
Advances in Mathematics 408 (2022) 108609
Contents lists available at ScienceDirect

Advances in Mathematics

www.elsevier.com/locate/aim

Knot theory and cluster algebras ✩

Véronique Bazier-Matte a, Ralf Schiffler b,∗

a Département de Mathématiques et de Statistiques, Université Laval, Québec 
(QC), G1V 0A6, Canada
b Department of Mathematics, University of Connecticut, Storrs, CT 06269-1009, 
USA

a r t i c l e i n f o a b s t r a c t

Article history:
Received 10 November 2021
Received in revised form 10 July 
2022
Accepted 16 July 2022
Available online xxxx
Communicated by B. Keller

Keywords:
Knot
Cluster algebra
Quiver with potential
Jacobian algebra
Kauffman state
Alexander polynomial

We establish a connection between knot theory and cluster 
algebras via representation theory. To every knot diagram (or 
link diagram), we associate a cluster algebra by constructing 
a quiver with potential. The rank of the cluster algebra is 
2n, where n is the number of crossing points in the knot 
diagram. We then construct 2n indecomposable modules T (i)
over the Jacobian algebra of the quiver with potential. For 
each T (i), we show that the submodule lattice is isomorphic 
to the corresponding lattice of Kauffman states. We then 
give a realization of the Alexander polynomial of the knot 
as a specialization of the F -polynomial of T (i), for every 
i. Furthermore, we conjecture that the collection of the 
T (i) forms a cluster in the cluster algebra whose quiver is 
isomorphic to the opposite of the initial quiver, and that the 
resulting cluster automorphism is of order two.

© 2022 Elsevier Inc. All rights reserved.

✩ The first author was supported by the NSF grant DMS-1802067. The second author was supported by 
the NSF grants DMS-1800860 and DMS-2054561. This work was partially supported by a grant from the 
Simons Foundation. The authors would like to thank the Isaac Newton Institute for Mathematical Sciences 
for support and hospitality during the programme Cluster Algebras and Representation Theory when work 
on this paper was undertaken. This work was supported by: EPSRC Grant Number EP/R014604/1.
* Corresponding author.

E-mail addresses: veronique.bazier-matte.1@ulaval.ca (V. Bazier-Matte), schiffler@math.uconn.edu
(R. Schiffler).
https://doi.org/10.1016/j.aim.2022.108609
0001-8708/© 2022 Elsevier Inc. All rights reserved.

https://doi.org/10.1016/j.aim.2022.108609
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/aim
http://crossmark.crossref.org/dialog/?doi=10.1016/j.aim.2022.108609&domain=pdf
mailto:veronique.bazier-matte.1@ulaval.ca
mailto:schiffler@math.uconn.edu
https://doi.org/10.1016/j.aim.2022.108609


2 V. Bazier-Matte, R. Schiffler / Advances in Mathematics 408 (2022) 108609
1. Introduction

We establish a connection from cluster algebras and representation theory to knot 
theory. Let K be a knot diagram (or link diagram) with n crossings. A segment of K
is a segment of the strand from one crossing point to the next. We associate to K a 
quiver Q with 2n vertices, one for each segment of K, as well as a potential W . We then 
construct 2n indecomposable representations T (i), each of which encodes the Alexander 
polynomial of the link.

To be more precise, each crossing point p of the diagram K gives rise to an oriented 
cycle wp of length four in the quiver Q and each region R in K gives rise to an oriented 
cycle wR in Q whose length is the number of segments at the region R. The potential W
is the difference of the sum of the crossing point cycles and the sum of the region cycles.

Denote by B the Jacobian algebra of the quiver with potential over an algebraically 
closed field. Then B is a non-commutative algebra which may be infinite dimensional. 
The representations T (i) are finite-dimensional B-modules. We construct them explicitly 
as representations of the quiver Q by specifying a finite dimensional vector space at 
every vertex and a linear map for every arrow in Q. This construction is a representation 
theoretic analogue of the construction of the Kauffman states in [14]. The direct sum 
T = ⊕T (i) is called the link diagram module of K.

Let A be the cluster algebra with principal coefficients of the quiver Q as defined in 
[12]. A is a commutative algebra with a special combinatorial structure. It is defined as 
a subring of a field of rational functions by constructing a set of generators, the cluster 
variables, via a recursive method called mutation that is determined by the quiver Q. 
Each mutation step connects two sets of 2n cluster variables and these sets are called 
the clusters of A.

The cluster variables are Laurent polynomials in two sets of indeterminates xi and 
yi, for i = 1, 2, . . . , 2n, with positive integer coefficients [11,16]. Moreover, their special-
ization, obtained by setting all xi equal to 1 is a polynomial, called the F -polynomial 
[12].

It was shown in [9] that F -polynomials can also be computed from modules over our 
Jacobian algebra B. If M is a B-module then its F -polynomial is

FM =
∑
e

χ(Gre(M))ye,

where the sum runs over all dimension vectors e = (ei)i=1,2,...,2n of submodules of M
and ye = ye11 ye22 . . . ye2n2n . Moreover, Gre(M) is the quiver Grassmannian of M , meaning 
the variety of all submodules of M whose dimension vector is e, and χ denotes the Euler 
characteristic. In general, this Euler characteristic is very hard to compute, because it is 
known that every projective variety can be realized as a quiver Grassmannian.

We show that the F -polynomials of our B-modules T (i) have a much simpler formula, 
since every submodule is uniquely determined by its dimension vector. Therefore
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FT (i) =
∑

L⊂T (i)

ydimL,

where the sum runs over all submodules L of T (i). We write FT (i)|t for the specialization 
of the F -polynomial at

yj =

⎧⎪⎨
⎪⎩

−t if segment j runs from an undercrossing to an overcrossing;
−t−1 if segment j runs from an overcrossing to an undercrossing;
−1 if segment j connects two overcrossings or two undercrossings.

(1)

The Alexander polynomial ΔK of an oriented link diagram K is an important poly-
nomial invariant of the link. It is a Laurent polynomial in one variable t with integer 
coefficients. Introduced by Alexander in [1], it has several equivalent definitions, see for 
example [18]. In this paper, we follow Kauffman’s approach that realizes the Alexander 
polynomial as a state sum [14]. More recently, the Alexander polynomial has been gen-
eralized in the work of Osváth and Szabó [23], as well as Rasmussen [25], on knot Floer 
homology.

We are now ready to state our main result. Recall that a link is prime if it cannot be 
decomposed as the connected sum of two non-trivial links.

Theorem 1.1. Let K be a diagram of a prime link. Then, for every segment i of K, the 
Alexander polynomial of K is equal to the specialized F -polynomial of the B-module T (i). 
That is

ΔK = FT (i)|t.

We point out that the quiver Q, and hence the algebra B and the cluster algebra A, 
is not an invariant of the link, because Q depends on the choice of the diagram K. For 
one, the number of vertices in Q is equal to the number of segments in K, which is not 
invariant under Reidemeister moves. Moreover, the definition of Q does not take into 
account the difference between an overpass and an underpass in K. This difference is 
only recovered in the specialization (1).

The key step in the proof is the following result which is of interest in its own right.

Theorem 1.2. The lattice of Kauffman states of K relative to a segment i is isomorphic 
to the lattice of submodules of the B-module T (i).

An interesting question is how the different T (i) are related to each other. We 
conjecture the following. Recall that a B-module T is called a tilting module if the 
projective dimension of T is at most one, Ext1B(T, T ) = 0 and there is an exact sequence 
0 → B → T 0 → T 1 with T 0, T 1 in the additive closure of T . Also recall that, given a 
quiver Q, its opposite quiver Qop is obtained by reversing the direction of all arrows.
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Conjecture 1.3.

(a) The module T = ⊕iT (i) is a B-tilting module.
(b) The Gabriel quiver of the endomorphism algebra of T is isomorphic to the quiver 

Qop.
(c) The 2n cluster variables in A corresponding to T form a cluster.
(d) There is a permutation σ of order two such that the mapping that sends the ini-

tial cluster variable xi to the cluster variable corresponding to T (σ(i)) is a cluster 
automorphism of order two in the sense of [2].

Evidence for the conjecture has been obtained in previous work by David Whiting and 
the second author in [27]. They considered a very special family of links, namely 2-bridge 
links whose continued fraction has at most two parameters. For a slightly simpler quiver 
than our quiver Q, they constructed some of the modules T (i) and showed that their 
direct sum ⊕T (i) can be completed to a tilting module that satisfies the conditions in 
the conjecture.

As an application, we use a well-known property of the Alexander polynomial to show 
the following result that is related to the rank-unimodality conjecture of [20].

Theorem 1.4. Let M be a module of Dynkin type An and L the submodule lattice of M . 
Then

∑
L∈L

(−1)h(L) =
{

±1 if |L| is odd;
0 if |L| is even,

where h(L) = dimL =
∑

j∈Q0
dimLj is the total dimension of the submodule L.

Relation to other work. A first connection between cluster algebras and knot theory was 
given by Kyungyong Lee and the second author in [17] in the special case of 2-bridge 
links. The authors realized another invariant, the Jones polynomial, as a specialization 
of a cluster variable in a cluster algebra of Dynkin type A. This result was based on an 
ad hoc construction using the fact that both the 2-bridge links and the cluster variables 
of type A are parametrized by continued fractions. We now can see this correspondence 
as a special case of our general construction, as explained in section 8. This provides a 
more conceptual explanation for the results in [17]. However, we do not know how to 
generalize the Jones polynomial specialization to arbitrary links.

Nagai and Terashima used ancestral triangles constructed from continued fractions 
to give a formula for the cluster variables of type A and then defined a specialization 
that produces the Alexander polynomial of the corresponding 2-bridge link, see [22]. Our 
specialization is a generalization of theirs.

In [6], Cohen, Dasbach and Russel gave a realization of the Alexander polynomial for 
arbitrary knots as a sum over perfect matchings of the bipartite graph whose vertices 
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are given by the crossing points and the regions of the diagram. Their graph can be 
recovered from our quiver by the methods used for plabic graphs, see for example [10]. 
In the case of 2-bridge knots, their graph is equivalent to the snake graph associated to 
the continued fraction in [5] and in that case their formula seems to be a special case 
of the cluster variable expansion formula of [21] and therefore may be related to ours 
as well. However, in their approach, the weight of a perfect matching is given by edge 
weights, which in the cluster algebra setup corresponds to x-variables, whereas we use 
the y-variables instead. For arbitrary knots, it is unclear if their formula corresponds to 
a cluster variable.

All of the articles above consider a single segment of the link to produce a formula 
for the invariant. In our approach, we rather aim at a conceptual understanding of the 
collection of the 2n objects given by all of the segments of the link inside the cluster 
algebra and in the module category of the Jacobian algebra.

The paper is organized as follows. After fixing the notation and recalling certain facts 
and terminology in section 2, we review Kauffman’s construction of the state poset and 
the state polynomial in section 3. In section 4, we define our quiver with potential and its 
Jacobian algebra B. The link module T = ⊕iT (i) is constructed in section 5. Section 6
is devoted to the proof of the lattice isomorphism in Theorem 1.2. Then Theorem 1.1
is proved in section 7. We end the paper with the special case of 2-bridge links and the 
proof of Theorem 1.4 in section 8.

Acknowledgments

We thank the anonymous referee, as well as Dylan Rupel, for their useful comments.

2. Preliminaries

We recall basic notions and results from knot theory and cluster algebras.

2.1. Knots and links

A knot is a subset of R3 that is homeomorphic to a circle. A link with r components
is a subset of R3 that is homeomorphic to r disjoint circles. Thus a knot is a link with 
one component. Links are considered up to ambient isotopy. A link is said to be prime
if it is not the connected sum of two nontrivial links.

A link diagram K is a projection of the link into the plane, that is injective except 
for a finite number of double points that are called crossing points. In addition, the 
diagram carries the information at each crossing point which of the two strands is on 
top and which is below. A diagram is called alternating if traveling along a strand 
alternates between overcrossings and undercrossings. A link is called alternating if it has 
an alternating diagram. A link is said to be oriented if for each component a direction 
of traveling along the strand is fixed.
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Fig. 1. Skein relations for the Alexander polynomial.

A curl is a monogon in the diagram. We usually assume without loss of generality 
that our link diagrams are without curls, because one can always remove them (by a 
Reidemeister I move) without changing the link.

Throughout this paper, we assume that all links are prime and all link diagrams have 
a finite number of crossing points.

2.1.1. The Alexander polynomial
The Alexander polynomial Δ of an oriented link is a polynomial invariant of the link 

Δ ∈ Z[t± 1
2 ] that can be defined in terms of homology, see [18, Chapter 6]. For the original 

definition of Alexander, see [1]. The Alexander polynomial is defined up to multiplication 
by a signed power of t.

In [7], Conway showed that the Alexander polynomial Δ(K) of an oriented link K
can be defined recursively as follows. The Alexander polynomial of the unknot is 1, and 
whenever three oriented links K−, K+ and K0 are the same except in the neighborhood 
of a point, where they are as shown in Fig. 1, then

ΔK+ − ΔK− = (t1/2 − t−1/2)ΔK0 .

This property also provides a normalization of the Alexander polynomial, but we will 
not use it here.

The Alexander polynomial Δ has the following properties, see for example [18, Chapter 
6].

(i) For any link, Δ(t) .= Δ(t−1), where the symbol .= means “equal up to a signed 
power of t”.

(ii) Δ(1) = ±1 for any knot, and Δ(1) = 0 for any link with at least 2 components.
(iii) For any knot

Δ .= a0 + a1(t−1 + t) + a2(t−2 + t2) + . . .

with a0 odd.
(iv) If a knot has genus g then 2g ≥ breadth(Δ), where the breadth is the difference 

between the maximal and the minimal degree of the polynomial.

Kauffman gave a description of the Alexander polynomial as a state sum. This ap-
proach is crucial for us and we review it in section 3.
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Let us close this subsection by mentioning a recent breakthrough in a closely related 
question. In 1982, Freedman showed in [13] that a knot in the 3-sphere is topologically
slice if its Alexander polynomial is trivial. A famous pair of knots with 11 crossings, 
the Kinoshita-Terasaka knot and the Conway knot are the smallest non-trivial knots for 
which the Alexander polynomial is trivial. In particular, both knots are topologically 
slice. The Kinoshita-Terasaka knot is also known to satisfy the stronger property of 
being smoothly slice. Recently Lisa Piccirillo solved a longstanding open problem in [24]
by proving that the Conway knot is not a smoothly slice knot. For an illustration of the 
quiver of the Conway knot see Example 9.3.

2.2. Cluster algebras

In this section, we recall the definition of a skew-symmetric cluster algebra with prin-
cipal coefficients following [12,26]

Let P be the free abelian group on generators y1, . . . , yn written multiplicatively. Let 
ZP be the ring of Laurent polynomials in the variables y1, . . . , yn and let QP denote 
its field of fractions. Denote by F = QP (x1, . . . , xn) the field of rational functions in n
variables and coefficients in QP . We also define an auxiliary addition ⊕ by

∏
j

y
aj

j ⊕
∏
j

y
bj
j =

∏
j

y
min(aj ,bj)
j . (2)

The cluster algebra is determined by the choice of an initial seed (x, y, Q), which 
consists of the following data.

• Q is a finite connected quiver without loops ◦ and 2-cycles ◦ ◦ , and 
with n vertices;

• y = (y1, . . . , yn) is the n-tuple of generators of P , called initial coefficient tuple;
• x = (x1, . . . , xn) is the n-tuple of variables of F , called initial cluster.

The cluster algebra A = A(x, y, Q) is the ZP -subalgebra of F generated by so-called 
cluster variables, and these cluster variables are constructed from the initial seed by a 
recursive method called mutation. A mutation transforms a seed (x, y, Q) into a new 
seed (x′, y′, Q′). Given any seed there are n different mutations μ1, . . . , μn, one for each 
vertex of the quiver, or equivalently, one for each cluster variable in the cluster.

The seed mutation μk in direction k transforms (x, y, Q) into the seed μk(x, y, Q) =
(x′, y′, Q′) defined as follows:

• x′ is obtained from x by replacing one cluster variable by a new one, x′ = x \ {xk} ∪
{x′

k}, and x′
k is defined by the following exchange relation

xkx
′
k = 1

yk ⊕ 1

(
yk

∏
xi +

∏
xi

)
(3)
i→k i←k
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where the first product runs over all arrows in Q that end in k and the second product 
runs over all arrows that start in k.

• y′ = (y′1, . . . , y′n) is a new coefficient n-uple, where

y′j =

⎧⎪⎨
⎪⎩
y−1
k if j = k;

yj
∏
k→j

yk(yk ⊕ 1)−1
∏
k←j

(yk ⊕ 1) if j �= k.

Note that one of the two products is always trivial, hence equal to 1, since Q has no 
oriented 2-cycles. Also note that y′ depends only on y and Q.

• The quiver Q′ is obtained from Q in three steps:
(1) for every path i → k → j add one arrow i → j,
(2) reverse all arrows at k,
(3) delete 2-cycles.

Mutations are involutions, that is, μkμk(x, y, Q) = (x, y, Q). Note that Q′ only de-
pends on Q, that y′ depends on y and Q, and that x′ depends on the whole seed (x, y, Q).

Let X be the set of all cluster variables obtained by finite sequences of mutations from 
(x, y, Q). Then the cluster algebra A = A(x, y, Q) is the ZP -subalgebra of F generated 
by X .

By definition, the elements of A are polynomials in X with coefficients in ZP , so 
A ⊂ ZP [X ]. On the other hand, A ⊂ F , so the elements of A are also rational functions 
in x1, . . . , xn with coefficients in QP .

2.2.1. Laurent phenomenon and positivity
We have the following important results.

Theorem 2.1 (Laurent phenomenon). [11] Let u ∈ X be any cluster variable. Then

u = f(x1, . . . , xn)
xd1

1 · · ·xdn
n

where f ∈ ZP [x1, . . . , xn], di ∈ Z.

Theorem 2.2 (Positivity). [16] The coefficients of the Laurent polynomials in Theorem 2.1
are positive in the sense that f ∈ Z≥0P [x1, . . . , xn].

2.2.2. F -polynomials
Let u be any cluster variable in the cluster algebra A = A(x, y, Q). By the two 

theorems above, we can write u as a positive Laurent polynomial in the initial cluster 
as u = Lu ∈ Z≥0[x1, . . . , xn, y1, . . . , yn]. Then the F -polynomial of u is defined as the 
evaluation of Lu at x1 = · · · = xn = 1. Thus
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Fu = Lu(1, . . . , 1, y1, . . . , yn).

2.3. Quivers with potential

In this subsection, we recall an alternative approach to F -polynomials using quivers 
with potential. Let Q be a finite quiver. Following [8] we let the vertex span of Q be the 
commutative algebra R over C with basis the constant paths ei, i ∈ Q0 and multiplication 
eiej = δi,jei. Furthermore, the arrow span of Q is the R-bimodule A with C-basis the 
set of arrows Q1 and R-bimodule structure eiAej = ⊕α:j→iCα.

The complete path algebra of Q then is R〈〈A〉〉 =
∏∞

d=0 A
⊗Rd, with m-adic topology 

given by the two-sided ideal m =
∏∞

d=1 A
⊗Rd. The elements of R〈〈A〉〉 are (possibly 

infinite) C-linear combinations of paths in Q.
A potential W =

∑
c∈mcyc

λcc on Q is a (possibly infinite) linear combination of cyclic 
paths in R〈〈A〉〉. The cyclic derivative ∂α, for α ∈ Q1 is defined on a non-constant cyclic 
path α1 . . . αd by

∂α(α1 . . . αd) =
∑

p : αp=α

αp+1 . . . αdα1 . . . αp−1,

and extended linearly to the whole potential.
The Jacobian algebra Jac(Q, W ) of the quiver with potential is defined as the quotient 

R〈〈A〉〉/J(W ), where J(W ) is the closure of the two-sided ideal generated by all cyclic 
derivatives ∂αW , with α ∈ Q1.

For every finitely generated module M over the Jacobian algebra, Derksen, Weyman 
and Zelevinsky introduced its F -polynomial in [9] as

FM =
∑
e

χ(Gre(M))
∏
i∈Q0

yeii , (4)

where the sum is over all dimension vectors e = (ei)i∈Q0 and χ(Gre(M)) ∈ Z is the 
Euler characteristic of the quiver Grassmannian of all submodules N ⊂ M of dimension 
vector e.

Furthermore, they introduced the notion of mutations of (decorated) representations 
and showed that if μ is a mutation sequence that transforms the zero module into M
then the F -polynomial of M is equal to the F -polynomial of the cluster variable obtained 
by the same mutation sequence from the initial seed in the cluster algebra A(x, y, Q).

3. Kauffman states

In this section, we recall Kauffman’s realization of the Alexander polynomial as a 
state sum.
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3.1. Poset of Kauffman states

Consider an oriented link and fix a diagram K without curls. Denote by n the number 
of crossings. Then, there are n +2 regions and 2n segments. We chose a segment and label 
it 1 and then, label other segments following the orientation of the string by 2, 3, . . . , 2n. 
In this paper, a pair (x, R) of a crossing point x and a region R such that x is incident 
to R is called an arrow.

To define a Kauffman state, we chose a segment i = 1, 2, . . . , n and label the adjacent 
regions Ri and R′

i. A Kauffman state is a set of arrows (x, R), called markers, such that:

• each crossing point is used in exactly one marker;
• each region except for Ri, R′

i is used in exactly one marker.

The regions Ri, R′
i are used in no marker.

A state S ′ is obtained from a state S by a counterclockwise transposition at a segment 
j if S ′ is obtained from S by switching two markers at the segment j as in Fig. 2.

More precisely, let x, y be the endpoints of the segment j and let R1, R2 be the adjacent 
regions at j such that, going clockwise around x, we go from R1 to R2 crossing j. Then, 
S contains the markers (x, R2), (y, R1), S ′ contains the markers (x, R1), (y, R2) and 
the other markers in S and S ′ are the same.

We define a partial order on the set of all Kauffman states by S1 < S2 if there is 
a sequence of counterclockwise transpositions that transforms S1 into S2. Kauffman 
proved that the resulting poset is a lattice whose maximal element is a state that ad-
mits no counterclockwise transposition and is therefore called the clocked state in [14]. 
Similarly, the minimal element is called the counterclocked state in [14]. We will refer to 
these states as the maximal and the minimal state.

Example 3.1. Let’s use the following labeling for the segments of the figure-eight knot.

Fig. 3 shows the lattice of Kauffman states for the figure-eight knot with regards to 
segment 1.
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Fig. 2. Kauffman counterclockwise transposition from S to S ′.

Fig. 3. Lattice of Kauffman states of the figure-eight knot.

3.2. The state polynomial

Following Kauffman, we define the weight w(x, R) of an arrow (x, R) as shown in the 
following two cases.

In this case, w(x, R1) = B, w(x, R2) = 1, w(x, R3) = W and w(x, R4) = 1.
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In this case, w(x, R1) = W , w(x, R2) = 1, w(x, R3) = B and w(x, R4) = 1.
The weight w(S ) of a state S is defined as

w(S ) =
∏

(x,R)∈S

w(x,R).

The state polynomial is the sum of the weights of all states S
∑
S

σ(S )w(S ),

where σ(S ) = (−1)b with b is the exponent of B in w(S ).

Theorem 3.2 ([14]). The Alexander-Conway polynomial of a diagram L is equal to the 
specialization of the state polynomial at W = t

1
2 , B = t−

1
2 .

If a state S ′ is obtained from a state S by a counterclockwise transposition at a 
segment at a segment j, then we denote the weight ratio between S ′ and S by w(j). 
Thus,

w(j) = w(S ′)
w(S ) .

Note that w(j) depends only on the segment j and not on the state S and S ′. The 
possible values for w(j) and its specialization at W = t

1
2 , B = t−

1
2 are shown in Fig. 4.

4. The Jacobian algebra of a link diagram

Let K be a reduced diagram of an oriented prime link without curls. Denote by n the 
number of crossings and label the segments 1, 2, . . . , 2n as in section 3.1. We shall use 
the notation K0 for the set of crossing points, K1 for the set of segments, and K2 for 
the set of regions (including the unbounded region) of R2 \K.

We are going to construct a quiver with potential and consider its Jacobian algebra.
We define the quiver Q as follows. The set of vertices Q0 is the set of segments of K. 

Thus Q0 = K1. The set of arrows Q1 is the set of arrows of K introduced in section 3.1, 
more precisely, there is an arrow i → j in Q if and only if

• the segments i and j of Q meet at a crossing point p;
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• the segments i and j bound the same region R;
• going clockwise around p, we cross i then R then j.

For example the quiver of the figure-eight knot in Example 3.1 is shown in Fig. 5.
The planar link diagram K induces a planar embedding of Q, and since K has no 

curls, Q has no loops. On the other hand, Q may have 2-cycles, see however section 4.1.

Fig. 4. Possible values and specializations at W = t
1
2 and B = t−

1
2 for the weight of a segment j.

Fig. 5. The quiver of the figure-eight knot of Example 3.1.
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The quiver Q has the following two types of chordless cycles. For each crossing point 
p ∈ K0, we obtain a 4-cycle ωP and for each region R bounded by r segments, we obtain 
an r-cycle ωR. Each arrow (p, R) lies in exactly two chordless cycles ωp and ωR.

We define a potential W as

W =
∑
p∈K0

ωp −
∑

R∈K2

ωR.

In the example in Fig. 5, the potential is

W = α1α2α3α4 + β1β2β3β4 + γ1γ2γ3γ4 + δ1δ2δ3δ4
−α1δ2β3 − α2γ3δ1 − α3β1γ2 − β2δ3γ1 − α4β4 − γ4δ4

where the first row consists of the four 4-cycles of the four crossing points in K and the 
second row consists of the four 3-cycles and two 2-cycles of the six regions in K.

Definition 4.1. The algebra B = Jac(Q, W ) is called the (completed) Jacobian algebra of 
the link diagram K.

Remark 4.2. (a) The quiver Q and the algebra B are not invariants of the link. For 
example, the second Reidemeister move will change the number of vertices in Q.

(b) The quiver does not see the difference between an overpass and an underpass in 
K.

4.1. Removal of 2-cycles

Each bigon in the link diagram gives rise to a 2-cycle in the quiver. We can replace 
the quiver with potential (Q, W ) by a quiver with potential (Q′, W ′) without 2-cycles 
as follows. The quiver Q′ is obtained from Q by removing all 2-cycles. The potential 
W ′ is obtained from W as follows. For every bigon R, given by two segments i, j that 
cross each other in two crossing points p1, p2, we replace ωp1 + ωp2 − ωR by the 6-
cycle (∂(p1,R)ωp1)(∂(p2,R)ωp2) obtained by joining the two 4-cycles ωp1 and ωp2 . This 
identification on all 2-cycles induces an isomorphism of algebras

B = Jac(Q,W ) ∼= Jac(Q′,W ′).

This realization of the algebra B by a quiver without loops and 2-cycles will be important 
when we describe the connection to cluster algebras.

In our running example, there are two bigons formed by the pairs of segments (4, 8)
and (2, 6) in Example 3.1 and these give rise to two 2-cycles α4β4 and γ4δ4 in the quiver 
in Fig. 5. The above reduction produces the potential

W ′ = α1α2α3β1β2β3 + γ1γ2γ3δ1δ2δ3
−α δ β − α γ δ − α β γ − β δ γ .
1 2 3 2 3 1 3 1 2 2 3 1



Note that ∂α4W = −β4 + α1α2α3 and thus, in the Jacobian algebra Jac(Q, W ), the 
arrow β4 is equal to the path of length three α1α2α3. Similarly α4 is equal to β1β2β3.

5. The link diagram module T

Let K be a curl free diagram of a prime link and let B = Jac(Q, W ) be its Jacobian 
algebra. In this section, we associate a B-module T = ⊕i∈K1T (i) to K, where each T (i)
is an indecomposable summand. The T (i) are constructed explicitly as representations 
of the quiver Q.

5.1. A partition of K1

Let i be a fixed segment of K. We shall define a partition of the set of all segments 
K1 = 
d≥0K(d) and use it later to define the representation T (i). The sets K(d) depend 
on the choice of the segment i, but, in the interest of simplicity, our notation does 
not reflect this dependency. This should not create confusion, since i is fixed here. The 
construction is recursive and the case d = 0 is slightly different from the cases d > 0. 
But first let us run through the construction in the following example.

5.1.1. An example
Consider the knot diagram K illustrated in the top picture in Fig. 6. This is the knot 

1066 in the Rolfsen table. We choose the segment i = 1. The set K(0) is the set of all edges 
that share a region with the segment i = 1, including i itself. This set is shown in red in 
the second picture in the figure. Thus we have K(0) = {1, 15, 11, 5, 13, 14}. We think of 
this set as a union of two paths both starting and ending with the segment 1. The first 
path wL,0 starts on segment 1 in the direction given by the orientation of the knot and 
turns left at each crossing point until it comes back to 1. Thus wL,0 = 1, 15, 11, 5, 13, 1. 
The second path wR,0 also starts on segment 1 in the same direction, but it turns right 
at each crossing point. Thus wR,0 = 1, 14, 1.

The set K(1) is constructed in two steps. First, we remove the set K(0) from K, and 
then we define the set K ′(1) as the set of all segments that are incident to the unbounded 
region of K \K(0). This set is shown in red in the third picture in Fig. 6. Note that there 
are precisely two crossing points p1 and q1 that are incident to exactly one segment of 
K ′(1). Again, we can think of this set as the union of two paths, but this time they start 
at p1 and end at q1. The first path wL,1 makes a left turn at every crossing point. Thus 
wL,1 = 2, 19, 10, 16, 7, 4, 12, 6, 3, 20. The second path wR,1 makes a right turn at every 
crossing point. Thus wR,1 = 2, 20.

In our example there are two crossing points x1 and x2 that are of degree 4 in K ′(1). In 
this situation, the set K(1) is strictly larger than K ′(1). It is shown in the last picture in 
the figure and is defined as follows. The path wL,1 goes through each of the points x1, x2
exactly twice. Let D(xi) denote the domain in the plane bounded by the subpath of 
wL,1 from xi to xi. Thus D(x1) is bounded by the path 19, 10, 16, 7, 4, 12, 6, 3 and D(x2)
V. Bazier-Matte, R. Schiffler / Advances in Mathematics 408 (2022) 108609 15
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Fig. 6. An example of the construction of the partition of the segments of the knot into disjoint subsets 
K(d). The quiver of this diagram is shown in Fig. 11. (For interpretation of the colors in the figure(s), the 
reader is referred to the web version of this article.)
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is bounded by the path 4, 12, 6. The domain D(x2) actually consists of a single region 
of the diagram. On the other hand, the domain D(x1) contains 5 regions of K. We let 
R(xi) be the unique region of K inside D(xi) that is incident to xi. Then R(x2) = D(x2)
and R(x1) is the region bounded by the segments 19, 9, 17, 7, 3.

Then K(1) is defined as the union of K ′(1) with the segments of the regions R(xi). 
Thus we need to add the segments 9 and 17 to our set. We are now done with the case 
d = 1.

The set K(2) is again defined in two steps, but the second step will be trivial. First 
let K ′(2) be the set of all segments that are incident to the unbounded region of K \
(K(0) ∪ K(1)). Thus K ′(2) = {18, 8}. There are no crossing points of degree 4 in this 
set, and therefore we have K(2) = K ′(2).

5.1.2. The general case for d = 0
For a general link, define

K ′(0) = K(0) = {j ∈ K1 | j and i bound the same region of K} ∪ {i},

and let K ′(0) be the closure of K ′(0); here closure means that the set also contains the 
endpoints of the segments.

We can describe K(0) as the union of two paths given by the boundaries of the two 
regions incident to i. We describe these paths below in a way that will generalize to an 
iteration of this procedure to d > 0. The set K(0) can be described as the union of the 
segments along two paths

wL,0 : p0 wp,0
p′0

w′
L,0

q′0 wq,0
q0

wR,d : p0 wp,0
p′0

w′
R,0

q′0 wq,0
q0

as follows. Let p0 and q0 be the endpoints of the segment i. Since K has no curls, we 
have p0 �= q0. Define p′0 = q0 and q′0 = p0 and let wp,0 = wq,0 be the segment i. At p′0
and at every subsequent crossing point, the path wL,0 turns left, and therefore wL,0 is 
the boundary of the region to the left of the segment i from p0 to q0. Similarly wR,0 is 
the boundary of the region to the right of the segment i. These are exactly the segments 
in K ′(0).

Note that the two points p0, q0 are of degree 3 in K(0) and all other crossing points 
in K have degree 0 or 2 in K(0).

Lemma 5.1. The two subpaths w′
L,0 and w′

R,0 do not share a crossing point besides p′0
and q′0.

Proof. Let R1, R2 ∈ K2 denote the two regions at i. Suppose there exists p ∈ K0 such 
that p is not an endpoint of i and p ∈ R1 ∩R2. Then we can draw a closed curve γ from 
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Fig. 7. Proof of Lemma 5.1. At the point p, there is an even number of edges on either side of the curve γ
in the two pictures on the left, and an odd number in the picture on the right.

p to p that runs through R1, R2, crosses i once, and does not cross any other segment of 
K. We consider two cases, depending on the local configuration of the four segments at 
p relative to γ, see Fig. 7.

Suppose first that there is an even number of these four segments on either side of γ. 
This case is illustrated in the two pictures on the left of the figure. Note that at either 
endpoint of the segment i, there are three loose segments, so that in total there is an 
odd number of loose segments on either side of γ, and (using the Jordan curve theorem) 
it is thus impossible to pair them up without crossing γ in order to form a link.

Therefore, out of the four segments at p, there must be an odd number on either side 
of γ. This case is illustrated in the right picture of the figure. Then, on one side, there 
is only one segment; call it j. Moving γ slightly away from p toward the segment j, we 
obtain a closed curve γ′ that crosses only two segments i and j. This shows that K is 
the connected sum of two links and thus not prime, a contradiction. �
5.1.3. The general case for d ≥ 1

We define K(d) recursively.

Definition 5.2. Assume K(e) is defined for all e < d. Let K ′(d) be the set of all segments 
j in K1 \ (∪e<d K(e)) for which there exists a segment k ∈ K(d − 1) such that j and k
bound the same region of K. Let K ′(d) be the closure of K ′(d).

Definition 5.3. (a) A crossing point p ∈ K0 is called an external point in K ′(d) if exactly 
one of its incident segments lies in K ′(d). A segment j ∈ K1 is called external in K ′(d)
if j ∈ K ′(d) and exactly one the endpoints of j is an external point in K ′(d).

(b) A crossing point p is called an internal point in K ′(d) if all four segments at p lie 
in K ′(d). Note that for d = 0 there are no internal crossing points since our diagram K
has no curls. If there exists a non-constant path w starting and ending at x that uses 
only segments of K ′(d), we let D(x) be the bounded domain enclosed by w in the plane. 
Then D(x) is a union of regions of K ′(d). Let R(x) ∈ K2 be the unique region in D(x)
that contains x.

An example is shown in Fig. 8. In that figure, there are four interior points x1, . . . , x4. 
The domain D(x1) is bounded by the red subcurve w and the region R(x1) is shaded.



V. Bazier-Matte, R. Schiffler / Advances in Mathematics 408 (2022) 108609 19
Fig. 8. The domain D(x1) and the region R(x1) associated to an interior point x1 ∈ K(d). The domain D(x1)
is bounded by the red curve and the region R(x1) is shaded. It is bounded above by the black segments, 
one of which is labeled j1. The domain D(x2) for the second interior point x2 is only the part of D(x1)
that lies above the point x2.

Now let j be a segment of K. We define εd(j) ∈ {0, 1} for d ≥ 1 as follows.

εd(j) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1 if there exists an internal point x in K ′(d) such that j lies
in the interior of D(x) and the region R(x) ∈ K2 contains the
segment j and the point x;

0 otherwise.

(5)

Definition 5.4. For d ≥ 1, let

K(d) = K ′(d) ∪ {j ∈ K1 | εd(j) = 1}.

For example, the segment j1 in Fig. 8 satisfies the first condition for x = x1. Thus 
εd(j1) = 1 in this case. The set K(d) contains every segment of the red curve and every 
segment of the black curves bounding R(x1) and R(x2).

Lemma 5.5. Let d ≥ 1.

(a) Each connected component C of K ′(d) is either a single path w from pd to qd or the 
union of two paths



20 V. Bazier-Matte, R. Schiffler / Advances in Mathematics 408 (2022) 108609
wL,d : pd wp,d
p′d

w′
L,d

q′d wq,d
qd

wR,d : pd wp,d
p′d

w′
R,d

q′d wq,d
qd

from pd to qd, where pd and qd are external points in K ′(d), the initial and terminal 
subpaths wp,d and wq,d are the same in both paths, deg p′d = deg q′d = 3 in C, p′d �= q′d
and w′

L,d (respectively w′
R,d) is obtained by turning left (respectively right) at every 

crossing point in K ′(d).
If no such points p′d, q′d exist then wL,d = wR,d and K ′(d) is a single path from pd to 
qd.

(b) All other crossing points, besides pd, p′d, qd, q′d, have degree 0, 2 or 4 in C. In 
particular, C has exactly two external points pd and qd, and moreover, pd, qd ∈
K ′(d) ∩K ′(d− 1) and pd, qd /∈ K ′(e), with e �= d, d − 1.

(c) The paths w′
L,d and w′

R,d do not share a crossing point besides p′d and q′d.

Proof. (a) Suppose first d = 1. The external points are p1 = p′0 and q1 = q′0, and there 
are no other external points in K ′(1). If there are points of degree 3 in K ′(1), we let p′1
be the point of degree 3 closest to p1, and let q′1 be the point of degree 3 closest to q1. 
Note that every connected component has an even number of points of degree 3, because 
of parity, and that there are at most two because there are only two external points.

Let wp,1 be the unique path from p1 to p′1 in K ′(1) that

• does not use an edge twice;
• is of maximal length;
• turns left or right at every point of degree 4 in K ′(d).

(6)

Such a path exists and is unique by the following argument. The starting point p1 is of 
degree 1 in C, so the first step is uniquely determined. At every point of degree 2, the 
incoming edge leaves only one choice for the outgoing edge. At a point of degree 4, there 
are a priori two possibilities, turn left or turn right, but only one of these will produce 
a path of maximal length. Similarly, let wq,1 be the unique path from q′1 to q1 in K ′(1)
that respects conditions (6).

Then the paths wL,1, wR,1 form the boundary of the regions on the left and right of 
the path (wq,1 i wp,1) in (K \K(0)) ∪{i}. These are exactly the segments in K ′(1). This 
completes the proof of (a) for d = 1.

(b) The degree formulas follow directly from (a). In particular p1 and q1 are the 
only external points in C. Furthermore, three of the segments at p1 lie in K(0), and 
the remaining segment, which is the first segment of wp,1, lies in K ′(1). Thus p0 ∈
K ′(1)∩K ′(0) and p0 /∈ K ′(e), with e �= 0, 1. The proof for q1 is similar. This also implies 
that all other points have degree 0, 2 or 4 in K ′(1).

(c) Suppose w′
L,1 and w′

R,1 share a point x �= p′1, q
′
1, see Fig. 9. Let D denote the 

domain in the plane bounded by the segments of the paths wL,1 and wR,1 from p′1 to x. 
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Fig. 9. Proof of Lemma 5.5 part (c).

Let � denote the segment at p′1 that does not belong to wL,1 or wR,1. Since wL,1 turns 
left at p′1 and wR,1 turns right, the segment � lies in D. Following the link, starting at p′1
in direction of �, we must reach a point y where we leave D. Let �′ denote the segment 
outside D right after y. In K, this segment �′ bounds the same region as a segment 
on the path w′

R,1, and therefore �′ must lie in K(0) ∪ K(1). However, �′ cannot lie in 
K(0), because K(0) has no external segments. On the other hand, �′ cannot be in K ′(1), 
because (a) implies that every segment of K ′(1) lies on one of the two paths wL,1, wR,1. 
This is a contradiction, and thus the two paths w′

L,1, w
′
R,1 cannot have the point x in 

common. This completes the proof for d = 1.
For d > 1, the proof is similar, with the additional feature that now we may have 

components that arise from internal points in K ′(d − 1). Indeed, every internal point x
of K ′(d − 1), such that there is a segment j bounding the region R(x) with εd−1(j) = 1, 
determines two crossing points p′d(x) and q′d(x) as the unique points in R(x) \ {x} that 
lie on the boundary of D(x), and such that the path w = wL,d−1 or wR,d−1 is of the 
form

w : pd x p′d(x) q′d(x) x qd ,

see Fig. 8. Therefore every internal point x of K ′(d −1) gives rise to a connected compo-
nent of K(d) in which the points pd = p′d−1(x) and qd = q′d−1(x) are the unique external 
points. For all other components, we have pd = p′d−1 and qd = q′d−1. Note that pd and qd
have degree 3 in K(d− 1) and thus degree 1 in K ′(d). Hence they are external points.

The rest of the proof of (a) is analogous to the case d = 1. The point p′d is the point 
of degree 3 closest to pd, and q′d is the point of degree 3 closest to qd. The paths wp,d and 
wq,d are the unique paths from pd to p′d and from qd to q′d that satisfy the conditions (6). 
Moreover the paths wL,d, wR,d form the boundaries of the regions to the left and right 
of the path

wq,d . . . wq,2wq,1 i wp,1wp,2 . . . wp,d

in (K \∪d−1
e=0K(e)) ∪{wq,d−1, . . . wq,1, i, wp,1, . . . , wp,d−1}. Thus wL,d and wR,d consist of 

the edges of K ′(d).
The proof of (b) is analogous to the case d = 1 except that the point pd may be equal 

to a point p′d−1(x) for some interior point x in K ′(d).
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In the proof of (c), the only difference to the proof in case d = 1 is that now the 
segment �′ in Fig. 9 cannot lie in K(d − 1), because otherwise y would be an external 
point of K(d − 1) that lies in K(d), a contradiction to (b). �
Remark 5.6. Each interior point x of K ′(d − 1) whose region R(x) contains a segment j
with εd−1(j) = 1 gives rise to a connected component of K ′(d).

Proposition 5.7. For every segment i ∈ K1, we have constructed a partition

K1 = 
d≥0K(d).

Proof. This follows directly from the construction. �
We are now ready to define the dimension vector of the representation T (i).

Definition 5.8. Let K1 = 
d≥0K(d) be the partition with respect to a segment i ∈ K1. 
For every segment j ∈ K1, we define d(i)j = d if j ∈ K(d).

In the example of Fig. 6, we have d(1)j = 1 if j = 2, 3, 4, 6, 7, 9, 10, 12, 16, 17, 19, 20; 
d(1)j = 2 for j = 8, 18, and d(i)j = 0 for all other j.

Our next result says that the dimension difference at adjacent vertices is at most one.

Proposition 5.9. Let i, j, k ∈ K1. If there is an arrow j → k ∈ Q then

|d(i)j − d(i)k| ≤ 1.

Proof. Let d = d(i)j . Thus j ∈ K(d). The existence of the arrow j → k implies that 
j and k bound the same region in K. If k /∈ ∪e≤dK(e) then Definition 5.2 implies that 
k ∈ K ′(d + 1), thus k ∈ K(d + 1) and d(i)j − d(i)k = −1. If k ∈ K(d) ∪K(d − 1) then 
d(i)k ∈ {d, d −1} and there is nothing to show. Finally suppose k ∈ K(e), with e ≤ d −2. 
Then Definition 5.2 implies that j lies in K ′(e + 1) unless it already lies in ∪e′<eK(e′). 
In both cases, we have d(i)j ≤ e + 1 ≤ d − 1, a contradiction. �
5.2. Properties of K(d)

It will be convenient to use the following terminology. Given two segments i, j ∈ K1, 
a curve in R2 is called a dimension curve from j to i if it starts at a point on segment 
j, ends at a point on segment i and does not go through a crossing point of K.

Let dim◦(i, j) be the minimal number of crossings between the segments of K and 
a dimension curve from segment j to segment i. We call a segment j ∈ K1 an interior 
segment of K(d) if K(d) contains all the segments on the boundary of the two regions 
incident to j in K.

Note that the segment i is an interior segment of K(0). The following lemma says 
that there are no other interior segments.
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Fig. 10. Proof of Lemma 5.10.

Lemma 5.10. If d ≥ 1 then K(d) has no interior segments.

Proof. Suppose a segment j belongs to two regions R1, R2 in K and each segment in 
R1 ∪ R2 lies in K(d), see Fig. 10. Since d ≥ 1, the dimension curve of j must cross 
a segment k of R1 ∪ R2, so it has one more crossing than the dimension curve of the 
segment k. Since j, k ∈ K(d) this means that εd(j) = 1. Thus there exists an internal 
point x in K(d) satisfying the condition (5). In particular, one of the two regions at j, 
say R1, contains x and j. Thus R1 is the region R(x) of condition (5). The other region 
of K at j is the region R2 and both lie entirely in K(d). Since j /∈ K ′(d), the segments of 
R1∪R2 that do lie in K ′(d) all lie in the same region in K ′(d). In particular, no segment 
k of R1 ∪R2 shares a region with another internal point x′ �= x such that k lies in D(x′). 
Therefore each segment k of R2 \ {j} satisfies εd(k) = 0. Thus k ∈ K ′(d), which implies 
k ∈ D(x).

Now consider an endpoint y of j. Three of the segments incident to y lie in R1 ∪ R2

and the fourth segment � doesn’t, see Fig. 10. Therefore � either lies on the boundary of 
D(x) and hence dim◦(i, �) = d, or � lies outside D(x) and hence dim◦(i, �) = d − 1. The 
latter case is impossible by Lemma 5.5(b), because � would be an external segment of 
K ′(d − 1), but � has an endpoint in K ′(d) (and not in K ′(d− 2)).

Thus the segment � lies on the boundary of D(x). Since � is not in R1, there exists a 
point y′ ∈ K0 such that two of its incident segments lie in R1 and one, call it h, lies on 
the boundary of D(x) between x and y as in the figure. Denote by �′ the fourth segment 
at y′. Note that it must lie inside D(x), because otherwise y′ would be an external point 
of K ′(d− 1) that does not lie in K ′(d− 2), contradicting Lemma 5.5(b). Since R1 is a 
region in K, the segment � must lie in the connected component C of D(x) \ R1 that 
contains y′. Following the link starting at y′ in direction �′, we must reach a point y′′, 
where we leave the component C. Let �′′ be the segment outside C right after y′′. Then 
�′′ is an external segment of K ′(d − 1) with external point y′′ not in K(d− 2), again a 
contradiction to Lemma 5.5(b). �

It will be convenient to consider the following dual graph. For an illustration, see 
Example 5.16
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Definition 5.11. (a) Let Q(d) be the full subquiver of Q on the vertices j such that 
j ∈ K(d).

(b) Let G(d) be the graph with vertex set the set of chordless cycles in Q that also 
lie in Q(d), and two chordless cycles are connected in G(d) by an edge if they share an 
arrow in Q(d).

Notice that the graph G(d) has two types of vertices, the crossing point vertices and 
the region vertices. The first type corresponds to the chordless 4-cycles ωp, with p ∈ K0, 
and the second type corresponds to the chordless cycles ωR, with R ∈ K2.

Corollary 5.12. In G(d), the degree of a crossing point vertex is at most 2.

Proof. If a crossing point vertex x has three adjacent regions in G(d), hence in K(d), 
then K(d) has an interior segment, contradicting Lemma 5.10. �
Definition 5.13. Let R be a region of K such that each segment of R lies in K(d). By 
Lemma 5.5, one of the two paths w = wL,d or wR,d encloses the region R. Let x(R) be 
the first crossing point of the region R on the path w. We call x(R) the root of the region 
R.

Recall that a leaf in a graph is a vertex of degree one.

Lemma 5.14. (a) The mapping R �→ x(R) is a bijection between the sets of region vertices 
of G(d) and crossing point vertices of G(d).

(b) Every connected component of G(d) has a unique vertex that is a leaf and a crossing 
point vertex.

Proof. (a) Since the path w starts and ends at vertices outside R it must go through the 
point x(R) twice, in the sense that it contains all four segments at x(R). Thus x(R) is 
an internal point of K ′(d) and therefore a vertex of G(d). This shows that the mapping 
is well-defined.

The mapping is injective by definition. Now let x be any crossing point vertex in 
G(d). Then all four segments at x lie in K(d). This implies that x is an internal point 
of K ′(d), because the endpoints of the segments j with εd(j) have at most degree 3 in 
K(d). Lemma 5.5 then implies that the four segments at x all lie on one path w = wL,d

or w = wR,d, and thus w goes through x twice. Then w is of the form

w : pd x
w(x)

x qd

and the subpath w(x) forms the boundary of the domain D(x) in condition (5). There is 
a unique region R(x) of K that lies within D(x) and contains x. By definition of K(d), 
all segments of R lie in K(d). Thus R is a region vertex of G(d) and x(R) = x. This 
shows that the mapping is surjective.
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(b) Let C be a connected component of G(d). By Lemma 5.5, there is a path w = wL,d

or w = wR,d that encloses all regions of the region vertices of C. Let x be the first point 
on w that is a crossing point vertex of C. Then x is a leaf of C.

To show that there is no other crossing point that is a leaf, note first that every 
crossing point vertex of G(d) is of degree at most 2 in G(d), by Corollary 5.12. Now 
we proceed by induction on the number of region vertices. If there is only one region 
vertex R in C then C = R x(R) and we are done. Suppose there is more than 

one region vertex. Take a leaf �. If � = R is a region vertex, then C \ {�} has x(R) as a 
leaf and thus C \ {�, x(R)} is connected, and by induction it has no other crossing point 
vertex that is a leaf than x. On the other hand, if C contains no leaf that is a region 
vertex, then there are more crossing point vertices than region vertices in C, which is 
impossible by part (a). �
Remark 5.15. We don’t know if G(d) is a forest.

5.3. Definition of the link diagram module T

Let k be an algebraically closed field. Let K be an oriented diagram without curls of 
a prime link with n crossings. Let (Q, W ) be the associated quiver with potential and 
B = Jac(Q, W ) its Jacobian algebra. Let Id denote the identity matrix of rank d. We 
define the link diagram module

T = ⊕i∈K1T (i)

of K as follows.
For each segment i of K, the direct summand T (i) = (T (i)j , T (i)α)j∈Q0,α∈Q1 is the 

representation of Q given by

T (i)j = kd(i)j ,

for each vertex j, where d(i)j is the dimension defined in Definition 5.8; and for each 
arrow α : j → �, we define the corresponding linear map

T (i)α =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎛
⎜⎜⎝

0
Id−1...

0

⎞
⎟⎟⎠ if d(i)j = d(i)� + 1 = d

⎛
⎜⎜⎜⎝ Id−1

0 · · · 0

⎞
⎟⎟⎟⎠ if d(i)j + 1 = d(i)� = d
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and if d(i)j = d(i)� = d then

T (i)α =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎛
⎜⎜⎜⎜⎝

0
Id−1...

0
0 0 · · · 0

⎞
⎟⎟⎟⎟⎠

if α is of the form (x,R(x)) with
x an internal point of K ′(d)

Id otherwise.

Because of Proposition 5.9, there are no other possibilities for the dimensions and thus 
T (i)α is well-defined.

Example 5.16. The quiver Q of the knot 1066 in Fig. 6 is shown in the top picture and 
the representation T (1) in the bottom picture of Fig. 11. The quiver Q(1) is the full 
subquiver on the vertices 2,3,4,6,7,9,10,12,16,17,19,20. It contains four chordless cycles, 
the two crossing point cycles wx1 , wx2 the two region cycles wR(x1), wR(x2), where we 
use the notation of Fig. 6. Therefore its dual graph is

wx1 wR(x1) wx2 wR(x2) .

6. Kauffman states and submodules of the link diagram module

We keep the notation of the previous sections. Again we choose a segment i ∈ K1 and 
consider the Kauffman states and the B-module T (i). Our goal is now to prove that the 
lattice of Kauffman states of a link K relative to a segment i is isomorphic to the lattice 
of submodules of the direct summand T (i) of the corresponding link diagram module T .

6.1. The state module M(S )

Let S be a Kauffman state. We will define a B-module M(S ) = (Mj , Mα)j∈Q0,α∈Q1 . 
Consider a sequence s of counterclockwise transpositions that transforms the minimal 
Kauffman state into the state S . Then we define

Mj = kej ,

where ej is the number of occurrences of j in s. The order in which the transpositions 
at j occur determines a basis for Mj , which we call the basis induced by s.

Next we define the linear maps of the representation M . In the remainder of this 
section, we use the following matrices
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Fig. 11. The quiver Q and the representation T (1) for the knot diagram of Fig. 6.

J� =

⎛
⎜⎜⎜⎜⎝

0
I�...

0
0 0 · · · 0

⎞
⎟⎟⎟⎟⎠ V� =

⎛
⎜⎜⎝

0
I�...

0

⎞
⎟⎟⎠ H� =

⎛
⎜⎜⎜⎝ I�

0 · · · 0

⎞
⎟⎟⎟⎠

where I� denotes the identity matrix of size �. We point out that J� is a Jordan block of 
size � + 1 with eigenvalue 0, and that H�V� = J� and V�H� = J�−1.
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Every crossing point p ∈ K0 indues a subsequence s(p) of s consisting of all occurrences 
of the transpositions at the four segments incident to p. Let a, b, c, d denote these four 
segments in counterclockwise order around p such that a is the first entry in s(p). Then 
s(p) is of one of the following forms

(abcd)�, (abcd)�a, (abcd)�ab, (abcd)�abc, (7)

for some � ≥ 0. Let

a
δ

d

γ

b

α

c
β

be the corresponding 4-cycle in the quiver Q, and let wp = δγβα ∈ B.
Since every arrow of Q lies in a unique 4-cycle induced by a crossing point, it suffices 

to define the linear maps of the representation M on these four arrows α, β, γ, δ. There 
are four cases depending on the sequence s(p).

(i) If s(p) = (abcd)� then ea = eb = ec = ed = � and

Mδ = J�−1 Mγ = Mβ = Mα = I�.

(ii) If s(p) = (abcd)�a then ea = � + 1, eb = ec = ed = � and

Mδ = V� Mγ = Mβ = I�, Mα = H�

(iii) If s(p) = (abcd)�ab then ea = eb = � + 1, ec = ed = � and

Mδ = V� Mγ = I�, Mβ = H� Mα = I�+1.

(iv) If s(p) = (abcd)�abc then ea = eb = ec = � + 1, ed = � and

Mδ = V� Mγ = H� Mβ = Mα = I�+1.

Definition 6.1. The B-module M(S ) is called the state module associated to the Kauff-
man state S .

Remark 6.2. In all four cases (i)-(iv) above the composition of the four matrices along 
the cycle wp is equal to J�−1. Thus the action of wp on M(S ) is given by this matrix.

From the construction of the state module, we have the following results.
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Lemma 6.3. Let M(S ) = (Mx, Mα)x∈Q0,α∈Q1 . Then for every arrow α : j → k, we have 
| dimMj − dimMk| ≤ 1.

Lemma 6.4. If the state S ′ is obtained from the state S by applying the transposition 
at a segment a then the module M(S ′) is obtained from M(S ) by

(i) increasing the dimension at vertex a by one;
(ii) increasing the rank of the map on each arrow α : a → • starting at a by one.

The dimension at the other vertices and the rank on the other arrows do not change.

We also note the following for future reference.

Lemma 6.5. Let S be a state and s a sequence of transpositions that transforms the 
minimal state into S . If

w = a0
α1

a1
α2

. . .
αt−1

at
αt

a0

is a chordless cycle in Q then the subsequence of s of all occurrences of transpositions at 
vertices of w is of the form

aj . . . a2a1a0(atat−1 . . . a1a0)�atat−1 . . . ak

for some j, k and �. In particular, the order in s is opposite to the order in w.

Proof. We have already proved this result in equation (7) in the case where w = wp is 
the chordless 4-cycle given by a crossing point p ∈ K0. It suffices to show the result in 
the case where w = wR is the chordless cycle of a region R ∈ K2. The transposition at 
ai is defined by moving the markers counterclockwise around the endpoints of ai, but it 
can also be seen as moving the markers in the clockwise direction along the segment ai, 
see Fig. 2. Thus the proof for the region cycle wR is dual to the proof for the crossing 
point cycle wp. �

As an immediate consequence we have the following.

Corollary 6.6. If α : a → d is an arrow in Q such that the transpositions at a and d occur 
consecutively in s then d comes before a. �
6.2. Lattice isomorphism

We start with the following result.
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Fig. 12. A crossing point p with an adjacent region R in the link diagram on the left and the corresponding 
paths in the quiver on the right. The cycle wp is the 4-cycle.

Proposition 6.7. Let K be a link diagram without curls and let i ∈ K1 be a segment. Let 
S , S ′ be two Kauffman states relative to i. Then

(a) M(S ) is a B-module.
(b) M(S ) � M(S ′) if S �= S ′.
(c) If S is the minimal Kauffman state, then M(S ) = 0.
(d) If S is the maximal Kauffman state, then M(S ) = T (i).
(e) If S < S ′ then M(S ) is a submodule of M(S ′).
(f) For every submodule M of T (i) there is a unique Kauffman state S such that M ∼=

M(S ).

Proof. (a) By definition, M(S ) is a representation of Q, so we only need to check that 
M(S ) satisfies the relations given by the cyclic derivatives of the potential W .

Let (p, R) be an arrow in Q, thus p ∈ K0 and R ∈ K2 such that the region R is 
incident to the crossing point p. By definition of the potential, we have

∂(p,R)W = wp − wR,

where wp = (p, R)w′
p is the 4-cycle in Q given by the four arrows around the crossing 

point p and wR = (p, R)w′
R is the cycle in Q given by the arrows around the region R, 

see Fig. 12. We must show that ∂(p,R)W acts trivially on M(S ), and for that it suffices 
to show that the composition of the linear maps in the representation M(S ) along the 
paths w′

p and w′
R are equal.

We will write Mw for the composition of the arrows in M(S ) along a path w. Ac-
cording to Remark 6.2, we have Mwp

= J� for some � ≥ 0, and thus it suffices to show 
MwR

= J�.
As before, we let s be the sequence of counterclockwise transpositions that transforms 

the minimal Kauffman state into the state S . Let s(R) be the subsequence of s consisting 
of all occurrences of the transpositions at the segments that bound the region R. Let 
a0, a1, . . . , at denote these segments in clockwise order around R such that a0 is the first 
entry in the sequence s(R). By Lemma 6.5, the subsequence s(R) is of the form

s(R) = (a0a1 . . . at)�a0a1 . . . au, with u < t or

s(R) = (a0a1 . . . at)�
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for some � ≥ 0. In the first case, the dimension of M(S ) is � at vertices au+1, . . . , at and 
it is � + 1 at vertices a0, a1, . . . , au, while in the second case, the dimension is � at all 
vertices a0, a1 . . . , at.

Denote the crossing point of the segments aj−1, aj by pj . So the arrow (pj , R) is 
aj → aj−1. Then by definition of M(S ) at the crossing point pj , we have

M(pj ,R) = J�−1 if j = 0 and s(R) = (a0, . . . , at)�

and otherwise

M(pj ,R) =

⎧⎪⎨
⎪⎩

Id if dimMaj
= dimMaj−1 = d;

Vd if dimMaj
− 1 = dimMaj−1 = d;

Hd if dimMaj
= dimMaj−1 − 1 = d.

In particular MwR
= J�. This shows that M(S ) satisfies all relations of the form 

∂αW , α ∈ Q1.
We also have to consider the closure I of the ideal generated by the relations ∂αW . 

For this we must show that arbitrary long paths act as zero; more precisely, if w is a 
path such that for all N there exists a path un of length n > N such that w = un then 
Mw = 0. Suppose w is such a path. Then, for all m there exists n such that there is an 
x ∈ Q0 through which un passes at least m times. Thus un decomposes as

un = uw1w2 . . . wmv,

where each wi is an oriented cycle that starts and ends at x and that does not pass 
through x another time. Take m > dimMx = d. We shall show below that, on each cycle 
wi, the matrix product Mwi

is some power of the matrix Jd−1. Therefore Mw1w2...wn
=

(Jd−1)m+k, which is zero. Thus Mun
= 0. Since un = w, we have Mw = 0, as desired.

It remains to show that, for every oriented cycle

w = a0
α1

a1
α2

. . .
αt−1

at
αt

a0

in Q such that ai �= aj if i �= j, the matrix Mw is a power of the matrix J�, for some �. Let 
w be such a cycle. By definition of M(S ), for every arrow αj, the matrix Mαj

is one of the 
four matrices I, V, H, J , which satisfy the relations H�V� = J� and V�H� = J�−1. Hence if 
Mw is not of the claimed form then Mw = I� and all Mαj

= I�. Then dimMaj
= � at each 

vertex aj in w, which means that the transposition at aj appears exactly � times in the 
sequence s. Let ak be the last transposition in the sequence s at a vertex in w. Consider 
the crossing point p where ak−1 and ak meet in the link diagram. By Lemma 6.4, the 
last transposition at ak does not increase the rank of the matrix Mαk

, since the arrow 
αk ends in ak. Thus Mαk

= J�−1 and hence Mw �= I�, and we are done. This completes 
the proof of part (a) of the proposition.
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(b) Let S , S ′ be two Kauffman states and suppose that M(S ) = M(S ′). Let s
and s′ be the sequences of transpositions that transform the minimal state into the
state S and S ′, respectively. Let p be any crossing point and denote by s(p) and s′(p)
the subsequences of s and s′ consisting of all occurrences of transpositions at p. Since 
M(S ) ∼= M(S ′), both representations have the same dimension vector and thus s(p)
and s′(p) are equal up to a permutation. In fact, since the minimal state has exactly one 
marker at the point p, it follows that s(p) = s(p′). At every crossing point p, the states 
S and S ′ are determined by the last entry in s(p) = s′(p), and thus S = S ′.

(c) If S is the minimal state then its sequence of transpositions s is empty. Thus 
M(S ) is the zero module.

(d) Let S be the maximal state. We have described Kauffman’s construction of S
in [14] as a partition of K1 in section 5.1. The fact that M(S ) and T (i) have the same 
dimension vector follows directly from that. We now show that M(S ) and T (i) also 
have the same linear maps.

Let α : a → d be an arrow in Q. It is clear from the definition of M(S ) and T (i) and 
by Lemma 6.3 that the linear maps on α are the same if the dimension at vertex a is 
different from the dimension at vertex d. Suppose therefore that dimMa = dimMd = �. 
Recall that the arrow α corresponds to a pair (p, R), where p is a crossing point and R
is an adjacent region in K. In the quiver Q, we have two corresponding chordless cycles 
wp and wR that share the arrow α as follows.

b a

α

a1

c d at−1

The crossing point cycle wp is the cycle of length 4 on the left. The length of the region 
cycle wR is the number of segments that bound R in the link diagram. We denote this 
length by t + 1. Note that in these two cycles the arrow α is the only arrow that ends 
at d. Consider the sequence of transpositions s that transforms the minimal state into 
the maximal state S and let s(p) and s(R) be the subsequences of all occurrences of 
transpositions at segments incident to p, respectively at segments bounding R. Suppose 
first that the first occurrence of a is before the first occurrence of d in s(p). Then a
must be the first entry in s(p), because the direct predecessor of a would have to be d, 
by Corollary 6.6. Similarly, d must be the last entry in s(p), because Ma and Md have 
the same dimension � and the direct successor of d in s(p) would have to be a. Thus 
s(p) = (abcd)� and this shows that

(i) Mα = J�−1, by definition of M(S );
(ii) The dimension of M(S ) is � at each vertex of wp and thus p is an internal point of 

K ′(�) as in Definition 5.3.



V. Bazier-Matte, R. Schiffler / Advances in Mathematics 408 (2022) 108609 33
Now consider the sequence s(R). Since a occurs before d in s(p), it also does so in 
s(R), and by the same argument as above, we see that a must be the first entry of s(R)
and d must be the last. Thus s(R) = (aa1a2 . . . at−1d)� and therefore the dimension 
of M(S ) is equal to � at every vertex of wR. The transposition at a moves two state 
markers at the endpoints of a counterclockwise. By our convention on the orientation of 
the quiver, the marker at the endpoint p must lie in the region R. Moreover, the fact 
that a is the first entry in both sequences s(p) and s(R) implies that the position (p, R)
carries a state marker already in the minimal state. Similarly, since d is the last entry 
in s(p) and s(R), the position (p, R) also has a state marker in the maximal state. It 
follows from the construction of the minimal and maximal states in [14] that the region 
R is the region R(p) of the internal point p as in Definition 5.3. Now the definition of the 
maps in the diagram module T (i) implies that T (i)α = J�−1. Hence M(S )α = T (i)α.

It remains the case where the first occurrence of d is before the first occurrence of a
in s(p). Then Lemma 6.4 implies that each occurrence of a in s(p) augments the rank of 
M(S )α by one. Thus our assumption dimMa = dimMd = � implies that Mα = I�. On 
the other hand, we also have T (i)α = I�, because the position (p, R) does not carry the 
state marker of maximal state, and thus R is not the region R(p) of the internal point 
p. This completes the proof of part (d).

(e) It suffices to show that if the state S ′ is obtained from the state S by a single 
transposition at some segment a then M(S ) is a submodule of M(S ′). We use the 
notation M(S ) = (Mx, Mγ), M(S ′) = (M ′

x, M
′
γ) and dx = dimMx, d′x = dimM ′

x. 
Define a morphism f : M(S ) → M(S ′) by

fj =
{

Idj
if j �= a;

Hdj
if j = a.

Clearly f is injective. To show that f is a morphism of B-modules, we need to consider 

arrows b
α

a
β

c in Q and show that the following diagram commutes.

Mb

Mα

fb

Ma

Mβ

fa

Mc

fc

M ′
b

M ′
α

M ′
a

M ′
β

M ′
c

Since S ′ is obtained from S by the transposition at a, Lemmata 6.3 and 6.4 imply that 
da ∈ {db, db − 1} = {dc, dc − 1}. Moreover d′a = da + 1, d′b = db and d′c = dc, and the 
maps Mα, Mβ , M ′

α, M
′
β are uniquely determined by the fact given in Lemma 6.4 that 

rank(M ′
α) = rank(Mα) and rank(M ′

β) = rank(Mβ) + 1. Thus
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Fig. 13. A local configuration in the link diagram on the left and the corresponding configuration of the 
quiver on the right.

Mα = I� and M ′
α = H� if da = db = �;

Mα = V� and M ′
α = J� if da = db − 1 = �;

Mβ = J�−1 and M ′
β = V� if da = dc = �;

Mβ = H� and M ′
β = I�+1 if da = dc − 1 = �.

This shows that the diagram commutes and the proof of (e) is complete.
(f) Let Smax denote the maximal Kauffman state. Thus T (i) = M(Smax) by part (d). 

Let da = dimT (i)a. We fix a sequence of transpositions s that transforms the minimal 
state into the maximal state, and we use the basis of T (i) induced by s. In particular, 
we have a basis {e1, e2, . . . , eda

} for every vector space T (i)a with a ∈ Q0.
Let M = (Ma, Mα) be a submodule of T (i). Each vector space Ma is a subspace of 

T (i)a, and thus the points in Ma can be expressed as coordinate vectors (x1, . . . , xda
)

with respect to our basis of T (i)a. For every vertex a ∈ Q0, let πa denote the canonical 
projection from the vector space M = ⊕j∈Q0Mj to the vector space Ma. For any point 
x ∈ M , we define an integer m(a, x) as follows. If πa(x) = (x1, . . . , xda

) �= 0, we let 
m(a, x) be the unique integer such that xm(a,x) �= 0 and xk = 0, for all k = m(a, x) +
1, . . . , da. If πa(x) = 0, we let m(a, x) = 0. We then define a function m : Q0 → Z by 
m(a) = maxx∈M m(a, x). We will show that m(a) = dimMa.

If m(a) = 0 then πa(x) = 0, for all x ∈ M , and thus M is not supported at a, whence 
dimMa = 0. If m(a) = 1 then πa(x) ∈ span{e1}, for all x ∈ M , and hence dimMa = 1.

Suppose now that m(a) ≥ 2. Then dimT (i)a ≥ 2 and thus the sequence s contains 
the transposition at a at least twice. Denote the crossing points at the ends of the 
segment a in K by p and p′, and denote the adjacent segments by b, c, d and b′, c′, d′

in counterclockwise order as shown in the left picture of Fig. 13. The sequence s must 
also contain the transpositions at b, c, d, b′, c′ and d′. The corresponding subquiver of 
Q is shown on the right in Fig. 13. We have chordless cycles wp = δγβα and wp′ =
δ′γ′β′α′. Because of Remark 6.2, the action of wp on Mα is as follows. If πa(x) =
(x1, x2, . . . , xm(a), 0, . . . , 0) then

πa(x · wp) = (x2, x3, . . . , xm(a), 0, . . . , 0)
πa(x · wk

p) = (xk+1, xk+2, . . . , xm(a), 0, . . . , 0)
π (x · wm(a)−1) = (x , 0, . . . , 0)

(8)

a p m(a)
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Hence, since xm(a) �= 0, the vectors πa(x), πa(x · wp), . . . , πa(x · wm(a)−1
p ) are linearly 

independent vectors in Ma. Thus Ma = span{e1, e2, . . . , em(a)} and hence dimMa =
m(a) as claimed.

In fact, each subspace Ma ⊂ T (i)a, and hence the submodule M ⊂ T (i), is completely 
determined by m(a) = dimMa. In particular, the submodules of T (i) are determined by 
their dimension vector.

We will now show that M corresponds to a Kauffman state using induction on the 
total dimension � =

∑
a∈Q0

dimMa of M . If � = 0 then M = M(Smin) is the zero 
module. Suppose now that � ≥ 1. Let a ∈ Q0 be such that S(a) is a direct summand 
of topM . Recall that topM = M/radM = M/(M · radB) is the largest semisimple 
quotient of M . In particular, we have a short exact sequence

0 L
f

M
g

S(a) 0, (9)

where L is the kernel of g. By induction, we can assume that there exists a state S such 
that L = M(S ). We will show that M = M(S ′), where S ′ is the state obtained from 
S by the transposition at the segment a.

Since M is determined by its dimension vector, we only need to show that the state 
S admits the transposition at a. In other words, the markers at segment a must be in 
the positions indicated on the left of Fig. 13 and corresponding to the arrows δ, δ′ ∈ Q1

on the right of the same figure. It suffices to show that the subsequence s(p) of s ends 
in the transposition at d and the subsequence s(p′) ends in the transposition at d′. We 
will show this for s(p) only, since the other case is symmetric.

By Lemma 6.3, we know that | dimLa − dimLd| ≤ 1 and | dimMa − dimMd| ≤ 1. 
Moreover, the short exact sequence (9) implies dimMa = dimLa +1, and thus dimLa =
dimLd−1 or dimLa = dimLd. In the former case, the sequence s(p) must end in d, and 
we are done.

Suppose now dimLa = dimLd. The morphism g of (9) gives rise to the commutative 
diagram

Mb

Mα

Ma

ga

0 S(a)a

with ga �= 0. Thus the commutativity implies that gaMα = 0, and hence Mα is not 
surjective. Because of the description of the action of wp in equation (8), the cokernel 
of Mα ◦Mβ ◦Mγ ◦Mδ is of dimension one, and thus the cokernel of Mα is of dimension 
one. Consequently the exactness in (9) implies that the map Lα in the representation L
is surjective, and therefore the sequence s(p) does not end in a, by Lemma 6.4(ii).
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Next we show that s(p) does not end in b or c. Suppose first that dimMb = dimMa =
� + 1 then dimLb = dimLa + 1 and the sequence s(p) starts with b and Lα = V�. The 
morphism f of (9) induces a commutative diagram

Lb

Lα=V�

fb=I�+1

La

fa=H�

Mb

Mα

Ma

whence Mα = J�.
Then wp = δγβα acts like Mα, and we obtain Mβ = Mγ = Mδ = I. Thus Lβ = Lγ =

I. Again Lemma 6.4(ii) implies that the sequence s(p) does not end in b or c. Therefore 
s(p) must end in d, and we are done.

On the other hand, if dimMb �= dimMa then dimMb = dimMa−1 = � and dimLb =
dimLa = �. Then the definition of L = M(S ) implies that the map Lα : Lb → La is 
either I� or J�−1. In the latter case, the sequence s(p) would end in a, a contradiction. 
Thus Lα = I�. In view of the sequence (9), we obtain Mα = H�, and from equation (8), 
we have Mα◦Mβ ◦Mγ ◦Mδ = J�. In particular, Mβ, Mγ and Mδ are surjective, and using 
(9) again, we see that Lβ and Lγ are surjective as well, since β and γ are not incident to 
the vertex a. Now Lemma 6.4(ii) implies that s(p) does not end in b or c. This completes 
the proof of part (f). �
Corollary 6.8. (a) For every dimension vector e the quiver Grassmannian Gre(T (i)) is 
either empty or a point. In particular, the Euler characteristic

χ(Gre(T (i))) = 0 or 1.

(b) The F -polynomial of T (i) is

FT (i) =
∑

L⊂T (i)

ydimL,

where the sum is over all submodules of T (i) and ydimL =
∏2n

i=1 y
dimLi
i .

Proof. In the proof of part (f) of the proposition, we have seen that every submodule of 
T (i) is determined by its dimension vector. Thus if there is a submodule of dimension 
vector e then it is unique, and Gre(T (i)) is a point. Otherwise it is empty. This shows 
(a), and (b) follows directly. �

We are ready for the main result of this section.
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Theorem 6.9. The map S �→ M(S ) is a lattice isomorphism from the lattice of Kauff-
man states of K relative to the segment i to the lattice of submodules of the module 
T (i).

Proof. The map is well-defined by parts (a) and (d) of Proposition 6.7, injective by part 
(b) and surjective by part (f). Part (e) implies that it is order preserving. Moreover the 
maximum and minimum elements correspond by parts (c) and (d). �
6.3. Indecomposability

Proposition 6.10. The B-module T (i) is indecomposable.

Proof. First we show that the support of T (i) induces a connected subquiver of Q. By 
definition of T (i), the support consists of all segments in K1\K(0), which is obtained from 
K by removing the two regions R1, R2 that are incident to the segment i. If K\{R1, R2} is 
disconnected then we can draw a closed curve γ in the plane that separates one connected 
component from the rest. Putting back R1 and R2, we see that γ crosses exactly two 
regions in K. This means that K is a connected sum which contradicts our assumption 
that K is prime. Thus the support of T (i) is connected.

Suppose now T (i) = M⊕N is the direct sum of two nonzero B-modules. Let α : j → k

be an arrow in Q such that T (i)j and T (i)k are nonzero. By definition, the linear map 

T (i)α is nonzero, except possibly if there is a crossing point cycle j
α

k l m j

such that T (i) has dimension one at vertices j, k, l and m, in which case one of the four 
maps is zero and the others are the identity. Therefore, since the support of T (i) induces 
a connected subquiver of Q, the supports of the two submodules M and N cannot be 
disjoint.

Then there exists j ∈ Q0 such that Mj and Nj are both nonzero. Since j is a segment 
in K, there exists a crossing point p ∈ K0 that is incident to j. Let wp denote the 
corresponding 4-cycle in Q. Because of Remark 6.2, the vector space T (i)j = Mj ⊕ Nj

has a basis {e1, e2, . . . , ed} with respect to which the action of wp is given by the matrix 
Jd−1.

Now let m ∈ Mj , n ∈ Nj be nonzero elements and denote their expansions in the 
basis as

m =
n∑

k=1

μkek n =
n∑

k=1

νkek,

with μk, νk ∈ k. Let km and kn be the largest indices such that μkm
�= 0 and νkn

�= 0. 
Then m · wkm−1

p = μkm
e1 ∈ Mj and n · wkn−1

p = νkn
e1 ∈ Nj , because M and N are 

right B-modules. Dividing by the scalars shows that e1 ∈ Mj ∩ Nj , a contradiction to 
the assumption that the sum T (i) = M ⊕N is direct. �
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7. The main result

In this section, we prove that the Alexander polynomial of the link is a specialization 
of the F -polynomial of any indecomposable summand of the link diagram module.

Let K be an oriented link diagram of a prime link and assume that K contains no 
curls. Let n be the number of crossing points in K, and let i be a segment in K. Let 
T (i) be the corresponding indecomposable summand of the link diagram module and 
FT (i) =

∑
L⊂T (i) ydimL its F -polynomial as in Corollary 6.8(b).

For f ∈ Z[y1, . . . , y2n] we write f |t for the specialization of f at

yj =

⎧⎪⎨
⎪⎩

−t if segment j runs from an undercrossing to an overcrossing;
−t−1 if segment j runs from an overcrossing to an undercrossing;
−1 if segment j connects two overcrossings or two undercrossings.

(10)

Theorem 7.1. The Alexander polynomial of K is equal to the specialization (10) of the 
F -polynomial of every indecomposable summand T (i) of the link diagram module T . That 
is

Δ = FT (i)|t.

Proof. Let Δ denote the Alexander polynomial of K. Kauffman’s theorem says that

Δ .=
∑
S

σ(S )w(S ), (11)

where the sum is over all states, σ(S ) = ±1, and w(S ) is a power of t. The symbol .=
means that the expressions on either side are equal up to sign and up to a power of t. 
We denote by Smin the minimal state. Normalizing the above identity, we find

Δ .=
∑
S

σ(S )
σ(Smin)

w(S )
w(Smin) . (12)

Let s = j1, j2, . . . , jt be a sequence of transpositions that transforms Smin into S , 
and let M(S ) denote the state module introduced in Definition 6.1. Then

dimM(S ) =
t∑

k=1

ejk , (13)

where ejk ∈ Z2n is the vector that is 1 at position jk and 0 elsewhere.
Recall that, if a state S ′ is obtained from a state S by a s single transposition at 

a segment j ∈ K1 then w(j) = w(S ′)/w(S ) is independent of the particular states 
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S , S ′ and only depends on the segment j. Moreover, in this situation, Lemma 2.7 of 
[14] implies that σ(S ′) = −σ(S ). Thus

σ(S )
σ(Smin)

w(S )
w(Smin) = (−w(j1))(−w(j2)) . . . (−w(jt)). (14)

From our table in Fig. 4 we know that −w(j) is equal to the specialization of yj at (11). 
Thus

−w(j) = yj |t = yej |t.

Therefore the right hand side of equation (14) is equal to ydimM(S )|t. Applying this 
result to the formula in (12), we obtain

Δ .=
∑
S

ydimM(S )|t.

Now Theorem 6.9 implies

Δ .=
∑

L⊂T (i)

ydimL|t = FT (i)|t,

where the sum is over all submodules of T (i), and thus it is the specialized F -
polynomial. �
8. A special case: 2-bridge links

A special class of links is the family of 2-bridge links K[a1,a2,...,an] which were first 
studied by Schubert in [28]. These links are parametrized by continued fractions

[a1, a2, . . . , an] = a1 +
1

a2 +
1

. . . +
1
an

(15)

with ai ∈ Z≥1. The link K[a1,...,an] consists of n braids on two strands whose number of 
crossings is given by the ai and that are joined together in a linear fashion as shown in 
Fig. 14 and such that the resulting link is alternating. K[a1,...,an] is a knot if the numerator 
of the continued fraction (15) is odd, and it is a link with exactly two components 
otherwise. For example, K[2, 1, 2, 3] in Fig. 14 is a knot, because [2, 1, 2, 3] = 27/10.

Let i be the long segment at the bottom of the link diagram that connects the a1-braid 
to the an-braid. Then our construction of the link module T (i) produces a Dynkin type 
A module whose support is given by one of the quivers
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Fig. 14. The 2-bridge knot K[2, 1, 2, 3].

1 2 . . . �1 . . . �2 . . . �n−1 . . . (�n − 1) ,

1 2 . . . �1 . . . �2 . . . �n−1 . . . (�n − 1) ,

where �j = a1 + a2 + · · ·+ aj and direction of the arrows at the right end depend on the 
parity of n. The module T (i) is of dimension one at each vertex 1, 2, . . . (�n − 1) and its 
linear maps on the arrows shown above are the identity maps.

In this situation, the F -polynomial of T (i) can be computed as a sum over all perfect 
matchings of the snake graph G[a1,...,an] associated to the continued fraction in [5]. We 
have

FT (i) =
∑

P∈MatchG[a1,...,an]

y(P )

where y(P ) is the height function of the poset of perfect matchings [21].

Remark 8.1. This module T (i) was implicitly used in [17], where the Jones polynomial 
was realized as the specialization of the F -polynomial of T (i) at y1 = t−2 and yj = −t−1

for all j = 2, 3, . . . , n. We do not know how to generalize this specialization to other 
segments i of this link, or to other type of links.

We obtain two consequences from the above discussion.

8.1. Type A cluster variables correspond to links

We have the following result.

Theorem 8.2. Let Q be a quiver of Dynkin type A and let A(Q) be its cluster algebra. For 
every non-initial cluster variable x ∈ A(Q) there exists a link diagram K and a segment 
i ∈ K1 such that the indecomposable summand T (i) of the link module is mapped to x
under the Caldero-Chapoton map.

Proof. Let CC denote the Caldero-Chapoton map. Since x is non-initial, there exists an 
indecomposable kQ-module M such that CC(M) = x, [4,3]. The support of M defines 
a connected subquiver of Q which in turn determines a continued fraction [5] and hence 
a 2-bridge link K. From the discussion above and our main theorem, we have a segment 
i ∈ K1 such that T (i) = M . �
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8.2. An application to q-deformed rationals

In [20], Morier-Genoud and Ovsienko introduced q-deformed rationals and q-deformed 
continued fractions. They propose a unimodality conjecture that can be rephrased in 
terms of the specialized height function as follows.

Let M be an indecomposable type A module and let h be the linearization of the 
lattice of submodules of M that maps submodules L of M to their total dimension. 
Thus h(L) = dimL =

∑
j∈Q0

dimLj . Equivalently, we can think of h as a linearization 
of the lattice of perfect matchings of the associated snake graph G that maps a perfect 
matching P to the specialization of the height function setting all y-variables equal to t. 
Thus h(P ) = y(P )|yj=t. In other words, h associates to each lattice element the length 
of the shortest chain from the element to the minimal element in the lattice.

Conjecture 8.3 (Morier-Genoud–Ovsienko). The function h is unimodal.

Progress towards this conjecture has been made in [19].
Using our main theorem and properties of the Alexander polynomial, we have the 

following result, which says that the alternating sum of the number of objects on each 
level of the poset is −1, 0, or 1.

Theorem 8.4. Let M be a module of Dynkin type An and L the submodule lattice of M . 
Then

∑
L∈L

(−1)h(L) =
{

±1 if |L| is odd;
0 if |L| is even.

Proof. Combining Theorems 8.2 and 7.1, we see that there exists a 2-bridge link K
whose Alexander polynomial is the specialized F -polynomial of M . More precisely,

ΔK
.= FM |t =

∑
L∈L

ydimL|t.

From the definition of the specialization (10), we see that evaluating the above equation 
at t = 1 gives

ΔK(1) =
∑
L∈L

ydimL|yi=−1. (16)

Furthermore

ydimL|yi=−1 =
∏

i y
dim Li
i |yi=−1 = (−1)

∑
i dim Li = (−1)h(L).
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Fig. 15. Lattices of submodules of indecomposable modules on the Jacobian algebra given by the figure-eight 
knot.

Thus equation (16) becomes

ΔK(1) =
∑
L∈L

(−1)h(L).

Now the result follows from property (ii) of subsection 2.1.1 and the fact that K is a 
knot if and only if the number of submodules of M is odd. �
9. Examples

Example 9.1. Consider the figure-eight knot. We use the same labeling of segments as in 
Example 3.1. The lattice of the submodules of the module T (1) is shown at Fig. 15A.

The lattice isomorphism with the lattice of Kaufman states with regards to the seg-
ment 1 is obvious, see Fig. 3. The F -polynomial of T (1) is

FT (1) = 1 + y2 + y8 + y2y8 + y2y5y8

and its specialization at y2 = −t, y5 = −t−1 and y8 = −t, as given by Equation (10), is

FT (1)|t = 1 − 3t + t2.

Remark that the lattice of submodules of T (2) is completely different for T (1), see 
Figs. 15A and 15B. The F -polynomial of T (2) is

FT (2) = 1 + y8 + y3y8 + y1y3y8 + y1y3y4y8
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and its specialization at y1 = −t−1, y3 = −t−1, y4 = −t and y8 = −t is

FT (2)|t = −t−1 + 3 − t.

Example 9.2. For the representation T (1) in Fig. 11, the F -polynomial is the following 
polynomial with 75 terms. This was computed using [15].

1 + y4 + y12y4 + y8 + y18y8 + y10y18y8 + y10y18y19y8 + y10y18y19y2y8 + y10y18y19y2y20y8 + y4y8

+y12y4y8 + y18y4y8 + y10y18y4y8 + y12y18y4y8 + y10y12y18y4y8 + y10y18y19y4y8 + y10y12y18y19y4y8

+y10y18y19y2y4y8 + y10y12y18y19y2y4y8 + y10y18y19y2y20y4y8 + y10y12y18y19y2y20y4y8 + y10y18y19y8y9

+y10y17y18y19y8y9 + y10y18y19y2y8y9 + y10y17y18y19y2y8y9 + y10y18y19y2y20y8y9

+y10y17y18y19y2y20y8y9 + y10y18y19y4y8y9 + y10y12y18y19y4y8y9 + y10y17y18y19y4y8y9

+y10y12y17y18y19y4y8y9 + y10y18y19y2y4y8y9 + y10y12y18y19y2y4y8y9 + y10y17y18y19y2y4y8y9

+y10y12y17y18y19y2y4y8y9 + y10y18y19y2y20y4y8y9 + y10y12y18y19y2y20y4y8y9

+y10y17y18y19y2y20y4y8y9 + y10y12y17y18y19y2y20y4y8y9 + y10y17y18y19y4y7y8y9

+y10y12y17y18y19y4y7y8y9 + y10y16y17y18y19y4y7y8y9 + y10y12y16y17y18y19y4y7y8y9

+y10y17y18y19y2y4y7y8y9 + y10y12y17y18y19y2y4y7y8y9 + y10y16y17y18y19y2y4y7y8y9

+y10y12y16y17y18y19y2y4y7y8y9 + y10y17y18y19y2y20y4y7y8y9 + y10y12y17y18y19y2y20y4y7y8y9

+y10y16y17y18y19y2y20y4y7y8y9 + y10y12y16y17y18y19y2y20y4y7y8y9 + y10y17y18y19y2y20y3y4y7y8y9

+y10y12y17y18y19y2y20y3y4y7y8y9 + y10y16y17y18y19y2y20y3y4y7y8y9 + y10y12y16y17y18y19y2y20y3y4y7y8y9

+y10y12y17y18y19y2y20y3y4y6y7y8y9 + y10y12y16y17y18y19y2y20y3y4y6y7y8y9

+y10y16y17y18y19y4y7y
2
8y9 + y10y12y16y17y18y19y4y7y

2
8y9 + y10y16y17y

2
18y19y4y7y

2
8y9

+y10y12y16y17y
2
18y19y4y7y

2
8y9 + y10y16y17y18y19y2y4y7y

2
8y9 + y10y12y16y17y18y19y2y4y7y

2
8y9

+y10y16y17y
2
18y19y2y4y7y

2
8y9 + y10y12y16y17y

2
18y19y2y4y7y

2
8y9 + y10y16y17y18y19y2y20y4y7y

2
8y9

+y10y12y16y17y18y19y2y20y4y7y
2
8y9 + y10y16y17y

2
18y19y2y20y4y7y

2
8y9 + y10y12y16y17y

2
18y19y2y20y4y7y

2
8y9

+y10y16y17y18y19y2y20y3y4y7y
2
8y9 + y10y12y16y17y18y19y2y20y3y4y7y

2
8y9 + y10y16y17y

2
18y19y2y20y3y4y7y

2
8y9

+y10y12y16y17y
2
18y19y2y20y3y4y7y

2
8y9 + y10y12y16y17y18y19y2y20y3y4y6y7y

2
8y9

+y10y12y16y17y
2
18y19y2y20y3y4y6y7y

2
8y9

The specialization is

FT (1)|t = 3 − 9t + 16t2 − 19t3 + 16t4 − 9t5 + 3t6,

which is equal to the Alexander polynomial of the corresponding knot 1066.

Example 9.3. The Conway knot and its quiver are illustrated at Fig. 16
The F -polynomial of T (1) has 131 terms. The highest degree term is

y2y4y7y8y10y11y13y14y15y18y19y20y21y22

The specialization gives FT (1)|t = t, confirming that the Alexander polynomial is trivial, 
since it is defined up to a power of t.



44 V. Bazier-Matte, R. Schiffler / Advances in Mathematics 408 (2022) 108609
Fig. 16. Conway knot and its quiver.
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