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We study existence and lack thereof of closed, embedded, orientable, codimension
one, totally geodesic submanifolds of minimal volume, cusped, orientable, hyperbolic
manifolds.

57M50; 57K40

1 Introduction

Let W n denote a minimal volume, orientable, cusped hyperbolic n–manifold. We
will be concerned with the existence of closed, embedded, orientable, totally geodesic
hyperbolic submanifolds M n�1 ,!W n .

When n D 2, W 2 is either the thrice-punctured sphere or a once-punctured torus,
and in the former case there are no such submanifolds, whilst in the latter there are
many. In dimension 3, by work of Cao and Meyerhoff [5], the manifolds in question
are the complement of the figure-eight knot and its sister. These do not contain any
closed, embedded, orientable, totally geodesic surfaces (although they do contain
infinitely many immersed, closed, totally geodesic surfaces; see Maclachlan and Reid
[22, Chapter 9]). Indeed, they do not contain any closed, embedded essential surfaces
(see Thurston [32], Culler, Jaco and Rubinstein [8] and Floyd and Hatcher [9]). These 3–
manifolds are arithmetic hyperbolic 3–manifolds, as is the case for the thrice-punctured
sphere. The once-punctured torus has a positive-dimensional Teichmüller space, but
there are a finite number of examples which are arithmetic.

This paper is concerned with the following conjecture. As we discuss in Section 2.2,
Conjecture 1.1 is easily reduced to the only nontrivial case, that of dimension 4.

Conjecture 1.1 Let W n denote a minimal volume, orientable, cusped , arithmetic
hyperbolic n–manifold. If W n contains a codimension one, closed , embedded ,
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orientable , totally geodesic submanifold , then nD 2 and W 2 is an arithmetic , once-
punctured torus.

In [28], Ratcliffe and Tschantz provide a census of 1171 so-called integral congruence
two, hyperbolic 4–manifolds that are all obtained from face-pairings of the ideal 24–
cell in H4 . These are all commensurable cusped, arithmetic hyperbolic 4–manifolds
of Euler characteristic 1 (ie minimal volume). Amongst these, only 22 are orientable,
and these are listed in Section 8 together with some information that we will make use
of. Towards a positive resolution of Conjecture 1.1 we prove the following result:

Theorem 1.2 Let W denote one of the 22 manifolds mentioned above. Then W does
not contain a closed , embedded , orientable , totally geodesic hyperbolic 3–manifold.

As remarked upon, the 1171 integral congruence two, hyperbolic 4–manifolds are
all commensurable. In a private communication, J Ratcliffe and S Tschantz have
informed us that there are many more manifolds obtained by side-pairings of the ideal
24–cell in this commensurability class, namely 13 108 side-pairings of the ideal 24–
cell (up to symmetry of the 24–cell) yield a cusped hyperbolic 4–manifold of Euler
characteristic 1. Only 675 of these side-pairings provide orientable manifolds (which
include the 22 orientable ones of Theorem 1.2). In addition, Riolo and Slavich [29]
show that there is at least one more commensurability class of cusped, arithmetic
hyperbolic 4–manifolds that contains an orientable, cusped hyperbolic 4–manifold
with Euler characteristic 1.

At present we cannot say anything about Conjecture 1.1 for these other orientable
examples, nor do we have a classification of the finite number of commensurability
classes of cusped, arithmetic hyperbolic 4–manifolds that contain a manifold with
Euler characteristic 1 (although in principle this should be doable).

Our methods also apply to another situation. In [14], Ivanšić provides an example
of a cusped, orientable hyperbolic 4–manifold of Euler characteristic 2 that is the
complement of five 2–tori in S4 (with the standard smooth structure; see Ivanšić [15]).
This link complement arises as the orientable double cover of the nonorientable manifold
1011 in the census of integral congruence two, hyperbolic 4–manifolds mentioned
above (see also [14]). We prove the following result:

Theorem 1.3 Let W be the link complement in S4 described above. Then W

contains an embedded orientable, totally geodesic, cusped hyperbolic 3–manifold
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isometric to the complement of the link 83
9

(shown in Figure 1) in S3 , but no closed ,
orientable , embedded , totally geodesic hyperbolic 3–manifold.

A simple but elegant argument (see Ivanšić [13, Proposition 4.10]) shows that if X

is a hyperbolic link complement of 2–tori in S4 , then �.X / D �.S4/ D 2, and so
there are only finitely many hyperbolic link complements of 2–tori in S4 . A similar
statement holds more generally for link complements of 2–tori and Klein bottles in
other fixed 4–manifolds. Ivanšić, Ratcliffe and Tschantz [16] found four additional
examples of link complements of 2–tori in manifolds homeomorphic to S4 . These
arise as the orientable double covers of the nonorientable manifolds in the census
of [28] with numbers 23, 71, 1091 and 1092. In a forthcoming paper [6], we will
address the existence of closed, embedded, totally geodesic hyperbolic 3–manifolds in
these examples. This requires additional techniques.

By way of comparison, Thurston’s hyperbolization theorem shows many links in S3

have hyperbolic complements, and although it is known that many hyperbolic link
complements in S3 do not contain a closed, embedded, totally geodesic surface (eg
alternating links; see Menasco and Reid [23]), examples do exist (see Leininger [20]
and [23]).

Finally, we point out that if one merely asks for a smooth embedding of a closed,
orientable 3–manifold into S4 then there are obstructions; for example, it is a result
of Hantzsche [11] that if a closed, orientable 3–manifold M embeds in S4 , then
Tor.H1.M;Z//ŠA˚A for some finite abelian group A. In fact, the Kirby problem
list [18, Question 3.20] asks: Under what conditions does a closed, orientable 3–
manifold M smoothly embed in S4 ? We refer the reader to Budney and Burton [4] for
examples, more discussion of this question and additional references.
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2 Cusped, arithmetic hyperbolic manifolds

We will mainly work with the hyperboloid model of Hn defined using the quadratic
form jn defined as x2

0
Cx2

1
C � � �Cx2

n�1
�x2

n , ie

Hn
D fx D .x0;x1; : : : ;xn/ 2RnC1

W jn.x/D�1; xn > 0g

equipped with the Riemannian metric induced from the Lorentzian inner product
associated to jn . The full group of isometries of Hn is then identified with OC.n; 1/,
the subgroup of

O.n; 1/D fA 2 GL.nC 1;R/ WAtJnAD Jng

preserving the upper sheet of the hyperboloid jn.x/ D �1, and where Jn is the
symmetric matrix associated to the quadratic form jn . The full group of orientation-
preserving isometries is given by SOC.n; 1/D fA 2 OC.n; 1/ W det.A/D 1g.

2.1 Constructing cusped, arithmetic hyperbolic manifolds

Cusped, arithmetic hyperbolic n–manifolds are constructed as follows (see [33] for
example). Suppose that X DHn=� is a finite-volume, cusped hyperbolic n–manifold.
Then X is arithmetic if � is commensurable with a group ƒ< SOC.n; 1/ as described
below.

Let f be a nondegenerate quadratic form defined over Q of signature .n; 1/, which
we can assume is diagonal and has integer coefficients. Then f is equivalent over R

to the form jn defined above; ie there exists T 2GL.nC1;R/ such that T tF T D Jn ,
where F and Jn denote the symmetric matrices associated to f and jn , respectively.
Then T �1SO.f;Z/T \SOC.n; 1/ defines the arithmetic subgroup ƒ< SOC.n; 1/.

Note that the form f is anisotropic (ie does not represent 0 nontrivially over Q) if and
only if the group � is cocompact; otherwise the group � is noncocompact (see [3]).
By Meyer’s theorem [31, Section IV.3.2, Corollary 2], the case that f is anisotropic
can only occur when nD 2; 3.

2.2 Reducing Conjecture 1.1 to dimension 4

We include a quick proof of the following, likely well-known result. Clearly Theorem 2.1
then reduces Conjecture 1.1 to dimension 4.

Algebraic & Geometric Topology, Volume 21 (2021)
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Theorem 2.1 Let X DHn=� be a cusped , arithmetic hyperbolic n–manifold with
n� 5. Then X does not contain any codimension one , immersed , closed , totally geo-
desic hyperbolic manifold. On the other hand , it contains infinitely many codimension
one , immersed , cusped , totally geodesic hyperbolic manifolds.

Proof The first part now follows easily from the discussion in Section 2.1, since any
codimension one, immersed, totally geodesic hyperbolic manifold is arithmetic arising
from a quadratic form of signature .n� 1; 1/. Since n� 5, such a form is isotropic by
Meyer’s theorem, and so the submanifold in question is noncompact.

For the last claim we argue as follows. Assume that f is a diagonal form defined
over Q of signature .n; 1/ with n� 5. Then, we can restrict to a subquadratic form f1

of signature .n� 1; 1/, which by hypothesis is isotropic. Using Section 2.1 we can
use f1 to build a noncocompact subgroup H < � with H an arithmetic subgroup of
OC.n� 1; 1/. Now use the density of the commensurator of � to construct infinitely
many such groups H.

3 Some background from [28]

3.1 Integral congruence two, hyperbolic 4–manifolds

For convenience we now set J D j4 . The manifolds of Theorem 1.2 are all obtained
by face-pairings of the regular ideal 24–cell in H4

�
with all dihedral angles �

2

�
, and

arise as regular .Z=2Z/4 covers of the orbifold H4=�.2/, where �.2/ is the level
two congruence subgroup of the group OC.J;Z/D OC.4; 1/\O.J;Z/. These are
the manifolds referred to as integral congruence two, hyperbolic 4–manifolds in [28].

It will be useful to describe the .Z=2Z/4 action, and this is best described in the ball
model as follows. Locate the 24–cell in the ball model of hyperbolic space with vertices

.˙1; 0; 0; 0/; .0;˙1; 0; 0/; .0; 0; 0˙1; 0/; .0; 0; 0;˙1/;
�
˙

1
2
;˙1

2
;˙1

2
;˙1

2

�
:

The four reflections in the coordinate planes of R4 can be taken as generators of this
.Z=2Z/4 group of isometries. Passing to the hyperboloid model, these reflections are
elements of �.2/ and are listed as the first four matrices in [28, page 110]. Follow-
ing [28], we denote this .Z=2Z/4 group of isometries by K<�.2/. Note, from Table 2
of [28], only one of the 22 examples under consideration admits a larger group of
isometries (of order 48) than that given by K. In particular, none of these 22 manifolds
are regular covers of the orbifold H4=OC.J;Z/ (since ŒOC.J;Z/ W�.2/�D 120).
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J

Figure 1: The links 63
2 , 83

9 and 84
2 .

As noted in [28] (see also [27]) all of the face-pairings of any of the integral congruence
two, hyperbolic 4–manifolds are invariant under the group K. This implies that each of
the coordinate hyperplane cross-sections of the 24–cell extends in each of the integral
congruence two, hyperbolic 4–manifolds to a totally geodesic hypersurface which
is the fixed-point set of one of the reflections described above. Following [27], we
call these hypersurfaces cross-sections. As described in [27], these cross-sections can
be identified with integral congruence two, hyperbolic 3–manifolds, which are also
described in [28]. Moreover, it is possible to use [28] to identify these explicitly in any
given example. The following can be deduced from [28] or [27]:

Lemma 3.1 Any orientable cross-section is isometric to one of the complement in S3

of the link 63
2

(the Borromean rings), the link 83
9

or the link 84
2

(see Figure 1).

Proof Each of the 3–dimensional cross-sections must be isometric to one of the
107 possibilities encoded in [28, page 115]. However, these 107 are classified into 13
equivalence classes corresponding to isometry classes of the corresponding 3–manifolds
[28, Theorem 5], out of which only three are orientable 3–manifolds. The three
orientable possibilities are described in [28, pages 108–109] and are the complement
in S3 of the link 63

2
, the link 83

9
or the link 84

2
.

3.2 More about the links 63
2

, 83
9

and 84
2

Let L denote one of the links 63
2

, 83
9

or 84
2

. The complements of these links share the
same 3–dimensional hyperbolic volume, which is approximately 7:3277247 : : : .

Lemma 3.2 S3 nL does not contain a closed , embedded , totally geodesic surface.

Algebraic & Geometric Topology, Volume 21 (2021)
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Proof It is shown in [21] that the complement of the Borromean rings is small (ie it
does not contain any closed, embedded, essential surface), and in particular does not
contain a closed, embedded, totally geodesic surface.

The link 84
2

is the Montesinos link K
�

1
2
; 1

2
; 1

2
;�1

2

�
(in the notation of [26]) and

so Theorem 1 of [26] implies that any closed, embedded, essential surface in the
complement of 84

2
arises from tubing the obvious 4–punctured spheres separating pairs

of tangles. In particular, such a surface carries an accidental parabolic, and so cannot
be totally geodesic. Indeed, in this case, it can be shown that in fact 84

2
is small, as

these tubed surfaces compress.

Now consider the case of LD83
9

, and suppose that S3nL contains a closed, embedded,
totally geodesic surface S. Trivial filling on the component J in Figure 1 provides
a split link, and hence S compresses in this filling. In addition, ˙1 fillings yield a
manifold homeomorphic to the complement of the Whitehead link, which, being a
2–bridge link, does not contain any closed, embedded, essential surface [12]. Thus
S compresses in both ˙1 fillings. Now the surface S is totally geodesic (so does
not carry an accidental parabolic element), and so an application of [34, Theorem 1]
(following [7]) provides a contradiction since the slopes ˙1 have distance 2.

4 Codimension one, closed, totally geodesic submanifolds in
cusped, arithmetic hyperbolic 4–manifolds

In dimension 3, any cusped, arithmetic hyperbolic 3–manifold contains infinitely many
immersed, closed, totally geodesic surfaces (see [22, Chapter 9]). In this section, we
show that the situation in dimension 4 is similar, providing a contrast with Theorem 2.1
in dimensions � 5.

4.1 Immersed, closed, totally geodesic hyperbolic 3–manifolds in
integral congruence two, hyperbolic 4–manifolds

We first show that the integral congruence two, hyperbolic 4–manifolds of [28] all
contain many immersed, closed, totally geodesic hyperbolic 3–manifolds (indeed any
manifold in the commensurability class of these integral congruence two, hyperbolic
4–manifolds). To that end, let p ��1 mod 8 be a prime, and qp the quadratic form
(over Q) given by x2

1
Cx2

2
Cx2

3
�px2

4
. The congruence condition on p implies that

this form is anisotropic, and so, as in Section 2.1, the group SO.qp;Z/ determines a
cocompact arithmetic lattice in SOC.3; 1/.
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Proposition 4.1 With p as above , and given any integral congruence two , hyperbolic
4–manifold N , there is a finite-index subgroup ƒN <SO.qp;Z/ such that H3=ƒN ,!

H4=N is an immersed , closed , totally geodesic hyperbolic 3–manifold. In particular ,
any such N contains infinitely many commensurability classes of immersed , closed ,
totally geodesic hyperbolic 3–manifolds.

Proof The proof of the first claim will follow using standard arguments on equivalences
of quadratic forms over Q yielding commensurable arithmetic lattices. In particular,
we need to show that the quadratic form qp ? hpi is equivalent to the form J of
Section 3.1 over Q (see [1, Sections 5–6], for example). In this case, the equivalence
can be seen directly, as follows.

Let p D 8k � 1, and let

Ap D

�
4k 4k � 1

4k � 1 4k

�
; D D

�
1 0

0 �1

�
and Dp D

�
p 0

0 �p

�
:

A simple calculation shows that ApDAt
p DDp , and from this the required equivalence

can be deduced.

The second part follows from the fact that there are infinitely many primes ��1 mod 8,
and, as noted above, all these quadratic forms, being anisotropic over Q, provide closed
hyperbolic 3–manifolds.

4.2 Immersed, closed, totally geodesic hyperbolic 3–manifolds in
arithmetic hyperbolic 4–manifolds

In this section we prove that the conclusion of Proposition 4.1 holds much more broadly
for cusped, arithmetic hyperbolic 4–manifolds.

Theorem 4.2 Let W be a cusped , arithmetic hyperbolic 4–manifold. Then W con-
tains infinitely many commensurability classes of immersed , closed , totally geodesic
hyperbolic 3–manifolds.

We begin with some preliminaries on nondegenerate diagonal quaternary quadratic
forms

fp D a1x2
1 C a2x2

2 C a3x2
3 C a4x2

4

over the local field Qp for p a prime or pD�1, with the understanding that Q�1DR.

Algebraic & Geometric Topology, Volume 21 (2021)
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Let cp.f / denote the Hasse–Minkowski invariant, which is defined as

(1) cp.f /D
Y
i<j

.ai ; aj /p;

where . � ; � /p denotes the Hilbert symbol. This invariant depends only on the equiva-
lence class of f and not on the choice of orthogonal basis.

We collect some useful statements about Hilbert symbols and quadratic forms over
local fields taken from [31]. Throughout,

�
u
p

�
D .u;p/p denotes the Legendre symbol,

which, as in [31, Section II.3.3], is extended to be defined for u 2 Z�p .

Lemma 4.3 (a) If p ¤ 2, the image of the integer x D pnu is a square in Q�p if
and only if n is even and

�
u
p

�
D 1 [31, Section II.3.3, Theorem 3, page 17].

(b) The image of the integer x D 2nu is a square in Q�
2

if and only if n is even and
u� 1 mod 8 [31, Section II.3.3, Theorem 4, page 18].

(c) The Hilbert symbol satisfies the formulas [31, Section III.1.1, Proposition 2,
page 19]

(i) .a; b/p D .b; a/p ,

(ii) .a; b2/p D 1,

(iii) .a;�a/p D 1.

(iv) .�1;�1/p D

�
�1 if p D�1; 2;

1 if p is odd.

(d) If aD p˛u and b D pˇv , then

.a; b/p D

(
.�1/˛ˇ�.p/

�
u
p

�ˇ� v
p

�˛ if p ¤ 2;

.�1/�.u/�.v/C˛!.v/Cˇ!.u/ if p D 2;

where �.u/ denotes the class modulo 2 of 1
2
.u� 1/ and !.u/ denotes the class

modulo 2 of 1
8
.u2� 1/ [31, Section III.1.2, Theorem 1, page 20].

(e) By Dirichlet’s theorem , if a and m are relatively prime positive integers , there
exist infinitely many primes q such that q � a mod m; see [31, Section III.2.2,
Lemma 3, page 25].

(f) A quadratic form fp over Qp is anisotropic if and only if its determinant d.f /

is in .Q�p/
2 and cp.fp/D�.�1;�1/p [31, Section IV.2.2, Theorem 6, page 36].

(g) By the Hasse principle , a quadratic form f over Q is anisotropic if there is some
prime p for which the local form fp over Qp is anisotropic [31, Section IV.3,
Theorem 8, page 41].
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Proof of Theorem 4.2 Let W D H4=ƒ be such that ƒ is an arithmetic group
commensurable to a group SO.f;Z/ for some nondegenerate quadratic form f defined
over Q of signature .4; 1/. According to [25, Theorems 6 and 8], the commensurability
class of SO.f;Z/ is uniquely determined by the projective equivalence class of f ,
which, in turn, is itself determined by an invariant S which is a product of s distinct
odd primes, and another invariant e�1.F / (which we will not define here). In our case,
because every f has signature .4; 1/, this invariant is always 2 and so can be ignored.
Hence the projective equivalence class of f is completely determined by S.

Using [25, Theorem 10] (actually Claim 2 of the proof of Theorem 10), we may take
f to be the diagonal form (with basis fe0; e1; e2; e3; e4g)

(2) f D

�
h�1; 1; 1; aS; ai if S � 1 mod 4;

h1; 1; 1; aS;�ai if S ��1 mod 4;

where a is an odd prime such that a−S, a � .�1/s mod 4 if S � 1 mod 4 or a �

.�1/sC1 mod 4 if S � �1 mod 4, and
�
�a
p

�
D �1 for all p jS. The proof will be

completed as a consequence of Lemmas 4.4 and 4.5, stated and proved below.

Lemma 4.4 Suppose f D h�1; 1; 1; aS; ai with S � 1 mod 4 and a−S, a� .�1/s

mod 4 with
�
�a
p

�
D�1 for all p jS as in equation (2). Then f contains infinitely many

projectively inequivalent , anisotropic quadratic subforms over Q of signature .3; 1/.

Proof Suppose first that s is even, so, from the description of a given above, a� 1

mod 4. By Lemma 4.3(e), there exist infinitely many odd primes q such that q ��S

mod 8. Let uD
�

1
2
.qC1/

�
e0C

�
1
2
.q�1/

�
e1 , so f .u/D�q . Then the diagonal form

f 0 D h�q; 1; aS; ai is a subform of f with orthogonal basis fu; e2; e3; e4g.

Over the local field Q2 , the determinant d.f 0/ D �qa2S is in .Q�
2
/2 since q was

chosen so that �qS � 1 mod 8 (see Lemma 4.3(b)). Using Lemma 4.3(c), c2.f
0/

simplifies to .�q;S/2.a;�S/2 . However, since S � a � 1 mod 4, it follows from
Lemma 4.3(d) that c2.f

0/D1D�.�1;�1/2 . Therefore f 0 is anisotropic over Q2 and
thus also over Q. Since different choices of q yield projectively inequivalent forms, we
get infinitely many Q–inequivalent anisotropic quadratic subforms of signature .3; 1/.

Now suppose that s is odd, so a��1 mod 4. Since s is odd and S � 1 mod 4, we
can find a prime p jS with p � 1 mod 4. Let uD

�
1
2
.S C 1/

�
e0C

�
1
2
.S � 1/

�
e1 , so

f .u/D�S. Let v D
�

1
2
.S � 1/

�
e0C

�
1
2
.S C 1/

�
e1Cme2 , where m is any positive

integer such that p does not divide m. Then f .v/D S Cm2 D pS 0Cm2 and, by
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Lemma 4.3(a), f .v/2 .Q�p/
2 . Therefore the diagonal form f 0Dh�S;SCm2; aS; ai

is a subform of f with orthogonal basis fu; v; e3; e4g. Over the local field Qp , the
determinant d.f 0/D�a2S2.S Cm2/ is in .Q�p/

2 since
�
�1
p

�
D 1 for p � 1 mod 4

(see Lemma 4.3(a)). As in the previous case, using Lemma 4.3(c), cp.f
0/ simplifies to

cp.f
0/D .�S; aS/p.�S; a/p.aS; a/p D .�S; a/p.�S; a/p.�S; a/p D .�S; a/p:

Now, since p jS, p�1 mod 4 and
�
�a
p

�
D�1, Lemma 4.3(d) implies that .�S; a/pD

�1D�.�1;�1/p . Therefore f 0 is anisotropic over Qp and thus also over Q. Since
different choices of m yield projectively inequivalent forms, the conclusion follows as
before.

Lemma 4.5 Suppose f D h1; 1; 1; aS;�ai with S � �1 mod 4 and a−S, a �

.�1/sC1 mod 4 with
�
�a
p

�
D �1 for all p jS as in equation (2). Then f contains

infinitely many projectively inequivalent anisotropic quadratic subforms over Q of
signature .3; 1/.

Proof Suppose first that s is even, so a � �1 mod 4. Pick ˛ > ˇ � 0 such that
aS.˛2S�ˇ2/��1 mod 8. Such ˛ and ˇ always exist. To see this, if a��1 mod 8,
let ˛D 1 and ˇD 0; if a� 3 mod 8 and S ��1 mod 8, let ˛D 2 and ˇD 0; and if
a� 3 mod 8 and S � 3 mod 8, let ˛D 3 and ˇD 2. Note also that aS.˛2S�ˇ2/> 0.

Set u D ˇe3 C ˛Se4 , so that f .u/ D �aS.˛2S � ˇ2/ < 0. Set m D �f .u/ > 0.
Then the diagonal form f 0 D h1; 1; 1;�mi is a subform of f with orthogonal basis
fu; e2; e3; e4g. Since mD�f .u/��1 mod 8, it is not the sum of three squares and
so f 0 is anisotropic. Since any other choice of ˛ and ˇ congruent to the particular ˛
and ˇ given as examples would still work, and different choices yield infinitely many
projectively inequivalent forms, the conclusion follows as before.

Now suppose that s is odd, so a� 1 mod 4. Fix a prime p jS with p ��1 mod 4.
By Lemma 4.3(e), there exist infinitely many primes q� 1 mod 4 such that

� q
p

�
D�1.

Since q � 1 mod 4, it can be written as a sum of two squares q D ˛2 C ˇ2 . Let
w1D˛e1Cˇe2 , so f .w1/D q . Consider the diagonal quadratic form gDh1; q;�p2i.

Claim 1 g represents S over Q.

Assuming the claim for now, there exists an integer solution x2Cqy2�p2z2 D Sm2 .
Let w2Dxe0Cˇye1�˛ye2 , so f .w2/DSm2Cp2z2 and w2 pairs trivially with w1 .
Therefore, the diagonal form f 0 D hq;Sm2Cp2z2; aS;�ai is a subform of f with
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orthogonal basis fw1; w2; e3; e4g. Let S 0 D S=p . Then f .w2/ D Sm2C p2z2 D

p.S 0m2Cpz2/, and, since S 0m2Cpz2 � S 0m2 mod p , f .w2/� pS 0 mod .Q�p/
2 .

Considering f 0 over Qp , since d.f 0/D�qa2m2S.S Cp2z2/ and since
� q

p

�
D�1

implies �q 2 .Q�p/
2 (see Lemma 4.3(a)), we see that d.f 0/D�qa2S.S Cp2z2/�

p2S 0.S 0Cpz2/ 2 .Q�p/
2 . Using Lemma 4.3(c)–(d), cp.f

0/ simplifies to

cp.f
0/D�.S 0Cpz2;p/p � .�qS 0;p/p � .q;p/p � .�a;p/p D�1D�.�1;�1/p:

Therefore f 0 is anisotropic over Qp and thus also over Q (see Lemma 4.3(g)). As
before, different choices of q yield projectively inequivalent forms, and the conclusion
follows as before.

We now prove Claim 1. Since the determinant of g is �q up to squares, by the
Hasse principle it suffices to show that g represents S over k DR;Q2;Qq . By [31,
Section IV.2.2, Corollary to Theorem 6], the ternary quadratic form g represents S

if S ¤ �q in k�=.k�/2 or .�1; q/ D cp.g/. As S > 0 and �q < 0, the first
case holds over R. As q−S, the first case also holds over Qq . Over Q2 we have
c2.g/ D .q;�p2/2 D .q;�1/2 D .�1; q/2 , as required. Therefore g represents S

over Q, which proves the claim.

5 Proof of Theorem 1.2

We begin with a general lemma.

Lemma 5.1 Let X be an orientable, finite-volume hyperbolic 4–manifold with
�.X / D 1 and containing an embedded , orientable, totally geodesic hyperbolic 3–
manifold. Then b1.X / > 0.

Proof Let N ,! X be an embedded, orientable, totally geodesic hyperbolic 3–
manifold. Suppose that N separates; then X is decomposed into two finite-volume
hyperbolic 4–manifolds with geodesic boundary, whose volumes are proportional to
their (integral) Euler characteristic. However, �.X /D 1, and this is a contradiction.
Duality now implies b1.X / > 0.

Note that the argument in the proof of Lemma 5.1 also proves the following:

Lemma 5.2 Let X be an orientable, finite-volume hyperbolic 4–manifold with
�.X /D 1 and which contains embedded , orientable , disjoint , totally geodesic hyper-
bolic 3–manifolds N1;N2; : : : ;Nr . Then b1.X /� r .
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Proof The proof of Lemma 5.1 shows that none of the Ni can separate X and,
furthermore, also shows that N1[� � �[Nr cannot separate X. Thus X nN1[� � �[Nr

is connected, and a standard argument now shows that �1.X / surjects a free group of
rank r . This proves the lemma.

Henceforth, throughout this section W is as in the statement of Theorem 1.2 and
M ,!W is a closed, embedded, orientable, totally geodesic hyperbolic 3–manifold.

Referring to Section 8, since the manifolds labelled 16–22 have first Betti number
equal to 0, we can apply Lemma 5.1 to rule out these possibilities for W .

To deal with the remaining 15 possibilities for W , observe that, from Section 8, each
of these manifolds admits at least one orientable cross-section.

Lemma 5.3 M is disjoint from all orientable cross-sections.

Proof By Lemma 3.1, these cross-sections are all isometric to one of the complements
of the links L stated in Lemma 3.1. Suppose that M meets one of the cross-sections;
then M must meet S3 nL in a closed, orientable, embedded, totally geodesic surface.
However, this is impossible by Lemma 3.2.

Since M is disjoint from any orientable cross-section and, from Section 3.1, W is a
regular cover of H4=�.2/, using the isometries of W induced from the reflections
in the coordinate hyperplanes we get at least two disjoint copies of M embedded
in W both of which are disjoint from the orientable cross-section, which is itself
nonseparating in W (by the proof of Lemma 5.1). Thus we can conclude from
Lemma 5.2 that b1.W / � 3. Referring to Section 8, we see that this excludes all
examples except the first example listed in Section 8. However, in this case, there are
three orientable cross-sections, and M is disjoint from all of these by Lemma 5.3. This
gives six disjoint embedded copies of M, and so, by Lemma 5.2, we actually have
b1.W / > 3. This contradiction completes the proof.

Remark 5.4 We note here an alternative approach to ruling out the first 15 manifolds
of Section 8. Using the three (resp. two) orientable cross-sections in the manifold 1

(resp. manifolds 5 and 6) the six (resp. four) disjoint copies of M embedded in W

together with Lemma 5.2 rules out these manifolds. For the manifolds numbered 7–15

of Section 8, where b1D 1, the two disjoint copies of M embedded in W can be used
together with Lemma 5.2 to rule these out. This brings us to the manifolds 2, 3 and 4.
In this case, from [27, Table 2], the orientable cross-section is homeomorphic to the
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complement of 63
2

in the case of manifold number 2, and to the complement of 83
9

for
manifolds 3 and 4. In these cases, that the orientable cross-sections are nonseparating
can be seen directly by checking that one of the cusp tori (say T ) of the cross-section
meets a 3–torus cusp cross-section C of the 4–manifold. The torus T is an embedded
nonseparating torus in C and so we can find a dual curve in C that meets T once. It
follows that the cross-sections have to be nonseparating.

Remark 5.5 Using the equivalence of the quadratic forms J and J7Dx2
0
Cx2

1
Cx2

2
C

7x2
3
� 7x2

4
given in the proof of Proposition 4.1, one can construct explicit manifolds

commensurable with any of the hyperbolic 4–manifolds considered in the proof of
Theorem 1.2 containing a closed, embedded, orientable, totally geodesic hyperbolic
3–manifold.

For example, if �.49/ < OC.J;Z/ denotes the principal congruence subgroup of
level 49, then it can be checked that the equivalence described above conjugates
�.49/ into a subgroup of the principal congruence subgroup �.7/ < OC.J7;Z/. The
subform x2

0
Cx2

1
Cx2

2
�7x2

4
defines a cocompact subgroup of OC.J7;Z/ acting on a

hyperbolic 3–space H. Using the reflection in H4 through H and arguing as in [24], it
can be shown that H4=�.7/ contains a closed, embedded, orientable, totally geodesic
hyperbolic 3–manifold, and hence so does the quotient of H4 by �.49/ < OC.J;Z/.
The Euler characteristic of H4=�.49/ is enormous, exceeding 700 000.

6 Volume from tubular neighbourhoods

To prove Theorem 1.3, we will make use of embedded, totally geodesic hyperbolic
3–manifolds in a different way, and, in particular, we will make use of a result of
Basmajian [2] which provides disjoint collars about closed, embedded, orientable,
totally geodesic hypersurfaces in hyperbolic manifolds. We state this only in the case
of interest, namely for hyperbolic 4–manifolds.

Following [2], let r.x/D log coth
�

1
2
x
�
, let V .r/ denote the volume of a ball of radius r

in H3 . It is noted in [2] that V .r/D !3

R r
0 sinh2.r/ dr , where !3 is the area of the

unit sphere in R3 (ie !3 D 4� ).

In [2, pages 213–214], the volume of a tubular neighbourhood of a closed, embedded,
orientable, totally geodesic hyperbolic 3–manifold of 3–dimensional hyperbolic vol-
ume A in a hyperbolic 4–manifold is given in terms of the 4–dimensional tubular
neighbourhood function c4.A/D

1
2
.V ır/�1.A/. Moreover, as noted in [2, Remark 2.1],
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when the totally geodesic submanifold separates, an improved estimate can be obtained
using the tubular neighbourhood function d4.A/ D

1
2
.V ır/�1

�
1
2
A
�

and we record
this as follows:

Lemma 6.1 Let X be an orientable , finite-volume hyperbolic 4–manifold containing
a closed , embedded , separating , orientable , totally geodesic hyperbolic 3–manifold of
3–dimensional hyperbolic volume A. Then X contains a tubular neighbourhood of M

of volume
V 0.A/D 2A

Z d4.A/

0

cosh3.t/ dt:

Moreover, Basmajian [2] also proves that disjoint embedded, closed, orientable, totally
geodesic hyperbolic 3–manifolds in an orientable, finite-volume hyperbolic 4–manifold
have disjoint collars, thereby contributing additional volume. For our purposes we
summarize what we need in the following:

Corollary 6.2 Let X be an orientable , finite-volume hyperbolic 4–manifold of Euler
characteristic � containing K disjoint copies of a closed , embedded , orientable , totally
geodesic hyperbolic 3–manifold of 3–dimensional hyperbolic volume A. Assume that
all of these disjoint copies separate X. Then

Vol.X /D 4
3
�2��KV 0.A/:

7 Proof of Theorem 1.3

Let W be as in the statement of Theorem 1.3, and suppose that M is a closed,
embedded, totally geodesic hyperbolic 3–manifold in W . Since M �W � S4 , M is
orientable and separates W . This will allow us to use the formula for the volume of a
tubular neighbourhood given in Corollary 6.2.

Let N be the nonorientable manifold 1011 in the census of [28] with W ! N the
orientable double cover, and L denote the link 83

9
. Note that, again by the construction

of N in [28], the manifold N is a regular cover of H4=�.2/ with covering group K.

Lemma 7.1 In the case of the manifold N , each of the four cross-sections is isometric
to S3 nL.

Proof In [28, Table 3], the manifold 1011 is given by the code 14FF28, which
represents the side pairing 11114444FFFFFFFF22228888 for the 24 sides of the ideal
24–cell Q4 . In the notation of [28], the four cross-sections have k1k5k9 codes

Algebraic & Geometric Topology, Volume 21 (2021)



2642 Michelle Chu and Alan W Reid

Figure 2: The polytope Q3 .

714, 274, 172 and 147, which correspond to the side pairings riki for the 12 sides
of the polytope Q3 , where ri is the reflection on side i and k1 D k2 D k3 D k4 ,
k5D k6D k7D k8 and k9D k10D k11D k12 . Since ri is a reflection, the side pairing
riki is orientation-preserving if and only if the corresponding ki is orientation-reversing.
But this happens only if ki 2 f1; 2; 4; 7g, since then it corresponds to the diagonal
matrices with 1$ diag.�1; 1; 1; 1/, 2$ diag.1;�1; 1; 1/, 4$ diag.1; 1;�1; 1/ and
7$ diag.�1;�1;�1; 1/. Therefore, all four cross-sections of N are orientable.

In [28, Table 1], we see that the code 147 corresponds to the integral congruence two
3–manifold M 3

2
of [28] and which is isometric to the link complement S3 nL [28,

page 108]. The other three codes 714, 274 and 172 do not appear in [28, Table 1]. How-
ever, as we briefly describe below, these are equivalent up to symmetries of Q3 to 147.

First, the symmetries of Q3 are identified with the symmetries of the cube whose
vertices are the actual vertices of Q3 (see Figure 2). Using this identification, the
codes 714 and 274 are equivalent to 147 via a rotation by � along axes between the
midpoints of opposite edges of the cube, and the code 172 is equivalent to 147 via a
rotation by � along an axis between the centres of two opposite faces.

Lemma 7.2 (1) W is a regular cover of H4=�.2/.

(2) The lift of any cross-section of N to W consists of two embedded totally
geodesic copies of S3 nL.

(3) M is disjoint from all such lifts.
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Proof For (1) we note that W is the orientable double cover of N ; as such, it is
a characteristic cover of N. Now N is a regular cover of H4=�.2/, hence W is a
regular cover of H4=�.2/.

For (2), we have from Lemma 7.1 that all cross-sections of N are isometric to the link
complement S3 nL. Being orientable, these must lift to two copies in the orientable
double cover.

For (3), we argue as in the proof of Lemma 5.3.

The first part of Theorem 1.3 now follows from Lemma 7.2(2).

For the second part, note that from Lemma 7.2(3), (1), since M is disjoint from all
lifts of the cross-sections, and W is a regular cover of H4=�.2/, using the isometries
of W induced from the reflections in the coordinate hyperplanes, we get 16 disjoint
copies of M, all embedded and separating in W . Now the minimal volume of a
closed hyperbolic 3–manifold is that of the Weeks manifold and is approximately
0:9427 : : : [10]. Using this estimate for Vol.M / and applying Corollary 6.2, we see
that Vol.W / � 16V 0.0:94/, which is approximately 28:9. On the other hand, since
�.W /D 2, Vol.W /D 8

3
�2 , which is approximately 26:3, a contradiction.

Remark 7.3 In [30], an investigation of finite-volume hyperbolic link complements
of 2–tori and Klein bottles in other smooth, closed, simply connected 4–manifolds
was initiated. Amongst other things, this work provided restrictions on the simply
connected manifolds that can admit such link complements; namely they can only be
homeomorphic to S4 , #r .S

2 �S2/ or #r .CP2 # CP2/ with r > 0. Furthermore,
using the examples of [14], examples of link complements of 2–tori in #r .S

2 �S2/

for r even were exhibited in [30] (these cover the manifold W above). Other examples
of link complements of 2–tori and Klein bottles in closed, simply connected manifolds
are also given in [16].

Note that for the example W of [14] considered in Theorem 1.3, it is shown in [15]
that the link complement is in S4 with the standard smooth structure.

Remark 7.4 Every closed, orientable 3–manifold embeds in #r .S
2 �S2/ for some

r > 0 (see [17, Chapter VII, Theorem 4]). On the other hand, we do not know whether
the link complements of 2–tori in #r .S

2�S2/ that cover W mentioned in Remark 7.3
contain a closed, embedded, totally geodesic hyperbolic 3–manifold.
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Motivated by the results of this paper, these remarks and recent work on embedding
(arithmetic) hyperbolic manifolds as codimension one, totally geodesic submanifolds
(see [19]) we pose the following questions:

Question 7.5 Is there a cusped , orientable , finite-volume hyperbolic 4–manifold W

with �.W /D 1 (or 2) which contains a closed , embedded , orientable , totally geodesic
hyperbolic 3–manifold? If not , what is the minimal Euler characteristic of such a
hyperbolic 4–manifold?

Question 7.6 Do any of the link complements of 2–tori in #r .S
2�S2/ that cover W

mentioned in Remark 7.3 contain a closed , embedded , orientable, totally geodesic
hyperbolic 3–manifold?

Question 7.7 Does there exist a finite-volume hyperbolic link complement of 2–tori
and Klein bottles in #r .CP2 # CP2/ for some r > 0?

8 The orientable integral congruence two, hyperbolic
4–manifolds

Table 1 is composed from data in [27, Table 2; 28, Table 2].

number b1 # of orientable cross-sections number b1 # of orientable cross-sections

1 3 3 12 1 1

2 2 1 13 1 1

3 2 1 14 1 1

4 2 1 15 1 1

5 2 2 16 0 0

6 2 2 17 0 0

7 1 1 18 0 0

8 1 1 19 0 0

9 1 1 20 0 0

10 1 1 21 0 0

11 1 1 22 0 0

Table 1: The 22 orientable integral congruence two, hyperbolic 4–manifolds
of [28].
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[15] D Ivanšić, A topological 4–sphere that is standard, Adv. Geom. 12 (2012) 461–482
MR Zbl
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