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Abstract The large deflections of cantilevered beams and rectangular plates are modeled and discussed.
Traditional nonlinear elastic models (e.g., von Karman’s) employ elastic restoring forces based on the effect
of stretching on bending, and these are less applicable to cantilevers. Recent experimental work indicates
that elastic cantilevers are subject to nonlinear inertial and stiffness effects. We review a recently established
(quasilinear and nonlocal) cantilevered beam model, and consider some extensions to two spatial dimensions,
namely inextensible plates. Our principal configuration is that of a thin, isotropic, homogeneous rectangular
plate, clamped on the one edge and free on the remaining three. We proceed through the geometric and elastic
modeling to obtain equations of motion via Hamilton’s principle for the appropriately specified energies. We
then enforce effective inextensibility constraints through Lagrange multipliers. Multiple plate analogs of the
established 1D model are obtained, based on assumptions. In total, we present three distinct nonlinear partial
differential equation models and, additionally, describe a class of “higher-order” models. Each model has
particular advantages and drawbacks for both mathematical and engineering analyses. We conclude with a
discussion of the various models, as well as some analytical problems.

Keywords Cantilever · Nonlinear elasticity · Inextensibility · quasilinear PDE · Energy harvesting
Mathematics subject classification 74B20 · 74K20 · 35L77 · 93A30

1 Introduction

The purpose of this manuscript is to obtain equations of motion—including boundary conditions—for the
large deflections of elastic cantilevers. Cantilevers, as a class of elastic objects, have received less attention
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in the voluminous literature on beams and plates. In particular, there is a dearth of work analyzing the large
deflections of cantilevers. Recent applications, as described below, have brought about the need for viable partial
differential equation (PDE)models (i.e., distributed parameter systems) that capture the relevant dynamics. For
instance, we are interested in the dynamics of a long, slender flapping beam. In terms of spatial distribution,
we consider both beams (1D) and plates (2D) here. As we are interested in large deflections, models will be
nonlinear in the displacement variables. The linear theory of elasticity is well established in both engineering
and mathematics for beams and plates (e.g., [2,7,9,20,28,35]). Often, standard models—such as that of Euler–
Bernoulli, Rayleigh, or Timoshenko for beams, and Kirchhoff–Love or von Karman for plates—are utilized
because they are sufficiently accurate, while being analytically and computationally tractable. For cantilevered
beams, we aim to produce a theory that generalizes the traditional linear theory in the realm of (nonlinear)
large deflections. We will consider planar transverse and in-axis displacements for beams, and for plates, we
will consider rectangular plates, with 3D displacements from an equilibrium given in a standard Euclidean
frame.

Unlike traditional nonlinear theories of beams and plates, where the boundaries are fully restricted, we
will not assume that nonlinear forces result from local stretching (extensibility), as would be the case for
fully clamped or hinged structures (panels). Rather, we will assume certain inextensibility conditions—that
the beam or plate does not stretch in specified ways throughout deflection. For a beam with clamped–free
edges or free–free edges, the assumption of inextensibility (zero mid-plane strain) is motivated by the zero-
strain boundary condition on the free edge(s). The enforcement of an inextensibility constraint via Lagrange
multipliers in the dynamics will yield nonlinear inertial terms in the equations of motion. For consistency
in order considerations, we will invoke higher-order expressions for the potential energy, yielding nonlinear
stiffness terms in the equations of motion when Hamilton’s principle is invoked.

Wewill specifically consider a platewith three free edges and one edge clamped. Clearly along the clamped
edge, the plate is not free to extend and must have strain in the direction parallel to the clamped edge. The
purpose of this investigation is to explore several alternative models based upon a variety of assumptions
about the 2D mid-plane strain. As seen in the three principal nonlinear cantilever models derived below, the
issue of shear strain is quite subtle. The most attractivemathematical model that generalizes the well-accepted
inextensible beam theory will require an assumption of zero mid-plane shear strain, as well as zero mid-plane
longitudinal strains. Clearly, this assumption must be violated locally along the clamped edge. We explore the
mathematical consequences of this assumption and also consider several alternative assumptions, which lead
to more complex mathematical models.

1.1 Motivating application

Under harmonic excitation [37], follower forces [34], or other boundary forces, cantilevers may experience
large deflections (say, on the order of their length). We focus here on the application of piezoelectric energy
harvesters. Slender cantilevers in axial1 airflows experience a self-destabilization known as flutter, even at low
flow velocities [17,19,42,44]. Beyond a critical flow velocity, the flow-structure system enters a limit cycle
oscillation (LCO), and such dynamics can generate extractable power [15].

While interest in airfoil and panel flutter has been immense for some 75 years (see [13]), interest in the
motion of cantilevers driven by axial flow has been modest, at least until about 20 years ago. In [1,24], the
cantilever flutter of the human soft palate was considered, and, as in most engineering scenarios, the flutter
thereof is undesirable, with a design goal of prevention. Lack of interest for this configuration seems to
derive from the few practical motivations. However, recent interest in alternative energies, in particular energy
harvesting [15,18], has provided reasons for the investigation of cantilever LCOs. In this application, dynamic
instability is encouraged in order to extract energy from post-onset cantilever LCOs. This has been shown
possible for flow-induced cantilever oscillations with affixed piezoelectric material [18,40,41,46].

This motivates the problem of characterizing post-flutter behaviors of cantilever (i.e., LCOs), which neces-
sitates a viable set of nonlinear equations of motion. In reality, we must practically consider distributed and
variable stiffness and damping effects, owing to the use and placement of piezoelectric patches and layers.
Recent experiments [25,30,38] and others [18,41] have studied piezoelectric structures in elastic energy har-
vesters.

1 Along the principal length of the beam or plate.
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Fig. 1 Experimental setup from [30]

Thus, there is a need for a theory of large deflections for cantilevers. In physically applicable scenarios,
the relevant theory should be truly 2D. To date, very little work has been done experimentally and analytically
in this configuration, relative to the immense body of work on extensible plates.

1.2 Modeling and analysis of cantilever large deflections

The primary focus of this work is to produce nonlinear equations of motion. These equations can subsequently
be analyzed numerically and analytically. As we have established, the models of interest are based on inexten-
sibility, rather than extensibility. In the case of extensible structures, models and theory are well-established,
especially in scenarios where the boundary is fully restricted (e.g., paneling [7,8,13]); such nonlinear restoring
forces are based on the effect of local stretching on bending. In the case of beams, a prominent example is
the Woinowsky–Krieger beam [47], which appends a semilinear extensible force to any of the standard linear
beams such as those of Euler–Bernoulli, Rayleigh, shear, or Timoshenko [20]. We note some classical mathe-
matical references for the analysis of such extensible beams, e.g., [3,16], as well as some more recent [22,23]
that specifically address extensible cantilever systems. Alternatively, [28] provides a modeling account (with
subsequent analysis of solutions and their stability) for an extensible beam that is intimately related to the
so-called full von Karman model for plates.

Indeed, for plates, the linear theory of Kirchhoff–Love is well established, and the prominent nonlinear
generalization for large deflections is the theory of von Karman [9] (and references therein). One can consult
[5,7,35] for classical discussions, and the rigorous mathematical justifications of these models in [9,29]. The
more modern references of [8,27] provide detailed discussion of solutions, stability, and dynamical systems
aspects of von Karman dynamics (among others). We finally mention [26] for the analysis of the full von
Karman plate, which is an extensible plate system that accounts for both in-plane and transverse inertial terms
(in contrast to the scalar von Karman equations [8]); the full von Karman plate equations, as we shall see, have
some mathematical similarities to the plate models derived herein.

We forgo an extensive discussion of the literature on the analysis of the aforementioned nonlinear beams
and plate models and focus specifically here on recent work that attempts to capture the effects of inextensibility
for cantilevers. It should be noted that the theory of von Karman is not viable (the operative hypotheses invoke
the effect of stretching on bending) in the case of a cantilever. As such, a theory based on inextensibility
must be developed from first principles. The earlier work of Païdoussis derives and discusses 1D inextensible
pipes conveying fluid, along with associated numerical stability analyses [36,39]. Subsequently, the thesis [32]
focuses on inextensible beams and plates, but primarily focuses on finite-dimensional descriptions through
Rayleigh–Ritz considerations, not providing the explicit equations of motion in the standard Euclidean frame.
The work of Dowell et al. further elaborated on inextensible beams and plates, developing several related
approaches and investigating an inextensible theory experimentally and numerically in the sequence of papers
[42,44,45]. Finally, the work of McHugh et al. [14,33,34] provided the first explicit calculus of variations
derivation of the PDE equations of motion of an inextensible beam (in both the free–free and cantilever
configurations). Apart from these papers, other aforementioned analyses primarily employ the Rayleigh–Ritz
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procedure to obtain finite-dimensional equations of motion directly from specified energies, circumventing
the PDE equations of motion. Numerical comparisons and computational studies are then performed. The
discussion of boundary conditions for the 2D system (from first principles) is typically omitted, and the
rigorous analysis of solutions, as well as the well-posedness thereof, is not made.

Recently, for the inextensible cantilever as derived in [14], amathematical theory of solutionswas developed
[11,12]. In the present manuscript, we aim to take an analogous first step in this direction, by providing the
PDE equations of motion for the “natural" beam extension to a 2D inextensible plate. We specifically follow
the approaches for the beam, coming from references [12,14,33]. To begin our considerations, we will first
revisit the setup for an inextensible cantilevered beam; this will provide a template for plate considerations.
In doing so, we will include a novel “higher-order” beam model, which is motivated from a possible need for
inclusion of such effects for the plate.

As we shall see, there is no single, clear plate extension of the our beam model. Indeed, there are certain
modeling and order choices, each of which yields a different system for the equations of motion. The presence
of 2D shear effects is a critical aspect of the analysis here. Providing a careful derivation of the equations of
motion is indeed quite necessary, as we will see, since “natural” modeling choices produce nontrivial nonlinear
boundary conditions for each plate model. This is to say: it is notable that for the 2D plate, the modeling
hypotheses produce (nonlinear) boundary conditions, which are not those of a standard, linear, cantilevered
plate. Moreover, some aesthetic simplifications that present themselves in 1D will be conspicuously absent in
2D.

In the end, we will present various sets of hypotheses, yielding a variety of different systems of equations
of motion. To the best knowledge of the authors, each of the plate systems here is novel. In future work, we
will numerically analyze these models to compare against [42,43]. Moreover, the theory developed in [11]
will be adapted, at least in the cases where the 2D equations of motion most closely resemble those of the
inextensible cantilevered beam in [11,14]. Indeed, one principal goal in this work is to address inextensibility
in the standard coordinate framework—which is to say, to extend standard linear beam theory, rather than using
more sophisticated geometric models (such as those of [2]). In this way, existing mathematical and numerical
tools, as well as theory, can be utilized, viewing these models as “extensions” of the classical linear theory of
elasticity. Finally, we provide a brief discussion of the numerical work from [33] in Sect. 4.

1.3 Outline of the remainder of the paper

To provide context for the approach we take to inextensible plates, we first give a summary of the work in
[11,14] for the recent inextensible cantilevered beams in Sect. 2.

Section 3 is the principal modeling section. There, we walk through our choices for the potential energies,
as well as the interpretation and enforcement of “inextensibility” in the plate. Ultimately, we present three
distinct models in Sect. 3, with a clear discussion of the relevant modeling and order hypotheses. Each model
is presented as a system of partial differential equations in the elastic deflection variables, as well as constraint
variables. We conclude Sect. 3 with a description of how to obtain a class of higher-order models, though
without explicitly producing the equations of motion.

Finally, in Sect. 4 we discuss and compare the derived models from both the engineering and analysis-of-
PDE points of view.

1.4 Conventions and notation

We utilize the convention that spatial points x are identified with their position vector 〈x, y, z〉. We will
sometimes write x1 = x, x2 = y, x3 = z when it is notationally expedient. The equilibrium (undeformed)
domain under consideration will be cylindrical, namely {x ∈ � × (−h/2, h/2)}. The domain � will be

identified as the centerline, z = x3 = 0. We make use of the partial derivative notation
∂

∂xi
= ∂xi , as well

as the standard 2D spatial gradient ∇ = 〈∂x , ∂y〉, divergence [∇·], and Laplacian (in rectangular coordinates)

� = ∇ · ∇ =
∑2

i=1
∂2xi .
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2 Inextensible cantilevered beams

We begin our discussion with cantilevered beams. These are markedly simpler, owing to the lack of interaction
in the chord-wise and span-wise dynamics. The exposition here mirrors [12,14]. By presenting a streamlined
version of the 1D model and its procurement from precise geometric and order hypotheses, we elucidate the
decisions which lead to the plate models in subsequent sections.

Consider a slender, isotropic, homogeneous beam, as is standard in Euler–Bernoulli beam theory [20].
We assume that the filaments of the beam remain perpendicular to the centerline throughout deflection (the
Kirchhoff–Love hypothesis—see [20,28]). The variable x ∈ [0, L] will represent the beam’s centerline at
equilibrium. We utilized the notation 〈x + u(x, t), w(x, t)〉 ∈ R

2 for the planar deflection that corresponds to
the equilibrium point x at instant t . This is to say that u is the in-axis displacement of the beam, whereas w is
the transverse displacement. In this way, the beam’s displaced curve is parametrized by x with position vector
〈x + u(x, t), w(x, t)〉 at time t . If we let ε denote the strain associated with the beam centerline, we have the
identity [10,28,35]: [

1 + ε]2 = (1 + ux )
2 + w2

x . (2.1)

2.1 Inextensibility

When the beam is inextensible, we take there to be no center-line extensional stress, i.e., ε(x, t) = 0. This
yields the condition:

1 = (1 + ux )
2 + w2

x . (2.2)

By expanding (2.2), we see that if wx ∼ η, we will have ux ∼ η2:

2ux + u2x + w2
x = 0.

Therefore, we may elect to drop terms of order u2x ∼ η4, owing to their relative order. Approximating, then

0 = 2ux + w2
x ⇒ ux = −1

2
w2
x .

The above can be taken an effective inextensibility constraint, providing a direct relationship between u and
w:

u(x, t) = −1

2

∫ x

0
[wx (ξ, t)]2dξ. (2.3)

We note that the above analysis can easily be extended to “higher order,” as follows:

1 = (1 + ux )
2 + w2

x �⇒ ux = −1 ±
√
1 − w2

x . (2.4)

The binomial expansion can then be used to obtain expressions to higher order

ux = −1

2
w2
x − 1

8
w4
x − 1

16
w6
x . . . , |wx | < 1.

Let us now fix the nomenclature for effective inextensibility constraints, with reference to the order of
approximation.

Assumption 2.1 In referring to η2-order and η4-order approximations for the inextensible beam, we, respec-
tively, assume one of the following relations:

⎧
⎪⎪⎨

⎪⎪⎩

η2order : ux = −1

2
w2
x

η4order: ux = −1

2
w2
x − 1

8
w4
x .

(2.5)
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2.2 Energies

Define the elastic potential energy (EP) via beam curvature κ and constant stiffness D [7,24,35,39]2 in the
standard way:

EP ≡ D

2

∫ L

0
κ2dx .

As discussed above, the beam’s displaced configuration is parametrized by x ∈ [0, L]. As such, the curvature
is given by [10]

κ = (1 + ux )wxx − uxxwx

[(1 + ux )2 + w2
x ]3/2

.

Substituting in the (full) inextensibility constraint (2.2) in to the curvature κ , we obtain:

κ = (1 + ux )wxx − wxuxx = (1 − w2
x )

1/2wxx − wx
(
wxwxx (1 − w2

x )
−1/2) = wxx

(1 − w2
x )

1/2 .

In EP, we may invoke the appropriate geometric series for κ2 = w2
xx

(1 − w2
x )

and truncate to a given order in the

nonlinear coefficient of wxx ; we obtain κ2 ≈ w2
xx (1 + w2

x ) in the case of the η2-order approximation, and
κ2 ≈ w2

xx (1 + w2
x + w4

x ) in the case of the η4-order approximation.

Remark 2.1 Note that, at the stage of the potential energy simplification, we attempt to match the order of
approximation for the inextensibility condition and the approximated potential energy.

The kinetic energy (EK) is defined in the standard way, where we have mass-normalized the beam

EK ≡ 1

2

∫ L

0

[
w2
t + u2t

]
dx .

2.3 Beam equations of motion for η2-order

Weconsider displacementsu andw (and virtual displacements δu and δw),which respect the essential boundary
conditions at x = 0:

w, wx , δw, δwx : 0 at x = 0; u, δu : 0 at x = 0.

The effective inextensibility constraint, defined as f ≡ ux + (1/2)w2
x = 0, is enforced through the Lagrange

multiplier λ. We will minimize the Lagrangian:

L = EK − EP +
∫ L

0
λ f dx . (2.6)

Invoking Hamilton’s principle for the time-integrated variation of (2.6) yields the Euler–Lagrange equations of
motion and the associated boundary conditions (after the requisite integration by parts) for the displacements
u and w.

from arbitrariness of δu : utt + λx = 0; (2.7)

from arbitrariness of δw : wt t − D∂x
(
w2
xxwx

) + D∂xx
(
wxx

[
1 + w2

x

]) + ∂x (λwx ) = 0. (2.8)

For the (natural) boundary conditions at x = L in w (with u and λ then inferred), we have:

λ(L) = 0; (1 + w2
x (L))wxx (L) = 0; (1 + w2

x (L))wxxx (L) + wx (L)w2
xx (L) = 0. (2.9)

The standard free beam boundary conditions—wxx (L) = wxxx (L) = 0—are then obtained algebraically
from (2.9), and from Eq. (2.7), we write λ(L) − λ(x) = − ∫ L

x utt (ξ)dξ. We invoke the previously obtained

λ(L) = 0 to obtain λ(x) =
∫ L

x
utt (ξ)dξ.

2 Beam flexural rigidity, which can be given in terms of inertial and Young’s coefficients, E I .
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Remark 2.2 Here, and in the 2D sections which follow, the Lagrange multiplier(s) represent spatially dis-
tributed forces that serve to enforce the effective inextensibility constraint(s) through the beam/plate.

Presenting the system in (u, w, λ) yields some degree of redundancy, as one can fully eliminate both λ and
u in describing the dynamics above. Indeed, we can solve for λ in terms of u from (2.7); then, we can recover
u in terms of w from the constraint (2.3) to present the system solely in w. However, we present the system
in its full form in anticipation of more complicated 2D systems to follow; in the models presented below, we
will not be able to eliminate all non-transverse variables from the “complete” description. We can summarize,
then, in the following description of the η2 inextensible beam system:

utt+ λx = 0 (2.10)

wt t− D∂x
(
w2
xxwx

) + D∂xx
(
wxx

[
1 + w2

x

]) + ∂x (λwx ) = 0 (2.11)

ux = − 1

2
w2
x (2.12)

w(0) = wx (0) = 0; wxx (L) = wxxx (L) = 0; (2.13)

u(0) = 0; ux (L) = −1

2
w2
x (L) (2.14)

λ(0) =
∫ L

0
utt (ξ)dξ ; λ(L) = 0. (2.15)

Of course, the above equations would be supplemented by appropriate initial conditions for w, namely

w(x, 0) = w0(x), wt (x, 0) = w1(x).

Initial conditions for u are determined from those for w through the inextensibility constraint.

2.4 Beam equations of motion to η4-order

Repeating the steps in the previous section, we retain terms up to η4 in the effective inextensibility condition and
the curvature expression κ2. We obtain—paying particular attention to the natural boundary conditions—the
η4 inextensible beam system (omitting initial conditions):

utt+ λx = 0 (2.16)

wt t− D∂x
([wx + 2w3

x ]w2
xx

) + D∂2x
(
wxx

[
1 + w2

x + w4
x

]) + ∂x (λwx ) = 0 (2.17)

ux = − 1

2
w2
x − 1

8
w4
x (2.18)

w(0) = wx (0) = 0; wxx (L) = wxxx (L) = 0; (2.19)

u(0) = 0; ux (L) = −1

2
w2
x (L) − 1

8
w4
x (L) (2.20)

λ(0) =
∫ L

0
utt (ξ)dξ ; λ(L) = 0. (2.21)

3 Inextensible cantilevered plates

Let x = 〈x, y〉 ∈ R
2. We will let 〈u(x, t), v(x, t), w(x, t)〉 ∈ R

3 denote the mid-plate displacement (from
equilibrium) of a rectangular, cantilevered plate that occupies (at equilibrium) the region � × (−h/2, h/2).
The coordinate u is span-wise displacement, with v being chord-wise; w is the transverse deflection. (Thus,
〈x+u(x, t), y+v(x, t), w(x, t)〉 describes the position of the equilibrium point x at the instant t .) The physical
quantity ν ∈ (0, 1/2) represents the so-called Poisson Ratio.

Consider the open rectangle � ≡ {(x, y) ∈ (0, Lx ) × (0, Ly)}, representing the undeformed mid-plane
(z = 0) of the thin, homogeneous, isotropic plate. Let us take the four components of the boundary ∂� = �
(in standard orientation) to be given by



1936 M. Deliyianni et al.

�E = {x = Lx , y ∈ (0, Ly)}, �N = {x ∈ (0, Lx ), y = Ly},
�W = {x = 0, y ∈ (0, Ly)}, �S = {x ∈ (0, Lx ), y = 0}.

We have the associated outward unit normals: nE = e1, nN = e2, nW = −e1, nS = −e2 and
corresponding tangentials (respectively): e2, −e1, −e2, e1.

Remark 3.1 For reference, we provide the classical clamped-free conditions associated with a linear cantilever
in this configuration, that is, the plate is clamped on�W and free elsewhere.On�N , �S , the boundary conditions
are:

νwxx + wyy = 0; wyyy + (2 − ν)wxxy = 0.

On �E , the boundary conditions are:

wxx + νwyy = 0; wxxx + (2 − ν)wyyx = 0.

And, of course, on �W we have the clamped conditions:

w = 0; wx = 0.

The boundary conditions here are markedly simpler than the general case [8,27] involving the well-known B1
and B2 operators, owing to the simplified rectangular geometry.

3.1 Full elastic potential energy and strain–displacement relations

In this section, we discuss the plate potential energy. We have in mind to simplify it in accordance with the
relevant plate inextensibility constraints, as done analogously for the beam.We begin with the bulk description
of the potential energy, namely that the potential energy EP has the form:

EP = 1

2

∫ h/2

−h/2

∫

�

ε̂i j σ̂i jd�dz,

where ε̂ and σ̂ are the 3D strain and stress tensor (resp.) for 3D displacements. With the plate taken as
homogeneous and isotropic, we invoke the standard Hookean stress–strain relation

σ̂i j = E

1 + ν

(
ε̂i j + ν

1 − 2ν
ε̂kkδi j

)
, i, j = 1, 2, 3, (3.1)

where E > 0 is the Young’s modulus, ν ∈ (0, 1/2) is the Poisson ratio, and the Einstein summation convention
is in force (above δi j is that of Kronecker).

As is customary in thin plate theory, we assume the Kirchhoff–Love hypotheses.

Assumption 3.1 Assume σ̂33 = 0. We also assume that plate filaments that are originally orthogonal to
the mid-surface remain so throughout deflection and that said filaments have constant length; this induces
ε̂13 = ε̂23 = 0.

The above assumption reduces EP to the following expression [9,27], which we will use throughout this
treatment:

EP = 1

2

E

1 − ν2

∫

�

∫ h/2

−h/2

[
ε̂211 + ε̂222 + 2νε̂11ε̂22 + 1 − ν

2
ε̂212

]
dzd�. (3.2)

We now attempt to simplify, utilizing only mid-plane strains ε, curvature κ , and the higher-order tensorμ [35],
yielding:

ε̂11 = ε11 + zκ11 + z2μ11 (3.3)

ε̂22 = ε22 + zκ22 + z2μ22 (3.4)

ε̂12 = ε12 + zκ12 + z2μ12. (3.5)

In all of what follows, we drop the terms scaled by z2 above, consistent with [33,35].
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Assumption 3.2 In the expression for strains ε̂i j for i, j = 1, 2, we assume that each z2μi j for i, j = 1, 2 are
negligible.

It is necessary, at this point, to invoke strain–displacement relations [35]. Recalling that u, v and w denote
the Lagrangian mid-plane displacements, we have

ε11 = ux + 1

2

[
u2x + v2x + w2

x

]
(3.6)

ε22 = vy + 1

2

[
u2y + v2y + w2

y

]
(3.7)

ε12 = uy + vx + uxuy + vxvy + wxwy, (3.8)

which, as mentioned above, are the mid-plane extensible axial strains and the shear strain (resp.).

3.2 Inextensibility

The “true” inextensibility conditions would correspond to taking εi j = 0 [35,45]; this translates to no exten-
sional stresses along the mid-plane of the plate. In that case, we have three conditions, taken from (3.6)–(3.8)
by equating each to zero:

(1 + ux )
2 + v2x + w2

x = 1 (3.9)

u2y + (1 + vy)
2 + w2

y = 1 (3.10)

uy + vx + uxuy + vxvy + wxwy = 0. (3.11)

We refer to these as the full plate inextensibility conditions. The first condition is a span-wise inextensibility
constraint, the second is chord-wise, with the lattermost corresponding to shear.

The first two inextensibility conditions can be re-written (discarding non-physical square roots) as:

ux = − 1 +
√
1 − (v2x + w2

x ) (3.12)

vy = − 1 +
√
1 − (u2y + w2

y). (3.13)

These can be truncated through Taylor expansions about equilibrium. Namely (up to quartic terms):

ux = −1 +
√
1 − (v2x + w2

x ) = − 1

2
v2x − 1

2
w2
x − 1

4
v2xw

2
x − 1

8
v4x − 1

8
w4
x − · · · (3.14)

vy = −1 +
√
1 − (u2y + w2

y) = − 1

2
u2y − 1

2
w2

y − 1

4
u2yw

2
y − 1

8
u4y − 1

8
w4

y − · · · (3.15)

Remark 3.2 It is clear that any order analysis associated with truncating these identities—such as what is
done for the beam in Sect. 2.1—will involve the quantities vx , uy, wx , and wy . Specifically, the above invites
comparisons of ux to both vx , wx and vy to both uy, wy .

3.2.1 Effective inextensibility conditions

In working with the potential energy, we will invoke approximated versions of the inextensibility constraints
(3.9)–(3.11), analogously with the 1D beam. However, in the case of the plate, there are more complex order
comparisons that can be made, and a variety of assumptions can be taken.

In the simplest case, we can assert the following η2-type scaling assumption:

Assumption 3.3 Assume that ∂xiw ∼ η and assume that [∂xi u], [∂xi v] ∼ η2, for all i = 1, 2.

This is to say that we assume the in-plane gradient is of higher order than the slopes associated with transverse
deflection. With this assumption, we can reduce the full inextensibility constraints in (3.9)–(3.11) up to the
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order η2 (thereby dropping terms of the form [∂xi u][∂x j v], [∂xi u]2, [∂xi v]2). This produces a particular set of
η2-effective inextensibilty constraints:

ux = − 1

2
w2
x (3.16)

vy = − 1

2
w2

y (3.17)

uy + vx = − wxwy . (3.18)

Remark 3.3 One can directly obtain, from the above equations, the identities:

4uxvy − 2uyvx = [u2y + v2x ] and wxxwyy = w2
xy .

These are elaborated upon in [33,45]. We note that neither of these “composite” constraints over-constrain
the model, since they are derived from (combinations of) prior equations that each eventually correspond
(one-to-one) with a Lagrange multiplier variable.

Remark 3.4 The latter equality in theprevious remarkdoes provide another interesting identity via theboundary
conditions and integration by parts:

∫

�

w2
xydx =

∫

�

wxxwyydx =
∫

�

w2
xydx + wxwyy

∣∣∣
x=Lx

x=0
− wxwxy

∣∣∣
y=Ly

y=0
.

As we have yet to derive the higher-order boundary conditions via a variational procedure, the only condition
we can invoke is the essential condition that wx = 0 on {x = 0}, which finally yields:

wx (Lx )wyy(Lx ) = wxwxy

∣∣∣
y=Ly

y=0
.

Remark 3.5 Alternatively, in the choice of truncation above in Assumption 3.3, we could more closely follow
the logic of our beam approximation in simplifying (3.9)–(3.11). Namely, we might assume only that wx ∼ η,
from (3.9), and wy ∼ η from (3.10). We could expand to see that ux ∼ η2 with vx ∼ η, as well as vy ∼ η2

with uy ∼ η. In this case, we can choose to retain terms in the Taylor expansions (3.14)–(3.15) up to order η4:

ux = − 1

2
v2x − 1

2
w2
x − 1

4
v2xw

2
x − 1

8
v4x − 1

8
w4
x (3.19)

vy = − 1

2
u2y − 1

2
w2

y − 1

4
u2yw

2
y − 1

8
u4y − 1

8
w4

y (3.20)

uy+vx = −uxuy − vxvy − wxwy . (3.21)

Note that, if we go up to order η4, the shear inextensibility condition will be retained in full—no truncation
is called for. In the final class of models in Sect. 3.6, we will discuss the use of higher-order approximations
of the inextensibility constraints, analogous to the model in Sect. 2.4

3.2.2 Curvature expressions

To obtain expressions for κi j of the (x, y) ∈ � middle surface of the plate, we follow the Kirchhoff–Love
hypotheses (ε̂13 = ε̂23 = ε̂33 = 0), and tracking the work in [35], we obtain:

κ11 = (1 + ux )θx + vxψx + wxχx (3.22)

κ22 = uyθy + (1 + vy)ψy + wyχy (3.23)

κ12 = (1 + ux )θy + (1 + vy)ψx + uyθx + vxψy + wxχy + wyχx , (3.24)

with θ, ψ, χ given by:

θ = −(1 + vy)wx + vxwy; ψ = −(1 + ux )wy + uywx ; χ = ux + vy + uxvy − uyvx . (3.25)
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Remark 3.6 As noted in [35], the above expressions are themselves geometric approximations, assuming that
strains are small compared to 1. In [35], the relations û = u + zθ , v̂ = v + zψ , and ŵ = w + zχ are plugged
in to the strain relations for ε̂i3, then themselves simplified by geometric order considerations.

We can thus obtain:

κ11 = (1 + ux )[vxxwy + vxwxy − vxywx − (1 + vy)wxx ] (3.26)

+ vx [uxywx + uywxx − uxxwy − (1 + ux )wxy]
+ wx [uxx + vxy + uxxvy + uxvxy − uxyvx − uyvxx ]

κ22 = uy[vxywy + vxwyy − vyywx − (1 + vy)wxy] (3.27)

+ (1 + vy)[uyywx + uywxy − uxywy − (1 + ux )wyy]
+ wy[(1 + vy)uxy + (1 + ux )vyy − uyyvx − uyvxy]

κ12 = (1 + ux )[vxywy + vxwyy − vyywx − (1 + vy)wxy] (3.28)

+ (1 + vy)[uxywx + uywxx − uxxwy − (1 + ux )wxy]
+ uy[vxxwy + vxwxy − vxywx − (1 + vy)wxx ]
+ vx [uyywx + uywxy − uxywy − (1 + ux )wyy]
+ wx [(1 + vy)uxy + (1 + ux )vyy − uyyvx − uyvxy]
+ wy[uxx + vxy + uxxvy + uxvxy − uxyvx − uyvxx ].

In what follows, we will use these expressions along with the inextensibility conditions in order to produce
the potential energy from which we will obtain the equations of motion. Let us first truncate these relations
by dropping principal terms (second spatial derivatives) with coefficients of order higher than η2 (according
to the scaling in Assumption 3.3). After various cancellations, this yields :

κ11 = wyvxx + wxuxx − (1 + ux + vy)wxx (3.29)

κ22 = uyywx + wyuyy − (1 + ux + vy)wyy (3.30)

κ12 = 2[vxywy + uxywx − (1 + ux + vy)wxy]. (3.31)

Remark 3.7 Note that, in higher-order models, we may wish to retain more terms in the above.

3.3 Plate model I: three η2-inextensibility conditions

We beginwith the potential energy expression fromSect. 3.1.We invoke the three full inextensibility conditions
in (3.9)–(3.11) to eliminate ε11, ε22, ε12 from the energetic expression. Also, as previously mentioned, we drop
all z2μi j terms in the expressions for εi j . This yields:

EP = 1

2

[
1

12

Eh2

(1 − ν2)

] ∫

�

[
κ2
11 + κ2

22 + 2νκ11κ22 + 1 − ν

2
κ2
12

]
d�. (3.32)

We then invoke the curvature expressions in (3.29)–(3.31) and input them in (3.32).
After truncating terms,wewill obtain a potential energy (shown in the next section) forwhichwecan enforce

three effective inextensibility relations in (3.16)–(3.18). Then, utilizing Hamilton’s principle as in Sect. 2, we
will obtain a straightforward PDEmodel with clear equations of motion. On the other hand, enforcing the three
effective inextensibilty constraints results in three Lagrange multiplier variables that cannot be simultaneously
eliminated in the full description of the system.

3.3.1 Simplified energies

We employ the effective inextensibility constraints (3.16)–(3.18) in the curvature expressions given in (3.29).
In particular, we can differentiate (3.16)–(3.18) variously, simplify, and rewrite κi j solely in w

κ11 = −wxx

[
1 + 1

2
w2
x + 1

2
w2

y

]
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κ22 = −wyy

[
1 + 1

2
w2
x + 1

2
w2

y

]

κ12 = −2wxy

[
1 + 1

2
w2
x + 1

2
w2

y

]
.

We then form the appropriate products of κi j as they appear in (3.32). In line with the η2 analysis of the beam,
we retain in EP only terms with coefficients up to and including η2. (And thus we drop expressions of the form
[∂xiw]2[∂x jw]2∂2xkw.) The result is the potential energy we will employ for the two principal models in this
treatment:

EP = D

2

∫ Ly

0

∫ Lx

0

[
1 + w2

x + w2
y

] [
w2
xx + w2

yy + 2νwxxwyy + 2(1 − ν)w2
xy

]
dxdy, (3.33)

where we have now denoted D = 1

12

Eh2

(1 − ν2)
. We utilize the standard expression for the plate’s kinetic energy

(again with normalized mass density):

EK = 1

2

∫ Ly

0

∫ Lx

0

[
u2t + v2t + w2

t

]
dxdy.

3.3.2 Equations of motion

We introduce Lagrange multipliers λi (x, t), i = 1, 2, 3 acting to enforce the effective inextensibility con-
straints. Let λ1 be associated with the axial (effective) inextensibility condition (3.16), λ2 to the chord-wise
condition (3.17), and λ3 to the shear constraint (3.18). We invoke Hamilton’s principle for the Lagrangian,
written in the λi , EP, and EK, with virtual displacements δu, δv, and δw. The calculations are involved but
analogous to those in Sect. 2 for the 1D dynamics. Essential boundary conditions are enforced for u, v, and w
(and their virtual changes) on �W .

In this presentation, since the variables λi (x, t) serve to enforce a constraint in the equations of motion, we
will retain the equations (3.16)–(3.18) as part of the system:

ux + 1

2
w2
x = 0; vy + 1

2
w2

y = 0; uy + vx + wxwy = 0. (3.34)

For the dynamics, we obtain:

utt + ∂x (λ1) + ∂y (λ3) = 0 (3.35)

vt t + ∂y (λ2) + ∂x (λ3) = 0 (3.36)

wt t + D�[(1 + |∇w|2)�w] − D∇ · [|�w|2∇w]
+ ∂x (λ1wx ) + ∂y

(
λ2wy

) + ∂x
(
λ3wy

) + ∂y (λ3wx ) = 0. (3.37)

The above system would be supplemented with appropriate initial displacement w0 = w(x, y; 0) and velocity
w1(x, y) = wt (x, y; 0), from which the initial conditions for u and v can be inferred through the relationships
(3.16)–(3.17).

Taken as a system, the constraint equations in (3.34) and (3.35)–(3.37) constitute six equations in six
principle unknowns. As such, boundary conditions should be available and complement these equations for
each unknown, u, v, w and λi for i = 1, 2, 3.

Remark 3.8 Letting u = 〈u, v〉 and � =
[
λ1 λ3
λ3 λ2

]
, we have a nice vectorial description of the system that

makes for an apt comparison against other nonlinear plate equations (e.g., the full von Karman equations of
motion [9,26,27]):

ut t + div� = 0 (3.38)

wt t + D
[
�

[
(1 + |∇w|2)�w

] − ∇ · (|�w|2∇w
)] + div

(
�∇w

)
= 0, (3.39)
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where the action of� on the gradient is that of matrix multiplication in this presentation. Although the� terms
here serve to capture inertial effects due to the enforcement of three constraints, the full von Karman equations
have a comparable formal structure with respect to these terms. They differ, however, in the presence of the
other nonlinear terms.

Formally comparing these equations against other standard plate dynamics, we, of course, note that the
linear part of the plate corresponds to that of aKirchhoff–Love or Euler–Bernoulli (linear) plate. The quasilinear
terms in w in (3.38) seem novel, but are clear generalizations of the nonlinear stiffness terms appearing in the
beam equation (2.11).

3.3.3 Boundary conditions

Here, we provide the boundary conditions for w and for the λi . From these, the boundary conditions for u and
v can be inferred. On the clamped edge �W , we again have the essential boundary condition

w = 0; wx = 0 on �W .

The minimization of the Lagrangian and the arbitrariness of virtual displacements yield the natural bound-
ary conditions from the potential energy. For the second-order conditions inw, we obtain those of the standard
linear free plate:

wxx + νwyy = 0 on �E

wyy + νwxx = 0 on �S

wyy + νwxx = 0 on �N .

The potential energy produces nonlinear forces (cubic-type)—and thus boundary conditions—along the free
edges:

(1 − ν)
[
(1 + ν)wxw

2
yy − 2wxw

2
xy − 4wywyywxy

]
−

[
1 + w2

x + w2
y

] [
wxxx + (2 − ν)wyyx

] = 0 on �E

(1 − ν)
[
(1 + ν)wyw

2
xx − 2wyw

2
xy − 4wxwxxwxy

]
−

[
1 + w2

x + w2
y

] [
wyyy + (2 − ν)wxxy

] = 0 on �S

(1 − ν)
[
(1 + ν)wyw

2
xx − 2wyw

2
xy − 4wxwxxwxy

]
−

[
1 + w2

x + w2
y

] [
wyyy + (2 − ν)wxxy

] = 0 on �N .

Remark 3.9 The above conditions are clearly not the linear boundary conditions associated with the free plate,
as presented in Remark 3.1.

The Lagrange multipliers λi , as variables, also have boundary conditions. These are readily obtained from
Hamilton’s principle along the free edges:

λ1(x, y) = 0 and λ3(x, y) = 0 on �E

λ2(x, y) = 0 and λ3(x, y) = 0 on �S

λ2(x, y) = 0 and λ3(x, y) = 0 on �N .

Finally, we can express the boundary conditions for the Lagrange multipliers on the clamped edge �W
using (3.35)–(3.36) and the equations above:

λ1(0, y) =
∫ Lx

0

[
utt + ∂y (λ3)

]
dx; λ2(0, y) =

∫ Ly

y
[vt t + ∂x (λ3)] dy

∣∣∣∣
x=0

;

λ3(0, y) =
∫ Lx

0

[
vt t + ∂y (λ2)

]
dx,

as well as

λ1(x, y) =
∫ Lx

x

[
utt + ∂y (λ3)

]
dx

∣∣∣∣
y=0

on �S, λ1(x, y) =
∫ Lx

x

[
utt + ∂y (λ3)

]
dx

∣∣∣∣
y=Ly

on �N ,

λ2(x, y) =
∫ Ly

y
[vt t + ∂x (λ3)] dy

∣∣∣∣
x=Lx

on �E .

Remark 3.10 Note that, above, we have suppressed the dependence of the Lagrange variables on time.
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3.3.4 Reduction of system (3.35)–(3.37)

To be consistent with the beam system analysis, one may attempt to eliminate the λi , as well as the in-plane
variables u, v in the system. This would yield a dynamic equation in the principal elastic displacement w only
(as may be done for beam dynamics, and also as is possible in the case of von Karman’s equations via the Airy
Stress Function [9,27]). Yet, for the plate dynamics above, there seems to be no clear way to accomplish this.
We opt, here, to eliminate λ1 and λ2 and to use (3.16) and (3.17) to write u, v in terms of w. This critically
exploits the simplified nature of the span- and chord-wise effective inextensibility constraints at the η2-order.
In addition, we can see that since the third (shear) constraint (3.18) does not permit us to explicitly solve for a
displacement quantity, we will retain both w and λ3 in our reduced system.

To that end, we integrate (3.35) from x to Lx and utilize the boundary condition λ1(Lx , y) = 0. This
yields:

λ1(x, y) =
∫ Lx

x

[
utt + ∂y (λ3)

]
dx . (3.40)

Similarly, we integrate (3.36) from y to Ly and use the condition λ2(x, Ly) = 0. This gives:

λ2(x, y) =
∫ Ly

y
[vt t + ∂x (λ3)] dy. (3.41)

Substituting (3.40) and (3.41) into (3.37), we obtain:

wt t − D
[
�[(1 + |∇w|2)�w] − ∇ · (|�w|2∇w)

]
+ ∂x

(
wx

∫ Lx

x
utt

)
+ ∂y

(
wy

∫ Ly

y
vt t

)

+ ∂x

(
wx

∫ Lx

x
∂y (λ3)

)
+ ∂y

(
wy

∫ Ly

y
∂x (λ3)

)
+ ∂x

(
λ3wy

) + ∂y (λ3wx ) = 0. (3.42)

In-plane inertial expressions, utt and vt t , can be obtained, as in the case of the beam, by solving in (3.16),
(3.17), and (3.18) and formally differentiating in time. Note that, using the essential boundary conditions at
x = 0 for each of u, v, w, we have:

u(x, y) = − 1

2

∫ x

0
wx (ξ1, y)

2dξ1 (3.43)

v(x, y) − v(x, 0) = − 1

2

∫ y

0
wy(x, ξ2)

2dξ2 (3.44)

v(x, y) = −
∫ x

0
wx (ξ1, y)wy(ξ1, y)dξ1 −

∫ x

0
uy(ξ1, y)dξ1, (3.45)

where we have suppressed the dependence on t above. From which we have an expression for v(x, y), and
thence an expression for u(x, y), where both depend only on the transverse variable w:

v(x, y) =
∫ x

0

∫ ξ1

0
wx (ζ, y)wxy(ζ, y)dζdξ1 −

∫ x

0
wx (ξ1, y)wy(ξ1, y)dξ1. (3.46)

From these, we obtain the inertial expressions

utt = −
∫ x

0
[w2

xt + wxwxtt ]dξ1 (3.47)

vt t = −
∫ y

0
[w2

yt + wywytt ]dξ2 + vt t (y = 0). (3.48)

The above formulae in (3.42)–(3.48) showcase of the principal strengths of the η2-order effective inextensi-
bility constraints: namely,we obtain straightforward equations ofmotion in two unknowns,with a clear connec-
tion to the η2-order beam dynamics in Sect. 2.3. On the other hand, owing to the structure of the third effective
inextensibility constraint, (3.18), it does not seem that systematic integrations and/or differentiations—coupled
with the given boundary conditions—will allow a clean elimination of the λ3 variable. Thus, any analytical
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treatment of this system would seem to require both the w and λ3 variables directly. This is to say, we would
require retaining the constraint equation associated with λ3:

uy + vx = − wxwy, (3.49)

with u and v as above, written explicitly in terms of w. To this, initial and boundary conditions are affixed to
w, as described above, and to λ3, the boundary conditions described above.

3.4 Model II: partial use of effective shear constraint

In this model, we retain the treatment of the potential energy in Sect. 3.3.1. To wit: we retain all three full
inextensibility constraints (3.9)–(3.11) in eliminating the in-plane strains εi j from the potential energy in (3.2).
After this, we truncate all three inextensibility constraints to quadratic order (as in (3.16)–(3.18)). Finally, we
truncate the expanded potential energy as before to arrive at the potential energy expression in (3.33). On the
other hand, in developing the equations of motion, we elect (with foresight coming from those issues associated
with λ3 above) to enforce only the first two η2-effective inextensibility conditions, (3.16) and (3.17) through
Lagrange multipliers λ1, λ2. Thus, in this model, shear inextensibility is only implicitly enforced from the
point of view of the choice of the potential energy. We utilize only two Lagrange multipliers in the derivation
of the equations of motion.

In this presentation, the constraint variables λ1, λ2 serve to enforce the span- and chord-wise quadratic
effective inextensibility constraints. Accordingly, we retain these as part of the system:

ux + 1

2
w2
x = 0; vy + 1

2
w2

y = 0. (3.50)

For the dynamics, Hamilton’s principle yields identical nonlinear terms in w, owing to the use of EP as in
Sect. 3.3.2. Moreover, we do not retain any reference to the shear constraint in the equations, as there is no λ3
present. The unforced equations of motion are then:

utt + ∂x (λ1) = 0 (3.51)

vt t + ∂y (λ2) = 0 (3.52)

wt t + D
[
�[(1 + |∇w|2)�w] − ∇ · (|�w|2∇w)

] + ∂x (λ1wx ) + ∂y
(
λ2wy

) = 0. (3.53)

As before, the equations would be supplemented with appropriate initial displacement w0 = w(x, y; 0) and
velocity w1(x, y) = wt (x, y; 0), from which the initial conditions for u and v can be inferred.

3.4.1 Boundary conditions

The boundary conditions for w (which then yield conditions for u and v through (3.50)) are identical to
Sect. 3.3.3. The boundary conditions of the Lagrange multipliers λ1 in this case are:

λ1(x, y) =
∫ Ly

0
uttdy on �W , λ1(x, y) = 0 on �E ,

λ1(x, y) =
∫ Lx

x
uttdx

∣∣∣∣
y=0

on �S, λ1(x, y) =
∫ Lx

x
uttdx

∣∣∣∣
y=Ly

on �N .

And for λ2:

λ2(x, y) =
∫ Ly

y
vt tdy

∣∣∣∣
x=0

on �W , λ2(x, y) =
∫ Ly

y
vt tdy

∣∣∣∣
x=Lx

on �E ,

λ2(x, y) = 0 on �S, λ2(x, y) = 0 on �N .
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3.4.2 Reduction of system (3.51)–(3.53)

One of the primary benefits for this system, discussed further in Sect. 4, is that the Lagrangemultiplier variables
can be fully eliminated (as with the inextensible beam). Indeed, one obtains from (3.51) and (3.52) that

λ1(Lx , y) − λ1(x, y) = −
∫ Lx

x
uttdξ ; λ2(x, y) − λ2(x, 0) = −

∫ y

0
vt tdζ.

At this point, we can invoke the boundary conditions for λi , as seen above on the appropriate edge of the plate,
to conclude

λ1(x, y) =
∫ Lx

x
uttdξ ; λ2(x, y) = −

∫ y

0
vt tdζ. (3.54)

These quantities may be substituted directly into the equations of motion for w, which results in the
following closed system—with no reference to the Lagrange variables:

wt t + D�[(1 + |∇w|2)�w] − D∇ · [|�w|2∇w] + ∂x
(
wx

∫ Lx

x
uttdξ

) − ∂y
(
wy

∫ y

0
vt tdζ

) = 0 (3.55)

ux + 1

2
w2
x = 0; vy + 1

2
w2

y = 0. (3.56)

A complete description, then, would again provide the relevant initial and boundary conditions from the
principal variable here, w.

3.5 Model III: complete omission of the shear constraint

In natural succession from the previous models, one may inquire:
What happens if we omit the third (shear) constraint in the derivation?
This is a reasonable subsequent step, as we have in the previous model only partially made use of the

shear constraint. For the model in this section, we refrain entirely from making mention to a shear constraint.
With only span- and chord-wise inextensibility enforced, we obtain the equations of motion. In particular,
this showcases how convoluted the equations of motion become and demonstrates the usefulness of the shear
constraint.

3.5.1 Addressing the potential energy

The two constraints approach forbids elongation in the x and y axes but permits shear strain. This translates
into ε11 = ε22 = 0, but we will not take ε12 = 0. Immediately it is clear we will have more terms in the
equations of motion. As before, after invoking the full inextensibility conditions ε11 = 0 and ε22 = 0, we will
compute the associated potential energy and then truncate to a particular order.

Applying only two inextensibility constraints to eliminate ε11, ε22 into the bulk strain expressions (3.3)–
(3.5) yields:

ε̂11 = −z
[
wxx

(
1 + ux + vy

) − wxuxx − wyvxx
]

ε̂22 = −z
[
wyy

(
1 + ux + vy

) − wxuyy − wyvyy
]

ε̂12 = uy + vx + uxuy + vxvy + wxwy − 2z
[
wxy

(
1 + ux + vy

) − wxuxy − wyvxy
]
.

We then invoke the η2-order hypothesis to obtain the curvature expressions (3.29)–(3.31). We must also
truncate

ε12 = uy + vx + uxuy + vxvy + wxwy ≈ uy + vx + wxwy,

under the same η2-hypothesis. And, as before, we invoke the (two) η2-effective inextensibility constraints

ux = −1

2
w2
x , vy = −1

2
w2

y,

from which we can differentiate to solve for uxx and vyy .
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Remark 3.11 Without creating nonlocal conditions—and invoking boundary conditions, as yet undetermined–
we can no longer obtain expressions for vx , uy as before. We note that this is a key point of distinction when
we have imposed no notion of shear inextensibility.

Upon simplifying the terms as described above, we obtain:

ε̂11 = z

[
−wxx

(
1 + 1

2
w2
x − 1

2
w2

y

)
+ wyvxx

]

ε̂22 = z

[
−wyy

(
1 − 1

2
w2
x + 1

2
w2

y

)
+ wxuyy

]

ε̂12 = uy + vx + wxwy − 2zwxy

[
1 + 1

2
w2
x + 1

2
w2

y

]
.

Then, integrating in z and simplifying, with coefficients:

∫ h/2

−h/2
[ε̂211 + ε̂222]dz = h3

12

[
w2

yv
2
xx + w2

xu
2
yy − 2wyvxxwxx − 2wxuyywyy

− wy(w
2
x − w2

y)vxxwxx + wx (w
2
x − w2

y)uyywyy

+ w2
xx

(
1 + (w2

x − w2
y) + 1

4
(w2

x − w2
y)

2
)

+ w2
yy

(
1 − (w2

x − w2
y) − 1

4
(w2

x − w2
y)

2
)]

2ν
∫ h/2

−h/2
[ε̂11ε̂22]dz = νh3

6

[
vxxuyywxwy + wxxwyywxwxxuyy − wyvxxwyy

− 1

4
wxxwyy

(
w2
x − w2

y)
2 + 1

2

(
w2
x − w2

y)(wyvxxwyy − wxwxxuyy
)]

1 − ν

2

∫ h/2

−h/2
[ε̂212]dz = h(1 − ν)

2
(uy + vx + wxwy)

2 + h3(1 − ν)

6

(
1 + 1

2
w2
x + 1

2
w2

y

)2
w2
xy .

Recalling the full potential energy expression (3.2), we input the above expressions for the strains. Since
we are operating at the η2-level here for coefficients, we discard any terms with coefficients scaled by η3 or
higher. Note that, in the (new) situation where first derivative terms appear independent of second derivative
terms, we choose to retain. This yields

EP = 1

2

E

1 − ν2

∫

�

h3

12

[
w2

yv
2
xx + w2

xu
2
yy − 2wyvxxwxx − 2wxuyywyy

+ w2
xx

(
1 + w2

x − w2
y

)
+ w2

yy

(
1 − w2

x + w2
y

)]

+ νh3

6

[
vxxuyywxwy + wxxwyywxwxxuyy − wyvxxwyy

]
+ h3(1 − ν)

6

(
1 + w2

x + w2
y

)
w2
xy

+ h(1 − ν)

2
(uy + vx + wxwy)

2 d�.

Remark 3.12 The terms in final line above represent an interesting contribution, both in terms of their “h”
scaling, i.e., thickness, and being detached from principal second derivative terms.

Remark 3.13 For reference, the terms we discarded above include:

h3

12

[
wx (w

2
x − w2

y)uyywyy − wy(w
2
x − w2

y)vxxwxx + w2
xx

4
(w2

x − w2
y)

2 − w2
yy

4
(w2

x − w2
y)

2
]

− νh3

24
wxxwyy

(
w2
x − w2

y)
2 + νh3

12

(
w2
x − w2

y)(wyvxxwyy − wxwxxuyy
)

+ h3(1 − ν)

6

(1
2
w2
xw

2
y + 1

4
w4
x + 1

4
w4

y

)
w2
xy .
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Now, invoking the definition of the constant D, the potential energy can then be written:

EP = 6D

h

∫ Ly

0

∫ Lx

0

{
h2

12

[
w2
xx + w2

yy + 2νwxxwyy + 2(1 − ν)w2
xy

(
1 + w2

x + w2
y

)
+ (w2

x − w2
y)(w

2
xx − w2

yy)

− 2wywxxvxx − 2wxwyyuyy − 2ν
(
wywyyvxx + wxwxxuyy

) ]

+ 1 − ν

2

[
uy + vx + wxwy]2

}
dxdy. (3.57)

3.5.2 Equations of motion

As before, λ1 is used to enforce the span-wise effective constraint (3.16) and λ2 the chord-wise (3.17). Utilizing
the arbitrariness of the relevant virtual changes, we can gather the equations of motion. We recover both
effective constraints (3.16) and (3.17) via the associatedLagrangemultipliersλ1 andλ2 inHamilton’s principle.
Following the procedure of the previous sections, the equations of motion for the in-plane displacements are:

utt + ∂x (λ1) − D
[
wxyywyy + 2wxywyyy + wx∂

4
yw + νwxyywxx + 2νwxywxxy + νwxwxxyy

]

− 12D

h2
(1 − ν)

[
uyy + wxwyy

] = 0

vt t + ∂y (λ2) − 2D
[
wyxxwxx + 2wyxwxxx + wy∂

4
xw + νwyxxwyy + 2νwyxwyyx + νwywyyxx

]

− 12D

h2
(1 − ν)

[
vxx + wxxwy

] = 0.

We rewrite these and include the equation for w:

utt + ∂x (λ1) − 12D

h2
(1 − ν)

[
uyy + wxwyy

] − 2D∂2y
[
wx (wyy + νwxx )

] = 0 (3.58)

vt t + ∂y (λ2) − 12D

h2
(1 − ν)

[
vxx + wxxwy

] − 2D∂2x
[
wy(wxx + νwyy)

] = 0 (3.59)

wt t + ∂x (λ1wx ) + ∂y
(
λ2wy

) − D
[
∂4xw(1 + w2

x − w2
y) + ∂4yw(1 − w2

x + w2
y) + 2wxxyy(1 + w2

x + w2
y)

− νwxxyy(w
2
x + w2

y) − wx∂
4
yu − wy∂

4
x v + 4wxwxxwxxx + 4wywyywyyy − wxwyywxyy

− wywxxwyxx + (4 − 2ν)wxwxywxxy + (4 − 2ν)wywxywyyx − 4wxwxywyyy − 4wywyxwxxx

− 2wxyvxxx − 2wxyuyyy + 4(1 − ν)wxwxxwxyy + 4(1 − ν)wywyywxxy + w3
xx + w3

yy + wxxw
2
yy

+ wyyw
2
xx − (1 + 3ν)wxxw

2
xy − (1 + 3ν)wyyw

2
xy

]

+ 6D

h2
(1 − ν)

[
wxxw

2
y + 2wxwywxy + 2uywxy + vxxwy + 2vxwxy + w2

xwyy + uyywx

]
= 0.

3.5.3 Boundary conditions

On the clamped edge �W , we have:

w = 0; wx = 0; u = 0; v = 0.

For the second-order conditions, we have:
On �E :

wxx + νwyy = 0, wxx (1 + w2
x − w2

y) − wyvxx + νwyy − νwxuyy = 0.

On �S and �N :

wyy + νwxx = 0, wyy(1 − w2
x + w2

y) − wxuyy + νwxx − νwyvxx = 0.

For the third-order conditions, we have:
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On �E :

h2

6
wy

[
wxxx + νwyyx

] + (1 − ν)
[
vx + wxwy + uy

] = 0

h2

6

{
− wxw

2
xx − wxw

2
yy − wyyuyy − (2 − ν)wxw

2
xy − wxxx (1 + w2

x − w2
y) + 2wywxxwyx

+ wyxvxx + wyvxxx − νwyyx − νw2
xwxyy − 2(1 − ν)

[
wxyy(1 + w2

x + w2
y) + 2wywxywyy

] }

+ (1 − ν)
[
wxw

2
y + uywy + vxwy

]
= 0.

On �S and �N :

h2

6
wx

[
wyyy + νwxxy

] + (1 − ν)
[
uy + wxwy + vx

] = 0

h2

6

{
− wyw

2
yy − wyw

2
xx − wxxvxx − (2 − ν)wyw

2
xy − wyyy(1 − w2

x + w2
y) + 2wxwyywyx

+ wyxuyy + wxuyyy − νwxxy − νw2
ywyyx − 2(1 − ν)

[
wxxy(1 + w2

x + w2
y) + 2wxwxywxx

] }

+ (1 − ν)
[
w2
xwy + uywx + vxwx

] = 0.

The boundary conditions of the Lagrange multipliers λi are as follows:

λ1(x, y) = 0 on �E ; λ2(x, y) = 0 on �S; λ2(x, y) = 0 on �N ;
λ1(x, y) =

∫ Ly

0

{
utt − 12D

h2
(1 − ν)

[
uyy + wxwyy

] − 2D∂2y
[
wx (wyy + νwxx )

]}
dy

∣∣∣∣
x=0

on �W

λ1(x, y) =
∫ Lx

x

{
utt − 12D

h2
(1 − ν)

[
uyy + wxwyy

] − 2D∂2y
[
wx (wyy + νwxx )

]}
dx

∣∣∣∣
y=0

on �S

λ1(x, y) =
∫ Lx

x

{
utt − 12D

h2
(1 − ν)

[
uyy + wxwyy

] − 2D∂2y
[
wx (wyy + νwxx )

]}
dx

∣∣∣∣
y=Ly

on �N

λ2(x, y) =
∫ Ly

y

{
vt t − 12D

h2
(1 − ν)

[
vxx + wxxwy

] − 2D∂2x
[
wy(wxx + νwyy)

]}
dy

∣∣∣∣
x=0

on �W

λ2(x, y) =
∫ Ly

y

{
vt t − 12D

h2
(1 − ν)

[
vxx + wxxwy

] − 2D∂2x
[
wy(wxx + νwyy)

]}
dy

∣∣∣∣
x=Lx

on �E .

3.6 Higher-order models

We conclude the central part of the treatment of inextensible plates by addressing the natural question of
including higher-order terms in various modelling steps. We see that in the approaches above that, unlike for
the beam, there are critical junctures where the order (of truncation) affects the inextensibility considerations,
as well as (though not independent of) the analysis of the potential energy. On the one hand, it is possible to
address some of the shortcomings of the previous three models via the inclusion of higher-order effects; on the
other hand, as we have already seen, the simplest possible (and lowest order) truncations already yield models
which are notably complex.
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3.6.1 Higher-order inextensibility

We recall the “full” inextensibility constraints:

(1 + ux )
2 + v2x + w2

x = 1 (3.60)

u2y + (1 + vy)
2 + w2

y = 1 (3.61)

uy + vx + uxuy + vxvy + wxwy = 0. (3.62)

We can, of course, expand the first two to read:

2ux + u2x + v2x + w2
x = 0; 2vy + v2y + u2y + w2

y = 0. (3.63)

Remark 3.14 If we were to combine the span and chord constraints, we would have:

∇ · 〈u, v〉 = − 1

2

[|∇u|2 + |∇v|2 + |∇w|2] (3.64)

uy + vx = − [uxuy + vxvy + wxwy]. (3.65)

Now,wemay proceed aswe did before inAssumption 3.3 (and the discussion thereafter) and retain higher-order
terms (up to η4) in (3.14)–(3.15). In this case, we would obtain:

ux = − 1

2
[w2

x + v2x ] − 1

8
w4
x (3.66)

vy = − 1

2
[w2

y + u2y] − 1

8
w4

y (3.67)

uy+vx = −uxuy − vxvy − wxwy . (3.68)

On the other hand, more closely following the logic in 1D, we would have from (3.60) that w2
x ∼ η2, and also

then that ux ∼ η2, so we would discard only u2x , but not u
2
y . Similarly, from (3.61), we would discard v2y only

but not v2x . We can formalize this into a separate hypothesis.

Assumption 3.4 Assume that ∂xiw, ∂yu, ∂xv ∼ η, and assume that [∂xu], [∂yv] ∼ η2, for all i = 1, 2.

Formulating the reduced η4 constraints from the Taylor expansions in (3.14)–(3.15), we obtain:

ux = − 1

2
v2x − 1

2
w2
x − 1

4
v2xw

2
x − 1

8
v4x − 1

8
w4
x (3.69)

vy = − 1

2
u2y − 1

2
w2

y − 1

4
u2yw

2
y − 1

8
u4y − 1

8
w4

y (3.70)

uy+vx = −uxuy − vxvy − wxwy . (3.71)

3.6.2 Higher-order potential energy

With either of the choices in the previous section, we might develop an η4 potential energy. (This is principally
a distinction between taking Assumptions 3.3 and 3.4.) In doing so, we would revisit the analysis as before,
beginning with the potential energy expression

EP = 1

2

E

1 − ν2

∫

�

∫ h/2

−h/2

[
ε̂211 + ε̂222 + 2νε̂11ε̂22 + 1 − ν

2
ε̂212

]
dzd�. (3.72)

We would reconsider the full strains, discarding the terms which are quadratic in z (as in Assumption 3.2):

ε̂11 = ε11 + zκ11; ε̂22 = ε22 + zκ22; ε̂12 = ε12 + zκ12. (3.73)
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Recalling the strain–displacement relations

ε11 = ux + 1

2

[
u2x + v2x + w2

x

]
(3.74)

ε22 = vy + 1

2

[
u2y + v2y + w2

y

]
(3.75)

ε12 = uy + vx + uxuy + vxvy + wxwy, (3.76)

we may then choose to enforce inextensibility by taking each εi j = 0, i, j = 1, 2, or by only taking ε11 =
ε22 = 0. In either case, we must then implement curvature expressions which are themselves “accurate” up
to the order of η4. For the sake of space, we do not reproduce the curvature expressions from (3.26)–(3.28)
here, but suffice to say that one may implement either Assumption 3.3 or Assumption 3.4 up to order η4. We
demonstrate with (3.26):

κ11 = (1 + ux )[vxxwy + vxwxy − vxywx − (1 + vy)wxx ] (3.77)

+ vx [uxywx + uywxx − uxxwy − (1 + ux )wxy]
+ wx [uxx + vxy + uxxvy + uxvxy − uxyvx − uyvxx ].

Recall that under Assumption 3.3, up to order η2, we obtained:

κ11 = wyvxx + wxuxx − (1 + ux + vy)wxx .

Now, including all terms up to order η4 (from either Assumption 3.3 or Assumption 3.4), we should retain
all terms in (3.77). Indeed, coefficients on second-order terms are at or below η4 order in their coefficients.
Additionally, unlike the resulting analysis from the η2 inextensibility assumption, we cannot explicitly solve
for uxi x j and vxi x j to cleanly simplify the expressions in κ11. Thus, pursuing an η4-order model from either
Assumption 3.3 or Assumption 3.4 will require retaining expressions for κi j in their entirety, resulting in a
rather perilous expression for the potential energy EP.

We do not pursue this line further here. We have included the discussion above to demonstrate a general
method of building a model that consistently implements an order hypothesis across the inextensibility con-
straints. Moreover, we observe that it is possible to do so to ever-increasing order. On the other hand, as we
can already see through Models 1–3 above, the degree of complexity in the PDE models, boundary condi-
tions, and enforcement of the inextensibility constraints through Lagrange multipliers are notable at the level
of even η2.

4 Discussion and future work

We now provide some discussion of the plate models presented above.

• The principal benefit of building η2-platemodels is theymaintain u and v as decoupled variables, in that one
can solve for them in terms ofw. (This was the case of the beam analysis.) This, of course, is tremendously
useful in developing a clear and tractable set of equations of motion for analysis.

• The first point of departure from the beam theory presented in Sect. 2 is the emergence of nonlinear
boundary conditions (Sect. 3.3.3); this is a necessary by-product of invoking Hamilton’s principle with
the chosen potential energy (very similar to what occurs in [23] in an extensible situation). For any future
theory of existence and uniqueness of solutions for the inextensible plate mirroring that of the beam [11],
nonlinear boundary conditions will be a central issue. This is especially true, as the nonlinear boundary
conditions emerge in the notoriously troublesome higher-order plate conditions, and differ markedly from
the linear theory. In any approach making using mode functions, one has to be cognizant of this point, in
particular, from the point of view of convergence analysis and associated error near the free edges.

• Furthermore, even the linear mode functions associated with 2D cantilevered plates are notoriously chal-
lenging [4], far beyond the simple cantilever mode functions in 1D [22,23]. Moreover, with the afore-
mentioned appearance of nonlinear boundary conditions, linear mode functions will not satisfy relevant
inextensible plate boundary conditions, even if one could explicitly express such linear mode functions
through separation [6,31]. It is common in the engineering community to assumemode shapes aremultiples
of the 1D beam mode shapes, although for plates with free edges this is not exact [4].
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• The second major point of departure is the inability to neatly and cleanly resolve the equations through
the elimination of the Lagrange multipliers in Plate Models I and III. The benefit of Model II is that it
yields equations of motion that are written explicitly in the transverse deflection w; on the other hand, it
has an inherent discrepancy between the enforcement of the shear inextensibility constraint in the potential
energy (taken) and the Lagrange analysis (ignored as a constraint).

• The dissertation [33] demonstrated a numerical implementation of Model I described in this paper using
a Rayleigh–Ritz global modal method. It was found that the model was less stiff than a nonlinear model
analyzed byANSYS, a commercial finite elementmethod solver.Model IIIwas proposed in the dissertation,
and the same method was used to implement that model numerically. Using the potential energy associated
with Model III resulted in a plate, which was far stiffer than the one modeled in ANSYS.

• In the discussion of cantilever large deflections, it is not physically appropriate to discard utt or vt t in the
modeling as one would do in the case of the scalar von Karman dynamics [8,27]. Such a decision would,
of course, simplify the model; however, as nonlinear inertial effects are paramount here, doing so would
be a poor modeling choice. For a cantilevered beam, it is easily observed that these “acceleration terms”
are on the order of nonlinear stiffness terms for the first mode [42,45]. In general, this will be true for
the cantilevered plate, though this is not the case for beams or plates, which are restrained on opposing
boundaries (again, see the von Karman plate theory [9,27]).

• As a first mathematical step, one should solve the stationary problem(s) associated with the potential
energy EP in (3.33). This should be done from the point of view of internal and boundary loading. Some
preliminary numerics—discussed above—have considered edge loading, but no thorough numerical or
analytical studies have been undertaken. Mathematically, a first step will be developing a theory of strong
solutions for the stationary version of Model I (dropping time derivatives and Lagrange multiplier terms).
The resulting model is spatially quasilinear with nonlinear boundary conditions.

• It is apparent from the analysis in Model III and the discussion in Sect. 3.6 that higher-order methods can
and should be developed. However, owing to the apparent complexity of such models, their development
should be largely tailored to the context of what is to be modeled—for instance, paying close attention to
the plate’s aspect ratio.

• There is a substantial literature on cantilevered beams, which bend in two mutually orthogonal directions
and also twist about the beam axis. This corresponds to assuming that there is inextensibility only for
deformations along the beam axis and that v is only a function of x and t and w = h(x, t) + yα(x, t),
where x is the spatial coordinate along the beam axis (span), y is the spatial coordinate along the chord axis
and alpha is the twist about the x axis. For example, see [21]. Thus, this is a special case of a nonlinear plate
theory (not yet developed here or elsewhere), if only rigid body translation and rotation are considered in
the y direction.

• In all of our order assumptions herein, we began by declaring ∂xiw ∼ η. From the physical point of
view, one could make separate assumptions about wx and wy . An interesting consideration would permit
different orders for the slopes of w in the x and y directions, and it would be relevant to further allow
different orders in u and v.
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