such an extension fails for V = Vp,
owing to the fact that for u € H2(Q) NH}(€2), the function V -u lands in H1(Q) N L3(Q2) and
not H}(Q2)

Proposition 4.4. The operator B is an isomorphism on L%(Q).
Proof. Let ¢ € L3(f). Then, by definition of B, we have that ¢ = Bp if and only if there
exists u such that (u,p) € HE(Q) x L3(f) is a solution to the following Stokes problem:
—pAu+aVp=A+pu)Vqg inQ
V-u=¢q in{

u=0 onl.
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We use classical existence theorem for the Stokes equation (see e.g. [45, Prop 1.2.2. and Remark
1.2.6]) to conclude that for every q € L3(Q) there is a unique (u,p) € Hg(Q) x L3(Q) satisfying
the above equation and the following estimate:

Jall o) + 22 < C (IValla-1@) + llall2@) < Cllallrz@)-

1
Therefore, we proved || Bp||12(q) > 6||p||L2(Q) which concludes the proof.
O

Remark 4.3. A more direct proof follows from the Bogovskii Theorem (e.g. [23, Theorem
I11.3.3]) which states that the divergence is surjective operator from H} () — L3(£2). There-
fore V is an injection from L3(Q) into H™1(2). From these facts, we may deduce that the
range of B is closed in L%(Q), and since B is self-adjoint with null kernel, the Closed Range
Theorem guarantees that B is an isomorphism on L3(€2). (These observations are essentially
used in the proof of the existence theorem for Stokes equation, yielding Proposition 4.4.)

Diffusion Operator A(t). For k € L>(R), we can define for each z € L2(0,T; L?(f2)) the linear
operator A(t) : V' — V'’ through the bilinear form

Alp, ¢;k(2)] = (k(2)Vp,Vq), Vp,qeV. (4.5)

If k and z are given and smooth, then we have an unbounded operator A(t) : L?(Q2) — L?(Q)
with domain D(A(t)) = H?*(Q) NV and action given by

A(t)p=—V - [k(2)Vp], Vpe D). (4.6)

When k = const, A(t) = A is a multiple of the standard Laplacian (Dirichlet, Neumann, or
mixed, depending on V') defined on H?(Q2) NV

In the above setting, for a given z € L%(0,T; L?(f2)), the bilinear form A[-,-; k(z)] contin-
uous, coercive, and symmetric on V.

Translation to Eliminate Source F. Note that it is sufficient to solve the linear problem (2.3)y;,
with F = 0 by a translation argument. Indeed, as the elasticity equation is elliptic and
F ¢ HY(0,T; V'), for a.e. t € [0,T] we can define

up(t) = EYF(t)) € V. (4.7)

Thus we have that up € H(0,7; V). Then, considering the variable w = u — up, we note
that u solves (2.3)y, if and only if w solves

E(w)=—Vp c L0, T;V')
V-wi+At)p=S+V-up, €L*0,T;V) (4.8)
V- w(0) =dy— V- up(0) € L*(Q).

Hence, by re-scaling S € L2(0,7; V') and dy = ¢(0) € L*(f), we obtain an equivalent linear

18



problem for a given z with F = 0.

4.2 Reduced Problem

Finally, using the pressure to dilation operator introduced above, we equivalently reformulate
(2.3)1in with F = 0 (as in [6]) as the initial boundary value problem

{[Bp]t — V- [k(z)Vp] =S, €L*0,T;V)

(4.9)
Bp(0) = dy, cV'.

We define a weak solution to (4.9)—which is valid for both V' = Vp or Vy—as follows:

Definition 2. Given z € L?(0,T; L?(2)), we say that p € L*(0,T; V) with [Bp]' € L*(0,T; V")
is a weak solution for (4.9) provided that

1. For everyqeV,

4 (Bp.g) + Alp.a:k(2)] = (S, a)v (1.10)

2. [Bp|(0) = dy € V' in the sense of C([0,T]; V).

Note that since Bp € L*(0,T;V) and [Bp]' € L?(0,T; V"), we have that Bp € C([0,T); L3())
and thus the initial condition above is well-defined.

As mentioned in the beginning of the section, the existence of a weak solution is obtained,
e.g., in [39]. We thusly have the following theorem:

Theorem 4.5. Let Assumption 1 be in force, S € L*(0,T; V') and dy € L3(Q). Then (4.9)
has a weak solution, according to Definition 2.

4.3 Estimates for Reduced Problem (4.9)

In this section we derive two a priori estimates for the reduced problem (as above) with initial
data only given in terms of [Bp](0). The first, a formal estimate, will hold on approximants,
and any constructed solution therefrom will inherit this bound. We will then show: for any
weak solution to (4.10) p € L?(0,T;V) and Bp € H(0,T; V') taking only [V - u](0) = dp €
L3(Q), we can infer the additional property that u € C([0,T]; V) for Bp = V - u. Putting
these two facts together will allow us to markedly improve Theorem 2.1 by eliminating an
unnecessary requirement on the data, as well as showing that the solution is unique, with the
additional property that u € C([0,T]; V).

The principle issue with this task is that B is not isomorphism on L?(2) because Ker(B) =
R. In what follows we extensively use the fact that L?*(Q) = R @ L3(Q2). We denote by
P . L3(Q) — L3() the orthogonal projection on LZ(2) which is given by the standard
formula:

1
szf—,m/ﬂf. (4.11)
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Let us also define a symmetric bilinear form on L?(Q2) (using self-adjointness of B)
B(p,q) == (Bp,q)12(0) = (0, Ba)12(0), p,q € L*(Q).

By Lemma 4.3, [p|g := /B(p,p) is a semi-norm on L?(£2). With this notation we can re-write
the weak form (4.10) equivalently as

d

B @®),a) ]+ Alp(t), ¢ k(2)] = (S(1), )y nD'(0,T), g€ V. (4.12)

We now consider the two cases, V = Vp or Viy separately (recall the definition in (2.4), and
that Vp includes the mixed case). In each case below there are two main steps: (i) to show an
improved, formal energy estimate (valid for approximants), and (ii) to show that, a posteriori,
any weak solution as in Definition 1 has the additional property that u € C([0,7]; V).

4.3.1 Neumann Case: V = Vy

In the (purely) Neumann case, we have H = L3(Q) and V = HY(Q) N L3(Q). Therefore, by
Proposition 4.4, we have in this case that 5(-,-) is in fact a scalar product on H, and by the
standard polarization identity, it is equivalent to the L?(£2) scalar product.

Remark 4.4. Tt is worth noting that this approach is essentially used in [1]. There, 5(,-) is an
equivalent inner product on L?(2) since Dirichlet boundary conditions are taken with ¢ > 0.
In that case, when A(t) = A (constant), one obtains a unique weak solution p € L?(Vp)
if p(0) or Bp(0) is specified. Alternatively, using a modified, implicit semigroup approach,
the same result can be obtained (as well as generalization to stronger solutions) [39,41] for
¢p > 0. However, when A(t) is truly time-dependent and ¢y = 0, uniqueness requires additional
assumptions [40]. Moreover, as we shall see in the next section, we must work harder to permit
specification of data as Bp(0), since B is not, in general, invertible on L?(Q) nor does B(-,-)
induce a true inner product there.

Now, by taking p as a formal test function in (4.12) and integrating in time, we immediately
obtain the estimate:

18, )=o) + I1P13200) < C (1SBa0rwn + 12O 22e) - (413)
Finally, by norm/inner-product equivalence,
cl[p(0)[72(q) < [P(0)[E = B(p(0),p(0)) = (Bp(0),p(0)) < C||Bp(0)||7:(q)-

We have, in addition, that HpH%oo(O’T;LQ(Q) < C|B(p; p)ll Lo (0,1)- Thus for any weak solution
1

)
constructed from approximants (obeying (4.13)) we obtain the energy estimate:

18, P)llzeom + 1P1320.r) < C (ISB20rn + 1BPOIZ2) - (419)
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Now let us suppose that p is any weak solution (that is, not necessarily satisfying (4.14)).
We obtain that [Bp]; € L?(0,T; V') directly from the definition of weak solution in Definition
2, with

1Bl 220,207y S I1SIlz20,0v7) + 11VDPIZ2 0.2 (0))-

Moreover, by boundedness of B on V we know that Bp € L?(0,T; V), since, as a weak solution,
p € L?(0,T;V). Thus by the standard interpolation result for Bochner spaces [16,22] for the
triple HY(Q)NLE(Q) =V C L3(Q) C V’, we infer that Bp € C([0,T]; LZ(2)) and then by the
invertibility of B on LZ(2) as shown above in Lemma 4.3 we obtain that p € C([0,T]; L3(2)).
Now, since Vp € H™! = V' (by the characterization of H=!(Q2)), the corresponding elasticity
equation &(u) = —Vp is satisfied in V' for every ¢ € [0,T]. Therefore, interpreting the
equation variationally through e(-,-), we have u(t) € V, t € [0,T] with:

lu(@®)llv < ClIVp@)llv < Clip®) 120 (4.15)

Therefore we have proven u € C([0,T]; V) and hence every weak solution satisfies assumptions
of Theorem 2.1. Moreover, since any weak solution satisfies the hypotheses of Theorem 2.1—
namely that u € C([0,T]; V)—all weak solutions are in fact unique. Finally, since we have
constructed a weak solution that satisfies the estimate (4.14), using Section 4.1, we may
translate back to the full problem; we deduce, then that the unique weak solution as in
Definition (1) satisfies the final estimate (2.9), only assuming that Bp(0) = V - u(0) € L3()
is given as data.

Remark 4.5. In the Neumann case we can formally integrate the second equation of (2.3);;,
(or equivalently (4.9)1),and use the the divergence theorem to obtain the following necessary
condition for the existence of solution: fQ S = 0. In Theorem 4.5 this condition is contained in
assumption S € L?(0,T; VY;). Informally, the functionals from L2(0,T;V}) only "see” mean
free part of the function since

/Sq:/PSq, SeL*Q), g€ Vy.
Q Q

Formally, since Vy is not dense in L?, functionals from VJ; cannot be extended to L? in a
unique way and therefore L? cannot be embedded in %%

4.3.2 Mixed Case

The same results as above hold for the mixed case V = Vp, but the proof is more subtle, as
B is not an isomorphism on H = L?(2) in this case. We use the fact that kernel of B over
L?(92) is one-dimensional, as well as the fact that the elasticity equation for u does not “see”
additive constants.

The first step is again to formally take the solution p as a test function in (4.12) and
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integrate fg to obtain the following formal equality (valid on approximants):

t t

18, Pl (0,1) + /O Alp(s), p(s); k(2(s))]ds = /0 (S(s).p(s)hvrixvds + [p(0)[B.  (4.16)

The last term will be critical to estimate, since Bp(0) is the given initial condition rather than
p(0) here, and B is not invertible as before. We calculate

p(0)[} = (Bp(0). p(0)) 2 = (Br(0), Pp(0)) 120 (4.17)

where we have used the assumption that Bp(0) € L3(2) and used orthogonality to obtain
the above equality. We now note that ||Pp(0)|| < C||BPp(0)||, since Pp(0) € L3(f2) and, as
before, B is an isomorphism on this space (see proof of Proposition 4.4). Moreover, we have
Bp(0) = BPp(0) for all p € L?(Q2). Thus:

(Bp(0), Pp(0)) 1210 < ClIBp(O)][IIBPp(O)]| < ClIBp(0)|22(cy- (4.18)

Since Bp(0) is given as data in LZ(Q2), we deduce that the LHS of (4.16) is bounded by data,
as in (4.14).

Now, again suppose that p € L%(0,7T;Vp) is any weak solution with dy € LZ(f2). Since B
is not an isomorphism here, we cannot proceed in the same way as we did in the previous case
to obtain that 0;Bp lies in a suitable dual space. As a weak solution, we have immediately
that Bp; € L*(0,T;V}) and Bp € L?(0,T; H' () N L3(9)) (considering the range of B in
Lemma 4.2). But, by restricting test functions to Vp N L3(Q) C Vp in the weak form (4.10)
and estimating directly, we obtain that Bp; € L*(0,T;[Vp N L3(Q)]'). Again, by interpolation
of Vp N LA(Q) C L3(Q) C [Vp N LE(Q)], we obtain that Bp € C([0,T]; L3(Q). However, at
this stage, we know only that p € L?(0,7; Vp), and thus direct “inversion” of B to obtain the
result is not possible as before.

On the other hand, we note that Pp € L?(0,T;Vp N L3(2)) and that Bp = BPp (as
before). Therefore, we obtain Pp € C([0,T]; L3(Q)) (with associated estimate). Finally, by the
definition of P, we observe that Vp = VPp, and therefore again conclude that the elasticity
equation is satisfied for every t € [0,7]. Analogous to the Neumann case, we then obtain
u(t) € V, and estimate (4.15) again holds. The final conclusion and estimate follows as does
the conclusion of the Neumann case as at the end of Section 4.3.1. This concludes the proof
of Theorem 2.2.

5 Nonlinear Problem

In this section we utilize the preceeding constructions and estimates to obtain the existence
of a weak solution in the sense of Definition 1 to the nonlinear problem (2.3). This constitutes
the proof of Theorem 2.4, providing the first direct fixed point construction of solutions to
the quasilinear Biot problem.
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5.1 Fixed Point Map

We consider the abstract problem in (2.3)y,, for a given z € L?(0,T; L*(Q2)) which yields
A(t) = =V - [k(2(t))V(-)], which is defined a.e. t € [0,T]. For emphasis, we re-write the
problem here, including an auxiliary variable ¢ which will allow us to more clearly perform
the fixed point argument. Recall that the space V is interpreted in a case-dependent way
(2.4), but the argument below does not distinguish between these cases. For data

Fc H'(0,T; V)N L0, T;L*()), S € L*(0,T; V'), dy € L3(Q)

consider the problem

E(u)=-Vp+F € L%(0,T; L*(Q))
G — V- [k(z(t)Vp] =S € L*0,T;V') (5.1)
(=V-u € L*(0,T; Vy) '

[V -u](0) = dy € LE(Q).

By Theorem 2.1, the above linear problem (with the associated regularity of data) has a
unique weak solution written here as (u(z),((z),p(z)). Let us define the following mapping:

F : L(0,T; L*()) — L*(0,T; L*(2)), given by .7 (2) = ((2),

where ((z) = V - u(z) comes from the unique solution to (5.1) for the given z.

Lemma 5.1. The map .F introduced above is well-defined on L*(0,T;L*(Y)). This follows
from existence and uniqueness of solution to this linear problem (2.3),.

Note that a fixed point of . would yield the existence of a weak solution to the nonlinear
problem (2.3).

Lemma 5.2. Suppose z € L(0,T; L?(2)) is a fived point of F. Then (u(z),z,p(Z)) is a weak
solution to (5.1), and thus we have a weak solution to (2.3) (as in Definition 1).

We will apply Schauder’s fixed point theorem.

5.2 Applying Schauder’s Theorem
We proceed to establish a fixed point by employing the subspace version of Schauder directly.
Theorem 5.3. The mapping % : L*(0,T; L*(Q)) — L*(0,T; L?(2)) has a fived point.

Proof of Theorem 5.3. We must characterize the image of .%, and demonstrate compactness
and continuity of the map.

Let dy € LE(Q), F € HY(0,T; V') N L*(0,T; L3(R)), and S € L*(0,T; V') be given. We
consider the mapping .% : L%(0,T; L?(Q)) — L?(0,T; L*(Q)) defined above. By the estimates
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for linear solutions as established in Theorem 2.2, and a posteriori, by satisfying (1), we have
and that for each z € L2(0,T; L*(Q)) and ¢ = .7 ()

¢ € L*0,T;V), and ¢ € L*(0,T;V),

with associated estimates.

Continuity. Let z, — z € L*(0,T;L*()), ¢n = F(2n). We want to prove that ¢, has a
(strong) limit point ¢ = .% (z).

First, by Assumption 1, the function k() considered as Nemytskii operator, has the
property that k(z,) — k(z) € L?(0,T; L*(Q))—see [7,13] for more discussion. Now, since
Cn = F(zy), for the unique Bp,, = (, we have by definition of .#, the estimates that provide
a uniform-in-n bound on the quantities

lpnllzz01v)s  Pallzeeor2)),  118®ns Pu)llLoe0,1)-

From the bound on p, in L?(0,T;V) we extract a weak subsequential limit point, i.e., Dny, —
p € L*(0,T;V). From this and the continuity of B € Z(L*(0,T; L?(f))), we obtain that
Cny = Bpp, — Bp. We define this latter quantity as ¢ := Bp, and hence (,, — (. In addition,
we obtain from the weak form, and the uniqueness of limits ensure that (perhaps passing to
a further subsequence with the same label), ¢,, — ¢ € H(0,T; V).

We want to show that ( = .%(z), and this is accomplished by passing with the limit
on the subsequence ny in the weak formulation (4.10). To that end, let us again consider
the weak form evaluated on ny, and restrict our spatial test functions to ¢ € L?(0,T;V) N
L0, T; Whe(Q)):

T T T
/ (. (8),a(t)) di + / Alpuy (1), q(t); 2, (8)] dt = / (St),q(t)) dt.  (5.2)
0 0 0

Limit passage on the first term on the LHS is immediate, identifying weak limits in the weak
form. For the second term, more care must be taken. Consider:

T T T
| ) Von Vo)t = [ () ~ K Vo Vat@)dt + [ (5 Vo Vo)
0 0 0 (53

The first term on the RHS is handled through the Nemytskii property of k(-):

T
/0 ([k(2ny) = k(2)]VDny,, q(t))dt < C([lql] oo 0,100 () 1k (20 ) — k()| 20,7522 1P | 2200,
< (g lIpllLz0,mv)k(zn, ) = B2 L2(0,1;22(02)) = 0,

by the uniform bound on p,, in L?*(0,T;V). Convergence of the second term in (5.3) is
immediate, since by the boundedness of k we have k(2)Vq € L%(0, T; L?(f2)); thence, Vp,, —
Vp € L?(0,T; L*(Q)).
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Thus, we have shown that for ¢ € L2(0,T; V) N L>(0,T; WH>(Q))

T T
/ (k(2n,,)Vpn,, Vq(t))dt — / (k(2)Vp, Vq(t))dt,
0 0

and hence, passing to the limit as k — oo in (5.2) we obtain for ¢ = ((z) the identity

T

T T
/ (G a)dt + / (k(2)Vp, Va(t))dt = / (S, q(t))dt (5.4)
0 0 0

for all ¢ € L?(0,T;V) N L>(0,T; W1>°(Q)), the latter being dense in L2(0,T;V). Thus we
have shown that ({(z),p(z)) satisfies the weak form of the pressure equation and hence we
have constructed a weak solution (((z),p(z)) for z € L?(0,T; L*(Q)). Obtaining the initial
condition is also immediate from the definition of .%. Hence (,, has a weak subsequential limit
point ¢ = .F (z).

To conclude the continuity of .%#, we must improve the convergence of ¢,, — ¢ to that
of strong in L?(0,T; L?(Q)). This is done via the Lions-Aubin compactness theorem (see, for
instance, [40]). In addition to the estimates in Theorem 2.2 for the sequence p,,, we obtain
two additional uniform-in-k estimates from continuity of B : V' — H'(Q) and from satisfying
the weak form of the pressure equation, namely:

HanH%?(o,T;Hl(Q)) = ||Bpnk||%2(o,T;H1(Q)) S ||p|‘%2(o,T;v) (5-5)

H[an]l”m(O,T;V') = H[Bpnk]/H%Q(O,T;V/) S ”pH%Q(QT;V) + HS”%2(0,T;V/)- (5.6)

By possibly passing to a further subsequence ny,, (not affecting the previous steps in estab-
lishing the weak solution or associated estimates), we improve the convergence of Cny,,, = C €
L2(0,T; L3(52)).

Compactness. We must show that the range of .# is relatively compact in L?(0,T; L(f2)).
But, as in the previous step, this will follow from the Lions-Aubin compactness criterion.
Indeed, for ¢ = % (z), ¢ corresponds to a weak solution satisfying the above estimates. In
particular, we obtain for any such ((z) there is an associated (p(z),u(z)) such that:

11 0zsmriy < ooz < Cllidol Zagey + ISIEsozn]  (5.7)
HCIH%Q(O,T;V’ < C[HPH%Q(O,T;V) + HSH%Q(O,T;V’)] = C[HdOH%Q(Q) + HSH%Q(O,T;V’)]' (5.8)

A subset of L%(0,T; L?(f)) which is bounded as in the previous two estimates is relatively
compact by the Lions-Aubin criterion, and hence ( = % (z) lies in a compact set. This is the
final hypothesis to be satisfied for applying the Schauder fixed point theorem.

Doing so, and applying Schauder’s point theorem, yields the existence of a function z €
L2(0,T; HY(Q)) N HY(0,T; V') and an associated weak solution ({(z),p(z)) for which z =
F(2). O
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Remark 5.1. We again note that, owing to the presence of the nonlinearity, regularity of the
solution (—in particular of V-u—mneeds to be better than L2(0, T’; L?(R2)). This is because we
must obtain compactness in ¢ to utilize the Nemytskii property of k(-). Moreover, if dy € V'
only, this would preclude our ability to obtain such regularity, as this would seem to lower

the evolution of Bp = V - u to the regularity of V.
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