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We study the evolution of a 2D vortex layer at high Reynolds number. Vortex layer flows
are characterized by intense vorticity concentrated around a curve. Besides their intrinsic
interest, vortex layers are relevant configurations because they are regularizations of
vortex sheets. In this paper, we consider vortex layers whose thickness goes like the
square-root of the viscosity.
We investigate the typical roll-up process, showing that crucial phases in the initial

flow evolution are the formation of stagnation points and recirculation regions. Stretching
and folding characterizes the following stage of the dynamics, and we relate these
events to the growth of the palinstrophy. The formation of an inner vorticity core, with
vorticity intensity growing to infinity for larger Reynolds number, is the final phase of
the dynamics. We display the inner core’s self-similar structure, with the scale factor
depending on the Reynolds number.
We reveal the presence of complex singularities in the solutions of Navier-Stokes

equations; these singularities approach the real axis with increasing Reynolds number.
The comparison between these singularities and the Birkhoff-Rott singularity seems to
suggest that vortex layers, in the limit Re → ∞, behave differently from vortex sheets.

Key words: Vortex sheets. Spectral methods. Zero viscosity. Self similarity. Vorticity
concentration.

1. Introduction

In many instances of considerable physical interest, fluids display configurations of
highly concentrated vorticity. When a high Reynolds number flow interacts with a solid
boundary, for example, separation causes the ejection of strong vorticity from within
the boundary layer in the form of vortex layers and vortex cores, Schlichting (1960).
The formation and the evolution of these structures assume particular importance also
because they are the primary source of dissipation in the bulk of the fluid.
This paper presents a thorough study of the dynamics of thin vortex layers at high

Reynolds numbers and a comparison of their evolution, as predicted by the Navier-Stokes
(NS) equations, with the motion of an equivalent inviscid vortex sheet, as predicted by the
Birkhoff-Rott (BR) equation. It is well known that the Birkhoff-Rott equation, governing
the motion of an inviscid vortex sheet, suffers from the Kelvin-Helmholtz instability
according to which small disturbances grow exponentially. The main consequence of such
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instability is ill-posedness, revealing itself via curvature-blow up, see Caflisch & Orellana
(1989); Duchon & Robert (1988).

The seminal work of Moore, Moore (1979), contained the analytical procedures, based
on formal asymptotic expansion, indicating that the components of the vortex sheet
curve develop branch singularities of order 3/2, and that the curvature blows up due
to an inverse square-root singularity. This remarkable result was later supported by the
analysis presented in Baker et al. (1982); Moore (1985); Duchon & Robert (1988); Caflisch
& Orellana (1989); Brady & Pullin (1999), and by numerical simulations (Shelley (1992);
Krasny (1986b); Baker et al. (1993); Ishihara & Kaneda (1995); Cowley et al. (1999);
Nitsche (2001)) for both 2D and 3D vortex sheet flow.

The singularity formation sets the limit of applicability of the BR equation in predicting
the vortex sheet motion. To go beyond the singularity time, one needs to invoke some
regularization of the BR solution or use different mathematical models. In the former
case, δ-vortex blob regularization (Krasny (1986a); Baker & Beale (2004); Baker &
Pham (2006); Lopes Filho et al. (2006); Sohn (2011)) and BR-α model (Holm et al.

(2006); Bardos et al. (2008); Caflisch et al. (2017)) are commonly used to regularize
the singular kernel of the BR equation. These regularizations prevent the singularity
formation, which allows the continuation of the vortex sheet motion up to the typical
roll-up phenomena observed in shear layer flows. However, despite the regularization
induced by these models, some phenomena resembling the singular behavior are still
present: for example, Caflisch et al. (2017), the regularized BR-α solution has complex
singularities that, in the limit α → 0 get close to the real axis, producing spiking and
pinching both in the curvature and in the true vortex strength of the sheet.

In Baker & Shelley (1990), the authors approximated the vortex sheet with an inviscid
layer of uniform vorticity and, writing BR-like equations for the bounding interfaces of
the layer, they were able to follow in time the layer motion and to analyze the roll-up
phenomenon in the limit of zero initial thickness. In Benedetto & Pulvirenti (1992), the
authors rigorously proved that the dynamics of a thin vortex layer of uniform vorticity,
in the zero thickness limit, approximates the vortex sheet motion. In Tryggvason et al.

(1991), the authors used the 2D Navier-Stokes equations to reproduce the motion of an
array of viscous vortex blobs distributed along a curve; the authors compared the NS
dynamics, at small viscosity, with the δ−vortex blob regularization of the BR equation
for small blob size: they showed that most of the large scale features characterizing the
δ-BR curve were also captured by the viscous layer induced by the vortex blobs sequence.
Viscosity effects were also included in the model proposed in Dhanak (1994), where an
integrodifferential BR-like equation was derived from the zero thickness limit of a viscous
layer of non-uniform vorticity. However, subsequent numerical analysis, Sohn (2013),
showed that this viscous version of the BR equation does not prevent the formation of
singularity in the solution. Surface tension and density stratification have also been used
as regularizing agent in Hou et al. (1997); Baker & Nachbin (1998); Pugh & Shelley
(1998); Baker & Beale (2004); Chen & Forbes (2011).

The continuation of the vortex sheet solution after the singularity time can also be
viewed as related to the more general problem of the global (or local) existence of weak
solutions for the 2D Euler equations with vortex sheet initial data. The rigorous results
reported in DiPerna & Majda (1987a,b) and Delort (1991); Lopes Filho & Xin (2001)
ensure the global existence of measured-valued solutions for Euler equations, although
no information is given for the structure of the solution, let alone if it remains a smooth
vortex sheet satisfying the BR equation. Existence results were also obtained as zero
viscosity limit for NS equations (Majda (1993); Schochet (1995)), α → 0 limit of Euler-
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α equation (Bardos et al. (2010)), and using point vortex approximation (Liu & Xin
(1995)).

A recent result by Székelyhidi (2011) has shown that infinitely many nonstationary
weak solutions of the Euler equations for vortex sheet initial data exist and satisfy energy
conservation. Previous numerical evidence of non-uniqueness was first reported in Pullin
(1989), where it was shown that multiple self-similar solutions of a class of vortex sheet
configurations dependent on a parameter, produced non-trivial spiral-sheet structures in
the limit in which the parameter approaches the value for which the initial configuration
is a stationary solution of the Euler equations. This conclusion was also supported by
the numerical analysis performed in Lopes Filho et al. (2006) in which multiple solutions
of the 2D Euler equations were determined for a vortex sheet with non-distinguished
vorticity sign. Non-uniqueness can also be suggested by highlighting the differences
coming from different regularizations of the BR equation. Majda (1993); Schochet (1995);
Liu & Xin (1995); Bardos et al. (2010) reported rigorous analyses where regularized
models have been shown, in the zero regularization limits, to converge to weak Euler
solutions with vortex sheet initial data. However, several numerical tests have pointed
out that small scale irregular features are typical of certain regularizations only, raising
the question of whether the various regularized solutions converge to different limits in the
zero regularization regime. For instance, in Tryggvason et al. (1991) and subsequently, in
Nitsche et al. (2003), it was shown that many large scale features of the roll-up process,
such as the number of outer spiral turns at a fixed time, are similarly captured by a
sequence of viscous vortex blobs governed by the NS equations and by the δ−BR curve,
although in Nitsche et al. (2003) the more detailed analysis showed that some small scale
differences arise in the innermost part of the core of the spiral. These irregular features
were due to the onset of chaos in a particular resonance band, which develops after a
large time in the δ−BR solution as depicted in Krasny & Nitsche (2002) and later in
Sohn (2014), and were not observed in the viscous vortex blobs motion governed by the
NS equations. Furthermore, in Holm et al. (2006) the authors considered both δ-vortex
blob and Euler-α regularizations for vortex sheet motion in planar and axisymmetric
flows: inner core dynamics and spiral vortex sheet roll-up showed different small-scale
behaviors due to differences in the spiral core oscillations. However, the authors admit
that further investigations are necessary to verify that these differences remain in the
zero regularization limit.

The aim of this work is essentially twofold. First, we shall deal with the analysis of a
2D viscous layer flow governed by the NS equation. One could expect that a vortex sheet
is the approximation of a real viscous flow in which vorticity is strongly concentrated on
a layer of small thickness. The previously cited works (Tryggvason et al. (1991); Nitsche
et al. (2003)), where the authors studied a viscous layer and compared it with a vortex
sheet flow, deal with a low viscosity regime but fixed (non-dependent from the viscosity)
initial thickness of the layer. Although various initial thicknesses were considered, this
fixed finite thickness is a regularized agent itself; hence it remains to understand how the
layer behaves in both the zero viscosity and thickness limits. Instead, we shall assume that
the layer thickness depends on the square root of viscosity ν (or the inverse of the square
root of the Reynolds number Re). Although the layer motion shows some similarities for
the various Re considered, we shall describe two different Re number dynamics. In the
moderate-high Re number regime (Re > O(103)), the flow evolution is characterized by
mixing events in which vorticity is rapidly advected within the main core of the layer from
the thin braid attached. Conversely, in the low Re regime (Re � O(103)) these events
are not present. These differences will be highlighted by the analysis of the enstrophy
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decay rate (the palinstrophy), and by the different topological structure and complex
singularities of the central curve centered within the layer.

The second aim is to understand the possible structure of the layer in the zero
regularization limit. To accomplish this, we shall focus on the evolution of the central
material curve of the layer. We shall see that, in the zero regularization limit, the central
curve has, at a point of zero circulation, diverging curvature and vortex strength; this
structure is similar to what is predicted in Baker & Shelley (1990) for inviscid layers
of uniform vorticity. We shall give further evidence for the above scenario through the
analysis of the complex singularities of the curvature and vortex strength, and we shall see
how they have character compatible with a diverging behavior. We shall also perform a
direct comparison of the outcomes of the viscous layer with the motion governed by the δ-
vortex blob regularization of the BR equation. We shall see that the two solutions present
quantitative differences in the small regularizations regime. These discrepancies might
suggest that the various regularizations presented for the vortex sheet show different
behavior in the zero regularization limit.

We have also briefly analyzed the Euler solutions having a vortex layer as the initial
datum. This analysis will allow us to highlight the different roles played by the two
regularizing agents (viscosity and finite layer thickness) in resolving the vortex sheet
dynamics.

The plan of the paper is the following. In section 2, we present the general framework
by defining our initial setup for the viscous layer, and we describe the layer motion in the
zero thickness limit. In section 3, we apply the singularity analysis to the material curve
centered within the layer, and to the curvature as well to the vorticity intensity. Section 4
is devoted to the comparison between the singularities developed by the NS vortex layer
and those present in the regularized vortex-blob evolution of the vortex sheet. In section
5, we summarize our results.

2. Vortex layers

2.1. Formulation and initial set-up

In the 2D periodic domain D∗ = [−Lx/2, Lx/2] × [−Ly/2, Ly/2], we consider an
incompressible viscous flow. We assume that the evolution is governed by the Navier-
Stokes equations which in the vorticity streamfunction formulation are

∂ω∗

∂t∗
+ u∗ ·∇x

∗ω∗ = ν∇2
x
∗ω,

∇
⊥

x
∗ψ∗ = u∗, ∇

2
x
∗ψ∗ = −ω∗,

where x∗ = (x∗, y∗) ∈ D∗, ∇x
∗ = (∂x∗ , ∂y∗), ∇⊥

x
∗ = (∂y∗ ,−∂x∗), u∗ = (u∗, v∗) is the

velocity field, ψ∗ is the streamfunction, ω∗ is the vorticity and ν is the kinematic viscosity.

We make the equations non-dimensional using the characteristic length λ = Lx/2π and
the quantity Γ =

�
D∗

ω∗
0dS

∗, where ω�
0 is the initial datum. Non-dimensional quantities

are thus defined as:

(x, y) =
(x∗, y∗)

λ
, t = t∗

Γ

λ2
, (u, v) = (u∗, v∗)

λ

Γ
, ω =

ω∗λ2

Γ
,

while the Reynolds number is

Re =
Γ

ν
.
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The governing equations can therefore be written in non-dimensional form as:

∂tω + u∂xω + v∂yω =
1

Re

�
∂2
xxω + ∂2

yyω
�
, (2.1)

∂2
xxψ + ∂2

yyψ = −ω, (2.2)

u = ∂yψ, v = −∂xψ, (2.3)

ω(x, y, t = 0) = ω0. (2.4)

We shall solve the above system in the periodic domain D = [−π,π] × [−π,π], having
fixed the aspect ratio Ly/Lx = 1, and Lx = 2π. Equation (2.1) is the vorticity transport
equation, (2.2) is the Poisson equation for the streamfunction, and equations (2.3) relate
the velocity components to the streamfunction.
The initial data we shall consider in this paper consist of intense positive vorticity

highly concentrated on a small layer of thickness O(Re−1/2) around a curve φ(x). To be
more specific, introducing the rescaled variable Y = Re1/2(y − φ(x)), the vortex layer
initial data we shall consider, are of the form

ω0(x, y) = Re1/2f(x, Y ), (2.5)

where f(x, Y ) > 0 has decay in Y fast enough such that
�
f(x, Y )dY is finite. We shall

make the choice

f(x, Y ) = exp
�
−Y 2/2

�
/
√
2π, φ(x) = sin(x)/2,

which means that the profile of the vorticity, in the y-direction, is a Gaussian layer with
thickness of order Re−1/2 centered around a sinusoidal profile. In the limit of the thickness
going to zero, i.e., Re → ∞, the layer shrinks to a sheet coinciding with y = φ(x).
The reasons for the O(Re−1/2) scaling are two. From the mathematical point of view,
the vortex layer is considered a possible regularization of a vortex sheet: the viscous
dissipation, after an O(1) time, would spread a vortex sheet into a layer of O(Re−1/2)
thickness, which is therefore considered a realistic approximation of a vortex sheet. From
the physical perspective, vortex layers often arise from the detachment of boundary
layers from obstacles interacting with high-Reynolds-number flows. The thickness of these
shear/vortex layers is related to the boundary layer thickness before separation, which is
O(Re−1/2); see the classical textbook Schlichting (1960) and the interesting discussion
in the recent paper Widmann & Tropea (2015).

For our purposes, it is of interest to follow the motion of the center of the layer (that
we shall denote C(t)). This is done by placing, at t = 0, N + 1 particles on φ(x) and
transporting them using the velocity field (u, v) generated by the NS equations. Namely,
let (xj(0), yj(0)) for j = 0, . . . N , be the particles initially placed at (θj ,φ(θj)), θj =
−π + j2π/N . The Lagrangian evolution of the generic particle x(θj , t) = (xj(t), yj(t)) is
given by

dxj

dt
= u(xj(t), yj(t)),

dyj
dt

= v(xj(t), yj(t)). (2.6)

A relevant related quantity that we analyze is the vorticity distribution computed on the
material curve C

ωC(θ, t) = ω(x(θ, t)). (2.7)

Spatial discretization of the NS equation is achieved through a fully spectral method,
while a semi-implicit third-order Runge-Kutta scheme is used to evolve in time the
system; see Zhong (1996) for more details. At each time step, to solve Eqs.(2.6), the
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velocity field (u, v) is spectrally interpolated in the position of the particles (xj(t), yj(t)).
All simulations started with a coarser grid and periodically increased when the small
spatial scales developed: this required a periodic check on the saturation of the spectrum
of the solution (the vorticity), and the new resolution was adopted before all the modes
were excited. The maximum attained grid was 32768× 32768 for the larger Re. Thanks
to the spectrally accurate spatial discretization, the numerical errors are mainly due to
the time discretization. Therefore, the numerical scheme has third-order convergence.
We did not use any filtering technique for the vortex layer computations, as the viscosity
damps the growth of the round-off error. Instead, filtering was necessary for the BR
computations; see section 4.1.

2.2. Roll-up, enstrophy dissipation, and mixing

In this section, we analyze the dynamics of the vortex layer flow for all the Re
considered. We shall see how, in all cases, the roll-up of the layer and the formation
of two vortex cores characterizes the first stage of the evolution. This is analyzed in
section 2.2.1. The subsequent stages, instead, depend on Re. In the moderate high Re
regime (5 · 103 � Re < 7.5 · 104), we shall observe strong enstrophy dissipation with
palinstrophy growth and mixing events; see section 2.2.2 below. For the low Re regime
(Re ∼ 103), one observes none of the above: the merging of the two cores is the only
phenomenon worth mentioning, see section 2.2.3 below.

2.2.1. Initial stage: core formation

In figure 1 and figure 2, we show the vorticity distribution and the material curve C
for the moderate high Re and the low Re regimes, respectively.
We recall that in the limit Re → ∞, the initial datum (2.4) consists of the sinusoidal

vortex sheet originally introduced in Moore (1978), and that a pair of curvature singu-
larities, symmetric with respect to the origin, appears in the vortex sheet curve (Cowley
et al. (1999)). Here the initial datum is regular, and no singularity, in the NS solution,
can develop; however, in the layer motion, one can observe physical events associated
with the blow-up in the vortex sheet solution. In fact, the vorticity within the layer is
advected toward the points where the Moore singularities would be in the case Re → ∞.
At these points, as a consequence of the incompressibility, the layer bulges outwards. This
leads to the formation of two symmetric cores of vorticity, with trailing arms that wrap
around them (the cores are visible, at different times, in figures 1(a)-(b) and 2(a)-(b) for
Re = 2 · 104 and Re = 103, respectively). We can interpret core formation also in terms
of the winding of C: for Re high enough, this curve, as already mentioned, closely follows
the dynamics predicted by the vortex sheet equation, thereby showing the typical roll-
up. The vorticity carried by the curve C, consequently, mixes and folds because different
points of the curve get very close; see figure 1(a)-(c). The result is the formation of a
vortex core around which increasing portions of the curve wrap, leading to the growth
of the core. It is clear that this stage resembles and replicates the initial roll-up stage
encountered in many vortex-sheet flows and governed by the Kelvin-Helmholtz instability
which is independent from the Re number. The stage following this core formation shows
phenomena that depend upon two different Re regimes.

2.2.2. Moderate-high Re regime, 5 · 103 � Re � 1.5 · 105

In the moderate-high Re regime, we have detected intense mixing events. These
events are, in general, associated to phenomena producing filament-like structures and
enhancement of vorticity gradients with the growth of the palinstrophy P = ||∇ω||2,
see Ayala & Protas (2014) for further characterizations of the mixing events. For a two
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(a) ω, at t = 2.4 (b) ω, at t = 2.875 (c) ω, at t = 4.2

(d) |∇ω|2, at t = 2.4 (e) |∇ω|2, at t = 2.875 (f) |∇ω|2, at t = 4.2

Figure 1. The vorticity distribution at various times for Re = 2 · 104 (upper figures), and the
corresponding palinstrophy distribution density (lower figures). Only one main core is shown,
other is obtained by symmetry with respect to the point (0,π). The black lines represent the
material curve C computed by (2.6). At t = 2.4, when mixing effects are evident, the total
palinstrophy begins to increase; see also figure 3. We report the case Re = 104 in the multimedia
view 1.

dimensional flow with periodic boundary conditions one can write the following equations
for the energy E = ||u||2/2, the enstrophy Ω = ||ω||2 and the palinstrophy P:

dE

dt
= − 1

Re
Ω(t) (2.8)

dΩ

dt
= − 2

Re
P(t) (2.9)

dP

dt
= − 2

Re
�∇θ�2 − 2

�

D

θ ·∇θ · u dx, (2.10)

where θ = ∇
⊥ω. These equations imply that E and Ω are always decreasing in time

and bounded by their initial values E(0) and Ω(0), while P can increase, locally in time,
depending on the sign of R = −2

�
D
θ ·∇θ ·u dx and its balance with the P-dissipation

rate 2
Re�∇θ�2.

During the layer’s motion, we recognize the occurrence of intense mixing resulting
from the continuous stretching and folding of the vortical structure. Folding relates to
the core’s spiraling and, therefore, to the rapid movement of the braids’ particles toward
the center. At the same time, one observes a strong stretching of the braids so that their
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(a) ω, at t = 3.2 (b) ω, at t = 4.6 (c) ω, at t = 10

(d) |∇ω|2, at t = 3.2 (e) |∇ω|2, at t = 4.6 (f) |∇ω|2, at t = 10

Figure 2. The vorticity distribution at various times for Re = 103 (upper figures), and the
corresponding palinstrophy density distribution (lower figures). The black lines represent the
material curve C computed by (2.6). The roll-up behavior, typical of the vortex layer motion,
is visible. The palinstrophy distribution attains its maxima on the braids in the vicinity of the
core.

local thickness diminishes, creating the thin vortex filament structure shown in figures
1(a)-(c). To see how the stretching of the braids relates to the growth of the vorticity
gradients (and therefore of the palinstrophy), we write the equation for the evolution of
θ = ∇

⊥ω:

∂tθ + u ·∇θ − θ ·∇u =
1

Re
∆θ . (2.11)

Notice how the mathematical structure of the above equation resembles the 3D vorticity
equation, with the presence of convective and stretching effects. Only the stretching
term θ ·∇u can contribute to the growth of θ along the particle path. One can interpret
the stretching term as the derivative of the velocity field along θ, i.e. (given that θ is
mostly tangential to the curve) along the direction tangential to the curve. Therefore, the
stretching term can lead to the growth of the vorticity gradients only when a significant
amount of stretching along the curve is present.

The time evolution of the palinstrophy is shown in figure 3. In figures 1(d)-(f), we
show, for Re = 2 · 104 and at selected times, the corresponding palinstrophy density. At
t = 2.4, when P(t) begins to increase, the maximum palinstrophy density is reached on
the braid above the core of the vortex, see figure 1(d). Subsequently, the palinstrophy
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1 2 3 4
0

0.05

0.1

0.15

0.2

Figure 3. The rescaled palinstrophy P̃(t) = P(t)Re−3/2. For Re � 5 · 103, the palinstrophy
increases due to the mixing events characterizing the flow evolution: during these events, an
intense stretching of the central curve is seen, see figure 12. For Re = 103, we do not observe
this phenomenon.

density rapidly increases on the braid below the core, see figures 1(e)-(f). At t ≈ 2.875,
the flow reaches its maximum palinstrophy density, which is of order 106; at this time,
also P(t) reaches a peak. Later, palinstrophy density weakens, and its maximum value
decreases monotonously. Similar behavior is present in the case Re = 104, shown in the
multimedia view 1, where the growth of the palinstrophy density occurs in the time range
2.75 � t � 3.25.

Another striking phenomenon one can observe is the formation of recirculation regions
that, when the spiral begins to turn, are strong enough to create reverse flows (on the
upper part of the layer to the left of the core, and on the lower part of the layer to
the right of the core), see figure 4(a). These reverse flows, which cause the flow above
and below the curve to have the same direction, weaken the jump across the curve, so
that the vorticity ωC develops two minima. In figures 4(a)-(c), these minima are marked
with red dots; with (×) we have marked the stagnation point, where the flow reverses
its direction to the left of the core. The stagnation point to the right of the core, not
visible in the figures, is close to the upper right corner of the figures. These stagnation
points separate the arms of the spiral from the inner part of the spiral: all the vorticity
between these stagnation points is convected toward the core of the spiral. Between the
two minima, vorticity reaches, at the center of the spiral, a peak. This is visible in figure
5(b), where we plot, at different times, the vorticity ωC in terms of the arc length s of C.

At t = 2.4, that is when palinstrophy begins to increase, the peak of vorticity is reached
at the center of the core, delimited by the two local minima.

The above description of the layer motion in terms of palinstrophy growth replicates
similar analyses already present in literature for different vorticity configurations, see e.g.
Ayala & Protas (2014); Kimura & Herring (2001). In the geophysical literature the study
of the palinstrophy has been shown to be a useful tool to understand vorticity evolution
during extreme events, see Schubert et al. (1999); Abarca & Corbosiero (2005).
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(a) |u|2/2, at t = 2.4 (b) |u|2/2, at t = 2.875

(c) |u|2/2, at t = 4.2

Figure 4. The kinetic energy density (|u|2/2) for Re = 2 · 104 at various times. The arrows
represent the velocity u, the red points are the points of minimal vorticity on the central curve
C, the red symbol × signals the point of minimal kinetic energy on the layer outside the core.

2.2.3. Low Re regime

In the low Re regime, as opposed to the moderate-high Re regime, we have observed
neither mixing events nor palinstrophy growth. In figures 2(e)-(f), we can see that the
roll-up process is also accompanied by the formation of local maxima in the palinstrophy
density in the braids in the vicinity of the cores. In this case, compared to the moderate-
high Re regime, the flow evolution is characterized simply by the large-scale motion of
the two symmetric cores. Moreover, due to high dissipative effects, the two cores are very
weak, and they are not strong enough to produce significant stretching of the braids.
Consequently, the palinstrophy density is always low (order 102, 103 in the braid), while
palinstrophy P(t) never increases, see figure 3. For low Re one never sees the formation of
the minimum of ωC on the left of the maximum (see figure 5(a)), an event that, instead,
characterizes the moderate-high Re regime. The final significant event is the merging of
the two cores, visible in figure 2(c).
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(b) Re = 2 · 104

Figure 5. The vorticity ωC(s) on the material curve at different times for Re = 103 (on the
left) and Re = 2 · 104 (on the right). The origin of s is (0,π), and data are shown only for s � 0
(curve are extended by parity for s < 0). For Re = 2 · 104, at t = 2.4, the transport of vorticity
from the layer braid to the main core, leads to high values of the vorticity between the two
minima. This phenomenon is also observable for Re � 5 · 103, but not for Re = 103.

From the analysis of the previous subsections 2.2.2 and 2.2.3, one can conclude that, in
both cases, the linear Kelvin-Helmholtz instability, which causes the roll-up of the layer,
rules the initial stages of the dynamics. The subsequent stages are determined by the
competition between viscous dissipation and stretching, see equations (2.10) and (2.11),
which is a fully nonlinear phenomenon. For lower Re, dissipation dominates, palinstrophy
decreases, and no small-scale phenomena appear. Increasing the Re, stretching dominates
over dissipation and causes the growth of palinstrophy and vorticity gradients: small
scales (that, in section 3, we shall interpret in terms of complex singularities) not damped
by viscosity appear, ultimately evolving in the concentration of vorticity.
The analysis of the Fourier energy spectra gives further evidence to these phenomena

and adds more meaning to them. We define the kinetic energy density K ≡ |u|2/2 and,
in figures 6(a)-(b), we show the 1D spectrum obtained from K through shell-summation

AK =
�

K�|(kx,ky)|<K+1

| �Kkx,ky
|, K � 0,

where �Kkx,ky
are the Fourier modes of K. In figure 6(a), one can notice the appearance

of a range of growing modes: these modes are intermediate between the range of small
wavenumbers (related to the large scale feature of the fluid motion) and the range of
large wavenumbers (very small scales, within the dissipative range). The growth of the
intermediate modes coincides with the palinstrophy growth phase. Therefore, it is not
observable for Re < 5 · 103, i.e. when dissipation dominates, it is barely visible for
Re = 5 · 103, and clearly noticeable for Re � 104.
The appearance of the above-described range of excited modes is related to the

appearance of the O(Re−1/2) structure, i.e., the core that forms due to intense stretching
and fast rotation. In fact, the most excited wavenumber Ke in this range, measured at
the time of the palinstrophy peak, follows quite well the law Ke ≈ 0.42Re1/2, as shown
in figure 6(c). The excitation of the intermediate modes, therefore, is another sign of the
bifurcation occurring at approximately Re ≈ 5 · 103.
The phenomena we have encountered in this section, like palinstrophy growth and the

excitation of the intermediate-range of modes, are observed, during transition regimes,
in flows ruled by very different mechanisms, like boundary layers, mixing layers and jet
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flows. For instance, in boundary layer flows, the palinstrophy grows during the transition
to the small-scale regime, which governs the interactions between the boundary layer
and the inviscid outer flow for large enough Re numbers, Gargano et al. (2011, 2014).
This transition, as shown in Nguyen Van Yen et al. (2018), appears to be related
to the instabilities forming in the reversed flow region near the wall; the range of
unstable wavenumbers scales like Re1/2. In mixing layers and jet flows (Catrakis &
Dimotakis (1996); Dimotakis (2000); Cook & Dimotakis (2001); Dimotakis (2005)), the
transition to turbulence is accompanied by the formation of large vorticity gradients,
along with a typical energy spectrum behavior: the mechanism of decoupling of the inner
scales (viscously-damped) from the outer scales (characterizing the large scale motion),
responsible for the transition to turbulence is the same we have encountered in analyzing
the energy spectrum of the vortex layers.
No vorticity is generated during the vortex layers’ evolution, contrary to what is

quintessential of the boundary layers dynamics. Moreover, vortex layers do not evolve in
turbulent flows, as it happens for mixing layers. Nevertheless, we have seen that all these
configurations show striking similarities; among them, we also mention the existence of
a Reynolds number bifurcation value, in all cases laying between 5 · 103 and 104. All
this suggests the existence of a common mechanism of competition between dissipation
and vorticity gradients creation that, for Re high enough, triggers the transition toward
states characterized by small scales excitation, mixing, and vorticity concentration.

2.3. Vortex layer solution for Re → ∞: self-similar behavior

In this section, we shall compare the behaviors of the material curve C = (x(θ), y(θ))
at different Re. In figure 7, the curve C is shown at time t = 4 for increasing Re, starting
from Re = 1000. It is evident that, outside the core of the spiral, the various curves
collapse onto a single curve while, inside the core, the spirals are strongly dependent on
the Re number: the roll-up process is more intense for increasing Re, and, at a fixed
time, the spiral contains more windings as Re increases. On the other hand, one can see
that once rescaled with Re1/2, the curves inside the core coincide. In fact, we introduce
the spatial scaling

XRe(θ) = Re1/2 (x(θ)− xc) , YRe(θ) = Re1/2 (y(θ)− yc) , (2.12)

where the point (xc, yc) is the center of the spiral, i.e., the point of C with the highest
vorticity. In figures 8(a) and 8(b), the scaled curves are shown when two and three
windings have already formed, respectively. The winding of the spirals are defined as
follows: we assume that the first winding begins when, for the first time, the tangent at
(xc, yc) is vertical, while the (k+1)-th winding begins when the tangent at (xc, yc) forms
an angle of π/2 + kπ, k � 0 with the horizontal direction. For Re � 5 · 103, the rescaled
curves collapse onto a single spiral, especially in the innermost part of the core. The fact
that, instead, for Re = 103, the scaled curve has an entirely different form, shows once
again the separation between the two, low and moderate-high, Re regimes.
Figure 9(a)-(b) shows the same comparison of figure 8, at the time in which the

derivatives in the x and y direction, respectively, vanish, that is, when the first winding
begins to form and when the curve has done half a turn. In figure 9(c), we report the
times at which the above events occur, where it is evident that the spatial scaling (2.12)
should be complemented with the temporal scaling

T = Re1/3(t− ts), (2.13)

where ts the singularity time for the Birkhoff-Rott equation.
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Figure 6. (a) Energy density spectrum for Re = 2 · 104 at different times. A range of
growing-uncoupled modes emerge during the palinstrophy growth phase. (b) Energy density
spectrum for various Re at the time of palinstrophy peak. In the inset the spectrum for Re = 103

for which no growing range is observed. (c) The most excited mode Ke in the uncoupled range

versus the Re1/2, and the best power law fitting curve.

The above scaling suggests that in the limit Re → ∞, the layer shrinks to a vortex-
sheet curve satisfying, at t → t+s , the conditions ∂θx, ∂θy → 0 in its center. This would
imply the blow-up of the curvature κC(θ, t) = (xθyθθ − yθxθθ)/((x

2
θ + y2θ)

3/2) and of the
true vortex sheet strength

γ̂C(θ, t) ∝ |(xθ, yθ)|
−1 = |∂θs(θ)|

−1,

where γ̂C(θ, t) is classically interpreted as a measure of the circulation density.
In figure 10(a), we show the behavior of κC for Re = 7.5 · 104 at different times; one
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Figure 7. The central curve C at t = 4 for various Re. Outside the spiral region, all the curves
collapse onto a single curve.
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Figure 8. Self-Similarity of the central curve inside the core. The spirals, rescaled as (2.12),
when two (a) and three (b) windings are formed. The times are t ≈ 6.48, 3.74, 3.16, 2.74 for (a),
and t ≈ 7.98, 4.25, 3.5, 2.98 for (b).

can observe how, at t = 1.9275, the curvature has dramatically increased its maximum
magnitude at two different points. These points are close to the center of the spiral, and
visible as empty black squares in figure 10(c). Figure 11(a), where we report, for different
Re, the time evolution of maxθ|κC |, gives more support to the diverging behavior at ts
for Re → ∞.
For a vortex-sheet curve, the true vortex strength γ̂C is a well-defined quantity. Instead,

for a viscous layer, at each point s of C, we measure the vortex layer strength γ̂C as the
total vorticity integrated along the normal to the curve at that point. The roll-up of
the layer limits the application of this procedure: we have found that we can obtain a
reliable measure of γ̂C only up to the formation of the first winding. In figure 10(c), we
show the behavior of γ̂C , for Re = 7.5 · 104, at t = 1.507, 1.75, 1.9275. In figure 11(b) we
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Figure 9. (a) The rescaled curves at the beginning of the first winding when the x−derivative
vanishes (b) The rescaled curve when the y−derivative vanishes. (c) Plots in log-log scale of the
times t − ts at which the first winding begins (vanishing of the x-derivative of C) and when C
does half a turn (vanishing of the y-derivative of C), as function of the Re. ts = 1.507 is the time

in which BR solution develops singularity. Both curves follow the time scaling t− ts ∼ Re−1/3.

report, at different Re, the maximum values attained by γ̂C , up to the time in which the
first winding forms: it is evident that this value rapidly increases both with time and
for larger Re, although the predicted diverging behaviour for t → t+s is less evident if
compared with the eruptive behaviour of the maximum curvature maxθκC . The point of
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Figure 10. Singular-like behaviour of the central curve C for Re = 1.5 · 105. (a) The behaviour,
at different times, of the curvature κC of the central curve C for Re = 1.5·105. At t1w = 1.845, the
time at which the first winding begins, κC has dramatically increased its maximum magnitude
in two different points, close to the center of the spiral. (b) The behaviour, at different times,
of γ̂C for Re = 1.5 · 105. At t1w = 1.845, γ̂C has a spike in the center of C, and its maximum
value significantly increases. (c) The curve C for Re = 1.5 · 105 at different times. In the inset,
the magnification. Black circles are points of maximum γ̂C ; empty black squares are points of
maximum curvature κC which tend to collapse on the center of the curve.
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C having the highest value of γ̂C is the center of the spiral, and visible as a black circle
in figure 10(c).
We also notice that the net circulation of the core of the layer decreases for increasing

Re. To measure the circulation of the core, we have adopted a procedure similar to that
used in Baker & Shelley (1990). In particular, we consider two material curves Cup, Cdown

consisting on particles initially placed at a distance dRe−1/2 above and below the curve
C. The real positive parameter d sets how distant Cup and Cdown are from C. The core of
the layer at each time is then the region bounded by Cup, Cdown, on the one hand, and by
the straight lines starting from the point of maximum curvature in Cup (or Cdown) and
reaching the closest point in Cdown (or. Cup), on the other. One can, therefore, compute
the circulation of the core as the integral of the vorticity over this area. We have checked
at several times, and for different values of d, that the circulation decreases for increasing
Re, meaning that most of the vorticity is concentrated outside the core of the layer.
If the depicted trend continues in the limit Re → ∞, the vortex layer tends to a

vortex sheet curve with diverging curvature and true vortex strength, and zero circulation
increment in its center. This possible blow up implies also ∂θs(θ) = 0, so that the flow
particles coalesce in the center of C where the true vortex strength becomes infinite.
In that case, γ̂C is the true vortex strength defined on a vortex sheet curve, and goes
like |∂θs(θ)|

−1. Hence, the collision condition ∂θs(θ) = 0 is satisfied only when the true
vortex strength diverges. This structure is also consistent with the results shown in Baker
& Shelley (1990), where the authors found the same asymptotic behavior in the zero-
thickness limit of an inviscid vortex layer of uniform vorticity. A similar conclusion has
been proposed also in DeVoria & Mohseni (2018) where the authors showed that the true
vortex strength of an inviscid vortex sheet rapidly increases just after the singularity time
of the BR solution.
The diverging behavior of κC and γ̂C will receive further evidence from the singularity

analysis we shall present in section 3.2.

3. Singularity analysis for the vortex layer

In this section, we shall see how the dynamics of the vortex layer generates complex
singularities in the solution of the Navier-Stokes equations. Tracking of these singularities
in the complex plane could shed light on some aspects related to the layer dynamics, in
the spirit of similar other analysis performed in fluid dynamics; see Caflisch et al. (2015).
Here we briefly recall that if an analytic function u(z) has a complex singularity at z∗

and u(z) ≈ (z − z∗)µ as z → z∗, then µ is the character of the singularity. The estimate
of µ predicts the singular behavior of u if the singularity z∗ becomes real.
For the viscous layer the complex singularities never become real (smooth solutions of

the 2D NS equations remain smooth, so that loss of regularity is impossible); however we
shall observe that, during the flow evolution, the singularities can get very close to the
real axis, and that the minimal distance becomes zero asymptotically when Re → ∞.
We shall also see how the singularities behave (in terms of character) differently in the
two Re regimes that we have identified in the previous section, low (Re � 103) and
moderate-high (5 · 103 � Re � 1.5 · 105) Reynolds number.

We shall base our investigation mainly on the analysis of ωC , the vorticity on the curve
C; see section 3.1. In section 3.2, we shall also briefly consider the curvature κC and the
vortex strength γ̂C .
To perform the singularity analysis, we shall use the Borel-Polya-van der Hoeven (BPH

in the sequel) method, more in detail exposed in the Appendix; initially proposed in Pauls
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Figure 11. The time behaviour of the maxima of the curvature κC and vortex-strength γ̂C . (a)
The maximum value of the curvature κC for various Re up to the time in which the first winding
forms in the layer. For increasing Re this value rapidly increases after ts = 1.507, being ts the
singularity time for the vortex sheet solution of the BR equation. (b) The maximum value of γ̂C
for various Re, up to the time in which the first derivative of the x-component vanishes. The
maximum value is always reached in the center of the curve, i.e., the point having the highest
vorticity ωC . The black dotted horizontal line is the maximum value of the true vortex strength
γ̂BR computed from the BR-vortex sheet motion at the singularity time ts.

& Frisch (2007), it allow us to retrieve information on the positions and the characters
of the algebraic singularities of an analytic function.
All the quantities we shall analyze in the sequel will be expressed as Fourier series in

terms of the Lagrangian variable θ ∈ [0, 2π], rather than the arc length s(θ).

3.1. Singularity tracking for the vorticity ωC

We have already seen how the vorticity on the curve, ωC , develops two minima (in the
moderate-high Re regime, while for low Re, there is only one minimum), which separate
the inner from the outer core. These minima correspond to zones where the formation
of sharp vorticity gradients occurs, with associated intense stretching of the curve. See
the discussion after equation (2.11), where we explained how stretching and growth of
vorticity gradients are closely related.
In figure 12(a), we show, for Re = 2 · 104, ωC both as a function of θ and the arc

length s(θ): the presence of the minima and sharp gradients is evident. The stretching of
the curve is apparent in figure 12(b), where one can see that the function s(θ) increases
(strongly, after time t = 2) in correspondence with the minima of ωC . It is also remarkable
that, between the two stretching regions, there is a zone where s(θ) is almost flat, which
implies that fluid particles that initially were well separated are almost coalescing.

In this section we shall see how the vorticity minima are related to the presence of
complex singularities in ωC , and how one can characterize the two flow regimes (low and
moderate high Re) in terms of the behavior of the trajectory of the complex singularities.
We were able to detect and track in time, for all the Re considered, two main

singularities whose complex locations are denoted with θωC

1 = θ1 + iθim1
and θωC

2 =
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θ2+ iθim2
(from the symmetry of the problem there are also singularities at 2π−θωC

1 and
2π − θωC

2 ). Hereafter we shall label these singularities (and all the singularities we will
introduce in the sequel) with their locations. These two singularities are indeed related
to the minima in ωC , as they have real components that correspond to the local minima
visible, for instance, in figure 12(a) for Re = 2 · 104.
To highlight the different behavior of θωC

1 and θωC

2 , we show in figures 13 the path of
the singularities in the complex plane (s(θ), θim). All the tracking start at t = 2, up to
t = 5.9 for Re = 103, up to t = 3.25 for Re = 104, and up to t = 2.85 for Re = 2 · 104:
these final times are respectively the time of formation of the third winding for Re = 103,
and the times in which palinstrophy has its local maximum (Re = 104, 2 · 104). We can
observe different behaviors depending on the Re number, mainly in the position of θωC

1 .
In fact, for Re = 104, 2 · 104 (and also for Re = 5 · 103, not shown here), after an initial
period in which the singularity moves toward the real plane having almost fixed real part
s(�{θωC

1 }), during the mixing events θωC

1 begins to rapidly shift on the right along s and
to move toward the second singularity θωC

2 . See also the multimedia view 2 where, for
the case Re = 104, we report the time evolution of the singularities in the complex plane
and the corresponding vorticity evolution: red and black dots in the central curve are the
points corresponding to the real parts of the singularities. When θωC

1 is sufficiently close
to the real domain, the local minimum visible, for instance, in figure 5(b) forms.
On the other hand, in the case Re = 103, θωC

1 always moves leftward along s. At
t ≈ 5.9, that is when the third winding forms in C, θωC

1 collapses to s(0) = 0 with the
symmetric singularity 2π−θωC

1 . As already said in the previous section, no mixing events
are observed for Re = 103, no new local minimum for ωC on the left of the maximum and,
from the point of view of the complex singularity θωC

1 always moves toward the origin
s = 0 and never moves toward the second singularity θωC

2 .
In the qualitative behavior of θωC

2 , we observe no difference related to Re: in all Re
regimes, initially, θωC

2 moves toward the real domain slightly shifting leftward along s,
then goes rightward, still approaching the real axis, see figure 13(b).
Therefore, θωC

1 plays the key role in the formation of the intense mixing and the
concentration phenomena occurring for higher Re: θωC

1 is responsible for the extreme
stretching of the curve and, ultimately, for the palinstrophy growth; moreover, the
collision of θωC

1 with the other singularity θωC

2 causes, in the limit Re → ∞, the blow-up
of γ̂C , a phenomenon which is absent in the BR dynamics.
Using the BPH method, we have determined the algebraic characters of the singular-

ities. Usually, it is more difficult to determine the algebraic character of a singularity
rather than its position, see, e.g., Caflisch et al. (2015). However, after time t � 1.3,
the characters µθ

ωC

1

and µθ
ωC

2

of θωC

1 and θωC

2 have been reliably determined. For all the

Re > 103, µθ
ωC

1

and µθ
ωC

1

are approximately equal to 1/2, whereas, for Re = 103, they

have higher values, close to 0.9, see table 1. The values µθ
ωC

1

and µθ
ωC

2

reveal that θωC

1

and θωC

2 are two branch points, consistent with the rapid variation of the first derivative
of ωC close to its two local minima, see figure 12(b).

3.2. Singularity tracking for κC and γ̂C

In section 2, we have seen that the final structure of the layer in the limit Re → ∞
could be represented by a curve having, at ts = 1.507, the singularity time of the BR
solution, infinite curvature, and infinite true vortex strength. We show that the possible
diverging nature of both κC and γ̂C is confirmed by the presence of complex singularities
having negative character.
The explicit expression of the curvature of the material curve C is κC(θ, t) = (xθyθθ −
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Figure 12. (a) The vorticity ωC along the material curve C is shown as a function of both θ
and s(θ) for Re = 2 · 104 at t = 3. In s(θ), high gradients form corresponding to the minima
of ωC , where the stretching of C is present. (b) Arc length of the curve C as a function of the
parameter θ for Re = 2 · 104 from t = 2 to t = 3 (time steps of 0.2). The curve C is elongated
close to the points where vorticity is transported from the layer braid to the core of the layer
(see also figure 5(b)). In the center of the core, where s(θ) is almost flat, a strong compression
(coalescence of fluid particles) along the curve is present.

yθxθθ)/((x
2
θ + y2θ)

3/2). For all the Re numbers considered, we have detected the presence
of two complex singularities, θκC

1 and θκC

2 . In figure 14(a), we represent the singularities
in the complex plane (θ, θim), for different Re, at ts = 1.507 and at t1w the time when
the first winding forms in C.

The singularities θκC

1 and θκC

2 have different positions than those of ωC , although some
similarities are evident. They are closer to the real domain for increasing Re, and they
tend to coalesce. In figure 14(c) we show a consistent power-law scaling θim ∝ Rec, with
c = −0.17, −0.16 for the first and second singularities, respectively. This suggests that
the singularities approach the real axis as Re → ∞ †. One can see the effects due to
the presence of these singularities in figure 10(b), where the two maximum curvature
points (positive and negative) are located close to s(�{θκC

1 }) ≈ 1.048 and s(�{θκC

2 }) ≈
1.065. Concerning the evaluation of the algebraic characters µθ

κC

1

and µθ
κC

2

, we have

found that both singularities have negative character at ts = 1.507 (see table 1) and
t1w = 1.9275. The above analysis confirms that the limiting Re → ∞ behavior of C, as
far as the curvature is concerned, is entirely consistent with the behavior observed in the
BR solution. We notice that the BPH method can find other complex singularities that
are due to subsequent maximum points of curvature forming during the roll-up process.
However, these secondary singularities are, in general, more distant from the real axis,
and do not play a significant role in our analysis.
The singularity analysis of the vortex strength γ̂C reveals the presence of one main

singularity, denoted by θγ̂C , and reported in figure 14(b), for different Re, and at times

† We have obtained a slightly more consistent fitting with a curve of the kind ∝ logd(Re)Rec,
although d is a very small parameter (≈ 10−3)
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Figure 13. Tracking the singularities θωC

1
(a) and θ

ωC

2
(b) for various Re in the complex plane

(s(θ), θim) (see the multimedia view 2 for the case Re = 104). The blue dot is for time t = 2.4,
red dot is for time t = 2.7, green dot is t = 2.85. All the tracking starts from t = 2, up to t = 5.9
for Re = 103, to t = 3.25 for Re = 104, and up to t = 2.85 for Re = 2 ·104. These final times are,
respectively, the time of formation of the third winding for Re = 103, and the times at which
palinstrophy has its local maximum for Re = 104, 2 · 104.

ts and t1w. The presence of θγ̂C can be related to the peak in γ̂C visible, for instance, in
figure 10(b) in the center of the spiral. At ts = 1.507, the singularity is quite far from the
real axis (θγ̂C ≈ 1.222+ i0.41), and the peak has a moderate magnitude. At t1w = 1.937,
the singularity is closer to the real axis (θγ̂C ≈ 1.233 + i0.104), and the peak in γ̂C is
more pronounced in s(1.233) ≈ 1.12; see figure 10(b). Similarly to the other singularities
we have analyzed, θγ̂C gets closer to the real axis for increasing Re. The distance from
the real axis of the the singularities versus the Re is shown in panel 14(d) along with
the best power law fitting curve of the kind θim ∝ Rec, with c ≈ −0.15. The character
µθγ̂C of θγ̂C is negative (of order ≈ −0.4) for the times we have considered, and for the
moderate-high Re number regime; see table 1 at ts. Given that our simulation indicate
that �{θγ̂C} → 0 when Re → ∞, the above singularity analysis gives further evidence
for the diverging behaviour of γ̂C for t → t+s , as conjectured in section 2.3.
As reported in the Appendix, one recovers the characteristics of the singularities

discussed above through fitting procedures of the solution spectra. These procedures,
unavoidably, are prone to errors. Concerning the character of the singularities, which
is the most delicate quantity to be estimated, for R � 5 · 103, the amplitude of the
confidence interval is 15% for 95% confidence level. Moreover, the goodness of the fitting
model is attested by values of the R2 coefficient very close to 1, typically between 0.98
and 0.99. For Re = 103, we have obtained larger errors, especially for the characters:
this is likely due to the large distance of the singularities from the real domain, making
the noise-free part of the solution spectrum smaller as compared to the other cases, and
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governed mainly by the exponential decay, see (A 1). For instance, for Re = 103, we have
obtained θγ̂C ≈ 0.1 ± 0.09; whereas, for Re = 104, θγ̂C ≈ −0.34 ± 0.025. Moreover, the
relative error decreases for increasing Re. Therefore, these errors do not affect the main
conclusion of the present section, i.e. γ̂C → ∞ for Re → ∞.

4. Vortex layers versus vortex sheet motion

In this section, we shall describe the vortex sheet motion governed by the BR equation,
we shall perform the singularity analysis of this solution, and compare it with the results
obtained for the vortex layer. To continue the BR motion after the singularity time, we
shall use the regularization of the BR kernel resulting in the vortex-blob method.

4.1. The Birkhoff-Rott model

The initial vortex sheet corresponding to the vortex layer configuration that we have
studied in the previous sections, consists of a vorticity distribution concentrated, as a
delta function, on the curve

xBR(θ) = (θ, Ly/4π sin (2πθ/Lx)) θ ∈ [−Lx/2, Lx/2] ,

with intensity

γ(θ) = 1.

The vorticity distribution has to be considered in the box D = [−Lx/2, Lx/2] ×
[−Ly/2, Ly/2] and extended by periodicity both in the x- and in the y-directions. Being

γ(θ) = 1, the parameter θ identifies with the circulation Γ =
� θ

0
γ(θ̃)dθ̃. Therefore, to

compute the dynamics of the sheet, we use θ as a lagrangian parameter, while the true
vortex strength along the sheet is given by γ̂(θ, t) = γ(θ)|∂θxBR|

−1. The choice of the
lagrangian parameter θ allows writing the evolution of the curve without involving the
equation for the true vortex strength γ̂(θ, t) (see the interesting discussion in Lopes Filho
et al. (2007)). The Birkhoff-Rott equation hence reads as

∂xBR(θ, t)

∂t
=

� Lx/2

−Lx/2

KLx,Ly
(xBR(θ, t)− xBR(θ̃, t)))dθ̃, (4.1)

where the components of the singular kernel are

KLx,Ly
(x) =

�
y

LxLy
− 1

2Lx

h=∞�

h=−∞

sinh(2π(y − hLy)/Lx)

cosh(2π(y − hLy)/Lx)− cos(2πx/Lx)
,

1

2Lx

h=∞�

h=−∞

sin(2πx/Lx)

cosh(2π(y − hLy)/Lx)− cos(2πx/Lx)

�
. (4.2)

One can obtain the above expression taking the orthogonal gradient of the fundamental
solution of the 2D-periodic Poisson equation, derived in Bailey et al. (2013).
To continue the solution after the singularity time, one can regularize the kernel with

the classical vortex-blob method: see Krasny (1986a); Cowley et al. (1999); Baker &
Pham (2006). We have accomplished this by using the regularization reported in Baker
& Pham (2006); see in particular their equations (2.8a)-(2.8b). In our case the regularized
δ−BR equation reads as

∂xδ
BR(θ, t)

∂t
=

� Lx/2

−Lx/2

Kδ
Lx,Ly

(xδ
BR(θ, t)− xδ

BR(θ̃, t)))dθ̃, (4.3)
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Figure 14. (a) Tracking in the complex plane (θ, θim) of the two main singularities
θ
κC

1,2 of the curvature κC of C. Singularities are tracked at ts = 1.507 and at the time
t1w in which the first winding forms (times reported in the text and in figure 10(a) for
Re = 5 · 103, 104, 2 · 104, 7.5 · 104, 1.5 · 105. The size of the markers decreases for larger Re.
The value θ = 1.287, where the BR singularity forms, is also shown as a straight line. (b)
Tracking in the complex plane (θ, θim) of the main singularity θγ̂C of the vortex strength γ̂C .
The singularity is tracked at ts = 1.507 and at the time t1w in which the first winding forms for
Re = 5 ·103, 104, 2 ·104, 7.5 ·104, 1.5 ·105. The size of the markers decreases for larger Re. (c)-(d)
Imaginary parts of the singularities shown in (a)-(b) versus the Re number and best power law
fitting (log-log scale).
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where the regularized kernel is

Kδ
Lx,Ly

(x) =
�

y

LxLy
− 1

2Lx

h=∞�

h=−∞

y − hLy�
(y − hLy)2 + δ2

sinh(2π
�

(y − hLy)2 + δ2/Lx)

cosh(2π
�
(y − hLy)2 + δ2/Lx)− cos(2πx/Lx)

,

1

2Lx

h=∞�

h=−∞

sin(2πx/Lx)

cosh(2π
�
(y − hLy)2 + δ2/Lx)− cos(2πx/Lx)

�
, (4.4)

and δ > 0 is the regularizing parameter. To solve the BR equation, we have used a
fourth-order Runge-Kutta scheme; in (4.1) and (4.3), we have performed the integration
by using the alternating points quadrature formula, see Krasny (1986a). Close to the
singularity time, we had to use 65536 discretization points. To avoid the growth of the
round-off disturbances due to the Kelvin-Helmholtz instability, we apply the Fourier
filtering technique (Krasny (1986b); Ely & Baker (1993); Baker & Xie (2011)): performing
computations with 32-digit precision, at each time step, we set to zero the Fourier modes
with amplitude smaller than the threshold value 10−29. In the regularized case, filtering
was necessary only for the case δ = 10−3; a larger regularization is able to damp round-
off. Finally, we need to evaluate only a finite number of terms in the infinite sums of
(4.2) and (4.4), as they rapidly decay to zero with h; the choice h = 50 was enough to
ensure an error below the machine precision. In all the numerical simulations, we set
Lx = Ly = 2π.

4.1.1. Comparison between the BR vortex sheet and the NS vortex layer singularities

In this section, we compare the outcomes of the singularity analysis for C (the center of
the layer), presented in section 3.2, with those coming from the BR solution’s singularity
analysis. In particular, we compare the singularities of the components of the BR solution
and C, of the curvatures κBR and κC , and of the true vortex strengths γ̂BR and γ̂C . This
comparison can be made only up to the time ts when the BR solution becomes singular.

In Caflisch et al. (2017), the singularity analysis of (XBR(θ, t), YBR(θ, t)), revealed that
a singularity forms in a finite time. In particular the two functions XBR(θ, t), YBR(θ, t)
become singular at ts ≈ 1.507 and θ∗ ≈ 1.287. The singularities of XBR and YBR

always have the same positions in the complex plane, although they have different char-
acterizations, µXBR

≈ 1.61 and µYBR
≈ 1.72 respectively. Therefore, both components

experience a blow up in their second derivative, and the X-component is more singular
than the Y -component. In figure 15, we show the trajectories of these singularities in
the complexified θ-plane. At t = ts, the trajectory terminates, hitting the real axis
and producing the blow-up of the solution. At t = ts, also the curvature κBR and the
true vortex strength γ̂BR become singular, with characterizations µκBR

≈ −0.44 and
µγ̂BR

≈ 0.55, respectively. Therefore, at θ = θ∗, the curvature diverges, while γ̂BR has
a cusp behavior: at t = ts, γ̂BR is singular but finite. The above results are in full
agreement with those predicted in Moore (1979), and later observed by other authors
investigating numerically the singularities generated by vortex-sheet motion with several
initial configurations; see e.g., Krasny (1986b); Shelley (1992).
In figure 16, we show the vortex sheet curve and its curvature, and compare them with

the C curve (the center of the vortex layer) and its curvature. The time is t = 1.505, just
before the singularity formation. The C curve approximates the vortex sheet curve well;
the effect of the regularization is evident in the smooth behaviour of the curvature of C.
Given the parametrization C = (x(θ, t), y(θ, t)), we apply the BPH method to find the



Complex Singularity Analysis for Vortex Layer Flow 25

0.8 1.1 1.2871.4 1.6
0

0.2

0.4

0.6

0.8

1

1.2

Figure 15. Trajectories of the two complex singularities θ
XC

1
and θ

XC

2
of the component XC

of the material curve C. The tracking goes from t = 0.8 up to ts = 1.507. The singularities of
YC have similar trajectories. The dashed line is the tracking of the BR singularity. At ts, the

BR singularity, with character 3/2, hits the real axis. At ts, the characters of θXC

1
and θ

XC

2
are

compatible with the character of the BR solution; see table 1.

singularities of the components

(XC(θ, t), YC(θ, t)) = (x(θ, t)− θ, y(θ, t)), θ ∈ [−π,π]. (4.5)

We label these singularities θXC

1 , θXC

2 and θYC

1 , θYC

2 . As one could expect, the positions of
the singularities of XC and YC in the complex plane coincide with those of ωC and are
shown, for instance, in figures 13. In figure 15 we show the paths in the complex plane of
θXC

1 and θXC

2 (θYC

1 , θYC

2 have the same positions) for various Re numbers. The paths are
represented up to the singularity time of the BR solution ts = 1.507. As Re increases, the
singularities are closer to the real axis, and the distance between θXC

1 and θXC

2 diminishes;
moreover they seem to converge toward the BR singularity. We have found that, at time
ts = 1.507, both singularities have characters µ

θ
XC

1,2

and µ
θ
YC

1,2

in the range (1.0 − 1.5),

compatible with the predicted characterization of the BR singularity (see Table 1) and
with the blow-up in their second derivatives. At subsequent times, for instance at t1w,
these characters remain in the same range.
A similar behavior is observed for the singularities of the curvature: the curvature of

C admits two singularities (see section 3.2) that, in the limit Re → ∞, seem to converge
toward the BR curvature singularity. The algebraic characters of these singularities
appear to be the same; see the last three columns of table 1.
The crucial difference between the vortex sheet and C lies in the singularity of the true

vortex strengths γ̂BR and γ̂C (the differences between the characters of the singularities
are reported in table 3). In the BR case, at ts, a cusp forms in γ̂BR and ∂θs(θ) is small
but not vanishing. On the contrary, in the analysis we have performed in section 3.2, we
found that γ̂C has a singularity with negative algebraic character µθγ̂C (of order ≈ −1/3,
see table 1). This means that, in the limit Re → ∞ and at ts, γ̂C blows up. One of the
consequences is that ∂θs(θ) = 0 and therefore an infinite particle compression occurs at
the center of the spiral, with the two vorticity minima colliding. The difference between
the behavior of the BR solution at t = ts, and the infinite Reynolds number of the vortex



26 R.E. Caflisch, F. Gargano, M. Sammartino, V. Sciacca

0 1 2 3

3.2

3.3

3.4

3.5

3.6

3.7

3.8

1.2 1.4 1.6 1.8

3.7

3.71

3.72

3.73

3.74

(a)

0 1 2 3

-4

-2

0

2

4

(b)

Figure 16. (a) The vortex sheet curve obtained solving the BR equation, at t = 1.505, and
the curve C, for various Re, at the same time. (b) The curvatures κBR and κC , at t = 1.505

.

Re µ
θ
ωC
1

µ
θ
ωC
2

µ
θ
XC
1

µ
θ
XC
2

µ
θ
YC
1

µ
θ
YC
2

µ
θ
κC
1

µ
θ
κC
2

µθγ̂C

1.5 · 105 0.51 0.51 1.69 1.69 1.68 1.69 −0.34 −0.37 −0.34
7.5 · 104 0.51 0.51 1.69 1.72 1.71 1.7 −0.35 −0.38 −0.34
2 · 104 0.58 0.56 1.78 1.75 1.81 1.79 −0.29 −0.32 −0.33
104 0.65 0.57 1.78 1.89 1.89 1.9 −0.24 −0.31 −0.32
103 1.03 0.9 1.9 1.92 1.95 1.94 −0.19 −0.16 0.1

Table 1. In the table, we report the characters of the singularities at ts = 1.507. For each Re

we show the characters of the singularities: the vorticity ωC , θ
ωC

1,2; (XC , YC) in (4.5), θXC

1,2 and

θ
YC

1,2; the curvature κC of C, θκC

1,2; and the vortex strength γ̂C , θ
γ̂C . Error bars are in general less

than 15% of the estimated parameters, except for the case Re = 103, for which µθγ̂C , µθ
κC
1,2

have

errors are up to order 80% of the estimated parameters .

layer solution, suggests that BR, close to the singularity, is not the zero-viscosity limit
of the NS vortex layer solutions.

4.2. Vortex blob regularization

In this section we shall compare the solutions of the δ-BR equation with the NS vortex
layer solution.
In figure 17(a), we show the comparison between the curves C, the center of the NS

layer, and xδ
BR, the solution of the δ-BR equation; the solutions are computed taking

Re = 104 and δ = 10−2, respectively. The two curves overlap in the outer part of the
spiral while one can appreciate significant qualitative differences in the innermost part
of the spiral, as the curve xδ

BR develops more turns.
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We have seen that the inner part of the spiral formed by C obeys a self-similarity
law given by (2.12). It is also known that a similar scaling exists for the vortex blob
regularization; in Baker & Pham (2006) and Sohn (2014) the authors showed that the
inner core region of the spirals is invariant under the transformation

Xδ =
�
xδ
BR − (xc, yc)

�
/δ. (4.6)

The self-similarity law is illustrated in figure 17(b). Formally (4.6) is the same as the
Re−1/2-scaling (2.12) for the curve C.
In figure 17(c), we compare the rescaled C and the rescaled δ-BR curves when they

have completed the same number of turns. The figure shows an almost perfect matching
in the very vicinity of the center. This comparison shows that both the regularizations
predict a qualitatively similar structure represented by the spiral. However, the differences
obtained from the scaled curves highlight some quantitative differences, which does not
rule out the possibility that, in the limits δ → 0, Re → ∞, the two regularizations provide
different weak solutions of the Euler equations. We have analyzed the outcomes of the
singularity analysis for the components

(Xδ
BR(θ, t), Y

δ
BR(θ, t)) = (xδ

BR(θ, t)− θ, yδBR(θ, t)), θ ∈ [−π,π]. (4.7)

and compared to the C case. Similarly to C, both components have two main singularities

θ
Xδ

BR

1,2 and θ
Y δ
BR

1,2 . Figure 18 reports the paths of θ
Xδ

BR

1,2 in the complex plane. For δ = 10−3,
the singularities are very close to each other, and the BPH method does not discern the
positions of the two singularities. Compared with the tracking of the singularities of C in

figure 15, the θ
Xδ

BR

1,2 are in general closer to the singularity of the BR solution and closer
to the real domain: for instance one can check this from the tracking in the case when
δ = Re−1/2 = 10−2. The characterization of the vorticity intensity singularity θγ̂δ is the
most relevant quantity. From table 2 one can see that the algebraic character of θγ̂δ is
µθγ̂δ ≈ −0.43, which makes the vorticity concentration for the BR-δ stronger than for
the NS-layer case, see table 1. The error bound in the fitting procedure is even smaller
than in the viscous case, being in general of magnitude less than 10% of the estimated
values.
In table 3 we report the differences between the characters of the singularities developed

by the BR solution and the regularized versions. For example:

µκδ

θ1
= µκδ

θ1
− µκBR

θ .

The table shows: first that the regularized versions display concentration phenomena in
the form of the divergent behavior of the vorticity intensity; second that the δ-BR model
presents stronger singularities than those coming from other regularizations. This could
be a strong indication that the different regularizations represent different weak solutions
of the Euler equations.

4.3. Comparison with the inviscid vortex layer

Our configuration introduces two regularizing agents: layer thickness and viscosity. In
this paper, we have linked these two factors choosing the thickness to be O(Re−1/2);
in the Introduction, we have given the mathematical and physical motivations for
this choice, which we believe to be a natural one. Here we want to briefly discuss the
limiting behavior of the vortex layer sending to zero separately the thickness (that
in the present subsection we shall denote by δ, δ being the standard deviation of the
Gaussian) and the viscosity. Such analysis will also highlight the different roles played
by the two regularizations. First, we notice that keeping the thickness fixed and sending
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Figure 17. (a) C, the NS (with Re = 104) layer’s central curve, and the vortex sheet obtained
from the δ-vortex blob regularization (with δ = 10−2). The times are t = 2, t = 3.0 and t = 3.6
(upper plots): the outer part of the spirals seems to be independent of the regularization used,
while the innermost part depends on it. In the inset, the magnification of the spirals at t = 3.6.
(b) We show the spirals after the scaling (4.6) for δ = 10−1, 10−2, 10−3. (c) We compare the
spiral given by the δ-BR solution (scaled by (4.6)) with the material curve C (in the NS and
Euler cases). The regularizing parameters are δ = 10−3 for δ− model, Re = 2·104 for the viscous
layer, and δ = 0.0141 for the inviscid layer respectively.

the viscosity to zero does not lead to any new interesting effect: the datum is regular,
and a classical result ensures, in the zero viscosity limit, the convergence to the Euler
solution, which, given that we are in 2D, remains smooth for all times. More interesting
is the opposite case when, keeping the viscosity fixed, one considers the zero-thickness
limit. We have performed several numerical explorations keeping the viscosity zero. This
situation is quite challenging from the computational point of view also; we have seen
that the absence of the regularizing effect of the viscosity makes it difficult to compute
the evolution of layers whose initial thickness δ is smaller than 0.0141, which corresponds
in the viscous case to a Re = 5000 (In the viscous case, we have been able to compute
up to Re = 1.5 · 105 flows).
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Figure 18. Tracking the complex singularities θ
Xδ

BR
1

and θ
Xδ

BR
2

of the component Xδ
BR of the

regularized δ-BR solution in the complex plane from t = 0.8 up to ts = 1.507 . The singularities

θ
Y δ
BR

1
and θ

Y δ
BR

2
of the Y δ

BR components have the same tracking. The dashed line is the tracking of

the BR singularity. For δ = 10−3 the two singularities are very close to each other, θ
Xδ

BR
1

≈ θ
Xδ

BR
2

,
so only one singularity is tracked. At t = ts the singularities have characters compatible with
the singularity character of the BR solution (see table 2).

δ µ
θ
Xδ

BR
1

µ
θ
Xδ

BR
2

µ
θ
Y δ
BR

1

µ
θ
Y δ
BR

2

µ
θ
κδ
1

µ
θ
κδ
2

µθγ̂δ

10−3 1.56 1.63 1.59 1.65 −0.33 −0.49 −0.43
5 · 10−3 1.55 1.68 1.74 1.706 −0.32 −0.48 −0.43
10−2 1.69 1.72 1.79 1.71 −0.33 −0.45 −0.41
10−1 1.78 1.91 1.89 1.89 −0.19 −0.25 −0.29

Table 2. In the table, we report the characters of the singularities of the δ-BR solution at
ts = 1.507. For each δ we show the characters of the singularities: of (Xδ

BR, Y
δ
BR) in (4.7),

µ
θ
Xδ

BR
1,2

and µ
θ
Y δ
BR

1,2

; of the curvature κδ, µθ
κδ
1,2

and µθγ̂δ ; of the true vortex strength γ̂δ, θ
γ̂δ . Error

bars are in general less than 10% of the estimated values.

Vortex-blob-δ µ
θ
κδ
1

µ
θ
κδ
2

µθγ̂δ

10−3 0.11 -0.04 -0.98
5 · 10−3 0.12 -0.03 -0.98
10−2 0.11 -0.01 -0.97
10−1 0.22 0.14 -0.84

NS-Re µ
θ
κC
1

µ
θ
κC
2

µθγ̂C

1.5 · 105 0.1 0.07 -0.89
7.5 · 104 0.09 0.06 -0.89
2 · 104 0.15 0.12 -0.88
104 0.2 0.13 -0.87

Euler-δ µ
θ
κEU
1

µ
θ
κEU
2

µθγ̂EU

0.0141 0.1 -0.02 -0.94
0.0158 0.11 -0.02 -0.94
0.0316 0.11 -0.03 -0.93
0.1 0.15 0.01 -0.91

Table 3. In the Table we report the differences between the character of the singularities
appearing in the regularized dynamics (vortex-blob regularization, finite-thickness Navier-Stokes
regularization, finite-thickness Euler regularization) and in the BR dynamics. In all cases we
compare, at the singularity time ts = 1.507, curvature and vortex strength singularities. The
differences are significant in the characters of vortex strength: for all the regularizations the
vortex strength has a divergent behavior, while for BR it is regular.
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The first evident effect of the lack of dissipation is the considerable acceleration of the
roll-up process compared to the viscous counterpart. This effect is observable in figure
19(a), where we show the central curves for the viscous and inviscid cases at two different
times starting from the same initial thickness δ = 0.0141 (corresponding to Re = 5 ·103).
The second effect is the monotonous growth of palinstrophy as opposed to the behavior
observed in the viscous case, see Figure 3. One can understand this as an outcome of
the lack of dissipation in the palinstrophy balance equation (2.10); the absence of the
dissipative term leaves the stretching term to dominate, causing the palinstrophy to
grow independently from layer thicknesses. Therefore, the dichotomy we have observed
in the viscous case (low Re, where the dominance of the viscous effects leads to the
monotonous decrease of palinstrophy, versus moderate-high Re, where one sees a
temporary palinstrophy growth, see figure 3), is not present in the inviscid case. In figure
19(b), one can see how the stretching of the layer is particularly intense in the braids in
the vicinity of the core, where palinstrophy distribution reaches very high values, and
the local thickness of the layer has significantly decreased due to the intense stretching.

We have performed the singularity analysis for the vortex strength γ̂EU , and the
curvature κEU of the central curve xδ

EU. The vortex strength γ̂EU is shown in Figure
20(a) at different times for the initial thickness δ = 0.0141 and compared with the same
quantity of the viscous case with the same initial thickness. In Figure 20(b), we show the
path of the main singularity and the best power-law fitting for the imaginary part θim in
its dependence from the initial thickness. We have obtained θim ∝ δ0.5, which, compared
to the power-law scaling θim ∝ Re−0.16 for the viscous case, expresses that singularities
tend to approach the real domain faster as δ → 0 than the viscous case for Re → ∞.
Concerning the character of the singularity of γ̂EU , we have obtained that it is close to
the value µθγ̂EU ≈ 2/5 (differences with the BR singularity reported in Table 3): this
value is different from the values found in the viscous case and the vortex-blob case, but
similar to them it is compatible with the diverging behavior of the vortex strength as
t → t+s . We conclude mentioning that the layers governed by the Euler equations show
the same scale invariance (4.6), see figure 17(c).
The typical role of the viscosity, as always, is to dampen higher modes, making less

sharp the solutions gradients; more specifically, in our case, viscous terms counteract
the stretching coming from the roll-up of the layer, also leading to milder complex
singularities compared to the inviscid case. However, besides numerical difficulties, there
are no obstacles in computing the vortex layer solutions in the zero viscosity limit. The
regularizing agent playing a crucial role in allowing the computations to go beyond the
BR singularity time is the finite thickness.
Most of this paper is devoted to analyzing the solutions when the layer thickness δ and
the viscosity ν relate as ν ∼ δ2. In this subsection, we have briefly considered the case
when ν = 0. The more general case when ν ∼ δα is certainly of interest, but this is
outside the scope of this paper.

5. Conclusion

The flow configuration in which vorticity concentrates around a curve is one of the
most relevant and studied in fluid dynamics. The interest in these configurations was
initially motivated by their practical importance, being vorticity layers originated by
fluid-structure interactions. Later it was clear how these configurations were also of great
relevance from a theoretical point of view, being the possible source of more singular
behavior, concentration, and non-uniqueness. The Birkhoff-Rott equation is the leading-
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Figure 19. (a) The central material curves for the inviscid and viscous cases computed at
the same times and for the same initial thickness . The lack of dissipation in the inviscid case
makes the rolling of the inviscid curve more intense. (b) Vorticity distribution at t = 2.85 for
the inviscid Euler case with initial thickness δ = 0.0141. The black curve is the central curve
xδ
EU. In the inset the palinstrophy distribution. In the inviscid case the vorticity along xδ

EU is
constant (≈ 28.2) for all the times. Peaks of palinstrophy are reached in the braids where the
local thickness is significantly small.

order approximation of the layer’s motion that neglects viscosity and the layer thickness.
One of the major problems is to understand how the BR solution’s behavior is related
to a vortex layer’s dynamics. In particular, whether the BR singularity is related to the
core formation and vorticity concentration shown by a vortex layer.

In this paper, we have analyzed the evolution of a viscous vortex layer, whose initial
thickness is O(Re−1/2), governed by the 2D Navier-Stokes equations. We have also
compared the layer’s dynamics with its inviscid counterpart, the BR vortex sheet, and,
beyond the singularity time, with its regularized versions.

First, we have focused our analysis on describing the most important physical phe-
nomena characterizing the evolution of the layer. These phenomena led us to distinguish
between two Re regimes. For low Re numbers, in our case Re � O(103), the flow is
characterized by the formation of two symmetric cores and by their large-scale spiraling,
which finally induces their merging (see figure 2). Conversely, we have observed no
merging of the two cores for the higher Re numbers we have been able to simulate,
i.e., 5 · 103 � Re � 1.5 · 105. In these cases, instead, the final stage of the evolution is
characterized by a concentration phenomenon occurring in each core (see figure 1), that
becomes more intense for higher Re.

The stages leading to concentration can be summarized as follows. During the first
stage, the layer or, to be more precise, the central curve C, closely follows the dynamics
predicted by the Birkhoff-Rott equation. Up to the BR singularity time, therefore, our
computations show excellent agreement between the BR equation and the vortex layer
dynamics. These results, therefore, provide a numerical extension of the rigorous short-
time theorems, obtained in Caflisch et al. (2020), concerning the convergence of vortex-
layers ruled by Euler equations: because here we show that a small viscosity does not
disrupt the agreement between NS and BR solutions; and because here, we have observed
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(a) (b)

Figure 20. (a) The vortex strength computed for the inviscid case (γ̂EU ), and the viscous case
(γ̂C), for the same initial thickness δ = 0.0141 (corresponding to Re = 5 · 103). Plots are shown
at the times ts = 1.507 of singularity formation for the BR equation, and the time t1w in which
the x-derivative of the central curves vanish, i.e. t ≈ 2.2 for the inviscid case and t ≈ 2.4 for the
viscous case. (b) Tracking in the complex plane (θ, θim) of the main singularity of the vortex
strength γ̂EU for the inviscid case. The singularity is tracked at ts = 1.507 and at the time
t1w for various initial thickness: the size of the markers decreases for smaller δ. In the inset the
imaginary parts of the singularities shown versus the initial thickness δ, and best power law
fitting (log-log scale).

that the agreement is not limited to short times but persists almost up to the BR
singularity time.
A second stage begins after the BR singularity time. While the BR curve terminates its

evolution developing an infinite curvature, we see the layer bending: see, e.g., figure 10(c).
When the bending becomes more pronounced, see figure 4(a), this causes an interaction
between different sections of the layer in the form of a cascade that creates stagnation
points and reverse-flow. This reverse flow weakens the velocity jump between the flow
above and below the layer, creating two vorticity minima, the red dots in figure 4(a)-(c).
These vorticity minima separate the inner part of the core from the outer part of the
core, and play a crucial role in the third stage of the flow evolution.
During the third stage, the vorticity minima become sharper, and strong vorticity

gradients appear; see figure 12(a). These sharp gradients are related to the intense
stretching of the curve, which is evident in figure 12(b). We have seen, discussing equation
(2.11), how stretching is the mechanism leading to the growth of vorticity gradients, and
how this leads to the growth of palinstrophy (see figure 3). Stretching, combined with
intense rotation and folding, leads to mixing, through a mechanism similar to the classical
horseshoe map: see figure 1 and the multimedia view 1.
The intense tangential stretching of the curve occurs where the vorticity minima

are; on the other hand, the core center is a zone where the opposite event occurs:
intense tangential compression. Compression is visible in figure 12(b) where ∂θs ≈ 0,
as this means that different Lagrangian particles occupy the same spatial position. Our
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computations suggest that the compression increases with the Re, i.e., that ∂θs(θ) � 0
when Re → ∞. The counterpart of the coalescence condition is that the vorticity intensity
γ̂C should grow without bound at the center of the layer, when Re increases; see figure
10(c) and figure 11(b). These results would suggest that the vortex layer, in the limit,
shows a vorticity concentration compatible with the 2D weak solution of the Euler
equations as supposed by the Di Perna and Majda theory, DiPerna & Majda (1987a,b).
Moreover, the blow-up of the vorticity concentration γC would imply non-convergence,
for t → t+s , of the NS solution to the BR solution, as it is well known that γBR remains
finite up to the singularity time. The complex singularity analysis we have performed in
section 3 confirms the fact that NS-layer solutions, at the singularity time, have a different
structure than the BR solution. In particular, singularity analysis has validated that γC ,
which has complex singularities with negative algebraic character, is more singular than
γBR, which instead has a cusp-type singularity, whose algebraic character is 1/2.
We have already noticed that the two minima of ωC , are the sources of the intense

stretching of the curve; see multimedia view 2. Two complex singularities, traveling
toward the real axis and getting closer for increasing Re, correspond to these minima.
In the limit Re → ∞, we expect that these two singularities coalesce into a single real
singularity, as t → t+s .

Another result we have obtained is strong evidence of the self-similar character of the
vorticity core. We have seen, at least for the Re we have been able to analyze, that this
core is invariant under the spatial scaling (x�, y�) → Re−1/2(x, y); see figure 7. Moreover,
the first stages of the layer evolution after the BR singularity time obey the time scaling
t� = (t − ts)Re−1/3: see figure 9. These results confirm once again the concentration
occurring at the core of the spiral, leading, at t → t+s , to the blow up of the vorticity
intensity when Re → ∞. We observe that the self-similar character of the dynamics had
already been noticed for different vortex sheet configurations, see Sohn (2016), and for
the inviscid vortex layer, see Hoepffner et al. (2011). It would be an essential achievement
to give a rigorous proof of the self-similar character of the spiraling and concentration of
the vortex layer configuration analyzed in the present paper.
One could regard the initial configurations we have considered (layers or sheets of

sinusoidal shape) as low-wavenumber mode perturbations of the flat layer or sheet.
These configurations are relevant, for example, because they are representative of layers
emerging from the interaction of high-Reynolds-number flows with O(1) structures; in
fact, extensive scientific literature concerning these configurations has developed, as
detailed in the Introduction. As pointed out by one of the referees, it would be interesting
to consider the effects of high-wavenumbers Re-dependent perturbations as these would
grow faster and, asymptotically, in zero time. Analogously, one could consider forcing
the initial configuration by placing complex singularities at finite distances from the real
axis, in the same spirit of Gargano et al. (2009), where dipole complex singularities forced
a boundary layer to became singular in zero-time. These topics are outside the scope of
the present paper and will be the object of future work.
Another point deserving further attention concerns the nonuniqueness of the weak

solutions of the 2D Euler equations for an initial vortex sheet configuration. It is known
that 2D Euler equations may have infinitely many admissible weak solutions (see, e.g.,
Székelyhidi (2011), and the recent Mengual & Székelyhidi (2020)). The lack of uniqueness
could reflect on the fact that different regularizations might converge to different Euler
solutions. Some authors have already highlighted the differences between the solutions
arising from the various regularization procedures. For example, the typical irregular
features of the vortex-blob flow due to the onset of chaos analyzed in Krasny & Nitsche
(2002), were not observed in viscous layers; Nitsche et al. (2003). A comparison with
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the Euler-α regularizations is in Holm et al. (2006); the authors showed that, for small
regularizing parameters δ and α, the two regularizations induce different behaviors in
the core vicinity region. In this work, through singularity analysis, we have given further
evidence of the fact that different regularizations can, in the limit, give rise to different
behaviors. In fact, we have considered the BR solution coming from the vortex-blob
regularization, and we have seen that the singularities of the δ-BR solution have lower
characters than the singularities developed by the center of the viscous layer, the curve
C. How the presence of a complex singularity, and its character, manifest themselves in
the statistical properties of the measure-valued solutions (see Fjordholm et al. (2016)) is
unclear, though, and merits further analysis.

Finally, we would like to mention that the 3D version of the problem we have considered
here is of great fundamental interest. In fact, it is well known how, in 3D, the existence
of regular solutions is ensured for a short time only; in the case of a vortex layer, the
existence time could, in principle, shrink to zero in the limit of zero-viscosity and/or zero
thickness. We believe that analyticity could avoid this, but no rigorous proof is available
at the present moment, nor has an analysis of the singularity behavior been performed.
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Appendix A. Singularity tracking

The singularity tracking method is widely used to characterize the complex singularity
of an analytic function u(z), and the scientific literature is rich of papers in which
singularity analysis is applied to solution of both ODEs and PDEs arising in fluid
dynamics, see Sulem et al. (1983); Shelley (1992); Caflisch (1993); Ely & Baker (1993);
Cowley et al. (1999); Frisch et al. (2003); Siegel & Caflisch (2009); Pauls et al. (2006);
Pauls & Frisch (2007); Gargano et al. (2009); van der Hoeven (2009); Malakuti et al.

(2013); Gargano et al. (2014); Caflisch et al. (2015), and Caflisch et al. (2017).
The singularity tracking is based on the asymptotic analysis of the Fourier transform

of a function and gives information on the width of its analyticity strip. Suppose that
the function u(z) has a complex singularity at z∗ = x∗ + iy∗ and that u(z) ≈ (z − z∗)µ

as z → z∗, where µ is the character of the singularity. Then, if u(z) =
�k=K/2

k=−K/2 uke
ikz

is the discrete Fourier expansion of u, then the asymptotic behaviour of its spectrum is
governed by the Laplace’s formula (Carrier et al. (1966)):

uk ∼ |k|−(1+µ) exp (−y∗|k|) exp (ix∗k) k → ∞. (A 1)

If one can estimate the rate of the exponential decay y∗ of the spectrum, one gets the
distance of the complex singularity from the real axis; the estimate of the period of the
oscillations of the spectrum gives the real location x∗ of the singularity. Estimating the
rate of algebraic decay 1+µ, one can classify the singularity type. If u(z) is the solution
of an evolutionary PDE, all the previous quantities, x∗, µ and y∗, are time dependent
and if, at a given time ts, y

∗(ts) is zero, then the solution shows a real singularity at time
ts, located in x∗(ts) with character µ(ts).
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However, this method gives information on the singularity nearest to the real axis.
To retrieve more information about the possible singularities outside the width of the
analyticity strip, the Borel-Pólya-van der Hoeven (BPH) method proposed in Pauls &
Frisch (2007) can be used. In particular, given the inverse Taylor series expansion of a
function u(z),

u(z) =

N�

k=0

uk/z
k+1,

that has n complex singularities cj = |cj |e
−iρj for j = 1, 2, . . . , n, one can define its

Borel transform by UB(ζ) =
�N

k=0 ukζ
k/k!. Evaluating the modulus of the Borel series

G(r) = |UB(re
iφ)| along the rays reiφ, one obtains, through a steepest descent argument,

the following asymptotic behaviour

G(r) ≈ C(φ)r−(µ(φ)+1)eh(φ)r for r → ∞. (A 2)

The indicatrix function h(φ), or equivalently the supporting function k(φ) = h(−φ), is
the relevant function to analyze.
In the case of isolated singularities (Pauls & Frisch (2007)), h(φ) is a piecewise cosine

function

h(φ) = |cj | cos(φ− ρj) for φj−1 < φ < φj , (A 3)

and the set of angular directions φj , j = 1, 2, ..n is determined by the angle φ for which
the supporting line normal to φ touches the smallest convex polygon containing all the
singularities in cj (see figure 21).

The BPH method can be easily applied to discrete Fourier series u(z) =�k=K/2
k=−K/2 uke

ikz by writing u as an inverse Taylor series. This is accomplished by

introducing the complex variables Z+ = eiz, Z− = e−iz so that

u(z) =

K/2�

k=0

uke
ikz +

K/2�

k=1

uke
−ikz =

K/2�

k=0

uk/Z
k
−
+

K/2�

k=1

uk/Z
k
+ . (A 4)

With the BPH method it is possible to capture information on all the singularities located
in the convex hull outside the radius of convergence of a Taylor series (or the strip of
analyticity of a Fourier series).
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