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1. Introduction

We establish a connection from cluster algebras and representation theory to knot
theory. Let K be a knot diagram (or link diagram) with n crossings. A segment of K
is a segment of the strand from one crossing point to the next. We associate to K a
quiver @) with 2n vertices, one for each segment of K, as well as a potential W. We then
construct 2n indecomposable representations 7'(i), each of which encodes the Alexander
polynomial of the link.

To be more precise, each crossing point p of the diagram K gives rise to an oriented
cycle w,, of length four in the quiver @) and each region R in K gives rise to an oriented
cycle wg in @ whose length is the number of segments at the region R. The potential W
is the difference of the sum of the crossing point cycles and the sum of the region cycles.

Denote by B the Jacobian algebra of the quiver with potential over an algebraically
closed field. Then B is a non-commutative algebra which may be infinite dimensional.
The representations 7'() are finite-dimensional B-modules. We construct them explicitly
as representations of the quiver ) by specifying a finite dimensional vector space at
every vertex and a linear map for every arrow in (). This construction is a representation
theoretic analogue of the construction of the Kauffman states in [14]. The direct sum
T = ®T(3) is called the link diagram module of K.

Let A be the cluster algebra with principal coefficients of the quiver @ as defined in
[12]. A is a commutative algebra with a special combinatorial structure. It is defined as
a subring of a field of rational functions by constructing a set of generators, the cluster
variables, via a recursive method called mutation that is determined by the quiver Q.
Each mutation step connects two sets of 2n cluster variables and these sets are called
the clusters of A.

The cluster variables are Laurent polynomials in two sets of indeterminates z; and
yi, for i = 1,2,...,2n, with positive integer coefficients [11,16]. Moreover, their special-
ization, obtained by setting all x; equal to 1 is a polynomial, called the F-polynomial
[12].

It was shown in [9] that F-polynomials can also be computed from modules over our
Jacobian algebra B. If M is a B-module then its F-polynomial is

Fr = 3 x(Cre(M)) y*,

where the sum runs over all dimension vectors e = (e;)i=1,2,....2n of submodules of M
and y& = y7'ys? ... y52". Moreover, Gre(M) is the quiver Grassmannian of M, meaning
the variety of all submodules of M whose dimension vector is e, and x denotes the Euler
characteristic. In general, this Euler characteristic is very hard to compute, because it is
known that every projective variety can be realized as a quiver Grassmannian.

We show that the F-polynomials of our B-modules T'(i) have a much simpler formula,

since every submodule is uniquely determined by its dimension vector. Therefore
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dim L
Froy= Y, y™F%,
LCT(i)

where the sum runs over all submodules L of T'(4). We write Frp(;|; for the specialization
of the F-polynomial at

—t if segment j runs from an undercrossing to an overcrossing;
Yj = —t~!  if segment j runs from an overcrossing to an undercrossing; (1)
—1 if segment j connects two overcrossings or two undercrossings.

The Alexander polynomial Ak of an oriented link diagram K is an important poly-
nomial invariant of the link. It is a Laurent polynomial in one variable ¢ with integer
coefficients. Introduced by Alexander in [1], it has several equivalent definitions, see for
example [18]. In this paper, we follow Kauffman’s approach that realizes the Alexander
polynomial as a state sum [14]. More recently, the Alexander polynomial has been gen-
eralized in the work of Osvéth and Szabé [23], as well as Rasmussen [25], on knot Floer
homology.

We are now ready to state our main result. Recall that a link is prime if it cannot be
decomposed as the connected sum of two non-trivial links.

Theorem 1.1. Let K be a diagram of a prime link. Then, for every segment i of K, the
Alezander polynomial of K is equal to the specialized F'-polynomial of the B-module T'(7).
That is

Ak = Fr)le-

We point out that the quiver @), and hence the algebra B and the cluster algebra A,
is not an invariant of the link, because () depends on the choice of the diagram K. For
one, the number of vertices in @ is equal to the number of segments in K, which is not
invariant under Reidemeister moves. Moreover, the definition of () does not take into
account the difference between an overpass and an underpass in K. This difference is
only recovered in the specialization (1).

The key step in the proof is the following result which is of interest in its own right.

Theorem 1.2. The lattice of Kauffman states of K relative to a segment i is isomorphic
to the lattice of submodules of the B-module T (3).

An interesting question is how the different T'(i) are related to each other. We
conjecture the following. Recall that a B-module T is called a tilting module if the
projective dimension of 7' is at most one, Exty (T, T) = 0 and there is an exact sequence
0= B —T° = T! with T T" in the additive closure of 7. Also recall that, given a
quiver @, its opposite quiver Q°P is obtained by reversing the direction of all arrows.
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Conjecture 1.3.

(a) The module T'= @®;T(¢) is a B-tilting module.

(b) The Gabriel quiver of the endomorphism algebra of T is isomorphic to the quiver
Q°P.

(¢) The 2n cluster variables in A corresponding to 7" form a cluster.

(d) There is a permutation o of order two such that the mapping that sends the ini-
tial cluster variable x; to the cluster variable corresponding to T'(o(4)) is a cluster
automorphism of order two in the sense of [2].

Evidence for the conjecture has been obtained in previous work by David Whiting and
the second author in [27]. They considered a very special family of links, namely 2-bridge
links whose continued fraction has at most two parameters. For a slightly simpler quiver
than our quiver @, they constructed some of the modules T'(i) and showed that their
direct sum @&7'(7) can be completed to a tilting module that satisfies the conditions in
the conjecture.

As an application, we use a well-known property of the Alexander polynomial to show
the following result that is related to the rank-unimodality conjecture of [20)].

Theorem 1.4. Let M be a module of Dynkin type A, and L the submodule lattice of M.
Then

N ECE { L1 if |£] is odd;

= 0  if|L] is even,
where h(L) = dim L =7, dim L; is the total dimension of the submodule L.

Relation to other work. A first connection between cluster algebras and knot theory was
given by Kyungyong Lee and the second author in [17] in the special case of 2-bridge
links. The authors realized another invariant, the Jones polynomial, as a specialization
of a cluster variable in a cluster algebra of Dynkin type A. This result was based on an
ad hoc construction using the fact that both the 2-bridge links and the cluster variables
of type A are parametrized by continued fractions. We now can see this correspondence
as a special case of our general construction, as explained in section 8. This provides a
more conceptual explanation for the results in [17]. However, we do not know how to
generalize the Jones polynomial specialization to arbitrary links.

Nagai and Terashima used ancestral triangles constructed from continued fractions
to give a formula for the cluster variables of type A and then defined a specialization
that produces the Alexander polynomial of the corresponding 2-bridge link, see [22]. Our
specialization is a generalization of theirs.

In [6], Cohen, Dasbach and Russel gave a realization of the Alexander polynomial for
arbitrary knots as a sum over perfect matchings of the bipartite graph whose vertices



V. Bazier-Matte, R. Schiffler / Advances in Mathematics 408 (2022) 108609 5

are given by the crossing points and the regions of the diagram. Their graph can be
recovered from our quiver by the methods used for plabic graphs, see for example [10].
In the case of 2-bridge knots, their graph is equivalent to the snake graph associated to
the continued fraction in [5] and in that case their formula seems to be a special case
of the cluster variable expansion formula of [21] and therefore may be related to ours
as well. However, in their approach, the weight of a perfect matching is given by edge
weights, which in the cluster algebra setup corresponds to z-variables, whereas we use
the y-variables instead. For arbitrary knots, it is unclear if their formula corresponds to
a cluster variable.

All of the articles above consider a single segment of the link to produce a formula
for the invariant. In our approach, we rather aim at a conceptual understanding of the
collection of the 2n objects given by all of the segments of the link inside the cluster
algebra and in the module category of the Jacobian algebra.

The paper is organized as follows. After fixing the notation and recalling certain facts
and terminology in section 2, we review Kauffman’s construction of the state poset and
the state polynomial in section 3. In section 4, we define our quiver with potential and its
Jacobian algebra B. The link module T' = @;T'() is constructed in section 5. Section 6
is devoted to the proof of the lattice isomorphism in Theorem 1.2. Then Theorem 1.1
is proved in section 7. We end the paper with the special case of 2-bridge links and the
proof of Theorem 1.4 in section 8.

Acknowledgments

We thank the anonymous referee, as well as Dylan Rupel, for their useful comments.
2. Preliminaries

We recall basic notions and results from knot theory and cluster algebras.
2.1. Knots and links

A knot is a subset of R3 that is homeomorphic to a circle. A link with r components
is a subset of R? that is homeomorphic to r disjoint circles. Thus a knot is a link with
one component. Links are considered up to ambient isotopy. A link is said to be prime
if it is not the connected sum of two nontrivial links.

A link diagram K is a projection of the link into the plane, that is injective except
for a finite number of double points that are called crossing points. In addition, the
diagram carries the information at each crossing point which of the two strands is on
top and which is below. A diagram is called alternating if traveling along a strand
alternates between overcrossings and undercrossings. A link is called alternating if it has
an alternating diagram. A link is said to be oriented if for each component a direction
of traveling along the strand is fixed.
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Fig. 1. Skein relations for the Alexander polynomial.

A curl is a monogon in the diagram. We usually assume without loss of generality
that our link diagrams are without curls, because one can always remove them (by a
Reidemeister I move) without changing the link.

Throughout this paper, we assume that all links are prime and all link diagrams have
a finite number of crossing points.

2.1.1. The Alexander polynomial

The Alexander polynomial A of an oriented link is a polynomial invariant of the link
Ae Z[ti%] that can be defined in terms of homology, see [18, Chapter 6]. For the original
definition of Alexander, see [1]. The Alexander polynomial is defined up to multiplication
by a signed power of ¢.

In [7], Conway showed that the Alexander polynomial A(K) of an oriented link K
can be defined recursively as follows. The Alexander polynomial of the unknot is 1, and
whenever three oriented links K_, K and K| are the same except in the neighborhood
of a point, where they are as shown in Fig. 1, then

Ag, —Ag = {tY? —t7V2)Ag,.

4
This property also provides a normalization of the Alexander polynomial, but we will
not use it here.

The Alexander polynomial A has the following properties, see for example [18, Chapter
6).

(i) For any link, A(t) = A(t7!), where the symbol = means “equal up to a signed
power of t”.
(ii) A(1) = £1 for any knot, and A(1) = 0 for any link with at least 2 components.
(iii) For any knot

AZ=ag+a(t™ +t)Fax(t 2+t + ...
with a¢ odd.
(iv) If a knot has genus g then 2g > breadth(A), where the breadth is the difference

between the maximal and the minimal degree of the polynomial.

Kauffman gave a description of the Alexander polynomial as a state sum. This ap-
proach is crucial for us and we review it in section 3.
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Let us close this subsection by mentioning a recent breakthrough in a closely related
question. In 1982, Freedman showed in [13] that a knot in the 3-sphere is topologically
slice if its Alexander polynomial is trivial. A famous pair of knots with 11 crossings,
the Kinoshita-Terasaka knot and the Conway knot are the smallest non-trivial knots for
which the Alexander polynomial is trivial. In particular, both knots are topologically
slice. The Kinoshita-Terasaka knot is also known to satisfy the stronger property of
being smoothly slice. Recently Lisa Piccirillo solved a longstanding open problem in [24]
by proving that the Conway knot is not a smoothly slice knot. For an illustration of the
quiver of the Conway knot see Example 9.3.

2.2. Cluster algebras

In this section, we recall the definition of a skew-symmetric cluster algebra with prin-
cipal coefficients following [12,26]

Let P be the free abelian group on generators yi, ..., ¥y, written multiplicatively. Let
ZP be the ring of Laurent polynomials in the variables y1,...,y, and let QP denote
its field of fractions. Denote by F = QP (x1,...,x,) the field of rational functions in n
variables and coefficients in QP. We also define an auxiliary addition & by

a; b; min(a;,b;
J J J

The cluster algebra is determined by the choice of an initial seed (x,y, @), which
consists of the following data.

e () is a finite connected quiver without loops oQ and 2-cycles o ——= o, and
with n vertices;

e y=(y1,.--,Yn) is the n-tuple of generators of P, called initial coefficient tuple;

o x=(x1,...,2,) is the n-tuple of variables of F, called initial cluster.

The cluster algebra A = A(x,y, @) is the ZP-subalgebra of F generated by so-called
cluster variables, and these cluster variables are constructed from the initial seed by a
recursive method called mutation. A mutation transforms a seed (x,y, (@) into a new
seed (x/,¥,Q"). Given any seed there are n different mutations p1, ..., i, one for each
vertex of the quiver, or equivalently, one for each cluster variable in the cluster.

The seed mutation py in direction k transforms (x,y, Q) into the seed pi(x,y, Q) =
(x',y’, Q") defined as follows:

o x’ is obtained from x by replacing one cluster variable by a new one, x’ = x\ {z}} U
{z},}, and ) is defined by the following exzchange relation

1
Ty = o1 (?Jk [I= + 11 mi) 3)

i—k ik
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where the first product runs over all arrows in @ that end in k£ and the second product
runs over all arrows that start in k.

o y' = (¥yi,...,y)) is a new coefficient n-uple, where
Ui if j = ks
r_
VT Yy [[wemee ) [ e itj#k
k—j k<3

Note that one of the two products is always trivial, hence equal to 1, since @ has no
oriented 2-cycles. Also note that y’ depends only on y and Q.
e The quiver Q' is obtained from @ in three steps:
(1) for every path i — k — j add one arrow i — j,
(2) reverse all arrows at k,
(3) delete 2-cycles.

Mutations are involutions, that is, prui(x,y,Q) = (X,¥,Q). Note that Q" only de-
pends on @, that y’ depends on y and @, and that x’ depends on the whole seed (x,y, Q).

Let X be the set of all cluster variables obtained by finite sequences of mutations from
(x,¥,Q). Then the cluster algebra A = A(x,y, Q) is the ZP-subalgebra of F generated
by X.

By definition, the elements of A are polynomials in X with coefficients in ZP, so
A C ZP[X]. On the other hand, A C F, so the elements of A are also rational functions
in x4,...,2, with coefficients in QP.

2.2.1. Laurent phenomenon and positivity
We have the following important results.

Theorem 2.1 (Laurent phenomenon). [11] Let u € X be any cluster variable. Then

_ flxy, .o xy)
x?l ...x%"

where f € ZP[xy,...,x,),d; € Z.

Theorem 2.2 (Positivity). [16] The coefficients of the Laurent polynomials in Theorem 2.1
are positive in the sense that f € Z>oP[x1,...,xx).

2.2.2. F-polynomials

Let u be any cluster variable in the cluster algebra A = A(x,y,Q). By the two
theorems above, we can write u as a positive Laurent polynomial in the initial cluster
as u = Ly € Z>o[z1,...,Tn,Y1,-..,Yn]. Then the F-polynomial of u is defined as the
evaluation of £, at ©1 =--- =z, = 1. Thus
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F.=L,1,...;,9y1,...,Yn)-
2.8. Quivers with potential

In this subsection, we recall an alternative approach to F-polynomials using quivers
with potential. Let @ be a finite quiver. Following [8] we let the vertex span of @ be the
commutative algebra R over C with basis the constant paths e;, i € Qg and multiplication
e;ej = 0; j€;. Furthermore, the arrow span of @ is the R-bimodule A with C-basis the
set of arrows ()1 and R-bimodule structure e;Ae; = @q.j—iCa.

The complete path algebra of @ then is R({(A)) = [[=, A®#4, with m-adic topology
given by the two-sided ideal m = [[2, A®#?. The elements of R((A)) are (possibly
infinite) C-linear combinations of paths in Q.

A potential W =3 co. .
paths in R{(A)). The cyclic derivative 9, for a € @1 is defined on a non-constant cyclic

Accon @ is a (possibly infinite) linear combination of cyclic

path a;...aq by

Oalay ...aq) = E Qpt1 - QO ... Qp_1,

P ap=a

and extended linearly to the whole potential.

The Jacobian algebra Jac(Q, W) of the quiver with potential is defined as the quotient
R{(A))/J(W), where J(W) is the closure of the two-sided ideal generated by all cyclic
derivatives 0, W, with o € Q1.

For every finitely generated module M over the Jacobian algebra, Derksen, Weyman
and Zelevinsky introduced its F-polynomial in [9] as

Fy = ZX(Gre(M)) H Yi's (4)

1€Qo

where the sum is over all dimension vectors e = (¢;)icq, and x(Gre(M)) € Z is the
Euler characteristic of the quiver Grassmannian of all submodules N C M of dimension
vector e.

Furthermore, they introduced the notion of mutations of (decorated) representations
and showed that if 4 is a mutation sequence that transforms the zero module into M
then the F-polynomial of M is equal to the F-polynomial of the cluster variable obtained
by the same mutation sequence from the initial seed in the cluster algebra A(x,y, Q).

3. Kauffman states

In this section, we recall Kauffman’s realization of the Alexander polynomial as a
state sum.
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3.1. Poset of Kauffman states

Consider an oriented link and fix a diagram K without curls. Denote by n the number
of crossings. Then, there are n+2 regions and 2n segments. We chose a segment and label
it 1 and then, label other segments following the orientation of the string by 2,3, ..., 2n.
In this paper, a pair (z, R) of a crossing point x and a region R such that z is incident
to R is called an arrow.

To define a Kauffman state, we chose a segment ¢ = 1,2,...,n and label the adjacent
regions R; and R;. A Kauffman state is a set of arrows (z, R), called markers, such that:

e each crossing point is used in exactly one marker;
o cach region except for R;, R} is used in exactly one marker.

The regions R;, R} are used in no marker.

A state .’ is obtained from a state . by a counterclockwise transposition at a segment
j if &’ is obtained from . by switching two markers at the segment j as in Fig. 2.

More precisely, let x, y be the endpoints of the segment j and let Ry, Rs be the adjacent
regions at j such that, going clockwise around x, we go from R; to Ry crossing j. Then,
. contains the markers (z, Ra), (y, R1), .-’ contains the markers (z, R1), (y, R2) and
the other markers in .¥ and ./ are the same.

We define a partial order on the set of all Kauffman states by .7 < % if there is
a sequence of counterclockwise transpositions that transforms % into .%. Kauffman
proved that the resulting poset is a lattice whose maximal element is a state that ad-
mits no counterclockwise transposition and is therefore called the clocked state in [14].
Similarly, the minimal element is called the counterclocked state in [14]. We will refer to
these states as the mazimal and the minimal state.

Example 3.1. Let’s use the following labeling for the segments of the figure-eight knot.

Fig. 3 shows the lattice of Kauffman states for the figure-eight knot with regards to
segment 1.
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‘ Rl Rl ‘
. .
z|e Yy T oy
R2 RQ
(A) State . (B) State .’

Fig. 2. Kauffman counterclockwise transposition from . to .%’.

Fig. 3. Lattice of Kauffman states of the figure-eight knot.

3.2. The state polynomial

Following Kauffman, we define the weight w(z, R) of an arrow (x, R) as shown in the
following two cases.

In this case, w(z, R1) = B, w(z, R2) = 1, w(z, R3) = W and w(z, Ry) = 1.
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In this case, w(z, R1) = W, w(z, R2) = 1, w(x, R3) = B and w(x, Ry) = 1.
The weight w(.¥) of a state . is defined as

w(S) = H w(z, R).

(z,R)eS

The state polynomial is the sum of the weights of all states .

> o(Aw(F),

7

where o(.%) = (—1)® with b is the exponent of B in w(.).

Theorem 3.2 ([1/]). The Alexzander-Conway polynomial of a diagram L is equal to the
specialization of the state polynomial at W = t%, B=t":z.

If a state .’ is obtained from a state . by a counterclockwise transposition at a
segment at a segment j, then we denote the weight ratio between .’ and . by w(j).
Thus,

w w(S)
(J) = w(P)

Note that w(j) depends only on the segment j and not on the state . and .#’. The
possible values for w(j) and its specialization at W = tz, B =1t"2 are shown in Fig. 4.

4. The Jacobian algebra of a link diagram

Let K be a reduced diagram of an oriented prime link without curls. Denote by n the
number of crossings and label the segments 1,2,...,2n as in section 3.1. We shall use
the notation Ky for the set of crossing points, K; for the set of segments, and Ky for
the set of regions (including the unbounded region) of R? \ K.

We are going to construct a quiver with potential and consider its Jacobian algebra.

We define the quiver @ as follows. The set of vertices (g is the set of segments of K.
Thus Qg = K;. The set of arrows @ is the set of arrows of K introduced in section 3.1,
more precisely, there is an arrow ¢ — j in @ if and only if

o the segments ¢ and j of ) meet at a crossing point p;



V. Bazier-Matte, R. Schiffler / Advances in Mathematics 408 (2022) 108609 13

o the segments ¢ and j bound the same region R;
o going clockwise around p, we cross ¢ then R then j.

For example the quiver of the figure-eight knot in Example 3.1 is shown in Fig. 5.
The planar link diagram K induces a planar embedding of @, and since K has no
curls, @ has no loops. On the other hand, ) may have 2-cycles, see however section 4.1.

_[Bj 11 Tw 1[_} Tw i 1l _[Bj 1]_}

1 B| |1 W |1 B| 1 W
w(j) =B~? w(j) =w=? w(j)=W='B™"  w(j)=w'B!
w(j) >t w(j) = t71 w(j) —1 w(j) =1
—ll i L 1[—» R N P A Y N
W B| B W 13 5| TR
w(j) =WB™! w(j)=W~B N N
zu(j) >t w](j) s w(j) =1 w(j) =1
_|piwl TW‘jBl twiwl  1si Bl
1 1 |1 1 E ] 1 1
w(j) =WB™! w(j)=W~'B . .
zv(j)Ht u}y(j ¢! w(j) =1 w(j) =1
1 J W| |1 J B |1 jW| 1 J B
RN 1B 1| 1B w1 —
w(j) =W? w(j) = B* w(j) =WB w(j) =WB
w(j) —t w(j) >t w(j) =1 w(j) 1

Fig. 5. The quiver of the figure-eight knot of Example 3.1.
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The quiver @ has the following two types of chordless cycles. For each crossing point
p € Ky, we obtain a 4-cycle wp and for each region R bounded by r segments, we obtain
an r-cycle wg. Each arrow (p, R) lies in exactly two chordless cycles w, and wg.

We define a potential W as

W = pr— Z WR.

peKo ReK-

In the example in Fig. 5, the potential is

W = ajagazay + B1828384 + 17277374 + 01020304
—010233 — a3 — azBry2 — Badayr — aaBa — vady

where the first row consists of the four 4-cycles of the four crossing points in K and the
second row consists of the four 3-cycles and two 2-cycles of the six regions in K.

Definition 4.1. The algebra B = Jac(Q, W) is called the (completed) Jacobian algebra of
the link diagram K.

Remark 4.2. (a) The quiver @ and the algebra B are not invariants of the link. For
example, the second Reidemeister move will change the number of vertices in Q.

(b) The quiver does not see the difference between an overpass and an underpass in
K.

4.1. Remowal of 2-cycles

Each bigon in the link diagram gives rise to a 2-cycle in the quiver. We can replace
the quiver with potential (Q, W) by a quiver with potential (Q’, W’) without 2-cycles
as follows. The quiver Q' is obtained from @ by removing all 2-cycles. The potential
W' is obtained from W as follows. For every bigon R, given by two segments 4,7 that
cross each other in two crossing points pi,p2, we replace wy,, + wp, — wr by the 6-
cycle (9, R)Wp, )(O(ps,R)Wp,) Obtained by joining the two 4-cycles wy, and wp,. This
identification on all 2-cycles induces an isomorphism of algebras

B = Jac(Q, W) = Jac(Q', W').

This realization of the algebra B by a quiver without loops and 2-cycles will be important
when we describe the connection to cluster algebras.

In our running example, there are two bigons formed by the pairs of segments (4, 8)
and (2,6) in Example 3.1 and these give rise to two 2-cycles ay84 and 404 in the quiver
in Fig. 5. The above reduction produces the potential

W' = aiasasfif283 + 117273010203
—a1 0283 — 301 — agBiye — B2z
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Note that d,,W = —84 + ajasas and thus, in the Jacobian algebra Jac(Q, W), the
arrow (4 is equal to the path of length three ajasaz. Similarly ay is equal to 81 82083.

5. The link diagram module T

Let K be a curl free diagram of a prime link and let B = Jac(Q, W) be its Jacobian
algebra. In this section, we associate a B-module T' = ®;¢c i, T'(i) to K, where each T'()
is an indecomposable summand. The T'(i) are constructed explicitly as representations
of the quiver Q.

5.1. A partition of K,

Let i be a fixed segment of K. We shall define a partition of the set of all segments
K1 = Ug>0K (d) and use it later to define the representation 7'(¢). The sets K (d) depend
on the choice of the segment i, but, in the interest of simplicity, our notation does
not reflect this dependency. This should not create confusion, since i is fixed here. The
construction is recursive and the case d = 0 is slightly different from the cases d > 0.
But first let us run through the construction in the following example.

5.1.1. An example

Consider the knot diagram K illustrated in the top picture in Fig. 6. This is the knot
1046 in the Rolfsen table. We choose the segment ¢ = 1. The set K (0) is the set of all edges
that share a region with the segment ¢ = 1, including ¢ itself. This set is shown in red in
the second picture in the figure. Thus we have K (0) = {1,15,11,5,13,14}. We think of
this set as a union of two paths both starting and ending with the segment 1. The first
path wy, ¢ starts on segment 1 in the direction given by the orientation of the knot and
turns left at each crossing point until it comes back to 1. Thus wy o = 1,15,11,5,13, 1.
The second path wg o also starts on segment 1 in the same direction, but it turns right
at each crossing point. Thus wro = 1,14, 1.

The set K (1) is constructed in two steps. First, we remove the set K (0) from K, and
then we define the set K’(1) as the set of all segments that are incident to the unbounded
region of K\ K(0). This set is shown in red in the third picture in Fig. 6. Note that there
are precisely two crossing points p; and ¢ that are incident to exactly one segment of
K’(1). Again, we can think of this set as the union of two paths, but this time they start
at p1 and end at ¢;. The first path wr ; makes a left turn at every crossing point. Thus
w1 = 2,19,10,16,7,4,12,6, 3,20. The second path wg; makes a right turn at every
crossing point. Thus wgr 1 = 2, 20.

In our example there are two crossing points x; and x5 that are of degree 4 in K'(1). In
this situation, the set K (1) is strictly larger than K'(1). It is shown in the last picture in
the figure and is defined as follows. The path wy,; goes through each of the points x1, x2
exactly twice. Let D(z;) denote the domain in the plane bounded by the subpath of
w1 from x; to z;. Thus D(z1) is bounded by the path 19,10, 16,7,4,12,6,3 and D(x2)
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Fig. 6. An example of the construction of the partition of the segments of the knot into disjoint subsets
K(d). The quiver of this diagram is shown in Fig. 11. (For interpretation of the colors in the figure(s), the
reader is referred to the web version of this article.)
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is bounded by the path 4,12,6. The domain D(z2) actually consists of a single region
of the diagram. On the other hand, the domain D(z;) contains 5 regions of K. We let
R(x;) be the unique region of K inside D(z;) that is incident to ;. Then R(x2) = D(z2)
and R(x1) is the region bounded by the segments 19,9,17,7, 3.

Then K (1) is defined as the union of K’(1) with the segments of the regions R(x;).
Thus we need to add the segments 9 and 17 to our set. We are now done with the case
d=1.

The set K(2) is again defined in two steps, but the second step will be trivial. First
let K’'(2) be the set of all segments that are incident to the unbounded region of K \
(K(0) U K(1)). Thus K'(2) = {18,8}. There are no crossing points of degree 4 in this
set, and therefore we have K (2) = K'(2).

5.1.2. The general case for d =0
For a general link, define

K'(0) = K(0) = {j € K; | j and i bound the same region of K} U {i},

and let K’(0) be the closure of K'(0); here closure means that the set also contains the
endpoints of the segments.

We can describe K (0) as the union of two paths given by the boundaries of the two
regions incident to i. We describe these paths below in a way that will generalize to an
iteration of this procedure to d > 0. The set K (0) can be described as the union of the
segments along two paths

wr,0: Po w0 Po 90 Wao q0

WR,d - Po Do 90 qo0

Wp,0 Wq,0
as follows. Let py and gg be the endpoints of the segment ¢. Since K has no curls, we
have py # qo. Define py = go and ¢ = po and let wy, o = wy o be the segment i. At pj
and at every subsequent crossing point, the path wy, o turns left, and therefore wy ¢ is
the boundary of the region to the left of the segment ¢ from py to go. Similarly wg is
the boundary of the region to the right of the segment i. These are exactly the segments
in K'(0).

Note that the two points pg, qo are of degree 3 in W and all other crossing points
in K have degree 0 or 2 in K(0).

Lemma 5.1. The two subpaths wlL,O and who do not share a crossing point besides p;
and qf.

Proof. Let Ry, Ry € K5 denote the two regions at ¢. Suppose there exists p € Ky such
that p is not an endpoint of ¢ and p € Ry N Re. Then we can draw a closed curve -y from
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Fig. 7. Proof of Lemma 5.1. At the point p, there is an even number of edges on either side of the curve v
in the two pictures on the left, and an odd number in the picture on the right.

p to p that runs through R;, Rs, crosses i once, and does not cross any other segment of
K. We consider two cases, depending on the local configuration of the four segments at
p relative to vy, see Fig. 7.

Suppose first that there is an even number of these four segments on either side of ~.
This case is illustrated in the two pictures on the left of the figure. Note that at either
endpoint of the segment i, there are three loose segments, so that in total there is an
odd number of loose segments on either side of v, and (using the Jordan curve theorem)
it is thus impossible to pair them up without crossing v in order to form a link.

Therefore, out of the four segments at p, there must be an odd number on either side
of . This case is illustrated in the right picture of the figure. Then, on one side, there
is only one segment; call it j. Moving ~ slightly away from p toward the segment j, we
obtain a closed curve 7/ that crosses only two segments 7 and j. This shows that K is
the connected sum of two links and thus not prime, a contradiction. 0O

5.1.8. The general case for d > 1
We define K (d) recursively.

Definition 5.2. Assume K (e) is defined for all e < d. Let K’(d) be the set of all segments
jin Kj \ (Ue<cq K(e)) for which there exists a segment k € K(d — 1) such that j and k
bound the same region of K. Let K’(d) be the closure of K’(d).

Definition 5.3. (a) A crossing point p € Ky is called an external point in K'(d) if exactly
one of its incident segments lies in K'(d). A segment j € K; is called external in K'(d)
if j € K'(d) and exactly one the endpoints of j is an external point in K'(d).

(b) A crossing point p is called an internal point in K’(d) if all four segments at p lie
in K’(d). Note that for d = 0 there are no internal crossing points since our diagram K
has no curls. If there exists a non-constant path w starting and ending at x that uses
only segments of K'(d), we let D(z) be the bounded domain enclosed by w in the plane.

Then D(z) is a union of regions of K’(d). Let R(x) € K5 be the unique region in D(x)
that contains x.

An example is shown in Fig. 8. In that figure, there are four interior points z1, ..., z4.
The domain D(z1) is bounded by the red subcurve w and the region R(z) is shaded.
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__________ T

Fig. 8. The domain D(z1) and the region R(z1) associated to an interior point 1 € K(d). The domain D(z1)
is bounded by the red curve and the region R(x1) is shaded. It is bounded above by the black segments,
one of which is labeled ji. The domain D(x2) for the second interior point xs is only the part of D(z1)
that lies above the point za.

Now let j be a segment of K. We define ¢4(j) € {0,1} for d > 1 as follows.

1 if there exists an internal point « in K'(d) such that j lies
) in the interior of D(x) and the region R(z) € K> contains the
ea(j) = (5)

segment j and the point x;
0 otherwise.

Definition 5.4. For d > 1, let
K(d) = K'(d)U{j € K1 | eaj) = 1}.

For example, the segment j; in Fig. 8 satisfies the first condition for £ = z1. Thus
€4(j1) = 1 in this case. The set K(d) contains every segment of the red curve and every
segment of the black curves bounding R(x1) and R(z3).

Lemma 5.5. Let d > 1.

(a) Each connected component C' of K'(d) is either a single path w from pg to qq or the
union of two paths
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wr.d-: Pd Pg qq qd

Wp,d Wq,d

/

Py g qd

Wq,d

WR,d* Pd — —
P,

from pg to qq, where pg and qq are external points in K'(d), the initial and terminal
subpaths wy g and wq q are the same in both paths, degp, = degq), = 3 in C, p}; # ¢
and wy, ; (respectively wi, ;) is obtained by turning left (respectively right) at every
crossing point in K'(d).

If no such points ply, q); exist then wr, g = wgr.q and K'(d) is a single path from pg to
qa.

(b) All other crossing points, besides pq,ply,dd,qy, have degree 0, 2 or 4 in C. In
particular, C has exactly two external points pg and qq, and moreover, pq,qq €
K'(d)NnK'(d-1) and p4,qq ¢ K’—(e), with e # d,d — 1.

(c) The paths wi, ; and wp 4, do not share a crossing point besides pj; and q.

Proof. (a) Suppose first d = 1. The external points are p; = p{, and ¢; = ¢(, and there
are no other external points in K’(1). If there are points of degree 3 in K’(1), we let p)
be the point of degree 3 closest to p1, and let ¢} be the point of degree 3 closest to g;.
Note that every connected component has an even number of points of degree 3, because
of parity, and that there are at most two because there are only two external points.

Let wy 1 be the unique path from p; to pj in K’(1) that

e does not use an edge twice;
e is of maximal length; (6)

e turns left or right at every point of degree 4 in K’(d).

Such a path exists and is unique by the following argument. The starting point p; is of
degree 1 in C, so the first step is uniquely determined. At every point of degree 2, the
incoming edge leaves only one choice for the outgoing edge. At a point of degree 4, there
are a priori two possibilities, turn left or turn right, but only one of these will produce
a path of maximal length. Similarly, let w, 1 be the unique path from ¢} to ¢1 in K'(1)
that respects conditions (6).

Then the paths wy, 1, wg,1 form the boundary of the regions on the left and right of
the path (wq1iwp 1) in (K \ K(0))U{i}. These are exactly the segments in K'(1). This
completes the proof of (a) for d = 1.

(b) The degree formulas follow directly from (a). In particular p; and ¢; are the
only external points in C. Furthermore, three of the segments at p; lie in K(0), and
the remaining segment, which is the first segment of w, 1, lies in K'(1). Thus py €
K’—(l)ﬂK’—(O) and pg ¢ K'(e), with e # 0, 1. The proof for ¢; is similar. This also implies
that all other points have degree 0, 2 or 4 in K'(1).

(c) Suppose w7 ; and wp, share a point = # pi,q, see Fig. 9. Let D denote the

domain in the plane bounded by the segments of the paths wy, 1 and wg 1 from pj to z.
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Fig. 9. Proof of Lemma 5.5 part (c).

Let ¢ denote the segment at p} that does not belong to wy, 1 or wg,1. Since wy, 1 turns
left at pj and wg 1 turns right, the segment ¢ lies in D. Following the link, starting at p}
in direction of ¢, we must reach a point y where we leave D. Let ¢’ denote the segment
outside D right after y. In K, this segment ¢’ bounds the same region as a segment
on the path wfp ;, and therefore ¢ must lie in K (0) U K'(1). However, ¢’ cannot lie in
K (0), because K (0) has no external segments. On the other hand, ¢’ cannot be in K'(1),
because (a) implies that every segment of K’(1) lies on one of the two paths w1, wg 1.
This is a contradiction, and thus the two paths w'LJ,w'&1 cannot have the point x in
common. This completes the proof for d = 1.

For d > 1, the proof is similar, with the additional feature that now we may have
components that arise from internal points in K'(d — 1). Indeed, every internal point x
of K'(d— 1), such that there is a segment j bounding the region R(x) with e4_1(j) = 1,
determines two crossing points p/;(z) and ¢/(z) as the unique points in R(z) \ {z} that
lie on the boundary of D(z), and such that the path w = wg,_q—1 or wg4—1 is of the
form

w: pq x () q4() T qd

see Fig. 8. Therefore every internal point x of K'(d—1) gives rise to a connected compo-
nent of K (d) in which the points pg = p/;,_,(z) and ¢4 = ¢/,_, (x) are the unique external
points. For all other components, we have pg = p/,_; and g4 = ¢/;_,. Note that pgs and g4
have degree 3 in K(d — 1) and thus degree 1 in K’(d). Hence they are external points.

The rest of the proof of (a) is analogous to the case d = 1. The point p/; is the point
of degree 3 closest to pq, and ¢} is the point of degree 3 closest to ¢q. The paths w, 4 and
wgq,q are the unique paths from py to p/; and from ¢4 to ¢, that satisfy the conditions (6).
Moreover the paths wr 4, wr,q form the boundaries of the regions to the left and right
of the path

Wq,d -+ Wq,2Wq,1 1 Wp 1Wp,2...Wp.d

in (K\U'Z}K(e)) U{wgd 1, - Wg1,4,Wp1,- -, Wy a1} Thus wy g and wp g consist of
the edges of K'(d).

The proof of (b) is analogous to the case d = 1 except that the point pg may be equal
to a point p/, (x) for some interior point z in K'(d).
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In the proof of (c), the only difference to the proof in case d = 1 is that now the
segment ¢ in Fig. 9 cannot lie in K (d — 1), because otherwise y would be an external

point of K(d — 1) that lies in K(d), a contradiction to (b). O

Remark 5.6. Each interior point = of K'(d — 1) whose region R(z) contains a segment j
with eg_1(j) = 1 gives rise to a connected component of K’(d).

Proposition 5.7. For every segment i € K1, we have constructed a partition
Ky = Ug>oK (d).
Proof. This follows directly from the construction. O
We are now ready to define the dimension vector of the representation T'(7).

Definition 5.8. Let K1 = Ug>0K (d) be the partition with respect to a segment ¢ € K.
For every segment j € K1, we define d(i); = d if j € K(d).

In the example of Fig. 6, we have d(1); = 1if j = 2,3,4,6,7,9,10,12,16,17,19, 20;
d(1); =2 for j = 8,18, and d(i); = 0 for all other j.
Our next result says that the dimension difference at adjacent vertices is at most one.

Proposition 5.9. Let i,j, k € K. If there is an arrow j — k € Q then

|d(i); — d(i)x| < 1.
Proof. Let d = d(i);. Thus j € K(d). The existence of the arrow j — k implies that
j and k bound the same region in K. If k ¢ U</ (e) then Definition 5.2 implies that
ke K'(d+1), thus k € K(d+1) and d(i); —d(i), = —1. If k € K(d) U K(d — 1) then
d(1) € {d,d—1} and there is nothing to show. Finally suppose k € K(e), with e < d—2.
Then Definition 5.2 implies that j lies in K’(e 4+ 1) unless it already lies in Uy <. K (€).
In both cases, we have d(i); < e+ 1 < d— 1, a contradiction. O

5.2. Properties of K(d)

It will be convenient to use the following terminology. Given two segments i,j € K,
a curve in R? is called a dimension curve from j to i if it starts at a point on segment
7, ends at a point on segment ¢ and does not go through a crossing point of K.

Let dim°(4,7) be the minimal number of crossings between the segments of K and
a dimension curve from segment j to segment i. We call a segment j € K7 an interior
segment of K(d) if K(d) contains all the segments on the boundary of the two regions
incident to j in K.

Note that the segment ¢ is an interior segment of K(0). The following lemma says
that there are no other interior segments.
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Fig. 10. Proof of Lemma 5.10.

Lemma 5.10. If d > 1 then K(d) has no interior segments.

Proof. Suppose a segment j belongs to two regions Rj, Ro in K and each segment in
R; U Ry lies in K(d), see Fig. 10. Since d > 1, the dimension curve of j must cross
a segment k of Ry U Ry, so it has one more crossing than the dimension curve of the
segment k. Since j,k € K(d) this means that €;4(j) = 1. Thus there exists an internal
point z in K (d) satisfying the condition (5). In particular, one of the two regions at j,
say Ry, contains x and j. Thus R; is the region R(x) of condition (5). The other region
of K at j is the region R and both lie entirely in K (d). Since j ¢ K'(d), the segments of
R;1 U Ry that do lie in K’(d) all lie in the same region in K’(d). In particular, no segment
k of Ry U Ry shares a region with another internal point 2’ # = such that k lies in D(z’).
Therefore each segment k of Ry \ {j} satisfies €4(k) = 0. Thus k € K'(d), which implies
k € D(x).

Now consider an endpoint y of j. Three of the segments incident to y lie in Ry U Rs
and the fourth segment £ doesn’t, see Fig. 10. Therefore £ either lies on the boundary of
D(zx) and hence dim° (4, £) = d, or £ lies outside D(z) and hence dim°(i,£) = d — 1. The
latter case is impossible by Lemma 5.5(b), because ¢ would be an external segment of
K'(d — 1), but £ has an endpoint in K’(d) (and not in K’(d — 2)).

Thus the segment ¢ lies on the boundary of D(x). Since £ is not in Ry, there exists a
point ¢’ € Ky such that two of its incident segments lie in R; and one, call it h, lies on
the boundary of D(z) between x and y as in the figure. Denote by ¢’ the fourth segment
at y'. Note that it must lie inside D(x), because otherwise 3y’ would be an external point
of K'(d — 1) that does not lie in K’(d — 2), contradicting Lemma 5.5(b). Since R; is a
region in K, the segment ¢ must lie in the connected component C of D(z) \ Ry that
contains y'. Following the link starting at 3’ in direction ¢, we must reach a point y”,
where we leave the component C. Let ¢ be the segment outside C' right after y”’. Then
¢" is an external segment of K'(d — 1) with external point y” not in K(d — 2), again a
contradiction to Lemma 5.5(b). O

It will be convenient to consider the following dual graph. For an illustration, see
Example 5.16
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Definition 5.11. (a) Let Q(d) be the full subquiver of @ on the vertices j such that
j € K(d).

(b) Let G(d) be the graph with vertex set the set of chordless cycles in @ that also
lie in Q(d), and two chordless cycles are connected in G(d) by an edge if they share an
arrow in Q(d).

Notice that the graph G(d) has two types of vertices, the crossing point vertices and
the region vertices. The first type corresponds to the chordless 4-cycles wy, with p € Kj,
and the second type corresponds to the chordless cycles wgr, with R € Ks.

Corollary 5.12. In G(d), the degree of a crossing point vertex is at most 2.

Proof. If a crossing point vertex x has three adjacent regions in G(d), hence in K(d),
then K(d) has an interior segment, contradicting Lemma 5.10. O

Definition 5.13. Let R be a region of K such that each segment of R lies in K(d). By
Lemma 5.5, one of the two paths w = w4 or wg q encloses the region R. Let z(R) be

the first crossing point of the region R on the path w. We call z(R) the root of the region
R.

Recall that a leaf in a graph is a vertex of degree one.

Lemma 5.14. (a) The mapping R — x(R) is a bijection between the sets of region vertices
of G(d) and crossing point vertices of G(d).

(b) Every connected component of G(d) has a unique vertex that is a leaf and a crossing
point vertex.

Proof. (a) Since the path w starts and ends at vertices outside R it must go through the
point z(R) twice, in the sense that it contains all four segments at z(R). Thus z(R) is
an internal point of K’(d) and therefore a vertex of G(d). This shows that the mapping
is well-defined.

The mapping is injective by definition. Now let = be any crossing point vertex in
G(d). Then all four segments at x lie in K (d). This implies that x is an internal point
of K'(d), because the endpoints of the segments j with €4(j) have at most degree 3 in
K(d). Lemma 5.5 then implies that the four segments at = all lie on one path w = w4
or w = wg,q, and thus w goes through x twice. Then w is of the form

W: Dg x T qd
w(z)

and the subpath w(z) forms the boundary of the domain D(z) in condition (5). There is
a unique region R(x) of K that lies within D(z) and contains x. By definition of K (d),

all segments of R lie in K(d). Thus R is a region vertex of G(d) and z(R) = z. This
shows that the mapping is surjective.
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(b) Let C be a connected component of G(d). By Lemma 5.5, there is a path w = wy, 4
or w = wg,q that encloses all regions of the region vertices of C. Let = be the first point
on w that is a crossing point vertex of C'. Then z is a leaf of C.

To show that there is no other crossing point that is a leaf, note first that every
crossing point vertex of G(d) is of degree at most 2 in G(d), by Corollary 5.12. Now
we proceed by induction on the number of region vertices. If there is only one region
vertex R in C' then C = R

one region vertex. Take a leaf £. If £ = R is a region vertex, then C'\ {{} has z(R) as a

2(R) and we are done. Suppose there is more than

leaf and thus C'\ {£,z(R)} is connected, and by induction it has no other crossing point
vertex that is a leaf than x. On the other hand, if C' contains no leaf that is a region
vertex, then there are more crossing point vertices than region vertices in C', which is
impossible by part (a). O

Remark 5.15. We don’t know if G(d) is a forest.
5.8. Definition of the link diagram module T

Let k be an algebraically closed field. Let K be an oriented diagram without curls of
a prime link with n crossings. Let (Q, W) be the associated quiver with potential and
B = Jac(Q, W) its Jacobian algebra. Let I; denote the identity matrix of rank d. We
define the link diagram module

T= ®16K1T(Z)
of K as follows.

For each segment ¢ of K, the direct summand T'() = (T(7);,T(%)a)jcQq,acq, is the
representation of () given by

T(i); = kO3,
for each vertex j, where d(i); is the dimension defined in Definition 5.8; and for each

arrow «: j — £, we define the corresponding linear map

Iq— if d(i); = d(i)e + 1 =d
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and if d(z); = d(i)¢ = d then

if v is of the form (x, R(z)) with
x an internal point of K’'(d)

I d otherwise.

Because of Proposition 5.9, there are no other possibilities for the dimensions and thus
T(i)q is well-defined.

Example 5.16. The quiver @ of the knot 10gg in Fig. 6 is shown in the top picture and
the representation 7'(1) in the bottom picture of Fig. 11. The quiver (1) is the full
subquiver on the vertices 2,3,4,6,7,9,10,12,16,17,19,20. It contains four chordless cycles,
the two crossing point cycles wy,, ws, the two region cycles wg(s,), WR(z,), Where we
use the notation of Fig. 6. Therefore its dual graph is

Wy WR(x1) Wgy WR(zs5) -

6. Kauffman states and submodules of the link diagram module

We keep the notation of the previous sections. Again we choose a segment i € K7 and
consider the Kauffman states and the B-module T'(i). Our goal is now to prove that the
lattice of Kauffman states of a link K relative to a segment 4 is isomorphic to the lattice
of submodules of the direct summand 7'(z) of the corresponding link diagram module 7.

6.1. The state module M ()

Let . be a Kauffman state. We will define a B-module M () = (M;, Ma)jcqo,acq: -
Consider a sequence s of counterclockwise transpositions that transforms the minimal
Kauffman state into the state .. Then we define

M; =k,

where e; is the number of occurrences of j in s. The order in which the transpositions
at j occur determines a basis for M, which we call the basis induced by s.

Next we define the linear maps of the representation M. In the remainder of this
section, we use the following matrices
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15 11

/
N\

19 g 1 7
2/ \3/ \4
/ AN
Ko 12==5
\ /
20 6
13
k\[j’} ! [01]/411«
L K21 g2 1
[01}”[})] [01]M\[6]
kel k<1 k<K
k k
AN
1 1 1 0 k
A
K k

where I, denotes the identity matrix of size £. We point out that Jy is a Jordan block of
size £ 4+ 1 with eigenvalue 0, and that H,Vy; = Jy and V; Hy = Jp_1.
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Every crossing point p € Ky indues a subsequence s(p) of s consisting of all occurrences
of the transpositions at the four segments incident to p. Let a, b, ¢, d denote these four
segments in counterclockwise order around p such that a is the first entry in s(p). Then
5(p) is of one of the following forms

(abed)®, (abed)‘a, (abed)‘ab, (abed) abe, (7)

for some ¢ > 0. Let

a*é>d
QT i’)’
b c

be the corresponding 4-cycle in the quiver @, and let w, = éyBa € B.

-
B

Since every arrow of () lies in a unique 4-cycle induced by a crossing point, it suffices
to define the linear maps of the representation M on these four arrows a, 3,7, d. There
are four cases depending on the sequence s(p).

(i) If s(p) = (abed)® then e, = e, = €. = eq = £ and
Ms=Ji-1 M,=Mg=M,=1I,.
(ii) If s(p) = (abed)fa then e, = €+ 1,ep = e. = eq = £ and
Ms=V, M,=Mz=1, M,=H,
(iii) If s(p) = (abed)’ab then e, = e = £+ 1,e. = eq = £ and
Ms=V, M,=1,, Mg=H; My,=1I1.
(iv) If 5(p) = (abed)‘abe then eq = e = €. = £+ 1,eq = £ and
Ms=V, M,=H; Mg=DM,=1Ip1.

Definition 6.1. The B-module M (.¥) is called the state module associated to the Kauff-
man state ..

Remark 6.2. In all four cases (i)-(iv) above the composition of the four matrices along
the cycle w,, is equal to Jy—1. Thus the action of w, on M (%) is given by this matrix.

From the construction of the state module, we have the following results.
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Lemma 6.3. Let M () = (My, Ma)zcQo,acq,- Then for every arrow a: j — k, we have
| dim M; — dim M| < 1.

Lemma 6.4. If the state .’ is obtained from the state . by applying the transposition
at a segment a then the module M (") is obtained from M () by

(i) increasing the dimension at verter a by one;
(ii) increasing the rank of the map on each arrow «: a — e starting at a by one.

The dimension at the other vertices and the rank on the other arrows do not change.
We also note the following for future reference.

Lemma 6.5. Let .7 be a state and s a sequence of transpositions that transforms the
manimal state into .. If

s a chordless cycle in @ then the subsequence of s of all occurrences of transpositions at
vertices of w is of the form

aj...aga100(aras—1 . .. alao)eatat,1 ...ag

for some j,k and £. In particular, the order in s is opposite to the order in w.

Proof. We have already proved this result in equation (7) in the case where w = wy, is
the chordless 4-cycle given by a crossing point p € K. It suffices to show the result in
the case where w = wg is the chordless cycle of a region R € K,. The transposition at
a; is defined by moving the markers counterclockwise around the endpoints of a;, but it
can also be seen as moving the markers in the clockwise direction along the segment a;,
see Fig. 2. Thus the proof for the region cycle wg is dual to the proof for the crossing
point cycle w,. O

As an immediate consequence we have the following,.

Corollary 6.6. If a: a — d is an arrow in Q) such that the transpositions at a and d occur
consecutively in s then d comes before a. O

6.2. Lattice isomorphism

We start with the following result.
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Fig. 12. A crossing point p with an adjacent region R in the link diagram on the left and the corresponding
paths in the quiver on the right. The cycle w, is the 4-cycle.

Proposition 6.7. Let K be a link diagram without curls and let i € K1 be a segment. Let
S, be two Kauffman states relative to i. Then

(a) M() is a B-module.

(b) M(>) 2 M(S") if & # 7.

(¢) If & is the minimal Kauffman state, then M () = 0.

(d) If % is the maximal Kauffman state, then M (%) = T(i).

(e) If &/ <. then M () is a submodule of M ().

(f) For every submodule M of T(i) there is a unique Kauffman state . such that M =

Proof. (a) By definition, M () is a representation of @, so we only need to check that
M () satisfies the relations given by the cyclic derivatives of the potential TW.

Let (p,R) be an arrow in @, thus p € Ky and R € K5 such that the region R is
incident to the crossing point p. By definition of the potential, we have

Op, )W = wp — wr,
where w, = (p, R)w,,
point p and wgr = (p, R)wl, is the cycle in @ given by the arrows around the region R,
see Fig. 12. We must show that d, g)W acts trivially on M (), and for that it suffices
to show that the composition of the linear maps in the representation M (.%) along the

is the 4-cycle in @) given by the four arrows around the crossing

paths wj, and wj are equal.

We will write M, for the composition of the arrows in M () along a path w. Ac-
cording to Remark 6.2, we have M,,, = Jy for some ¢ > 0, and thus it suffices to show
My, = Jo.

As before, we let s be the sequence of counterclockwise transpositions that transforms
the minimal Kauffman state into the state .. Let s(R) be the subsequence of s consisting
of all occurrences of the transpositions at the segments that bound the region R. Let
ap, a1, ..., a; denote these segments in clockwise order around R such that ag is the first
entry in the sequence s(R). By Lemma 6.5, the subsequence s(R) is of the form

s(R) = (agay . ..a¢) apay . .. ay, with u <t or

S(R) = (a0a1 Ce G,t)l
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for some ¢ > 0. In the first case, the dimension of M (.¥) is £ at vertices ay41, ..., a; and
it is £ + 1 at vertices ag, a1, ...,a,, while in the second case, the dimension is ¢ at all
vertices ag, ai ..., as.

Denote the crossing point of the segments a;_1, a; by p;. So the arrow (p;, R) is
a; — aj—1. Then by definition of M (.#) at the crossing point p;, we have

M(pj,R) =Ji1 iszOand 5(R) = (ao,...,at)e

and otherwise

Iy if dim M,; =dim M, , = d;
My, ry=9q Va if dimM,, —1=dimM,;, , =d;
Hy if dimM,; =dimM,;, , —1=d.

In particular M, = Jy. This shows that M (%) satisfies all relations of the form
W, a € Q1.

We also have to consider the closure I of the ideal generated by the relations 9,W.
For this we must show that arbitrary long paths act as zero; more precisely, if w is a
path such that for all N there exists a path u, of length n > N such that w = u,, then
M., = 0. Suppose w is such a path. Then, for all m there exists n such that there is an
x € Qo through which w,, passes at least m times. Thus u,, decomposes as

Up = UWLW ... WHKV,

where each w; is an oriented cycle that starts and ends at x and that does not pass

through x another time. Take m > dim M, = d. We shall show below that, on each cycle

w;, the matrix product M,,, is some power of the matrix Jy_i. Therefore My, w,y.. w, =

(Ja—1)™T* which is zero. Thus M, = 0. Since u,, = w, we have M,, = 0, as desired.
It remains to show that, for every oriented cycle

w = ag al Qg ap

in @ such that a; # a; if i # j, the matrix M,, is a power of the matrix .J;, for some £. Let
w be such a cycle. By definition of M (%), for every arrow «a;, the matrix M, is one of the
four matrices I, V, H, J, which satisfy the relations H,V;, = Jy, and V; H; = Jy_,. Hence if
M, is not of the claimed form then M, = Iy and all M, ; = I,. Then dim M,,; = £ at each
vertex a; in w, which means that the transposition at a; appears exactly ¢ times in the
sequence s. Let ay, be the last transposition in the sequence s at a vertex in w. Consider
the crossing point p where ar_1 and ax meet in the link diagram. By Lemma 6.4, the
last transposition at ar does not increase the rank of the matrix M, , since the arrow
ay ends in ai. Thus M, = Jy—1 and hence M, # I;, and we are done. This completes
the proof of part (a) of the proposition.
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(b) Let ., be two Kauffman states and suppose that M () = M (). Let s
and s’ be the sequences of transpositions that transform the minimal state into the
state . and ., respectively. Let p be any crossing point and denote by s(p) and s'(p)
the subsequences of 5 and s’ consisting of all occurrences of transpositions at p. Since
M() = M(&"), both representations have the same dimension vector and thus s(p)
and §'(p) are equal up to a permutation. In fact, since the minimal state has exactly one
marker at the point p, it follows that s(p) = s(p’). At every crossing point p, the states
& and .’ are determined by the last entry in s(p) = s'(p), and thus ./ = ..

(¢) If ¥ is the minimal state then its sequence of transpositions s is empty. Thus
M () is the zero module.

(d) Let . be the maximal state. We have described Kauffman’s construction of %
in [14] as a partition of K in section 5.1. The fact that M (”) and T'(i) have the same
dimension vector follows directly from that. We now show that M(.#) and T'(i) also
have the same linear maps.

Let a: a — d be an arrow in Q. It is clear from the definition of M (.%) and T'(i) and
by Lemma 6.3 that the linear maps on « are the same if the dimension at vertex a is
different from the dimension at vertex d. Suppose therefore that dim M, = dim My = 4.
Recall that the arrow « corresponds to a pair (p, R), where p is a crossing point and R
is an adjacent region in K. In the quiver (), we have two corresponding chordless cycles
wp and wg that share the arrow o as follows.

b——sa<—u

b

c<—d—> a;_1

The crossing point cycle wy, is the cycle of length 4 on the left. The length of the region
cycle wg is the number of segments that bound R in the link diagram. We denote this
length by t + 1. Note that in these two cycles the arrow « is the only arrow that ends
at d. Consider the sequence of transpositions s that transforms the minimal state into
the maximal state . and let s(p) and s(R) be the subsequences of all occurrences of
transpositions at segments incident to p, respectively at segments bounding R. Suppose
first that the first occurrence of a is before the first occurrence of d in s(p). Then a
must be the first entry in s(p), because the direct predecessor of a would have to be d,
by Corollary 6.6. Similarly, d must be the last entry in s(p), because M, and My have
the same dimension ¢ and the direct successor of d in s(p) would have to be a. Thus
s(p) = (abed)® and this shows that

(i) My = Je¢—1, by definition of M (7);
(ii) The dimension of M (.¥) is ¢ at each vertex of w, and thus p is an internal point of
K'(¢) as in Definition 5.3.
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Now consider the sequence s(R). Since a occurs before d in s(p), it also does so in
s(R), and by the same argument as above, we see that a must be the first entry of s(R)
and d must be the last. Thus s(R) = (aajas...a;—1d)" and therefore the dimension
of M(.) is equal to ¢ at every vertex of wg. The transposition at a moves two state
markers at the endpoints of a counterclockwise. By our convention on the orientation of
the quiver, the marker at the endpoint p must lie in the region R. Moreover, the fact
that a is the first entry in both sequences s(p) and s(R) implies that the position (p, R)
carries a state marker already in the minimal state. Similarly, since d is the last entry
in s(p) and s(R), the position (p, R) also has a state marker in the maximal state. It
follows from the construction of the minimal and maximal states in [14] that the region
R is the region R(p) of the internal point p as in Definition 5.3. Now the definition of the
maps in the diagram module T'(¢) implies that T'(i)o = Je—1. Hence M (%) = T'(i)q.

It remains the case where the first occurrence of d is before the first occurrence of a
in 5(p). Then Lemma 6.4 implies that each occurrence of @ in s(p) augments the rank of
M(#)q by one. Thus our assumption dim M, = dim My = ¢ implies that M, = I,. On
the other hand, we also have T'(i), = Iy, because the position (p, R) does not carry the
state marker of maximal state, and thus R is not the region R(p) of the internal point
p. This completes the proof of part (d).

(e) Tt suffices to show that if the state . is obtained from the state . by a single
transposition at some segment a then M(.%) is a submodule of M (). We use the
notation M () = (My, M), M(") = (My, M) and d, = dim M,, d,, = dim M.
Define a morphism f: M () — M (') by

poo e A
7 | Hy ifj=a.

Clearly f is injective. To show that f is a morphism of B-modules, we need to consider

B
arrows b —> a — ¢ in Q and show that the following diagram commutes.

Since ./ is obtained from . by the transposition at a, Lemmata 6.3 and 6.4 imply that
do € {dp,dy — 1} = {d.,d. — 1}. Moreover d,, = d, + 1, d;, = dp and d,, = d., and the
maps Mo, Mg, M/,, M}, are uniquely determined by the fact given in Lemma 6.4 that
rank(M,,) = rank(M,) and rank(Mj) = rank(Mp) + 1. Thus
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P /\/\
B \/\/

Fig. 13. A local configuration in the link diagram on the left and the corresponding configuration of the
quiver on the right.

MQZIg and M&:Hg ifdazdbzg;
My=V, and M,=J, ifdy=dy—1=2¢;
MB:Jg_l and Mé:w ifdazdc:&
MQZHZ and Mézlé-i-l ifda:dc—lzg.

This shows that the diagram commutes and the proof of (e) is complete.

(f) Let A nax denote the maximal Kauffman state. Thus T'(i) = M (L mas) by part (d).
Let d, = dimT'(7),. We fix a sequence of transpositions s that transforms the minimal
state into the maximal state, and we use the basis of T'(i) induced by s. In particular,

we have a basis {e1, e,...,eq,} for every vector space T'(i), with a € Qo.
Let M = (M,, M) be a submodule of T'(i). Each vector space M, is a subspace of
T(i)q, and thus the points in M, can be expressed as coordinate vectors (z1,...,%q4,)

with respect to our basis of T'(i),. For every vertex a € Qq, let 7, denote the canonical
projection from the vector space M = @®;cq,M; to the vector space M,. For any point
x € M, we define an integer m(a,z) as follows. If m,(z) = (z1,...,24,) # 0, we let
m(a, ) be the unique integer such that ,, ) # 0 and 2, = 0, for all k = m(a,z) +
1,...,dg. If () = 0, we let m(a,z) = 0. We then define a function m: Qo — Z by
m(a) = maxgep m(a, x). We will show that m(a) = dim M,.

If m(a) = 0 then 7,(x) = 0, for all z € M, and thus M is not supported at a, whence
dim M, = 0. If m(a) = 1 then 7,(z) € span{e1 }, for all z € M, and hence dim M, = 1.

Suppose now that m(a) > 2. Then dim7T(i), > 2 and thus the sequence s contains
the transposition at a at least twice. Denote the crossing points at the ends of the
segment a in K by p and p’, and denote the adjacent segments by b,¢,d and V', ¢, d’
in counterclockwise order as shown in the left picture of Fig. 13. The sequence s must
also contain the transpositions at b,c,d,b’, ¢’ and d’. The corresponding subquiver of
@ is shown on the right in Fig. 13. We have chordless cycles w, = dyfa and wy =
d'+'p'a’. Because of Remark 6.2, the action of w, on M, is as follows. If m,(z) =
(71,22, .., Tim(a), 0,...,0) then

Ta(z-wp) = (T2,23,...,Tm(a),0,...,0)

Ta(a - wh) (Tha1, Tha2s -+ Tin(a)s 05 - - -, 0) (8)
m(a)—1
ﬂa(x-wp( ) ) = (Tm(@)»0,...,0)
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Hence, since x,,(,) # 0, the vectors m,(z), mq(z - wy), ..., Ta(T - w;n(a)fl) are linearly

independent vectors in M,. Thus M, = span{ei,ez,..., €y} and hence dim M, =
m(a) as claimed.

In fact, each subspace M, C T'(i),, and hence the submodule M C T'(7), is completely
determined by m(a) = dim M,. In particular, the submodules of T'(i) are determined by
their dimension vector.

We will now show that M corresponds to a Kauffman state using induction on the
total dimension £ = Zaer dim M, of M. If £ = 0 then M = M(Sin) is the zero
module. Suppose now that £ > 1. Let a € Qo be such that S(a) is a direct summand
of top M. Recall that top M = M/radM = M/(M - radB) is the largest semisimple
quotient of M. In particular, we have a short exact sequence

0 L—Lo M S(a) —— 0, 9)

where L is the kernel of g. By induction, we can assume that there exists a state . such
that L = M (.¥). We will show that M = M ("), where .#’ is the state obtained from
< by the transposition at the segment a.

Since M is determined by its dimension vector, we only need to show that the state
< admits the transposition at a. In other words, the markers at segment a must be in
the positions indicated on the left of Fig. 13 and corresponding to the arrows 6,46’ € Q1
on the right of the same figure. It suffices to show that the subsequence s(p) of s ends
in the transposition at d and the subsequence s(p’) ends in the transposition at d’. We
will show this for s(p) only, since the other case is symmetric.

By Lemma 6.3, we know that |dim L, — dim L4| < 1 and |dim M, — dim M| < 1.
Moreover, the short exact sequence (9) implies dim M, = dim L, + 1, and thus dim L, =
dim Ly — 1 or dim L, = dim Lg. In the former case, the sequence s(p) must end in d, and
we are done.

Suppose now dim L, = dim L. The morphism g of (9) gives rise to the commutative
diagram

M,
My, — M,

|

0 —— S(a)a

with g, # 0. Thus the commutativity implies that g,M, = 0, and hence M, is not
surjective. Because of the description of the action of w, in equation (8), the cokernel
of M, o Mgo M, o M is of dimension one, and thus the cokernel of M, is of dimension
one. Consequently the exactness in (9) implies that the map L,, in the representation L
is surjective, and therefore the sequence s(p) does not end in a, by Lemma 6.4(ii).
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Next we show that s(p) does not end in b or ¢. Suppose first that dim M}, = dim M, =
£+ 1 then dim L, = dim L, + 1 and the sequence s(p) starts with b and L, = Vp. The
morphism f of (9) induces a commutative diagram

Lo=V,
Lb > La

\L fa=H;
Mq
My, — M,

fo=Iet1 l

whence M, = J,.

Then w, = dyBa acts like M, and we obtain Mg = M, = Ms = I. Thus Lg = L, =
I. Again Lemma 6.4(ii) implies that the sequence s(p) does not end in b or ¢. Therefore
5(p) must end in d, and we are done.

On the other hand, if dim M}, # dim M, then dim M, = dim M, —1 = ¢ and dim L; =
dim L, = ¢. Then the definition of L = M (%) implies that the map L,: Ly — L, is
either I, or Jy_1. In the latter case, the sequence s(p) would end in a, a contradiction.
Thus L, = I;. In view of the sequence (9), we obtain M, = Hy, and from equation (8),
we have M, oMgoM, oMs = J,. In particular, Mg, M., and Mjs are surjective, and using
(9) again, we see that Lg and L are surjective as well, since £ and + are not incident to
the vertex a. Now Lemma 6.4(ii) implies that s(p) does not end in b or c. This completes
the proof of part (f). O

Corollary 6.8. (a) For every dimension vector e the quiver Grassmannian Gre(T(7)) is
either empty or a point. In particular, the Euler characteristic

X(Gre(T(7))) =0 or 1.

(b) The F-polynomial of T (i) is

Froy= > yi=",
LCT()

2n dim L;
=174 :

where the sum is over all submodules of T(i) and yH™F =]
Proof. In the proof of part (f) of the proposition, we have seen that every submodule of
T(i) is determined by its dimension vector. Thus if there is a submodule of dimension
vector e then it is unique, and Gre(T'(4)) is a point. Otherwise it is empty. This shows
(a), and (b) follows directly. O

We are ready for the main result of this section.
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Theorem 6.9. The map & — M (%) is a lattice isomorphism from the lattice of Kauff-
man states of K relative to the segment i to the lattice of submodules of the module
T(i).

Proof. The map is well-defined by parts (a) and (d) of Proposition 6.7, injective by part
(b) and surjective by part (f). Part (e) implies that it is order preserving. Moreover the
maximum and minimum elements correspond by parts (c) and (d). O

6.3. Indecomposability

Proposition 6.10. The B-module T(i) is indecomposable.

Proof. First we show that the support of T'(7) induces a connected subquiver of Q. By
definition of T'(4), the support consists of all segments in K7\ K (0), which is obtained from
K by removing the two regions R, R that are incident to the segment ¢. If K\{R;, R} is
disconnected then we can draw a closed curve v in the plane that separates one connected
component from the rest. Putting back R; and Ry, we see that + crosses exactly two
regions in K. This means that K is a connected sum which contradicts our assumption
that K is prime. Thus the support of T'(i) is connected.

Suppose now T'(i) = M @ N is the direct sum of two nonzero B-modules. Let a: j — k
be an arrow in @ such that 7'(¢); and T'(i); are nonzero. By definition, the linear map

T(i) is nonzero, except possibly if there is a crossing point cycle j S k—>1—>m-—> j
such that T'(¢) has dimension one at vertices j, k,! and m, in which case one of the four
maps is zero and the others are the identity. Therefore, since the support of T'(7) induces
a connected subquiver of @), the supports of the two submodules M and N cannot be
disjoint.

Then there exists j € Qo such that M; and N; are both nonzero. Since j is a segment
in K, there exists a crossing point p € K, that is incident to j. Let w, denote the
corresponding 4-cycle in Q. Because of Remark 6.2, the vector space T'(i); = M; & N;
has a basis {e1, e, ..., eq} with respect to which the action of w, is given by the matrix
Ja—1.

Now let m € Mj, n € N; be nonzero elements and denote their expansions in the
basis as

n n
m = E HEEE n = E Vg€,
k=1 k=1

with pg, v, € k. Let k,,, and k,, be the largest indices such that py,, # 0 and v, # 0.

km_ kn_l
p p

right B-modules. Dividing by the scalars shows that e; € M; N N;, a contradiction to
the assumption that the sum T'() = M @ N is direct. O

Then m - whm= = py ey € Mj and n-w = Vg, e1 € Nj, because M and N are
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7. The main result

In this section, we prove that the Alexander polynomial of the link is a specialization
of the F-polynomial of any indecomposable summand of the link diagram module.

Let K be an oriented link diagram of a prime link and assume that K contains no
curls. Let n be the number of crossing points in K, and let i be a segment in K. Let
T(i) be the corresponding indecomposable summand of the link diagram module and
Fragy = ZLcT(i) ydm L jts F-polynomial as in Corollary 6.8(b).

For f € Z[y1,. .., y2n] we write f|; for the specialization of f at
—t if segment j runs from an undercrossing to an overcrossing;

Y = —t~1  if segment j runs from an overcrossing to an undercrossing; (10)
—1 if segment j connects two overcrossings or two undercrossings.

Theorem 7.1. The Alexander polynomial of K is equal to the specialization (10) of the
F-polynomial of every indecomposable summand T (i) of the link diagram module T. That
18

A=F T(4) ‘t~
Proof. Let A denote the Alexander polynomial of K. Kauffman’s theorem says that

A=Y (P (&), (11)
S

where the sum is over all states, o(%) = £1, and w(.¥) is a power of ¢t. The symbol =
means that the expressions on either side are equal up to sign and up to a power of t.
We denote by .7, the minimal state. Normalizing the above identity, we find

L o) w()

Let s = j1,72,...,j: be a sequence of transpositions that transforms .#,;, into .,
and let M () denote the state module introduced in Definition 6.1. Then

dim M(7) =) ej. (13)
k=1

where e;, € 72" is the vector that is 1 at position j, and 0 elsewhere.
Recall that, if a state .’ is obtained from a state . by a s single transposition at
a segment j € K; then w(j) = w(¥’)/w(.¥) is independent of the particular states
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7,." and only depends on the segment j. Moreover, in this situation, Lemma 2.7 of
[14] implies that o(.") = —o (). Thus

o) w()

= (mw(i))(—w(j2)) - .. (—w(j))- (14)

From our table in Fig. 4 we know that —w(j) is equal to the specialization of y; at (11).
Thus

—w(j) = yjle =y |-

dim M(#)|, - Applying this

Therefore the right hand side of equation (14) is equal to y<=2
result to the formula in (12), we obtain

A= ZydiimM(f)h.
7

Now Theorem 6.9 implies

Z yd1mL| —FT |t7

LCT(i

where the sum is over all submodules of T'(i), and thus it is the specialized F-
polynomial. O

8. A special case: 2-bridge links

A special class of links is the family of 2-bridge links K4, q,,....a,,; Which were first

.....

studied by Schubert in [28]. These links are parametrized by continued fractions

[a1,a2,...,ap] = a1 + ——— (15)
az + 71
o
Gy
with a; € Z>1. The link K, . ,,) consists of n braids on two strands whose number of
crossings is given by the a; and that are joined together in a linear fashion as shown in
Fig. 14 and such that the resulting link is alternating. K,, ... 4,] is a knot if the numerator
of the continued fraction (15) is odd, and it is a link with exactly two components
otherwise. For example, K[2,1,2,3] in Fig. 14 is a knot, because [2, 1,2, 3] = 27/10.
Let ¢ be the long segment at the bottom of the link diagram that connects the a;-braid
to the a,-braid. Then our construction of the link module T'(i) produces a Dynkin type
A module whose support is given by one of the quivers
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oSO

Fig. 14. The 2-bridge knot K[2,1,2, 3].

l=—2<— ...l —...—ly=— ...« Ly 1 — ...— (l,— 1),

l<— 2~ ... ~— Ul —...—ly— ... — Ly 1<~ ...~ (l,— 1),

where ¢; = a1 +as + - - - 4 a; and direction of the arrows at the right end depend on the
parity of n. The module T'(¢) is of dimension one at each vertex 1,2,... (¢, — 1) and its
linear maps on the arrows shown above are the identity maps.

In this situation, the F-polynomial of T'(¢) can be computed as a sum over all perfect
matchings of the snake graph Gj,, . 4,] associated to the continued fraction in [5]. We
have

Fru = Z y(P)

PeMatch gm a

29|

where y(P) is the height function of the poset of perfect matchings [21].

Remark 8.1. This module T'(¢) was implicitly used in [17], where the Jones polynomial
was realized as the specialization of the F-polynomial of T'(i) at y; = ¢~2 and y; = —t !
for all j = 2,3,...,n. We do not know how to generalize this specialization to other
segments 4 of this link, or to other type of links.

We obtain two consequences from the above discussion.
8.1. Type A cluster variables correspond to links

We have the following result.

Theorem 8.2. Let Q) be a quiver of Dynkin type A and let A(Q) be its cluster algebra. For
every non-initial cluster variable x € A(Q) there exists a link diagram K and a segment
1 € K1 such that the indecomposable summand T(i) of the link module is mapped to x
under the Caldero-Chapoton map.

Proof. Let CC denote the Caldero-Chapoton map. Since x is non-initial, there exists an
indecomposable k@-module M such that CC(M) = z, [4,3]. The support of M defines
a connected subquiver of @ which in turn determines a continued fraction [5] and hence
a 2-bridge link K. From the discussion above and our main theorem, we have a segment
1 € Ky such that T(1) = M. O



V. Bazier-Matte, R. Schiffler / Advances in Mathematics 408 (2022) 108609 41

8.2. An application to q-deformed rationals

In [20], Morier-Genoud and Ovsienko introduced g-deformed rationals and ¢-deformed
continued fractions. They propose a unimodality conjecture that can be rephrased in
terms of the specialized height function as follows.

Let M be an indecomposable type A module and let h be the linearization of the
lattice of submodules of M that maps submodules L of M to their total dimension.
Thus h(L) = dim L = }_, o, dim L;. Equivalently, we can think of % as a linearization
of the lattice of perfect matchings of the associated snake graph G that maps a perfect
matching P to the specialization of the height function setting all y-variables equal to t.
Thus h(P) = y(P)|y,;=¢ In other words, h associates to each lattice element the length
of the shortest chain from the element to the minimal element in the lattice.

Conjecture 8.3 (Morier-Genoud—Ouvsienko). The function h is unimodal.

Progress towards this conjecture has been made in [19].

Using our main theorem and properties of the Alexander polynomial, we have the
following result, which says that the alternating sum of the number of objects on each
level of the poset is —1,0, or 1.

Theorem 8.4. Let M be a module of Dynkin type A,, and L the submodule lattice of M.
Then

S (1) — { L1 if |£] is odd;

= 0  if|L] is even.

Proof. Combining Theorems 8.2 and 7.1, we see that there exists a 2-bridge link K
whose Alexander polynomial is the specialized F-polynomial of M. More precisely,

AK = FM|t = ZyMLh
LeLl

From the definition of the specialization (10), we see that evaluating the above equation
at t =1 gives

AK(D = Z ydi_mL

LeLl

y;=—1- (16)
Furthermore

ydi_m£l|y¢:—l = Hi y?im b yi=—1 = (_1)Zi dim Ly — (_l)h(L)'
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(A) Submodules of T'(1)
0

(B) Submodules of T'(2)

Fig. 15. Lattices of submodules of indecomposable modules on the Jacobian algebra given by the figure-eight
knot.

Thus equation (16) becomes

Ax() = 3 (~1)HD,

Lel

Now the result follows from property (ii) of subsection 2.1.1 and the fact that K is a
knot if and only if the number of submodules of M is odd. O

9. Examples

Example 9.1. Consider the figure-eight knot. We use the same labeling of segments as in
Example 3.1. The lattice of the submodules of the module T'(1) is shown at Fig. 15A.

The lattice isomorphism with the lattice of Kaufman states with regards to the seg-
ment 1 is obvious, see Fig. 3. The F-polynomial of T'(1) is

Fray =1+ y2 + ys + Y2ys + Y2YsYs
and its specialization at y, = —t, y5 = —t~! and yg = —t, as given by Equation (10), is
FT(1)|t =1-—3t+t2

Remark that the lattice of submodules of T'(2) is completely different for T'(1), see
Figs. 15A and 15B. The F-polynomial of T'(2) is

Friy =1+ ys + yYsys + y1y3Ys + Y1Y3yays
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and its specialization at y; = —t~ !, y3 = —t~! y4 = —t and yg = —t is

FT(2)|t = —t_l + 3 —t.

Example 9.2. For the representation 7'(1) in Fig. 11, the F-polynomial is the following
polynomial with 75 terms. This was computed using [15].

1+ ya+y1294 + ys + Y18ys + Y10Y18Ys + Y10Y18Y10Ys + Y10Y18Y10Y2Ys + Y10¥18Y19Y2Y20Y8 + Yays
+Yy1294Y8 + Y18Yays + Y10Y18Y4ys + Y12918Y4ys + Y10Y12Y18Y4Ys + Y10Y18Y19Y4¥Ys + Y10Y12Y18Y19Y4Y8
+Y10Y18Y19Y2Y4Ys + Y10Y12Y18Y19Y2¥4aYs + Y10Y18Y19Y2Y20Y4Y8 + Y10Y12¥18Y19Y2Y20Y4Ys + Y10Y18Y19Y8Y9
FY10Y17Y18Y10Y8Yo + Y10Y18Y19Y2YsYo + Y10Y17Y18Y19Y2YsY9 + Y10Y18Y19Y2Y20Ys8Y9o
+Y10Y17Y18Y19Y2Y20Ys8Y9 + Y10Y18Y19YaYsYo + Y10Y12Y18Y19Y4Y8Y9 + Y10Y17Y18Y19Y4YsY9
+Y10Y12Y17Y18Y19Y4Ys8Yo + Y10Y18Y10Y2Y4YsYo + Y10Y12Y18Y19Y2Y4Ys8Y9 + Y10Y17Y18Y19Y2Y4Y8Y9
+Y10Y12Y17Y18Y19Y2Y4YsYo + Y10Y18Y19Y2Y20Y4YsYo + Y10Y12Y18Y19Y2Y20Y4Ys8Y9
FY10Y17Y18Y19Y2Y20Y4Y8Y9 + Y10Y12Y17Y18Y19Y2Y20Y4YsY9 + Y10Y17Y18Y19Y4Y7Y8Y9
+Y10Y12Y17Y18Y10Y4Y7Y8Y9 + Y10Y16Y17Y18Y10Y4Y7Y8Y9 + Y10Y12Y16Y17Y18Y19Y4Y7Y8Y9
+Y10Y17Y18Y19Y2YaY7Y8Yo + Y10Y12Y17Y18Y19Y2Y4Y7Ys8Y9 + Y10Y16Y17Y18Y19Y2Y4Y7Y8Y9
+Y10Y12Y16Y17Y18Y19Y2Y4Y7Ys Y9 + Y10Y17Y18Y19Y2Y20Y4Y7Y8Yo + Y10Y12Y17Y18Y19Y2Y20Y4Y7Y8 Y9
+TY10Y16Y17Y18Y19Y2Y20Y4Y7Y8Y9 + Y10Y12Y16Y17Y18Y19Y2Y20Y4Y7Ys8Y9 + Y10Y17Y18Y19Y2Y20Y3Y4Y7Y8Y9
+Y10Y12917Y18Y19Y2Y20Y3Y4Y7Y8Y9 + Y10Y16Y17Y18Y19Y2Y20Y3Y4Y7Y8Yo + Y10Y12Y16Y17Y18Y19Y2Y20Y3Y4Y7Ys8Y9
FY10Y12Y17Y18Y19Y2Y20Y3Y4Y6Y7Y8Y9 + Y10Y12Y16Y17Y18Y19Y2Y20Y3Y1Y6Y7Y8Y9

+yloy1sy17y1sy19y4y7y§y9 + yloy12y16y17ylsy19y4y7y§yg + y10y16y17yf8y19y4y7y§y9
+y1oy1zy16y17yfsy19y4y7y§y9 + ymywynylsylgy2y4y7y§y9 + ywynywynymymyzy4y7y§y9
+yloyleyl7yfgy19y2y4y7y§y9 + ymy12ymynyrfsylgyzyz;yw;yg + ymylaynylsylgy2y2oy4y7y§y9
+y1oylzylsy17ylsy19yzyzoy4y7y§y9 + ymymywyfgy19yzyzoy4y7y§y9 + ywyuymywyfgymyzyzoywwgyg
+y1oy16y17y1sy19y2yzoy3y4y7y§y9 + y1oy1zy1ey17y18y19y2y2oy3y4y7y§y9 + ywywynyfgylgyzyzoy3y4y7y§y9
FY10Y12Y16Y17Y 8 Y19Y2Y20Y3 Y4 Y7 YR Yo + Y10Y12Y16Y17Y18Y19Y2Y20Y3Y4 Y6 Y7Ya Yo
+yloylzylsynyfsymyzyzoyaywsy7y§yg

The specialization is
Frayle = 3 — 9t + 16t — 19> + 16t* — 9t° + 3¢,
which is equal to the Alexander polynomial of the corresponding knot 10gg.

Example 9.3. The Conway knot and its quiver are illustrated at Fig. 16
The F-polynomial of T'(1) has 131 terms. The highest degree term is

Y2YaYryYsYio0Y11Y13Y14Y15Y18Y19Y20Y21Y22

The specialization gives Fr(1)|; = t, confirming that the Alexander polynomial is trivial,
since it is defined up to a power of t.
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12

Fig. 16. Conway knot and its quiver.
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