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Long-time dynamics of a hinged-free plate
driven by a nonconservative force

Denis Bonheure, Filippo Gazzola, Irena Lasiecka, and Justin Webster

Abstract. A partially hinged, partially free rectangular plate is considered, with the aim of address-
ing the possible unstable end behaviors of a suspension bridge subject to wind. This leads to a
nonlinear plate evolution equation with a nonlocal stretching active in the spanwise direction. The
wind-flow in the chordwise direction is modeled through a piston-theoretic approximation, which
provides both weak (frictional) dissipation and nonconservative forces. The long-time behavior of
solutions is analyzed from various points of view. Compact global attractors, as well as fractal
exponential attractors, are constructed using the recent quasi-stability theory. The nonconservative
nature of the dynamics requires the direct construction of a uniformly absorbing ball, and this relies
on the superlinearity of the stretching. For some parameter ranges, the nontriviality of the attractor
is shown through the spectral analysis of the stationary linearized (non-self-adjoint) equation and
the existence of multiple unimodal solutions is shown. Several stability results, obtained through
energy estimates under various smallness conditions and/or assumptions on the equilibrium set, are
also provided. Finally, the existence of a finite set of determining modes for the dynamics is demon-
strated, justifying the usual modal truncation in engineering for the study of the qualitative behavior
of suspension bridge dynamics.

1. Introduction

We consider the 2-dimensional plate Q = (0, ) x (—£, £) (see Figure 1), having two
opposed hinged edges ({0} x [—€,£] and {7} x [—£, £]), with the remaining two free edges
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([0, 7] x {—£} and [0, 7r] x {£}), governed by the nonlinear and nonlocal evolution equation
ut,+8ut+A2u+[P—S/ uii|uxx=f. (1.1)
Q

The constant § > 0 measures the (weak) frictional damping, P > 0 represents a longi-
tudinal prestressing while the function f is an external force. A cubic-type nonlinearity
naturally arises when large deflections of a beam or a plate are considered, while stretch-
ing effects suggest the use of variants of the classical Euler—Bernoulli theory ([32,41]).
This explains the nonlocal term in (1.1). Equation (1.1) was introduced in [12,23] for the
analysis, from several points of view, of the stability of suspension bridges. In this case, f
represents the action of a cross-wind, and the prototype forcing f considered in [12] was
periodic in time, aiming to describe the (periodic) action of the vortex shedding on the
deck of a bridge. Although direct aerodynamic effects are neglected in (1.1), the results
obtained in these papers showed good agreement with the behavior of real bridges: qual-
itative matching between thresholds of stability found in [9, 12,23] and the one observed
in the Tacoma Narrows Bridge disaster ([3]).

In the present work we take a step towards a force f in (1.1) that accounts for both
aerodynamic forces and damping, such that the resulting equation reads

Uy + 8u; + A%u + |:P—S/ M,251|Mxx =g — Blus + Wu,]. (1.2)
Q

The distributed force f now comprises a time-independent transverse loading g and an
aerodynamic load modeled by the so-called piston-theoretic approximation of an invis-
cid potential flow ([5, 21]). This simple fluid mechanical model is popular in structural
engineering and aeroelasticity because the fluid pressure is incorporated into the struc-
tural dynamics with minimal added complexity ([35]). This aerodynamic approximation
is inherently quasi-steady, as the history of the motion is neglected in the forcing. Specif-
ically, we model the flow of the unperturbed wind velocity field We, (the y-direction)
hitting the plate via the downwash of the flow, given by —B[u; + Wu,] with 8 > 0 being
a density parameter ([35]). This is an admittedly crude aeroelastic approximation, but it is
a strikingly simple way to capture both damping and nonconservative flow effects, thereby
permitting a study of the dynamic aeroelastic response of the plate (bridge deck).

Below, Theorem 3.1 guarantees the existence of a smooth, finite-dimensional global
attractor containing the essential asymptotic behaviors of the dynamics of (1.2). But this
plate equation contains a nonconservative, lower-order term that may cause structural
self-excitations ([11, 15,21, 30]). Since —8"Wu,, destroys the dynamics’ gradient struc-
ture, the attractor is not simply characterized as the unstable manifold of the equilibria
set. From the point of view of the non-self-adjoint stationary problem ((3.1) below), the
function g and the parameter o := —8'W are the key players. Assuming that both are
small guarantees the uniqueness of a stationary solution (Theorem 3.2). Discarding the
smallness assumption, Theorem 3.6 asserts the existence of multiple unimodal stationary
solutions, whose number grows with the parameter ||, which are, furthermore, the build-
ing blocks for the construction of explicit time-dependent unimodal solutions of (2.1).
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These results highlight the possible complexity of the global attractor, providing differ-
ent behaviors for long-time dynamics. Precisely, the multiplicity of stationary solutions
underlies the subtlety and difficulty of all the results presented here. Theorems 3.2 and
3.3 concern convergence to equilibria from two distinct points of view: the former trans-
lates smallness conditions on « and g into stability, while the latter puts hypotheses on
the structure of the stationary set, then yielding exponential decay to equilibria. A further
novel aspect of our analysis is given in Theorem 3.10 where we show that a finite number
of determining modes for the dynamics associated to (1.2) allows approximation of the
attractor by finitely many “degrees of freedom”. This justifies classical engineering anal-
ysis ([10, 39]). Overall, we establish a rigorous foundation for the end-behaviors of the
aeroelastic model (1.2) utilizing a variety of techniques ranging from Lyapunov methods,
eigenfunction expansions, ODE theory, and the recent quasi-stability theory.

There is a vast literature studying the aerodynamic responses of a bridge deck under
the influence of the wind; see [1,2,4,27,33,37-39] and references therein. Most of the
relevant studies deal with canonical boundary conditions, but the hinged-free conditions
we impose here, first suggested in [9,24], appear most realistic for modeling bridges. This
partially hinged configuration helps, yielding the expected regularity for associated elliptic
solvers ([9, 12,23,24]).

While the long-time behavior of nonlinear elastic structures forced by external/internal
inputs has been under investigation for many years, model (1.2) displays a number of fea-
tures that result from terms which are indispensable for accurate wind-bridge interaction
modeling. Navigating the delicate balance between aerodynamic damping and destabi-
lizing nonconservative terms is central in our analysis, and distinct from most literature
addressing gradient dynamics, e.g., [22, 31, 36], save for [17, 30], but traditional plate
boundary conditions are imposed therein. Related dynamical systems analyses are largely
based on the property of dissipativity, in the sense that the system energy is nonincreasing,
which is precisely not the case for (1.2) since the force depends on the solution and yields
an energy-building contribution. This precludes the use of shelf-ready tools in dynamical
systems where, for instance, existence of a global attractor is reduced to demonstrating
one asymptotic compactness property. Here, a string of estimates exploiting the geometry
of 2, the boundary conditions, and the structure of the nonlinearity are utilized to establish
the existence of an absorbing ball (Proposition 4.7), despite the presence of nonconserva-
tive terms. The difficulty in constructing the attractor is also depicted by the surprising
multiplicity of stationary solutions.

2. Functional setting and well-posedness
In 1950, Woinowsky-Krieger ([42]) modified the classical beam models of Bernoulli and

Euler by assuming a nonlinear dependence of the axial strain on the deformation gradient
that accounts for stretching in the beam due to elongation (extensibility). This leads to the
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1 S 2
s 5([2)

where [ is the interval representing the beam at equilibrium and S > O indicates the
strength of the restoring force resulting from stretching in x. Thus the aforementioned
nonlocal stretching effect is only noted in the x-direction, which gives rise to the super-
quadratic energy %( Jo u2)2.

To simplify notation, we consider an overall damping k = § + 8 (accounting for
imposed and aerodynamic damping), and a generalized flow parameter —fW := o € R.
We take longitudinally hinged, laterally free boundary conditions with Poisson ratio o €
(0, 1). The system, in strong form,

elastic energy

utt+kut+A2u+|:P—S/ui]uxng—}—auy inQ x (0,7),
Q

U=1lpy =0 on{0, 7} x [-¢, €], (2.1)
Uyy + Olxy = Uyyy + (2 —0)Uyxxy =0 on [0, ] x {—£, £},
u(x,y,0) = uo(x,y), us(x,y,0) = vo(x,y) in Q2

is the one on which we will operate, and our main results in Section 3 will be phrased in
terms of the constants in (2.1). For suspension bridges, the prestressing parameter P is
typically taken in the range 0 < P < A,, namely below the second eigenvalue of the prin-
cipal structural operator defined below in (2.3): the range 0 < P < A (the first eigenvalue)
is usually called weakly prestressed whereas the range A1 < P < A, is called strongly pre-
stressed for plate equations with these boundary conditions ([6, 13]). We deal mostly with
a weakly prestressed plate when considering stability (see Theorems 3.2 and 3.3), though
some of our main results allow P € R (Theorems 3.1, 3.6, and 3.10).

We denote by H*($2) the Hilbert Sobolev space of order s € R with norm || - ||s. We
write the inner product in L2(2) as (-, -). The notation Bg(X) will be used for the open
ball in X of radius R centered at 0. The phase space of admissible displacements for the
hinged-free plate (2.1) is

H? ={ue H*(Q);u =00n{0, 7} x [-£,{]},

and its dual is denoted by (H2)'. The brackets (-,-) denote the duality pairing between
(H2) and HZ2. Following [24, Lemma 4.1], for o € (0, 1), we equip H2 with the scalar
product

a(u,v)::f (AuAv—(l—o)[uxxvyy+uyyvxx—2uxyvxy]), u,v e H2(Q), (2.2)
Q

which induces a norm [|u[|z2 = y/a(u, u) equivalent to the usual Sobolev norm || - ||>.
The phase space for the dynamics will be denoted by Y := H2 x L?(R2), with inner
product and norm given respectively by

01 y2)y = ((Mlyvl),(uz,vz))y =a(ui,uz) + (vi,v2) and ||Y1||%/ = ||M1||§_1*2 + ||v1||%.
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We then define the positive, self-adjoint biharmonic operator corresponding to a(-, -), taken
with the boundary conditions in (2.1): A: L?(Q) — L?(R) is given by Au = A%u with

D(A) = {u e HY(Q)N H2 1 uyy = 00n {0, 7} x [—£, 4],
Uyy + Olxx = Uyyy + (2 — 0)Uxxy = 00n [0, 7] x {—€,L}}. (2.3)

Observe that uy, = 0 on {0, 7} x [-{, €] and uy), + CUxy = Uyyy + (2 —0)Uxxy =0
on [0, ] x {—£, £} are the natural boundary conditions associated with a(, -) in its strong
form. The spectral theorem provides the eigenvalues of A on LZ; these are discussed at
length in Appendix A and denoted by {A;}72 . noting that A; will be used frequently in
the discussions below.

Strong solutions satisfy the PDE in (2.1) in the pointwise sense and correspond to
initial data (ug, vo) € D(A) x H2, i.e., in the domain of the generator for the linear
plate equation. Generalized solutions are C°([0, 7']; Y) limits of strong solutions and such
solutions correspond to initial data taken in the state space (ug, vg) € Y. Finally, weak
solutions satisfy a variational formulation of (2.1) almost everywhere in ¢; we provide the
precise definition thereof for the sake of clarity.

Definition 2.1 (Weak solution). Let g € L2(S2). A weak solution of (2.1) is a function
u € CORy, HE(Q) N CHR4, L2(R) N C* (R, (H(R)))
such that for all # > 0 and all v € H2(Q2) one has
(Uer, v) + kg, v) + a(u, v) + [S|uclly — Plux, vx) = (8,0) + a(uy,v).  (2.4)

Strong solutions are generalized, and generalized solutions are weak ([17]).
Following [12,17,23], we introduce plate energies for mixed-type boundary conditions

E@®) = a@@).u() + Jur )2,
2 (2.5)

S P
E(t) = E(t) + leux(t)llé — ?”ux(t)“g — (g, u(1)).

It is also useful to emphasize the nonnegative part of the energy,

S
E+(t) = E() + 7 lux(®]5.

When the context is clear we will use the notation E, E, &, suppressing the time depen-
dence.

The following well-posedness result follows from combining [12,23] and [17, Section
4.1.1, p. 197].

Proposition 2.2. Assume thatk >0, P €R, S >0, « € R and g € L*>(Q). For any initial
data yy = (ug,vo) € D(A) x H2, problem (2.1) has a unique strong solution.

For any initial data yo = (ug, vo) € Y, problem (2.1) has a unique generalized (and
hence, weak) solution u(t). We denote the associated Cy semigroup by (S;,Y), where



D. Bonheure, F. Gazzola, 1. Lasiecka, and J. Webster 462

S:yo = (u(t),u;(t)) is the strong solution to (2.1) for yo € D(A) x H? and the general-
ized solution when yg € Y.
Any weak solution satisfies, for 0 < s < t, the energy identity

t ¢
Et)+k / ||u,(r)||§ dt =§8(s) + oe/ (uy(r), u,(r)) dr. 2.6)
s S
If BR(Y) is an invariant set under Sy, then there exists ag(R), wo(R) > 0 such that

I1S:(y1) — S:(32)lly < aoe™ |ly1 —y2lly Vy1.y2 € Br(Y). (2.7)

Remark 2.3. In Section 4.2 we show that the dynamical system admits an absorbing ball,
which shows that invariant sets Br(Y') exist, thereby obtaining the Lipschitz property
stated in (2.7).

Thanks to the spectral decomposition (see Appendix A), we can write any solution u
of (2.1) as

o0
uE 1) =Y hi(Owi(§) withé = (x.y), (2.8)
i=1
so that u is identified by its Fourier coefficients (g = 0) which satisfy the infinite-
dimensional system

hj(t) + khy(t) + A;h; () + m? [s > mihi(t)® - P:|h,-(t)

i=1
o0
=a) Yyhi(). j=123.... (2.9)
i=1

with m; the frequency in the x-direction and Y;; = (d,w;, w;). From (2.9), we see modal
coupling via the nonlocal and nonconservative terms. Since the modes are either even or
odd in the y-direction (see Appendix A), the nonconservative force induces a coupling
between modes of opposed parity. In particular, contrary to [12], it induces a coupling
between vertical and torsional modes.

3. Main results and discussion

3.1. Attractors and stability

Our results make use of dynamical systems terminology (details are found in Appendix B).
The fractal dimension of a set A C Y is defined by

Inn(A,
dimy A = limsup —nn( 6),
e—»o0 In(1/€)

where n (M, €) is the minimal number of balls y; + B((Y) whose closures cover the set M .
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We recall that for the dynamics (S;, Y), a compact global attractor A CC Y is an
invariant set (S;(A) = A for all ¢ € R) that uniformly attracts bounded B C Y:

lim dy{S;(B)| A} =0, wheredy{S;(B)| A} = sup disty(y,A).
t—+o0 YESB

A generalized' fractal exponential attractor for (S;, Y) is a forward-invariant, compact
set, Aexp CC Y, having finite fractal dimension, that attracts bounded sets (as above) with
uniform exponential rate in Y. Our first theorem concerns attractors for (Sy, Y') associated
to (2.1).

Theorem 3.1 (Attractor). Assume thatk >0, P €R, S >0, « € Rand g € L*(2). There
exists a compact global attractor A for the dynamical system (S;,Y) corresponding to
generalized solutions to (2.1) as in Proposition 2.2. Moreover,

s it is smooth in the sense that A C (H* N H?) x H2 and is a bounded set in that
topology;
* it has finite fractal dimension in the space Y ;

* there exists a generalized fractal exponential attractor gexp CC Y, with finite fractal
dimension in Y := L*(Q) x (H?)'.

Note that Theorem 3.1 does not require any imposed damping in (2.1), that is, if
8 =01in (1.2), B > 0 implies k > 0. This shows that the aerodynamic damping in the
model is sufficient to yield an attractor given any flow o € R and any prestressing P € R.
We remark that the superlinear restoring force is essential for the existence of a uniform
absorbing ball in this general setting; see Section 4.2. In the sequel, we focus our attention
on the weakly prestressed case, thatis, 0 < P < A, where A, is the least eigenvalue of A
in (2.3), given explicitly in (A.2).

In what follows, the set of stationary solutions of (2.1) plays a major role. We have the
following result, whose proof is given in Section 6.

Theorem 3.2 (Stability I). Let S > 0, 0 < P < Ay be given. For any k > 0, there exists
C(k) > O such that if ||g|lo + || < C(k), then (2.1) admits a unique stationary solution
Ug. Moreover,

* all solutions (u(t), u;(t)) to (2.1) converge (uniformly) exponentially to (ug,0) in Y

ast — oo,

* ug = 0is the unique stationary solution provided that

A —P
g=0 and |a|< V2(1 —0?).
Vi

In the next statement, we present a second stabilization result from a different per-
spective. This result places the emphasis on hypotheses on the set of stationary solutions,

I'The word “generalized” is included to indicate that the finite-dimensionality requirement is allowed
in a topology weaker than Y. See [14, 17].
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but yields less precise estimates than those supporting Theorem 3.2. In particular, the pos-
sibility of multiple equilibria is permitted, but the proof of the latter result is rooted in a
control and dynamical systems approach.

Let W denote the set of stationary solutions to (2.1) — namely, the weak solutions to
(3.1) — as described in more detail in Section 3.2.

Theorem 3.3 (Stability IT). Ler S > 0,0 < P < A;.

s Ifg = 0and 0 is the unique element of W, there exists q¢ > 0 so that if k 'a® < g,
then all solutions (u(t),u;(t)) to (2.1) converge (uniformly) exponentially to (0, 0) in
Yast — oo.

o If W = {e} and the singleton e is also hyperbolic as an equilibrium, then there exists
ge > 0 50 that if k™ a? < q., all corresponding solutions (u(t), u;(t)) to (2.1) con-
verge (uniformly) exponentially to (e,0) in Y ast — oc.

o IfW consists only of isolated, hyperbolic equilibria, then for any solution (u(t),u,(t))
to (2.1) that converges to an equilibrium (e,0) in Y ast — oo, there exists g, > 0 so
that if k—'a? < g, then the convergence is exponential in Y, with a rate that depends
on e, 4., and the trajectory itself.

Remark 3.4. The hyperbolicity assumption is guaranteed if we impose smallness of «.
Indeed, taking the inner product with v above yields

a(v.v) = Pllvx[§ + Slexlgllvs g + 2(vx. ex)* = a(vy, v).

Invoking coercivity with respect to P, the above equation has zero solution provided « is
small enough.

A corollary to the proof of Theorem 3.3 is that if we have a trajectory in hand (u, u;)
that converges strongly to a known (isolated, hyperbolic) equilibrium point in Y, then
the convergence rate is exponential. When g # 0 and is potentially large, and/or when
« is large, Theorem 3.2 can still provide an exponential rate of convergence, if, a priori,
it is know that a trajectory is converging to equilibria. Compare with Theorem 3.6 and
see Remark 3.7. For these stabilization results, the essential ingredients are smallness of
a?k™!, g, and o. The rates of convergence are exponential regardless of the damping value
k > 0, although if one wishes to control the rate of exponential convergence, decreasing «
and g or the addition of static damping would be required. If u is the unique equilibrium
point that happens to be hyperbolic, then Theorem 3.3 recovers the result from Theorem
3.2. The first part of Theorem 3.3 mirrors the second part of Theorem 3.2, but the hypoth-
esis on the smallness of g (that yields a unique ug) is replaced by the assumptions of
uniqueness and hyperbolicity of the equilibrium point e.

3.2. Nontriviality of the attractor

As shown by Theorem 3.2 and Remark 3.4, the attractor may, in some cases, reduce to the
unique stationary point, in which case it can be considered “trivial”. Any further charac-
terization of the attractor obtained in Theorem 3.1 requires knowledge of the number of
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stationary solutions of (2.1), namely solutions to the problem

A%u — S|uxllduxx + Puxx —uy =g ing,
U=1uxx =0 on {0, 7} x [—£,£], 3.1

Uyy + OUxx = Uyyy + (2 —0)Uxxy =0 on [0, 7] x {—€,£}.

In general, one should expect multiple solutions to (3.1); see [20]. The first statement
presented here shows that a finite multiplicity of solutions is a rather generic property.

Theorem 3.5. Let g € L?(Q) with S > 0 and P, € R. Then,

* problem (3.1) has a weak solution and any solution is a strong limit of a Galerkin
approximation;

o the set W of all weak solutions of (3.1) is contained in D(A) (as in (2.3));
s there exists an open dense set R C L*(Q) such that if g € R then W is a finite set.

We omit the proof of Theorem 3.5 since it can be obtained as in [17, Theorem 1.5.9],
adapted to the configuration of our boundary conditions on d€2. The argument utilizes
pseudomonotone operator theory and rests on the infinite-dimensional Sard—Smale theo-
rem. The proof of Theorem 3.5 critically requires Lemma 4.8 below which holds for the
configuration at hand.

Theorem 3.5 states that the set of solutions to (3.1) is “well behaved” but it does not
directly assert the existence of multiple solutions. In order to prove that the attractor can
be “complex” (in particular, not reduced to a single stationary solution), we take g = 0
(for simplicity) and seek solutions of (2.1) (resp. of (3.1)) of the form

Vina(x,y,1) = ¢ ()Y (y) sin(mx) (resp. Una(x,y) =v() sin(mx)) (3.2)

for some integer m. When ¢, ¢ # 0 these solutions will be referred to as unimodal solu-
tions, by analogy with (2.8). Such solutions count the number of zeros (m — 1) in the
x-direction and, obviously, depend on «. The following result is proved in Section 8.

Theorem 3.6. Assume that P € R and that g = 0. For any integer m there exists 0y, < 0
such that for all o < oy, the following assertions hold:

» There exist at least m (couples of) unimodal solutions Uy g, ..., Un of (3.1) (see
(3.2)); these solutions have from O up to m — 1 zeros in the x-direction.

» There exist infinitely many unimodal solutions Vi, o of (2.1), of the kind ¢ (t)Uy, o as
in (3.2), and, as t — oo,

either Vipo(t) = 0, or Vipo(t) > Una, 01 Vma(t) = —Unyg.

The initial data in (2.1) may be chosen in such a way that Vi, o (t) attains any of these
limits.

Remark 3.7. Compare the above result to the third bullet point of Theorem 3.3; if further
characterization of the equilibria set W is available (namely, if we know that the U, o are
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isolated as elements of W), we would conclude that the rate of decay in Theorem 3.6 is
exponential.

As the generalized flow parameter o decreases towards —oo, one has that o < @,
for an increasing number of integers m; hence we have the following consequence of
Theorem 3.6.

Corollary 3.8. Ifa — —oo, the number of solutions Uy, o tends to infinity.

We also point out that the same results hold when o > 0, as only the size of || mat-
ters; see Remark 8.3. Both -« are physically relevant, corresponding to northward versus
southward flow (so to speak). Here, we only dealt with @ < 0 in order to discuss winds of
given direction: then « = —BW where 8 > 0 is the aerodynamic density coefficient and
W > 0 is the flow velocity.

Remark 3.9. For the proof of Theorem 3.6 we need to study the extended-type eigenvalue
problem
AU — puyy = qu, inQ, ue HZ

see (8.2) below. The existence of real eigenvalues « is not obvious at all. To see this,
consider the following comparable problem posed in HOZ(Q):

A%y — 2Ya(Au)y — puxy = aquy in Q. (3.3)
Notice that (3.3) holds if and only if
div[V(e 2/&yAu) — JaZe %qu] — e Yoy . =o0.
Multiplying this identity by u and integrating several times by parts over 2, we get

/ e VO [(Aw)? + Vo |Vul? + pu2] = 0,
Q

which shows that u = 0 for any © > 0 and any @ € R. The same example works under
Navier boundary conditions ¥ = Au = 0 on 9%2.

3.3. Existence of determining modes

A common procedure in the classical engineering literature is to restrict attention to a
finite number of modes (modal truncation). Bleich-McCullough—Rosecrans—Vincent ([ 10,
p- 23]) write that

out of the infinite number of possible modes of motion in which a suspension bridge
might vibrate, we are interested only in a few, to wit: the ones having the smaller
numbers of loops or half waves.

The justification of this approach has physical roots: Smith—Vincent ([39, p. 11]) note
that the higher modes with their shorter waves involve sharper curvature in the truss and,
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therefore, greater bending moment at a given amplitude and accordingly reflect the influ-
ence of the truss stiffness to a greater degree than do the lower modes. Whence, we are
interested in analyzing a finite number of modes, provided that these suitably describe
the entire dynamics of (2.1). From a mathematical point of view, this finite-dimensional
approximation is the heart of the classical Galerkin procedure.

One can go one step further mathematically by showing that a finite number of modes
{e; };VZI (eigenfunctions of A associated to the eigenvalues {A;} as in Proposition A.1)
is sufficient to asymptotically describe the dynamics of (2.1). Then, for the set of modal
integration functionals

L={lj:lj(w)=(w.e), j=1,....,N},

the Fourier approximation R¢: H2 — H? by

N
Re(w) =) 1j(w)e;
j=1

asymptotically determines the solution.

Theorem 3.10. Assume thatk >0, P € R, S > 0,0 € R, and g € L*(2). Let {e; }92, be

the eigenfunctions of A on H2. There exists N > 0 such that if y' = (u',v') € Y,i =1,2
solve (2.1) and satisfy

lim (' —u®)(1),e;) =0 forj=1,....N,

t—00
then lim; .0 ||y (1) = y*(1)y = 0.

Theorem 3.10 follows from a more general statement about determining functionals
in Section 9.

4. Preliminary results

4.1. Energy bounds

In this section we first introduce and analyze the family of parametrized Lyapunov func-
tions

1 1 P S
Volt) o= Sl I + (). 1) — i Ol + 2 e O
v / w(E, e &, 1) dE, @.1)
Q

where v > 0, and we derive bounds for V,,. We note that, via an elementary calculation
using (A.3) and Young’s inequality, we have

v<VAa—-P = V,>0. 4.2)
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We take (4.2) to be a standing hypothesis for v to ensure positivity of the Lyapunov func-
tion. We also notice that we can write (4.1) as

Vo) = €(1) 4+ v(ur), us (1)),

where & was defined in (2.5). For every v € H2, we have
||v||2*2 =a(v,v) = /Q(v,%x + 2, 4 2(1 — 0)v}, + 20vxxVyy ) d§
> 2(1 —02)/ vix dg,

Q

since o < 1. This shows that the inequality
1
1oy lIg < llvyxl§ < mllvllig Vv e H? (4.3)
holds. Observe also that
Il2: = (1~ o)/ﬂ(a + o2, +202,) dE = (1 - %) Vuy |13,

Before starting, let us rigorously justify once at the outset the computations that follow
for weak solutions. The regularity of weak solutions does not allow one to take v = u;
in (2.4). Therefore, we must justify differentiation of the energies V;,, a computation used
extensively below. In this respect, let us recall a general result; see [40, Lemma 4.1].

Lemma 4.1. Let (V, H, V') be a Hilbert triple. Let a(-,-) be a coercive bilinear contin-
uous form on V, associated with the continuous isomorphism A from V to V' such that
a(u,v) = (Au,v) forallu,v € V. If w is such that

weL?0,T;V), w,elL?0,T;H), w;~+ Aw e L>(0,T; H),

then, after modification on a set of measure zero, W € CO([O, T,V), ws € CO([O, T\, H),
and, in the sense of distributions on (0, T),

1d
(wer + Aw, wy) = EE(HUHH% +a(w,w)).

For generalized solutions, the requisite multiplier calculations here and in the remain-
der of the paper can be done in a proper sense on strong solutions with smooth initial data
in D(A) x H2; resulting inequalities for generalized solutions are then obtained in the
standard fashion via the extension through density of D(4) x HZ in Y.

Lemma 4.2. Assume that 0 < P < Ay, k > 0, and that u is a solution of (2.1).
If0<v< % 0<d< k;”, v2 < Ay — P (recall (4.2)), and

o < 48(1 —o?)v(A1 — P —vk + vz)’

P (4.4)
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then
v(t IQ)V 1 - ~v@—h) 2
Vy(t) <e ¥~ to) + ———— g,
W0 =) + e el s
. Igll3 '
Vy(oo) :=1 V() < ———————.
viee) i=limsup Vo (1) = 2705

Proof. Take any v € (0, 2k). From the definition of V,, and by using Lemma 4.1 and (2.1),
we infer

. 3 P 35
Va(t) + V() = (5 = k) lee @3 = 511 + S lux O = == s 013
v —k) f w(E, s (&, 1) d
Q
4 /Q (g(6.1) + oy (6.0)) (e (£ 1) + vu(E.1)) dE.

Hence, by using (A.3), (4.3) and the Young inequality, we obtain for any y,§ > 0,

. 3v 1%
o)+ 0(0) = (G =k 4y +8) b = 55 = P =207 = 208l
o?

1 2
+ 3 I8+ g oy MO

Fu(v—k + 2y + 26) /9 w(E, Dug £, 1) dE.

To get a global estimate, we choose y + § = ]% and v < k/2, so that

A10% — 48(1 — 02)v(dy — P — vk +1?) gl

2 —_—
81,6(1 — 02) IOz + 26— —28)°

I‘/v(l‘) + UVU(I) =

where § > 0. Now we see that if (4.4) holds, then

gl

VV(Z) + VVv(t) = m

Finally, for all #y > 0, we multiply this inequality by e”~%)_ we integrate over (fo, 1), and
we let # — oo in order to obtain the two inequalities in (4.5). ]

Lemma 4.2 should be read in the following way. Once the damping k is fixed, one can
choose v(k) and then §(k) such that 0 < v k;”,

48(k)(1 — oz)v(k)()tlk— P —v(k)k +v(k)*) _ o2 > 0.
1

Then Lemma 4.2 gives a constant L(k) > 0 such that

Va(oo) = limsup V, () = LK)|gl}
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as soon as a2 < a,%. To get the flavor of the conditions in Lemma 4.2, consider for instance,

without aiming to optimize, v = k/2 and § = k/8, and assume 4(A1; — P) > k2. If

2

() = ot = P =)

then A

Vo(00) = 183
When k is large, one cannot expect a bound of the order 1/k2. This is easily seen from
the case @ = 0 for which the conclusion can be quantified in an almost optimal way, see

[12] and [25,26,29]. In the case g = 0, the next lemma can be proved arguing as for
Lemma 4.2.

Lemma 4.3. Assume that g = 0,0 < P < Ay, and u solves (2.1).
(a) When k? <2(A; — P) and

1—o0? k?
<k AM—P——),
ol = \/ 2 ( ! 4)
we have lim; o0 Vi /2(t) = 0.
(b) When k? > 2(Ay — P) and

1—-02 k1
|a|§w 5w (A1 —P), v=——§vk2—2(h—P),

2
we have lim; oo Vy, (1) = 0.

Note that in the two situations (a) and (b) of Lemma 4.3, condition (4.2) holds; more-
over, the smallness of || is related to (4.4). Hence, arguing as in [12], it can be checked
that the bound on V,,(¢) gives asymptotic bounds on the norms of the solution.

Lemma 4.4. Assume that 0 < P < A1, k >0, and g € L2. Let v and V,(c0) be as in
Lemma 4.2. Then, if u is a solution of (2.1), we have the following estimates:
s L2-bound on u:

4V, (00) .
P)2 £ 45Vy(00) + (A1 — P)

)

lim sup [|u(1) |5 <
t—>oop 0 \/()Ll -

o LZ%-bound on uy:

4V, (00) + 202w _
— P)% + 2852V, (c0) + 1v2W) + (A; — P)’

lim sup [l (1) [[§ <
oo 0T

e HZ2-bound onu:

2

(V,,(oo) + %)

201
A —P

lim sup ||u(z) ||§_12 <
t—00 *
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All the bounds obtained so far also hold for the weak solutions of the linear problem

Wi + kw; + A?w + Pwyy — bw —aw, =h(,t) inQx(0,T),
W= Wxx =0 on{0, 7} x [—£,£], (4.6)

Wyy + 0Wxx = Wyyy + (2 —0)Wxxy =0 on [0, ] x {—£, L}.

Indeed, one just assumes S = 0 in (2.1) and takes care of the additional zeroth-order term
bw. More precisely, we have (with the bound (4.7) as in Lemma 4.2) the following lemma.

Lemma 4.5. Let h € CO(Ry, L2(Q)). Assume that 0 < P < Ay, k > 0,0 <v < &,
0<d< k%"
o2 < 48(1 —o?)v(Ay — P —b — vk + vz).
= pP
Then there exists Ly = Ly1(A1, P,k) > 0and L, = L,(A1, P, k) such that for any weak
solution w of (4.6), we have the estimates

4.7

e L2 bound on w;:
limsup |[w;()[|§ < L1 limsup [|A(2)]|3: (4.8)
t—>00 t—>00

o H? bound on w:
limsup [[w()[|7; < Lo lim sup [|(1)[3. 4.9)
t—00 * t—>00

Next we introduce a second parameter in the Lyapunov-type function V), in (4.1),

k
Vo (S1 ) = €) +v((us (0).u) + S ). (4.10)

where S;(y) := y(¢t) = (u(¢),u;(¢)) for ¢t > 0 and v is a positive number to be specified
below.

Lemma 4.6. There exists vo = vo(k) > 0 such that if 0 < v < vy, there are cg,c1,c3 >0
so that
coEy —c2 = Vi (Si(¥) < c1Eq +ca. (4.11)

Proof. We claim that there exist ¢, C, and M, which may depend on P, g, and S, but not
on the particular trajectory, such that

¢cE.—M <& <CE4 + M. 4.12)

Indeed, using the Young and Poincaré inequalities, we obtain for all v, § > 0,

1 1 1
Il < vlbeelld + 5o () < 8l + goleld < vl + g sl

and (4.12) follows. Next we observe that

2

vk vk
vl )]+ 506 w) = el + [+ 5 [,
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so that if v9 < min{1,2/k, 2kc}, then
vk 1
el + 506w < el + [+ 1[Il < 5 B

once we have selected y; and used the Poincaré inequality. On the other hand, we have

vk 1 vk yv?
v 2) ) = =1+ [ = T3 [l
. lE +[vk yv? ]” 2> v g
- 2 ——E.,
2y T2 2 0="ok Tt
which proves the bound thanks to the above smallness assumption v < vy. ]

4.2. Construction of an absorbing ball
The main focus of this section is to show that the dynamical system (S;, Y') is dissipative:

Proposition 4.7. The dynamical system (S;,Y) corresponding to generalized solutions
to (2.1) has a uniformly absorbing set B, as defined in Appendix B.

For both the proof of Proposition 4.7 and the validity of Theorem 3.5 we need the
following statement.

Lemma 4.8. Let a(-,) be as in (2.2). For any n € (0,2] and y > 0 there exists Cy , > 0
such that
lull3—, < y(aGu,u) + |uxllg) + Cyy  Yu € HE.

Proof. Let 0 < n < 2 be given. We claim that the functional
Yaw) = [wll3 + wellg — Alwll3-,
is bounded from below on H? for every A > 0. This claim implies that
3CA ) >0 st w3+ llwxllg — Alwl3-, = =C(4,n) Yw e HZ.

Therefore, we have

lwi3—, < (||w||2 + llwellg + C(A.m)

and the lemma will follow, since the inequality holds for every 4 > 0.

In order to prove the claim, suppose to the contrary that, for some A, n > 0, there is
a sequence {w,} C H2 such that ¥4 (w,) — —o0 as n — oco. Up to relabeling, we may
assume that ¥4 (wy,) < 0 for all n and, from the definition of ¥4, we have ||w;, ||§_17 — 00.
Writing v, = Wy, /|| Wy ||2—y, we have

Vawn) = lwall3—y (lvall3 + wall3—, [valxllg — 4) — —oo,
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and therefore we infer that

. 2 2 4
Yo = llvnllz + llwnllz—, I [valxllo

is bounded. In particular, v, is bounded in H2 so that there exists a subsequence (still
denoted by v,) and a function v € H2 such that v, — v. By the compactness of the
Sobolev embeddings, v, — v in any lower Sobolev norm and clearly v # 0. The bound-
edness of [wa[|3_, [I[va]x I§ and the fact that [|w,[|3_, — oo imply that ||[v.]x[lo — 0, and
thus v, = 0 by compactness. This means that v is a function of y only and the boundary
conditions in H2 yield v = 0, which is a contradiction. ]

The next step is to bound the derivative of the Lyapunov function V, x introduced
in (4.10).

Lemma 4.9. Let V, i be as in (4.10). For all k > 0, there exist v(k, S) > 0 sufficiently
small, and c(v, k,, S), C(a, k, g, P) > 0 such that

d
EVv,k(St(Y)) <—cE () +C.

Proof. Suppose y(t) = (u,u,) is a smooth solution of (2.1) in D(A) x H?2 (we can then
extend by density to generalized solutions in the final estimate). Then

dVyk

di =a(u,ue) + Uz, ug) + Slluxllﬁ(ux, Uxe) — Pux,uxe) — (g, ur) + v(Ugr, u)

+ V||Ut||g + kv (u,u;)
= —k)ucll§ —va@u,u) — vS|uxllg + oy, ur) + vo(uy,u) + vPlux|g

+v(g.u).

From here, we obtain

AV,
K < 0= B el = vatuw) = VSl + @y o) + vectaey ) + 0P fux 3
+v(g.u)
k v o? /1
< (v=3)lueld = vatew) + v(5 = $)lall§ + 5 (3 + 1)l 3

3p2 1
+ —ul?2 + (P2 + |Ig]?)
2 2
k 3v v
< (v =) el + v( 53 = )t +v(3 =) s
062 1 2 1 2 2
i T(E + 1)||u||1 + 5 (P%+ lgl)-

From Lemma 4.8, we infer that for any y > 0, there exists C), > 0 such that

lull} < y(aGu.u) + Juxlg) + C, Vu e HE.
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This yields
D < (o= Sl + (B (1) vl 1) Jaten
N (%“2(% w1)+(t- s))nuxuz + (P2 + 12 + Gy,

The conclusion follows by choosing y > 0 and v < k/2 such that
2 2
yo (1 ) 3v ) yo (1 (v )
—(-+1 ——1) <0 d —(-+1 -—-5)<0.
AV JFV(Ml e k+)+”2 .

We are now ready to give the proof of Proposition 4.7. From Lemma 4.9 and the upper
bound in (4.11), we have for some n(v) > 0 and a C,

d
EVv,k(St(y)) +Vok(S:(y)) <C, t>0. (4.13)

The estimate above in (4.13) implies (via an integrating factor) that
—nt c —nt
Vo (Se(3) = Vox(p)e ™ + ;(1 —e ).
Hence, the set
Bi={xe¥ :V(x)<1+%<)
is a bounded, forward-invariant absorbing set, and (S;, Y) is ultimately dissipative.

Remark 4.10. Unlike for exponential stability, as stated in Theorem 3.2, P and o may
take any value, for any fixed S > 0, and the above absorbing ball is obtained. This illus-
trates the strength of Lemma 4.8, namely the ability for the nonlinear potential energy to
control low frequencies.

4.3. Further estimates and identities

Let f(u) =[P — S||ux ||§]uxx. Consider the difference of two strong solutions u’,i = 1,2
to (2.1), satisfying

Zie + A2z 4+ kz 4+ f(u') — f(u?) = azy,

Z=2Zyy =0 on {0, 7} x [—£,{],

Zyy +0Zxx = Zyyy + (2 —0)zZxxy =0 on [0, ] x {—£, £}, (4.14)
2(x,y.0) = ug(x, y) —ug(x, y),

Ze(x,,0) = vh(x, y) — v3(x, ) in Q.

We take this equation with the notation

z=ul —u?y E (0):=3laC ) +z@l5): F@) = ful) - f@?).
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We utilize a decomposition of the term |, o F (2)z;. Results in the next statement follow
from direct calculation and can be found in [16, 28, 30] for the Woinowsky-Krieger-type
nonlinearity, though we consider the details below for our specific hinged-free configura-
tion. The calculations are done on smooth functions in (u(¢), u,(¢)) € D(A) x H2, then
extended by density below.

Proposition 4.11. Letu’ € Br(H2), i = 1,2. Then we have
I/ @'y = f@®)llo < CR)u" —u?. (4.15)

In addition, for u',u?> € CO(Ry: H2) N CY(R4; L*(RQ)), writing z = u' — u?, we have

_ 1d
(F(@).20) = 5 ST lelzx g = Pllzxlig] + SNz 1o ut)

= Sl I3 = Nz 151k 20)-

Proof. Letting z = u' —u?, and letting N(u) = (P — S||ux||3), we note two facts imme-
diately:

N(ul) - N(uz) = Pzyx — S[”u)lcn(z)u)lcx - ”u)zc”O“)zcx]
12 12 212y,,2
= Pzyx — S[llullgzex + (lullg — Nz 19)u, ],
12 22 1 2 1 2
[lhex I3 = 113 = [l llo = X llo| (e llo + lluZ1lo)

1 2 1 2
= (uyllo + luxllo)luy —uillo = C(R)|z]1.
From here, note that

17 )0 = IN@u' — N@?)u?|lo

12 2 12 22
< Pllzxxllo + Sluxlglzxxllo + i lo[lux g — 43 15] < C(R)Iz]l2,
as desired. For the decomposition, we have
(F(2).2¢) = P(zxx. ze) — S(luy gz 20) = S (ud [Ilux 1§ — Nu2lI5]. z¢)

1d S d
= 5 [Slux gz« g — PlizxlI5] — EIIZxII§EIIMi||§

2dt
= S[llu g = Nz 5] 3 20)
1d
= EE[SIIM}CII(Z)IIlelﬁ = Plizxllg] + Sllzx 155 1)

12 29121(,,2
— S[lulls = Nuzllg] (s 2o)-

Above, we have integrated by parts. ]

We note the following identities (again, obtained first on strong solutions, and then
passing to the limit for generalized solutions) corresponding to (4.14). The first is the
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energy identity, and the second is reached via using the solution itself as a multiplier
(equipartition type):

t t t
EAﬂ+k/H%%=EA®—/(?@J0+G/@w%% 4.16)

[ [ 12tz =510 +e [ (@ - [0

The following lemma is a special case of [17, Lemma 8.3.1, p.398]. It is a standard
estimate utilizing (4.16) (with k > 0) and the fact that f € Lip,..(H2, L?(R)).

Lemma 4.12. Letu’ € CO(Ry; H2) N CY(Ry: L%(R)) solve (2.1) on Ry fori = 1,2.
Additionally, assume (u' (1), u’t(t)) € Br(Y) forallt € Ry. Then, for any n € (0,2] and
any T >0,

T

TEZ(T)+/ E:(t)dt <agE;(0)+ C(n.T.R) sup |z|3, (4.17)
0 €[0,T]

T T T
—alfo fs (f(z),zt)drds—azf() (F(2),z;)ds

hold with a; > 0 independent of T and R.

5. Quasi-stability and attractors: proof of Theorem 3.1

In this section we construct the global compact attractor for the dynamics (S;, Y') using
quasi-stability theory ([14]). A quasi-stable dynamical system is one where the differ-
ence of two trajectories can be decomposed into uniformly stable and compact parts, with
controlled scaling of powers. Using this theory, it is also possible to obtain, almost imme-
diately, that the attractor is smooth, with finite fractal dimension, and that there exists
a generalized fractal exponential attractor. See Appendix B for relevant definitions and
theorems.

We aim to prove the quasi-stability estimate (B.1) on the absorbing ball given in
Proposition 4.7. Obtaining quasi-stability on B will follow directly from the observability
inequality (4.17) and the nonlinear decomposition of Proposition 4.11. In fact, the proof
below demonstrates the quasi-stability estimate on any bounded, forward-invariant set.

Lemma 5.1. Let k, S > 0 and a, P € R. The dynamical system (S;,Y) corresponding
to generalized solutions to (2.1) is quasi-stable on any bounded, forward-invariant set. In
particular, (S;,Y) is quasi-stable on the absorbing ball B given in Section 4.2.

Proof. Let z = u' — u? and consider the decomposition as in Proposition 4.11:

1d
(F(2).2) = EE[SIIM}CII%)IIZxIIS = Plizxllg] + Slzx 155 21)

= [l 13 = Nz l5] (3 z0)-
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Now, on any bounded, forward-invariant ball Bg(Y') (R is the radius),
[ @)1z + llug @)llo + > @ll2 + [u7 ()]0 < C(R), >0,
and the Lipschitz bound (4.15), it follows immediately from the Cauchy—Schwarz, trian-

gle, and Young inequalities, that, for 0 < n < 1/2,

t
<CGLR.y) sup |zI3 ,7+y/ Ex()dt ¥y >0, (5.1

T€[s,t]

/t(?(z),z»dr

provided u’ (r) € Br(H2) forall t € [s,¢]. In particular, this bound holds on the invariant,
absorbing ball B from Proposition 4.7.
By (4.17), (5.1), and taking T sufficiently large, we infer from the observability in-
equality that
B(1) < B0+ CRT k) sup (IR,

t€l0,T

with ¢ < 1. By the standard iteration via the semigroup property, we conclude that

[0).20) |7 < Co. R)e™"|[(2(0). 2(0)) |3 + C(R.k.n) sup [|z(D)[3_,. (5.2)

7€[0,z]
and thus (S;, Y) is quasi-stable on Bg(Y), as desired. |

On the strength of Theorem B.3, applied with B = B C Y, we deduce the existence of
a compact global attractor from the quasi-stability property of (S, B). In addition, since
A C B, Theorem B.4 guarantees A has finite fractal dimension and that

luee (II5 + lur ()] < C(4)  forallz > 0.

Since u; € H?(2) C C(R), elliptic regularity for the free-hinged rectangular plate ([24,
271),
A*u=g—uy—ku;— f(u) + aQuy € L*(Q). (5.3)

gives immediately that v € H*(2) N H2, with the corresponding bound (in that topology)
coming from the uniform-in-time bound on the right-hand side of (5.3) and the equiva-
lence || - ||2 & || - || z2- Thus, we conclude the regularity of the attractor A C Y as in
Theorem 3.1.

With the quasi-stability estimate established on the absorbing ball B, we need only
establish the Holder continuity in time of S; in some weaker space Y to obtain a gen-
eralized fractal exponential attractor. This is done through lifting via the operator 4~1/2;
recall that Au = A%y on D(A) as in (2.3). Via the standard construction ([17,34]), for ¢ €
L2(Q), we obtain A™1/2¢ € H2 = D(A'/?). We may restrict our attention to the absorb-
ing ball B (for t > ¢ (y(0))): ||y (#)|ly < C(B). In particular, for any y(t) = (u(t), u(t)),
with ¢ sufficiently large, we have global-in-time bounds

[u@ gz = C(B), Nlu: (o = C(B) = E+() = %[Vv,k(st(y)) +¢c] = C(B).
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And thus we have from equation (2.1) (on strong form)
AV, = AV 20 + A_]/z[g +auy, —ku; — f(u)].
We can estimate by duality for ¢ € L2(R2),

(A7 2uy, $) 2y = (y. A7V2@) 120
= —(u, 0y A" 2P 120y + U, ATV2P) 12y = ey

via integration by parts in y. Since ¢ € L?(Q) gives 8yA*1/2¢ EH(Q)=ueH (Q):
u(0, y) = u(m, y) = 0}, and making use of the trace theorem’s estimate for the boundary
term, we have
(A7 2y, $)] < Cllullolpllo + lullzrzre@yl A *¢llo < Cllull gr/zeey I lo-
The Riesz representation theorem then yields
1471 2uyllo < Cllullgse).
from which it follows that
147 2usllo < C@)ull gz + CK) urllo + Cliglo = Cle. 8. B).

From here, we note u,(t) — u,(s) = fst Uz (t) dt, and thus

e (0) =09 parzy < CIAT (1) = e ()]llo

t
< c/ 1A 20, (D)o d e < Cla k. Bt — 51,

which extends to generalized solutions as before. Lastly, we note
t
() = u(s) o < [ e (@) llo dw < (sup luello)Ir = s| < C(B)Is —s|
Ky t>0

From the above estimates, we see that
I1S:() = SsWllg <€le—sl, ¥ =L*(Q) x [H}
and thus we note that (S;, Y) is uniformly-in-time Lipschitz continuous on B in the sense

of Y.

6. Convergence to equilibrium I: proof of Theorem 3.2

A preliminary step is to notice that Theorem 3.5 ensures the existence of a solution to the
stationary equation (3.1). Then we prove the three statements in Theorem 3.2 in an order
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different to the one they are stated in. First, we show that, under smallness assumptions, the
unique stationary solution is the trivial one: to this end, we need an a priori bound which
depends only on g. The two other statements are proved under the same principle, namely
that the very same smallness conditions enable us to prove exponential stabilization of any
difference of solutions, which, in turn, implies uniqueness of stationary solutions.
Multiplying (3.1) by the solution itself and integrating by parts, we obtain

A —

A

P
”u”2 2 < ”u”2 2 — 1 ||Mx||§ S ”ux”?)
H; H;

=a/ uyud§+/ gudé
Q Q
lee] - luy llollullo + llgllollullo

IA

|o| 2 1
—_—||u + — Ul 2,
2/\1(1_02)” 2 Alllglloll Il 22

where we used the Holder inequality and the embedding inequalities (A.3) and (4.3).

Therefore, if
A —P
o] < 22— /2(1 — 02), 6.1)
Vi

IA

we deduce that
2(1 —0?)

u < s
It S = P VaT=om v

an a priori bound for stationary solutions. In particular, this shows that if g = 0 and (6.1)
holds, then the unique stationary solution is uy = 0, thereby proving the last statement in
Theorem 3.2.

For the remaining statements (when g # 0), arguing as in [12, Section 7], one deduces
the following result from Lemma 4.5.

Lemma 6.1. There exists go = go(k, S, P, A1) > 0 and ap = ai(k,o, P,A1) > 0 such
that if
llgllo <go and |of <ay, (6.2)

then there exists n > 0 such that, for any two solutions u and v of (2.1), we have
Jim ™ (Jlue (1) = ve(®)llo + lu(®) = v(®)l|g2) = 0.
Proof. Take 0 < v < ’% suchthat Ay — P > v(k —v),take 0 < § < ]%, and put

45(1 —02)1)()&1); P —vk +v?) = 0.
1

2 _
ak_

If o < o (as in (4.7)), then there exists 7 > 0 such that

2 _ 48(1 —o?)v(A1 — P —n—vk +1?)

0<
o o



D. Bonheure, F. Gazzola, 1. Lasiecka, and J. Webster 480

If u and v are two solutions of (2.1), then w = (u — v)e? is such that

(wer, @) + (k = 2n)(wr, @) + a(w. @) — P(wx, ¢x) — 1k —n)(w. ) — a(wy. ¢)
= (he™. ¢)

forallz € [0, T] and all ¢ € H2(Q), where
h(E. 0" = S (uxx(E.0) [ux[[§ — vex (E.O[[Vx]5)
= S (uxx (&, )" (lux OII5 — Ivx (D7) + wxx (&, D v O)[5)-
Therefore, we have
1h(@)e™ o < S (luxx Ollollws (1) lollux () +vx (D)o + llwxx (D) ollvx(1)]3)

so that, by combining (A.3) with Lemma 4.4, we deduce that there exists C(]|gllo) > 0
such that

lim sup [|A(2)e™ |5 < C([[gllo) lim sup [|w ()], (6.3)
t—>00 t—00 *

and, for a family of varying g € L?(Q), we have C(||g|lo) = 0if ||g|lo — O. Therefore, if
L, is asin (4.9), and g¢ and |«| are sufficiently small (to satisfy (6.2), which yields both
lgllo + || < C(k) for some C (k) and (4.7)), we have that L,C(| g|lo) < 1. Taking into
account the H2-estimate (4.9) for the linear equation (4.6) and using (6.3), we get

lim sup ||w(t)||§_12 < L, limsup ||h(t)e"t||g
t—00 * t—00
< LaC(llgllo) limsup [[w ()17, < limsup [lw(®)[|3,.
t—>00 t—>00

with strict inequality if the limsup differs from 0. Therefore, we necessarily have
[w(®)|| 7z — 0as ¢t — oo. By undoing the change of variables, this proves that

. nt _ —
Aim e u(?) —v(@)] gz = 0.
By using (4.8) we may proceed similarly to obtain
lim e [|u () — v: ()]0 = 0.
t—>00
which concludes the proof. ]

The first two statements in Theorem 3.2 are straightforward consequences of Lemma
6.1. First, by contradiction, if there exist two stationary solutions u}g and uéz,, Lemma 6.1
states that

: nt 2 1 _
tl_l)ngoe ”ug_ug”Hf _0’

proving that u? = u;,. With the uniqueness of ug at hand, we use Lemma 6.1 with a
general solution ¥ = u(¢) and v(?) = ug so that we obtain

Tim &7 [u(e) — uglly = lim e (Jur(O)llo + u(®) = gl 2) = O,

showing the uniform exponential decay of any solution u = u(t) to (u,,0) in ¥ ast — oo.
This also completes the proof of Theorem 3.2.
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7. Convergence to equilibrium II: proof of Theorem 3.3

For this section, recall that W is the stationary set of weak solutions with properties given
in Theorem 3.5. The proof of Theorem 3.3 below depends on the conditions on g. In the
first part, we take g = 0 and assume that 0 € W is the unique stationary solution. Later,
we modify that proof to obtain the result when g # 0 and W may have multiple equilibria,
so long as they are isolated and hyperbolic (the result for ug € W the unique, hyperbolic
stationary solution is included).

Part I — Exponential convergence to zero for g = 0 and W = {0}

Step 1. For any generalized solution to (2.1) (u(¢), u;(¢)) corresponding to the dynamical
system (S;, Y), the following energy balance is satisfied (see (2.6)):
! ¢
&) + k[ ||ut(s)||% ds = &(0) + oz[ (uy(s), ut(s)) ds. 7.1
0 0
In view of (2.5) (when g = 0), the energy & is topologically equivalent to E(¢) by coer-
civity (P < A1); namely, there are ¢, C > 0 such that

cE(t) <&() <C[E@®t)+ E(t)?]. (7.2)

Step 2. Restricting our attention to the absorbing ball (for ¢ sufficiently large), we may
invoke the observability estimate (4.17) on the difference of two trajectories on the
absorbing ball, z = u! — u?. Coupling this with (5.1), we obtain directly for E,(t) =
3la(z(@),2(0) + Nz 3],
T
TE.(T) + / E.(t) <cE;(0) + C(T,R) sup [z(v)|], (7.3)
0 z€[0,T]

where C(R, T) > 0 depending on the radius of the absorbing ball R and ¢ > 0 is a generic
constant. Choosing #? = 0 (hence restricting z = u! = u) and collecting these estimates,

we obtain
T

TE(T)+ &(T) + /0 E(t)dt <cE0)+ &)+ C(a, T, R) s[lépT] ()3
tefo,

From the energy balance (7.1) and (7.2), we can directly estimate
T
cE(0) < €(0) < C(a.T) sup [u(n)|] + C(R)E(T) + k/ llue (1)1 dt.
t€l0,T] 0

Fixing T sufficiently large, we obtain the following observability estimate on a single
trajectory:
T

&(T) +/O E(t)dt

T
< c[k/ ||ut||gdr} + k[lot(u)] where lot(u) = C(T) sup |lu(®)|?, (7.4)
0 tef0,T]

and the quantity a®k ! is taken sufficiently small.
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Step 3. (Compactness—uniqueness) Our aim in this step is to show the estimate

T
fot() = CCR) [ sl d. 1.5)
0

for any generalized solution to (2.1), which will provide a true observability-type estimate.
This is a standard proof by contradiction. Assume the inequality (7.5) is violated. Then
there necessarily exists a sequence of generalized solutions, {(u,(¢), un¢(¢))} such that
for all n,

E,(0) <M with E,(t) = %[a(un(t),u,,(t)) + atn e DIIF]:

and having the property that

lot(uy,)
T
Jo Mncl3
It is clear, for instance from (7.3), that we have E,(t) < C(M), t € [0, T]. Hence u,

has a weak limit u € L2(0, T; H*(Q)) N H'(0, T; L?(R)). By the Aubin-Lions com-
pactness criterion,

asn — oo. (7.6)

lot(u,) — lot(u).

Now, let us first assume that u # 0, so that lot(u) # 0. The contradiction hypothesis in
(7.6) implies that we must have

T
/ |3 dt — 0.
0
It is also clear from boundedness of the energy on [0, T'] that
Up = u in L0, T: H*(Q)), uns —su; in L0, T; L*(RQ))

on appropriate subsequences denoted by the same index n. On the other hand, u, ; — 0
in L2(0, T; L?(2)). We consider the weak form of the plate equation (2.4) evaluated
on solutions (u,, u,,) and pass to the weak limit. Limit passage on the linear terms is
immediate, while the nonlinear term |[tx » [|32xx 1, being bounded in L2(0, T; L2(Q)),
has a weak limit Q. As it is the product of a weakly convergent sequence uy , in L2 with
a strongly convergent uy , in L2, it converges weakly in L!((0, T) x Q) as a product to
[[tx |31, allowing us to identify Q = ||ux ||3uxx. Hence, we may pass to the limit on a
full nonlinear equation yielding the limiting equation

Au+ [P — Sluxllg]uxx = auy,

which u € H? satisfies weakly. From the standing hypothesis that no nontrivial weak
steady states exist, we infer that ¥ = 0, which contradicts our assumption (in this case)
that u # 0.
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Next let us consider the case when the limit point u = 0, so that lot(u,) — lot(u) = 0.
We may normalize by considering v, = u, /lot(u,)"/2, then clearly lot(v,) = 1 and
1

—_—
T
Jo Mvmel§

From the observability inequality (7.4) renormalized by lot(u,), we also have

T
o0 or / vnsllsdt — 0.
0

T T
&,(T) + / En(0)dt < ck [ lom e dt + K[lot(v)].
0 0

where &, is & evaluated on (v,, v, ). Since &, > cE, as in (7.2), E,(t) € L*°(0,T),
hence

Up =% v in L0, T; H*(RQ)), Uns —« v, in L%(0,T; Ly(RQ)),
and v,, satisfies
2 2 _
Untt + kvn,t + A%v, + [P - S”un,x“o]vn,xx = QVp,y.

Since u, — 0in L2(0, T; H'(R)) and v;,, — 0in L?((0, T) x ) we can pass with the
adapted weak form (2.4) to obtain the following equation for the weak limit v € H2:

A%y + Puyy = avy.

By the assumption of hyperbolicity of the zero equilibrium (a sufficient condition being
the smallness of |«|), we obtain that v = 0. This contradicts lot(v) = lim, lot(v,) =
1 # 0, where the latter limit again follows from the compactness of lot(v) with respect to
energy E(t).

Hence, in both cases estimate (7.5) holds, which will be used in the next step.

Step 4. Combining Steps 2 and 3 we have

8(T)+/0

Step 5. Directly from the energy balance and Young’s inequality, we have for all 7,

T

T
E(t)dt < c<R)[k /0 ||ut<r)||%dr]

t 1 t k t
8(r>+k/ ||ut(s)||3ds58<0>+—a2/ ||uy<s)||%ds+—/ e ()12 ds.
0 2k 0 2 0

This gives
k t az t
—/ ||u,<s>||3ds58(0)—8(r>+c—/ E(s)ds,
2 Jo k Jo

and, from Step 4, we obtain

T T 2 T
8(T)+/0 E(t)dt < Ck/o A E: 5C[8(O)—8(T)]+c%/o E@®). (1.7
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Thus, there exists a number ¢ > 0 (depending only on A; and R) so that if «?k~! < g,
the last term in (7.7) is absorbed by the integral of energy on the left-hand side:

T
8(T)+[0 E(t)dt < C[&(0) — &(T)].

This yields the traditional hyperbolic-type stabilizability estimate on [0, T'],

c

€M) = 7¢O

C

where C > 0. Since the dynamics corresponding to (S, Y) (and its restriction to the
absorbing ball B C Y) are autonomous and 7" measures only the length of the time interval
considered, we obtain exponential decay through the semigroup property and iteration.

The proof of Theorem 3.2 (in the case when g = 0 and the stationary problem has 0
as the unique hyperbolic equilibrium) is concluded on the strength of the existence of the
absorbing ball Theorem 3.1.

Part IT — General exponential decay for g # 0

In this case we consider a trajectory converging strongly to an isolated, hyperbolic equilib-
rium, as in the hypotheses. As such, consider a trajectory S;(yo) = (u(¢),u;(t)) — (e, 0)
inY ast — oo, with e € W (i.e., (e, 0) is a stationary point of S;) and assume e has a
neighborhood in H2 so that it is the unique element of W in that neighborhood. (Remark
7.2 below addresses the case W = {e}.)

Step 1. Let us introduce z = u — e, yielding the trajectory Z(z) = (z(2), z;(¢)) — 0 as
t — oo strongly in Y = H2 x L?(Q). Let € > 0. Since the e is isolated, there exists
To(e, €) > 0 so that
T
/ E.(t)dt <e VT >Ty. (7.8)
T—1
The variable z satisfies the following equation weakly:

Zt +kz + A%z + Pzyy— S”“x”%Zxx + S[”ex”(z) - ”ux”%]exx = 0Zy (7.9)

with the boundary conditions associated to H2. We shall show that z converges exponen-
tially to zero. The key to the argument will be the functional

®(2)

S
Z[H“x”ﬁ — llexlig] = Sllexllgex. zx)
S
= Z[”ex + Zx”g — llex ”3] - S”ex”%(ex, Zx).

It can be verified directly that

d
7, 2E0) = S([llexl§ = NuxllgJexx — llux gz, 22)-



Long-time dynamics of a hinged-free plate driven by a nonconservative force 485

Now let us define a Lyapunov function

P
V() = Ve(t) = E-(1) = 1225 + @z (0)).

With the calculation of % ®(z(t)) above and equation (7.9), we obtain the identity

t t
V(t) + k/ ||Zt||gd‘[ = V(s) +Ol/ (zy,zt)qdrt. (7.10)

Since z — 0 in the energy space when t — oo, the structure of ®(z(¢)) clearly has
®(z(t)) > 0and V(r) > 0fort > Toy(e, €) (as in (7.8)). Additionally,

V(1) < C(RIE: (1), |E-(t) = V(O] < pllz(0)II + Clp, R)z(0)II5

where p can be taken arbitrarily small, and, as before, R indicates the radius of the absorb-
ing ball.

Step 2. Proceeding as in Part I of this section, we adapt the observability inequality:

T T
V(T)—i—/ E.(t)dt §k[C/ ||Zt||(2)dfi| T kllot(z)], 0<s<T, (7.11)

where, in this case,
()[2 T ) )
lot(z) = "’ lzyllodz + sup [z(D]]7,
K t€[0,T]

and again, o2k ~! is taken sufficiently small. As before, we eliminate the lower-order term
lot(z).

Step 3. We state as a lemma the lot(z) estimate.

Lemma 7.1. Let z be a generalized solution of (7.9) and such that sup,c(o 71 E (2 (1)) <
R2. Then there exists €y > 0 (as in (7.8)) such that for € < €y,

T
lot(2) < [C(R, To.e) [ ||z,||%dr]-
s
Here To = T (S;(yo),e) and T > Ty, this is to say that the relevant time Ty depends on
the trajectory in hand (u, u;) and the equilibrium e € W to which it converges.

Note the slightly modified structure of the proof from that of Step 3 in Part I.

Proof. We argue by contradiction. Restricting to the absorbing ball, there exists a
sequence z, such that E(z,(¢)) < R? and by boundedness of lot(z,),

1ot(z,)

T
————— —> 00, andso [znellgds — 0O
Zn,[ K
s Nznelld
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and, consequently, z, —, z in L°(s, T; Hf) and z,, ; — z; in L*°(s, T'; L?(2)); more-
over, z; = 0, so z satisfies (weakly) on H f similarly to before,

A’z + Pzyy— Sz + e)x”%Zxx + S[”ex”% =z + e)x”g]exx = 0Zy.

Since e is stationary the above implies that z + e is also a stationary point. By (7.8) along
with weak convergence and lower semicontinuity of the energy,

T
/ E(z)dt = E(z) <€ <€,
T-1

where € has been selected (as above, by the isolation hypothesis) so that there is no other
equilibrium with E(S;(y¢) — (e, 0)) < €¢. From this we infer that for the limit point,
z=0.

Remark 7.2. Note that in the case when e is unique in W, then the conclusion that z = 0
follows at once without the necessity of assuming convergence to an equilibrium at the
outset of the proof.

Our next step is the rescaling argument which will yield the contradiction. We set
Un = z/10t(z,)"/? and note that we have just shown (z,,, z,,) — (0,0) in Y. We have

T
lot(v,) =1 and / vnc|I? ds — 0. (7.12)
N

From the rescaled observability inequality (dividing (7.11) by lot(z)) we also have
E(a(t) =M Vi >Tp,
so we have a weakly convergent subsequence (denoted by the same index n)
(Vns Un ) =5 (v,00) in L%(s, T3 HE x L2(Q))
and, combining with (7.12),
Up =% v in L%, T: H*(Q)) and vy, —« 0 in L2(s, T; L*(RQ)).

From (7.9), we have that v, satisfies (weakly) the following equation:

Un,et + kvn,t + szn + [P - S”Zn,x + ex”z]vn,xx + S[”ex ”2 - ”Mx”z]exx]

lot(z,)
= 0y, y.

Rewriting the difference of squares, we have

Un,t + kvn,t + szn + [P - S”Zn,x + ex||2]vn,xx - S(vn,xa ex +Zux + ex)exx

= QVp,y.
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Passing with the limit on the weak form of the equation and exploiting the zero limits for
zy and vy, ; as before gives a linearization about e:

A2 + [P = Sllex]?]vr — 28 (v, ex)exs = avy.

The assumption on hyperbolicity of the equilibrium e implies immediately that v = 0.
Thus v = 0 and, by compactness, lot(v,) — lot(v) = 0 which contradicts that
lot(v,) = 1. Hence the desired estimate in Lemma 7.1 holds. [ ]

Step 4. Combine Steps 3 and 2 to obtain the observability-type inequality

T T
V(T)+/ E.(t)dt fc[k/ ||Z,||%dt].

Step 5. From the balance identity for V in (7.10), we have

t 1 t k t
Vo +k [ Iz@I3ds < Vo) + 500 [ In0Rds+ 5 [ Iolds

As before, if k~'a? is sufficiently small, the last term is absorbed by the integrated

quantity
T

V(T) + /0 V(t)dt < C[V(0) - V(T)).

which gives V(T') < CL+1 V(0), and hence exponential decay, as desired.

Remark 7.3. Note here that, in general, C — which dictates the rate of decay — depends on
Ty, e, St (o), which is to say the trajectory, the equilibrium to which it converges, and the
“no-escape” time associated to e. In general, one would not expect any uniformity across
the set W, which is why Theorem 3.3 is phrased as it is. In the case when W is finite, in
addition to isolated and hyperbolic, one can ascribe some uniformity to the decay rate (by
choosing the minimal such value) and the critical ¢ parameter (controlling «?k~!), again
by choosing ¢ = mineew ge.

8. Nontriviality of the attractor: proof of Theorem 3.6

The proof of Theorem 3.6 is organized as follows. Stationary solutions of (2.1) (with
g = 0) solve the problem

A%u + (P — S|:/ uii|)uxx = au, inQ x (0,7),
Q
U=1Uxy =0 on {0, 7} x [, 1],

Uyy + OUxy = Uyyy + (2 —0)uxxy =0 on [0, 7] x {—£€, L},

8.1)
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and we are first interested in (nontrivial) unimodal solutions of (8.1); see (3.2). To this
end, we introduce the related linear problem

AU — pUyxx = Uy in ,
U=Uxx=0 on {0, 7w} x [, ], (8.2)
Uyy +0Uxx = Uyyy + (2=0)Uyxxy =0 on [0, 7] x {=£,L}.
The claimed properties about unimodal (stationary) solutions of (8.1) are then obtained
through (8.2). Finally, infinitely many unimodal (time-dependent) solutions V,, o of (2.1)

are constructed by means of the found solutions of (8.1).
With a simple change of unknowns one obtains the following lemma.

Lemma 8.1. Let P € R. If u > —P is such that («,U) (U # 0) solves (8.2), then the

function
u(x. y) = [n+ P U, y)
’ S Uxllo

is a nontrivial solution of (8.1).

The existence of unimodal solutions of (8.1) is then based on the next lemma.

Lemma 8.2. Let P € R. For any integer m there exists &, < 0 such that for all o« < 0y,
the following assertions hold:

»  There exists a unimodal solution Uy, o of (8.2) (see (3.2)) having m — 1 zeros in the
x-direction.

» There exist at least m couples of unimodal solutions Uy q, ..., Up of (8.2); these
solutions have from 0 up to m — 1 zeros in the x-direction.

Proof. To solve (8.2), we argue by separating variables, i.e., we seek a solution in the
form

U(x.y) = ¥ (y) sin(mx). (8.3)

This amounts to solving the linear ODE

Y (y) = 2m*y" (y) — ¥’ (y) + (m* + um*)y(y) =0, (8.4)

whose characteristic polynomial is /,,(z) = z* — 2m?z% —az + m* + um?. When p =
a = 0, we have h,,(z) = (z2 — m?)2, whose graph is W-shaped with the two global
minima at z = +m where h,,(£m) = 0. If we increase p, the graph is shifted upwards
and there are no real solutions of /,,(z) = 0. Then we decrease « so that the graph starts
leaning down on the left of the origin and up on the right. There exists a unique critical
negative value of ¢, given by

am(p) = —34%(\/4m2 —|—3u—2m)\/m2 +my4m?2 +3u <0,
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for which the graph is tangent to the z-axis, namely the equation /,,(z) = 0 has a double
zero for some z < 0. When @ < a,, (1), the global minimum of %, becomes negative
and there exist two negative real solutions of h,,(z) = 0, say z; < z, < 0, the remaining
solutions z3 and z4 being complex (and, obviously, conjugated). Also, z; — —oo and
z; — 0 as ¢ — —oo. Moreover, z3 = Z4, Re[z3] > 0, Re[z3] > o0 as @« — —o0, and
Im[z3] — 0o as @ — —oo. We found explicit expressions for the z; due to Ferrari—-Cardano
by using Mathematica and subsequently we checked them by hand. Hence, when o <
om (1) the general solution of (8.4) reads

V(y) = Arexp(z1y) + Az exp(z2y)
+ exp(Re[z3]y) (43 cos(Im[z3]y) + A4 sin(Im[z3]y)).

By imposing that the function U in (8.3) satisfies the boundary conditions in (8.2), we find
the four conditions

V() —om*P(sl) =" (s0) — 2 —a)m*y'(sl) =0 forg = £,

which constitute a linear 4 x 4 algebraic system of the unknowns Ay, ..., A4. Also, the
explicit form of the determinant D = D(m, u, «) of this system was computed by using
Mathematica and checked by hand; it is a function depending on m, w, . Then, as is
standard in eigenvalue problems,

there exists a nontrivial solution U of (8.2) of the form (8.3)

if and only if D(m, u, ) = 0.

At this point, explicit computations became even more difficult and we proceeded just with
Mathematica, and no checking by hand. The condition D(m, u, ) = 0 defines implicitly
an analytic negative function « = ®(u, m) whose absolute value |®| is numerically seen
to be strictly increasing with respect to both m and p with limy— o |® (1, m)| = oo. For
fixed m = 1,2, 3,4, 5, in Figure 2 we report the plot of the functions u +— |®(u, m)|.
It is apparent that they are strictly increasing and divergent as © — oo. Then we fixed
and we considered the map m +—> |®(u, m)|, which also turned out to be increasing and
divergent as m — oo: in Figure 2 we see that

B, D < D1, 2)] < |B(.3)] < | B, D] < Vpu € (0,100)

and these inequalities continue for all m.

The above numerical arguments show that for a given integer m, if « is sufficiently
negative (say @ < o, < 0) then D(m, u, ) = 0 for some u > 0. As a consequence, there
exists a nontrivial solution U of (8.2) of the form (8.3) which has m — 1 zeros in the
x-direction. This proves the first item.

Moreover, since m +— |®(u, m)| is increasing, for the same « and forany i = 1,...,
m — 1 we may find u; > p such that D(i, u;,®) = 0 so that there exists a nontrivial
solution U of (8.2) of the form (8.3) (with m replaced by i) which has i — 1 zeros in the
x-direction. This proves the second item and completes the proof of the lemma. ]
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Figure 2. Graphs of the maps jt > |®(u, m)| form = 1,2, 3,4, 5 (from bottom to top).

The first two items in Theorem 3.6 (existence and multiplicity of unimodal solutions
of (2.1)) are a direct consequence of Lemmas 8.1 and 8.2.

Next, we build an evolution unimodal solution to (2.1) with g = 0. Assume that o < &y,
so that, by Lemmas 8.1 and 8.2, there exists a (stationary) solution of (8.1) of the kind

U(x,y) = ¥(y)sin(mx) and
AU —m? (P - S/ Uf)U = ay'(y) sin(mx).
Q

Now W(x, y.t) := ¢(¢)U(x, y) solves the evolution equation (2.1) with g = 0 if and
only if

U+ kU + A?U¢p — [P - S¢2/ sz:|m2¢U = pay/(y) sin(mx),
Q
if and only if
Ud+ kU + A*U¢p — [P - S¢2f Uf}mzqﬁU
Q

- ¢(A2U—m2(P —S/QUf)U).

After simplifying this equation, we infer that W(x, y, t) solves the evolution equation (2.1)
with g = 0 if and only if

U(x,y)(é5+k¢3+Sm2(¢3—¢)/QU3) =0.
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Let us set
Sm2/ U =m*R%.
Q

We finally deduce that W(x, y, t) solves the evolution equation (2.1) with g = 0 if and
only if ¢ = ¢(¢) is a solution of the damped Duffing equation

é+kp+ (9> —p)m*R*> = 0. (8.5)

Then we notice that any solution of (8.5) satisfies the identity

d (1. o 4 e® d@>\Y_ .

We infer that all the solutions of (8.5) are globally bounded, and therefore ¢ (¢) tends to a
constant solution of (8.5), that is, lim; o ¢(¢) € {—1, 0, 1}. In turn, this means that one
of the following facts occurs:

W(x,y,t) =0, W(x,yt)—=Ux,y), Wkx,yt)—>-Uxy) ast— oco.

In particular, if
2¢4(0)2 + m*R%(¢(0)* — 2¢(0)) < 0, (8.6)

then W(x, y,t) % 0 as t — oo and W(x, y, t) necessarily tends to either U(x, y) or
—U(x, y). This proves the statement about evolution unimodal solutions.

Remark 8.3. Theorem 3.6 explains how the bifurcation from the trivial solution occurs,
arising from @ = @, as « decreases. Or, backwards, when o 1 &, the norm of the sta-
tionary solution tends to 0. Moreover, Theorem 3.6 enables us to construct heteroclinic
solutions as follows. Take a sequence of initial values (¢(0), ¢(0)) = (1/n,0) so that
(8.6) holds. These data tend to 0 as n — oo while, as ¢t — o0, the corresponding solution
of (2.1) tends to U..

If u(x, y,t) solves (2.1) for some o < O then u(x, —y,t) solves (2.1) when « is
replaced by —a > 0. This also occurs for the stationary problem (8.1) and for the eigen-
value problem (8.2). This shows that one can reflect Figure 2 vertically and have a picture
for all @ € R. Moreover, by arguing as for (6.1), one finds that |«| > MA_IP V2A1(1 —0?)
is a necessary condition for the existence of nontrivial solutions to (8.2). This serves as a
lower bound for the curve in Figure 2.

9. Construction of determining functionals: proof of Theorem 3.10

We prove a more general result than Theorem 3.10, in the setting of a determining set of
functionals (note the construction in [19, Theorem 7.2], as well as [17, Section 7.9.4] and
[14]). This abstract theory allows us to show that any set of functionals satisfying a par-
ticular smallness condition will be determining. Let us recall the notion of a determining
set.
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Definition 9.1 (Determining set). Let £ = {/; : j € I} be a set of continuous, linear
functionals on H2, where I is some index set. We say that £ is a determining set of
functionals if for any two trajectories S;(y?) = (u’(¢),u’(¢)), i = 1,2, we have

lim ||S;(y') — S;(»*)||3 =0 whenever lim |/;(u'(t) —u?@))*> =0 Vj € I.
t—>00 t—>00

Roughly speaking, a collection of functionals is asymptotically determining if evalua-
tion on these functionals (as t — o0) is sufficient to distinguish trajectories. As discussed
above, in most cases we are looking for a finite set £ that is asymptotically determining
for (S;,Y).

Definition 9.2 (Completeness defect). Let £ = {; }lNzl be a finite set of linear functionals
on H2. The completeness defect of £ on H2, with respect to H¥() (0 < s < 2), is
defined by

ecsi=ec(HLH(Q) = sup {|wllgs:Liw)=0Vj=1....N}.

{lwl2<1)

With this notion at hand, we can present the main result on determining functionals
for (2.1).

Theorem 9.3 (Determining functionals). Letk,S >0, o, P € R, and (S;,Y) be as above.
There exists a number €4 > 0 such that if £ is a set of continuous, linear functionals on
H2 witheg g < ex, then L is a determining set of functionals for (S;,Y).

We first prove a key lemma.

Lemma 9.4. Let £ = {li}zN=1 be a finite set of linear functionals on H? and 0 < n < 2.
Then there exists C(£,n) > 0 such that for any v € H2, we have

[Vlay < 02y lolgz + C(Lon) max (1)) ©.1)

.....

Proof. Let{e; : j =1,..., N} be an orthonormal system for £, i.e., /;(e;) = §;;. Given
ve H? wesetw =v — Z;V=1 lj(v)ej. Clearly, [;(w) = O0for j =1,..., N and hence,
directly from the definition of £ >, we have

lwll2—y < eg2-nllwllg2.
Then we write

[vll2— < v = wll2—p + [wll2—y < [v=wl2—y + £ 2-n Wl 2

< v —wla—y +ec2nllv—wlgz + ec2-nlvl g2

.....

for some C(£L, n) > 0. |
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Proof of Theorem 9.3. Let S;(y') = (u*(¢),u (¢)) be two trajectories for y!,y2 € BC Y.
We claim that, if e¢ > is sufficiently small, then

Jim It (t) —u*(@))*=0 Vj=1,...,N
—>00

= Jlim [|S,(y) = S (D)7 =0. 9.2)
Indeed, suppose that the assumption in (9.2) holds and note that this is equivalent to
8(t) := sup max]|/; wl(s) —u?@$)*> =0, t— oco. 9.3)
s€ltt+1] 7

In the sequel, C denotes a positive constant independent of the trajectories and which may
vary from line to line. The quasi-stability estimate (5.2), where (z(¢), z,(¢)) = S;(y!) —
S:(y?), and the semigroup property yield the inequality
ISt = Seax (VT = CE™TIS (0D = S: D)y + sup [z(D]13-,)- O4)
t

<s<t+t
With Young’s inequality, we have from (9.1) that for any b > 0, there exists C = C(b) > 0
such that
013y < (14 B)ed oyl + € max 110

.....

With the Lipschitz estimate on S; in (2.7), we obtain from above,

sup [|2()[53- < [(1 + b)ec2—y Ce %71 S, (v?) = Se (¥ + C(L. b, mS(1).

t<s<t+7

From this estimate, we invoke (9.4) to obtain

[Se4:(0") = Sec DT < YIS0 = S: )3 + C(L, b, m)S(2),

with T = C(o, B)[(1 + b)eg 2—ne®RT + e °F]. For any b > 0, and a sufficiently large
T > 0, by taking e 5, sufficiently small, we guarantee Y < 1. Then, again from the
semigroup property, we can iterate on intervals of size 7 to obtain
n—1
1St4ne () = Stpane ODF < YIS0 (31) = St WDIIF +C D Y78 (to + m).
m=0
From here, taking n — oo, we obtain from (9.3) the desired conclusion in (9.2) and the
proof of Theorem 9.3 is complete, once we note that £ ¢ o controls £¢ 25 asin (9.5).
Indeed, we obtain the relation between e >, and e, through interpolation. First,
standard Sobolev interpolation yields

1 _n
2 1 2

HZ? -

n/2

2
n < clullg” full

1
lellz—y =< luellg™ el

Then from [14, (3.3.9), p. 123] with V' = H,f, W = Hz_"(SZ), and X = L2(SZ), where
0 = n/2 and ay = c (the constant related to norm equivalence above), we infer that

leconl?/" < cMep g < ci0om [eg (HX(Q), L2(2))]/C77. 9.5)

Taking e ,0 < &4 sufficiently small with respect to the control in (9.5) then completes the
proof. ]
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The example of central interest here is that of determining modes. Let {e;} be the
eigenfunctions of 4 on H2. Then, for the set

L={lj:j(w)=(w,e), j=1,...,N},

define the Fourier approximation R: H2 — H2 by
N
Re(w) =) L (w)e;.
j=1

Then R approximates in L2(S2), in that there exist C, o > 0 such that
[w—Re(w)llo < Ch*

for all w € H? with ||w/| g2 < land any 1(N) > 0 sufficiently small. Specifically, in this
case, we have
eco=ec(H2 L*(Q) <c¢/N

for some ¢ and for all N sufficiently large; see [14, Section 3.3] for further details. This
result also holds in our framework because the boundary conditions in (2.3) satisfy the
complementing conditions; see [24, Lemma 4.2]. We can then apply Theorem 9.3 to
obtain, as a consequence, Theorem 3.10.

A. Nodes of oscillating modes and spectral analysis

The Federal Report [3] makes a detailed description of the oscillations seen prior to the
Tacoma collapse. In particular, we learn that in the days before the collapse,

¢ One principal mode of oscillation prevailed ... the modes of oscillation frequently
changed.

< Altogether, seven different motions have been definitely identified on the main span of
the bridge ... These different wave actions consist of motions from the simplest, that
of no nodes, to the most complex, that of seven modes.

On the other hand, on the day of the collapse, the following were observed:

< Prior to 10:00 A.M. on the day of the failure, there were no recorded instances of
the oscillations being otherwise than the two cables in phase and with no torsional
motions.

< The bridge appeared to be behaving in the customary manner . .. these motions, how-
ever, were considerably less than had occurred many times before.

<& The only torsional mode which developed under wind action on the bridge or on the
model is that with a single node at the center of the main span.
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The above demonstrates the importance given to the nodes of the oscillating bridge modes.
In this respect, we refer to [3, Drawing 4]: it is an attempt to classify the observed modes
of oscillations. This is why the analysis of unimodal solutions (as in Section 8) is relevant
to us.

We recall here some results about the eigenvalue problem:

A2w = \w in 2,
W= Wyy =0 on {0, } x [—£, 1], A1)
Wyy + 0Wxx =0 on [0, ] x {—¢, ¢},

Wyyy + (2 —0)wxxy =0 on [0, ] x {—¢€, £},
which can be equivalently rewritten as a(w, z) = A(w, z) for all z € H2(S2). Here we take
{=— o0=02

with the relevant Poisson ratio o in mind for a suspension bridge (a mixture of iron and
concrete) and the measures of the collapsed Tacoma Narrows Bridge. By combining [8,9,
24,27], we obtain this statement.

Proposition A.1. The set of eigenvalues of (A.1) may be ordered in an increasing
sequence of strictly positive numbers diverging to +0o and any eigenfunction belongs
to C®(Q). The set of eigenfunctions of (A.1) is a complete system in H?2. Moreover, an
eigenfunction associated to an eigenvalue A ; has the form

¢;(y) sin(m; x),

where ¢; is either odd or even and mj > 0 is an integer. All the eigenvalues have finite
multiplicity but they are not necessarily simple.

A more precise statement (including the explicit form of ¢;) is given in [7-9, 24].
Moreover, we know that for our configuration on Q = (0, 7) x (£, £),

2 2
o2, Mol

loxllg
in > min > and 5 = 1, (A2)
ver? |vxlg  vem? vl ver? [vlig

A= M1,1 =

which yields the following embedding inequalities (see [12, p. 3060, Eq. (9)]):

2 2 2 2 2 2 2
vllo < llvxllo,  Asllvllo < vl Allvxllo < llvllz. Vv e Hy. (A3)

B. Long-time behavior of dynamical systems

We recall here some notions and results from the theory of dissipative dynamical systems.
We say that the dynamical system (S;, Y) is asymptotically smooth if for any bounded,
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forward-invariant set D there exists a compact set K C D such that
lim dy{S;(D)| K} =0.
t—>+o00

A closed set B C Y is absorbing if for any bounded set D C Y there exists a #o(D) such
that S;(D) C B for all t > ty. If (S, Y) has a bounded absorbing set, it is said to be
ultimately dissipative. We will use a key theorem from [17, Chapter 7] to establish the
attractor and its characterization.

Theorem B.1. A dissipative and asymptotically smooth dynamical system (S;,Y) has a
unique compact global attractor A CC Y that is connected, characterized by the set of all
bounded, full trajectories.

We now proceed to discuss the theory of quasi-stability of Chueshov and Lasiecka
([14,17)).

Condition 1. Consider dynamics (S;, Y) where Y = X x Z with X, Z Hilbert, and X
compactly embedded into Z. Suppose y = (x,z) € ¥ with S;(y) = (x(¢), x;(¢)) and
xeC'RL, X)NC'(R,, Z).

Condition 1 restricts our attention to second-order, hyperbolic-like evolutions.

Condition 2. Suppose S; € Lip,,.(Y'), with Lipschitz constant a(t) € L (0, c0):

1S:(y1) = S:()lly <a@)y1 —y2ly.

Definition B.2. With conditions 1 and 2 in force, suppose that the dynamics (S;,Y) admit
the following estimate for y;,y, € BCY = X x Z:

IS:(v1) = S: 2y < e lly1 — y2l3

+Cy sup |lx; — x2||22* for some y, C; > 0, (B.1)
t€[0,¢]

where X C Z, C Z and the last embedding is compact. Then (S;, Y) is quasi-stable on B.

We now run through a handful of consequences of a system satisfying Definition B.2
above for dynamical systems (S;, Y') satisfying Condition 1 ([17, Proposition 7.9.4]).

Theorem B.3. If a dynamical system (Sy,Y') satisfying Conditions 1 and 2 is quasi-stable
on every bounded, forward-invariant set B C Y, then (S;,Y) is asymptotically smooth.
If; in addition, (S;,Y) is ultimately dissipative, then by Theorem B.1 there is a compact
global attractor A CC Y.

The results in [17, Theorem 7.9.6 and 7.9.8] provide the following result for improved
properties of the attractor A if the quasi-stability estimate can be shown on A. If Theorem
B.3 is used to construct the attractor, then Theorem B.4 follows immediately; this is not
always possible ([18,30]).
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Theorem B.4. If a dynamical system (S;,Y) satisfying conditions 1 and 2 possesses
a compact global attractor A CC Y, and is quasi-stable on A, then A has finite fractal
dimensioninY (dim}CA < +00). Moreover, any full trajectory {(x(t),x;(t)):t e R} C A
has the property that

xt €LPR; X)NCOUR; Z);  xp € L°(R; Z), with bound || x,(1) |5 + X (1) % < C,

where the constant C above depends on the “compactness constant” Cy in (B.1).

Elliptic regularity can then be applied to the equation itself, generating the dynamics
(S¢,Y) torecover x(¢) in a norm higher than that of the state space X .
The following theorem relates fractal exponential attractors to quasi-stability.

Theorem B.5 ([17, Theorem 7.9.9]). Let Conditions 1 and 2 be in force. Assume that
the dynamical system (S;,Y) is ultimately dissipative and quasi-stable on a bounded
absorbing set B. Also assume there exists a space Y DY sothatt — S, (y) is Holder
continuous in Y for every y € B; this is to say that there exists 0 < o < 1 and Cp,7>0 50O
that

I1S:(y) = SsWlly < Crrlt —s*, t,s€R4, y€B.

Then the dynamical system (Sy,Y) possesses a generalized fractal exponential attractor
Aexp whose dimension is finite in the space Y, i.e., dim}/ Aexp < +00.

Remark B.6. We forgo using boldface to describe Acyp (in contrast to the global attractor
A) because exponential attractors are not unique. In addition, owing to the abstract con-
struction of the set A, C X, boundedness of A, in any higher topology is not addressed
by Theorem B.5.
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