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Abstract

Despite the advent of Grover’s algorithm for the unstructured search, its successful

implementation on near-term quantum devices is still limited. We apply three strate-

gies to reduce the errors associated with implementing quantum search algorithms.

Our improved search algorithms have been implemented on the IBM quantum proces-

sors. Using them, we demonstrate three- and four-qubit search algorithm with higher

average success probabilities compared to previous works. We present the successful

execution of the five-qubit search on the IBM quantum processor for the first time. The

results have been benchmarked using degraded ratio, which is the ratio between the

experimental and the theoretical success probabilities. The fast decay of the degraded

ratio supports our divide-and-conquer strategy. Our proposed strategies are also useful

for implementation of quantum search algorithms in the post-NISQ era.
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1 Introduction

In recent years, much progress has been made in building quantum processors [1–

4] and demonstrating quantum advantage [5,6]. In fact, quantum algorithms are the

reason why quantum computers are so powerful [7]. However, the errors resulting

from noisy quantum gates and decoherence make these devices far from perfect. The

term “Noisy Intermediate-Scale Quantum” (NISQ) has been coined to describe the

current era of noisy quantum computers [8].

Circuit depth is a practical metric for quantum circuits. Circuit depth is defined as

the number of consecutive elementary operations required to run a circuit on quantum

hardware. For the same circuit, different hardwares may give different depths since the

connectivity may vary from machine to machine [9]. Most quantum computers have

the elementary single- and two-qubit gates, but the running time of an algorithm on a

quantum computer is directly related to the number of two-qubit gates. The two-qubit

gates are much harder to realize in experiments (also take more time than single-qubit

gates) since they create entanglement and the states become classically intractable [7].

Circuits with longer depths are more susceptible to gate and decoherence errors. Thus,

NISQ era algorithms strive for shallow depths [10].

Grover’s algorithm is well-known for providing quadratic speedup for unstructured

search problem [11,12]. It has wide applications, from exhaustive search for NP-

hard problems [13] to quantum machine learning [14]. The theoretical complexity of

Grover’s algorithm is based on number of queries to oracle, often referred to as the

black box. The oracle can identify the target item in a database. Grover’s algorithm

has been proven to be strictly optimal in the number of queries to the oracle [15,16].

Theoretical computational cost measures based on the oracular complexity,

although useful for the theoretical analyses, are not very practical for assessing the per-

formance of a quantum algorithm on real quantum machines. Given the wide-range

of applications of Grover’s algorithm, a line of research has been directed towards

estimating its implementation cost, including its depth and width requirements [17–

20]. While querying the oracle is an important operation, it is not the sole operation

in Grover’s algorithm. The other important part of Grover’s algorithm is the diffu-

sion operator. Previous studies have shown that variants of Grover’s algorithm allow

different choices for the diffusion operator, while maintaining the quantum speedup

[21–23]. Partial diffusion operators, also called “local" diffusion operators, act on a

subspace of the database. They are the key components in the partial search algorithms

[24–26]. Interestingly, they can also be applied to the full search problem, decreasing

the depth of the quantum search algorithms [27–30]. Such realizations make them

much more viable for the NISQ devices.

Grover’s algorithm for up to four-qubit search domain (24 = 16 elements) has been

implemented previously on the IBM quantum processors [31–33] for unstructured

search. In this paper, we apply three different strategies to improve the performance

of quantum search algorithms on the NISQ devices: (i) the hybrid classical-quantum

search, (ii) use of partial diffusion operators to optimize the depth of quantum search
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algorithms, and (iii) the divide-and-conquer search. Here the divide-and conquer

means that we find the partial target string at each step. Since we are considering

unstructured search problem, we do not recursively apply the divide-and-conquer

strategy here. The three strategies can be jointly applied for an enhanced error mit-

igation. We demonstrate the improved three- and four-qubit search implementations

over the standard Grover’s algorithm. The success probabilities are higher than pre-

vious reported results [31,32]. For the five-qubit cases on IBM quantum processors,

the search results from the direct execution of Grover’s algorithms are too noisy, no

better than the random guess. Our improved version, based on the proposed hybrid

classical-quantum strategy, gives higher success probabilities than the purely classical

approach (classical linear search). To the best of our knowledge, this is the first time

that the five-qubit search algorithm has been successfully executed on IBM quan-

tum processors. Note that the five-qubit search has recently been implemented on the

trapped-ion qubits [34]. We benchmark our results using the degraded ratio of suc-

cess probabilities. The fast decay of the degraded ratio observed in our results implies

favoring of shallow depth circuits on IBM quantum processors.

This paper is organized as follows. In Sect. 2, we review full and partial search

algorithms as well as introduce the notations used in our paper. In Sect. 3, we talk about

three different strategies as mentioned above to improve the quantum search algorithms

on real quantum devices. We present the results from executing these computational

strategies on IBM’s quantum computers in Sect. 4. Lastly, the conclusions from our

study are presented in Sect. 5. Appendix includes more details on our notations and

results presented in the main text.

2 Quantum search algorithms

First, we give a brief review of Grover’s algorithm. Then we introduce the partial

diffusion operator, a key component in our paper, that acts only on a subspace of the

search domain.

2.1 Grover’s algorithm

Grover’s algorithm is realized by repeatedly applying the Grover operator, denoted as

Gn , on the initial state |sn� [11,12]. The symbol n denotes the number of qubits, which

implies that the number of items in the database is N = 2n . The initial state, |sn�, is

uniform superposition of computational basis states of the Hilbert space, H
⊗n
2 . It can

be realized by applying the Hadamard gate, H , as [7]

|sn� = H⊗n|0�⊗n . (1)

Note that such a highly nontrivial initial state can easily be prepared with depth one.

The Grover operator, Gn , is a composition of two operators, the oracle and the

diffusion operator. The oracle marks the target item and the diffusion operator creates

an inversion about the mean. In Grover’s algorithm, a query to the phase oracle results
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in a sign flip on the target state. We denote the oracle operation as

Ot = 112n − 2|t�"t |. (2)

Here, |t� is the target state representing the target string t . The target state |t� is also

one of the computational basis states. We also refer to t as the target item or the

target string in our paper. Operator 112n is the identity operator acting on H
⊗n
2 . For

convenience, we assume that there is a unique target state in the database. However,

the depth reduction strategies in the next section do not limit to the case with a unique

target state. The diffusion operator is independent of the oracle, and is defined as

Dn = 2|sn�"sn| − 112n . (3)

The oracle operator, Ot , can be viewed as a reflection in the plane perpendicular to

the target state |t�. The diffusion operator, Dn , reflects the amplitude in the average,

since the state, |sn�, is the equal superposition of all items in the database.

Composed of the oracle, Ot , and the diffusion operator, Dn , the Grover operator,

Gn , is given by

Gn = Dn Ot . (4)

Starting with the initial state, |sn�, and iteratively applying the Grover operator, Gn ,

on subsequent states, gives

Pn( j) = |"t |G j
n|sn�|2 = sin2((2 j + 1)θ), (5)

where Pn( j) is the probability finding the target string t after j iterations of the Grover

operator on the initial state. The angle θ is defined as sin θ = 1/
√

N . When j reaches

jmax = "π
√

N/4�, the probability approaches unity. Thus, the oracular complexity of

Grover’s algorithm is O(
√

N ), which is quadratic speedup compared to the classical

complexity, O(N ). The idea behind Grover’s algorithm is to increase the amplitude

of the target state (approximately) linearly, which leads to a quadratic change in the

probability as it is the amplitude squared. Moreover, Grover’s algorithm is not limited

to a specific initial state, such as the uniformly superimposed state, |sn�. As long as

some distributions of the database can be efficiently realized, the amplitude of the target

state can be amplified via Grover’s algorithm. This general version of the algorithm

is called the amplitude amplification algorithm [35,36].

Although the general formalism of Grover’s algorithm is simple, realizing it on

real quantum computers (for unstructured search problems) is a non-trivial question.

Different search problems have different realizations of the oracle. Recent studies have

shown how to construct the oracle (via the elementary quantum gates) for the AES key

search [17,19,37,38] and the MAX-CUT problem [33]. The construction of diffusion

operator on real quantum devices is more straightforward. The diffusion operator, Dn ,

and the n-qubit Toffoli gate denoted as �n−1(X), are single-qubit-gate equivalent [7].

The notation X denotes the NOT gate, while n − 1 means that there are n − 1 control

qubits. For example, when n = 2, �n−1(X) gives the CNOT gate. The n-qubit Toffoli
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gate �n−1(X) can be decomposed as a combination of single- and two-qubit gates

with the depth linear in n (with ancillary qubits) [39].

2.2 Partial diffusion operator

The diffusion operator, Dn , defined in Eq. (3), reflects the amplitudes in the average

of all items. We can generalize such an operator as

Dn,m = 112n−m ⊗ (2|sm�"sm | − 112m ), (6)

with m ≤ n. The diffusion operator, Dn,m , only reflects the amplitude in the subspace

of the database. As m < n, we refer to Dn,m as the local or partial diffusion operator.

For convenience, we drop n from the notation to denote Dm ≡ Dn,m , without any

possibility of confusion. Combined with the oracle operator, Ot , the local Grover

operator is defined as

Gm = Dm Ot . (7)

Note that Gm is still an n-qubit operator since the oracle acts on the full n-qubit space.

The local diffusion operator can naturally solve the partial search problem [24–26],

which finds the substring of the target state. For example, the target state |t�, can be

decomposed as |t� = |t1�⊗ |t2�. Assume that t1 is (n − m)-bit length while t2 is m-bit

length. We can think that the database is divided into K = 2n−m blocks. Each block

has b = 2m number of items (N = bK ). Also, each block has the partial target string

t2. The quantum partial search algorithm (QPSA) finds the target block represented

by the target string t1. The target string t2 is not concerned.

The most efficient QPSA (based on the oracular complexity) starts by running the

global Grover operators first, followed by running the local Grover operators and lastly,

runs a single global Grover operator [40]. Note that the operators, Gn and Gm , do not

commute [41]. Thus, different orders of operators give different success probabilities.

The QPSA trades accuracy for speed (based on the oracular complexity). The QPSA

finds the target substring t1, with fewer queries to the oracle than the full search

algorithm. The reduced number of oracles, compared to Grover’s algorithm, scales as√
b [24–26].

Although QPSA is the main application of the local diffusion operator, Grover intro-

duced the local diffusion operator before the invention of QPSA. The local diffusion

operator, introduced in [27], aims to reduce the total number of gates in the quan-

tum search algorithm. This motivation is easy to see as the partial diffusion operator,

Dm , can be realized with fewer elementary quantum gates than the global diffusion

operator, Dn , with n > m. Recent studies have revealed several other ways to reduce

the depth of quantum search algorithm by exploiting the partial diffusion operator

[28,29]. We will discuss different strategies to improve the performance of quantum

search algorithms on real devices in the next section.

123



233 Page 6 of 27 K. Zhang et al.

3 Strategies to improve quantum search algorithms

In this section, we present three different strategies to improve accuracy and efficiency

of the quantum search algorithm on the NISQ processors. Every strategy utilizes

the local diffusion operator, Dm , as defined in Eq. (6). In NISQ era, such strategies

are important because they reduce the depth of the circuits. In post-NISQ era, such

strategies can potentially reduce the physical resources needed for error correction, as

well as the running time of the algorithms.

3.1 Hybrid search algorithm

The local diffusion operator, Dm , only acts on the subset of the given database. We can

renormalize the search space in order to exploit Dm . Suppose that the search problem

is to find the target string t with length n. The oracle can only recognize the target

state |t�. By renormalizing the search space, we prepare the initial state |t �1� ⊗ |sm�,
where t �1 is a specific string with length (n − m). If t �1 = t1 (|t� = |t1� ⊗ |t2�), then

using Eq. (5), the probability of finding t2 after j iterations of Gm on |t1� ⊗ |sm� is

Pm( j) = sin2((2 j + 1)θb), (8)

with sin θb = 1/
√

b and b = 2m .

Let the probability that t �1 is t1 be P(t �1 = t1). The probability Pm( j) is conditioned

on the probability P(t �1 = t1). Then the total probability of finding the target string t

with j iterations of Gm is

P �
n( j) = P(t �1 = t1)Pm( j). (9)

For the unstructured search problem, the classical probability, P(t �1 = t1), can only

be given by randomly guessing on 2n−m bits, i.e., P(t �1 = t1) = 1/2n−m . Random

guessing does not require any quantum computational resources. We call such a search

method as the hybrid classical-quantum search algorithm.

The advantage for the hybrid classical-quantum search algorithm is twofold. First,

the depth of Gm is smaller than Gn . If the total depth is fixed, the hybrid classical-

quantum algorithm can apply more iterations of oracle. Second, quantum coherence

during the algorithm is only required on the subspace H
⊗m
2 . The full search algorithm is

based on the coherence onH
⊗n
2 , which is more fragile. Although the theoretical success

probability is always smaller than the full search success probability with the same

number of oracles, the real success probability could be higher because of its shorter

depth and limited coherence between qubits. The theoretical success probability of

hybrid search decays exponentially with respect to the number of randomly guessed

qubits. Therefore, we do not expect a large number of randomly guessed qubits,

especially for a large database. Therefore, the hybrid strategy may not be suitable

for post-NISQ search problems.
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3.2 Depth optimization by partial diffusion operators

Grover’s algorithm is optimal in the number of queries to the oracle [15,16]. How-

ever, the oracular complexity is not the only metric for determining an algorithm’s

requirement of the physical computational resources (such as the depth and the width

of the circuit). The Grover operator is a combination of oracle operator and diffusion

operator. The depth of the quantum search circuit can be reduced if we replace the

global diffusion operator Dn by the local diffusion operator Dm . There are different

ways to do such replacements [27–30]. Here, we follow the ideas from [29], which

provides a general framework for depth optimization.

Suppose that we design the search circuits by the operator

Sn,m( j̃) = G
j1
n G

j2
m · · · G

jq−1
n G

jq
m , (10)

with j̃ = { j1, j2, . . . , jq}. Every local diffusion operator acts on the same subspace.

To remove the ambiguity of the notation Sn,m( j̃), we require that the last number

jq is always for the local Grover operator. For example, S6,4({2, 0}) = G2
6 and

S6,4({1, 1}) = G6G4. Note that Sn,m({ j, 0}) = G
j
n is the standard Grover’s algo-

rithm. We only consider one kind of local diffusion operator here. The idea below can

be generalized to multi-type local diffusion operators local diffusion operators acting

on different sizes of blocks, which gives the search operator Sn,m1,m2,··· ,mk
.

The success probability of finding the target state by the operator Sn,m( j̃) is

Pn,m( j̃) = |"t |Sn,m( j̃)|sn�|2. (11)

Since Grover’s algorithm is strictly optimal in number of queries to the oracle [16],

a local diffusion operator can only decrease the success probability compared to

Grover’s algorithm (with the fixed number of oracles). For example, Pn,m({ j1, j2}) ≤
Pn,m({ j1 + j2, 0}).

The physical resources of quantum computers are the depth and the width. The

depth roughly represents the physical running time of the circuit. We denote the depth

of operator U as d(U ). For the same operator, different devices may have different

depths due to the different connectivity of the qubits and the different sets of universal

gates. Operator Sn,m( j̃) can have lower depth compared to G
j
n (with the same number

of oracles). For example, d(Sn,m({ j1, j2})) ≤ d(Sn,m({ j1 + j2, 0})). We introduce the

expected depth of the search circuit Sn,m( j̃)) as

"dn,m( j̃)� =
d(Sn,m( j̃))

Pn,m( j̃)
. (12)

Then the depth optimization strategy is to find the minimum of "dn,m( j̃)� given by

"dn� = min
m, j̃

"dn,m( j̃)�. (13)
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We also optimize the size of the local diffusion operator given by the parameter m.

Although we apply the local diffusion operator in Sn,m( j̃), our algorithm is not the

partial search algorithm.

The minimal expected number of oracles for Grover’s algorithm is studied in

[15,42]. Recall that the maximal iteration (giving the maximal success probability)

is jmax = "π
√

N/4�. However, the minimal expected number of oracles is given by

jexp = "0.583
√

N�, which is smaller than jmax. Incorporating the depth of global

Grover operator d(Gn), the optimal iteration number, jexp, can give the minimal

expected depth of Grover’s algorithm. The significance of "dn� (given by the partial

diffusion operator) is to win over the minimal expected depth of Grover’s algorithm.

Theoretical study shows that there is a critical depth ratio (the ratio between the depths

of the oracle and the global diffusion operator), below which Grover’s algorithm is not

optimal in depth [29]. Such a critical depth ratio scales as O(n−12n/2). For example

in the 10-qubit search, the second strategy can be applied if the depth of oracle is

smaller than 83.97 times the depth of the 10-qubit Toffoli gate. In practice, we would

not have such a large oracle depth. For example, based on the data in [19], the depth

of AES-128 oracle is around 10 times the depth of global diffusion operator.

3.3 Divide-and-conquer strategy

NISQ devices can only run shallow depth circuits [8]. Recent benchmarking results

suggest that the fidelity of a circuit does not linearly decrease with the depth of

two-qubit gates [32]. If we can reinitialize the input during the algorithm, then we

can prevent the accumulation of errors at subsequent stages. The divide-and-conquer

search algorithm is naturally related to QPSA. We can find partial bits of the target

item, then renormalize the database to find the rest of the target string.

For simplicity, we consider the two-stage quantum search algorithm. It can be easily

generalized into the multi-stage search algorithm. In the first stage, the task is to find

the target substring, t1, with high probability. The second stage finds the rest target

string, t2. The second-stage circuit will be dependent on the results from the first

stage. The underlying idea behind the two-stage search algorithm is similar to the idea

behind the hybrid classical-quantum search algorithm in Sect. 3.1. The difference is

that both the stages are realized by quantum search algorithms. Suppose that the first

stage is realized by the operator S
(1)
n,m( j̃). The initial state for the first stage is |sn�. The

probability finding the target substring, t1, is given by

P(1)
n,m( j̃) = Tr

[

(|t1�"t1| ⊗ 112m ) S(1)
n,m( j̃)|sn�"sn|S(1)

n,m( j̃)†
]

. (14)

The diffusion operator, Dm , in S
(1)
n,m( j̃) acts on the qubits within the target substring,

t2. In other words, we measure the qubits which are not acted upon by Dm . Such a

circuit design comes from QPSA.

Suppose we find t1 at the first stage. We prepare the initial state |t1� ⊗ |sm�. Then

design the operator S
(2)

n,m� with m� < m for the second stage. Such a circuit is the nor-

malized version of the full search algorithm. The probability of finding the remaining
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target string t2 is

P(2)
n,m( j̃ �) = Tr

[

(112n−m ⊗ |t2�"t2|) S
(2)

n,m�( j̃ �)|t1, sm�"t1, sm |S(2)

n,m�( j̃ �)†
]

, (15)

with short notation |t1, sm� = |t1� ⊗ |sm�. The operator S
(2)

n,m� does not change the

initial state |t1�.
The expected depth of the above two-stage search algorithm is

"dn,m,m�( j̃, j̃ �)� =
d(S

(1)
n,m( j̃)) + d(S

(2)

n,m�( j̃ �))

P
(1)
n,m( j̃)P

(2)
n,m( j̃ �)

. (16)

The minimal expected depth can be obtained by optimizing the operators and the size

of the diffusion operators:

"dn,2� = min
m,m�, j̃, j̃ �

"dn,m,m�( j̃, j̃ �)� (17)

We add a subscript 2 in "dn,2� to distinguish the minimal expected depth of the full

search "dn� in Eq. (13). It is expected that "dn,2� < "dn�, since the measurement in

the middle wipes out the amplified amplitude of the state |t2�. Only when the depth of

the oracle is comparable to the depth of the global diffusion operator, the two-stage

search algorithm can have lower depth than Grover’s algorithm [29].

The motivation for the multi-stage circuits is to mitigate the errors. Another advan-

tage of the multi-stage search circuit is its ability to run the quantum search algorithm

in parallel [29,42]. We can assign the first stage circuit to different quantum computers.

Then each device finds a different part of the target string t . Combining all the results

gives the full target string.

4 Implementation on IBM quantum processors

First, we briefly present the basic setup as well as the circuit design from our imple-

mentation of the algorithms on the IBM quantum processors. Then we discuss the

results on the three-, four-, and five-qubit search in the following subsections.

4.1 Circuit designs

The target item t is encoded in the oracle. We have assumed the uniqueness of the

target item. As toy model, we choose the phase oracle presented in [3]. The n-qubit

phase oracle is single-qubit-gate-equivalent to the n-qubit Toffoli gate �n−1(X) (or

the n-qubit controlled phase gate �n−1(Z)). Note that the diffusion operator Dn is also

single-qubit-gate-equivalent to the n-qubit Toffoli gate �n−1(X) [7]. Although Qiskit

provides the built-in n-qubit controlled gate, its fidelity and efficiency are not optimal.

In the following, we show the realizations of three-, four-, and five-qubit controlled

phase gate �n−1(Z) from our implementation.
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It is well-known that the three-qubit controlled phase gate, �2(Z) (or the Toffoli

gate �2(X)), can be realized by six CNOT gates, with full connectivity between the

three qubits [7]. Qubits with linear connectivity need additional SWAP gates for such

a realization. In [32], Gwinner et al. provide a way to realize the three-qubit controlled

phase gate �2(Z) via eight CNOT gates on linearly connected qubits, shown below.

• T † • • • •

• = T † • • T • •

• T † T † T T

(18)

Here, T is π/8 gate given by T = diag{1, eiπ/4} with i =
√

−1.

The four-qubit gate �3(Z) can be realized by three �2(Z) gates in a V-shape design

(with one clean ancillary qubit) [39]. As pointed in [43], we can take advantages of the

relative-phase Toffoli gate to reduce the resources of n-qubit Toffoli gate constructions.

The three-qubit controlled Y gate (Y = Z X ) can be realized as [44]

• • •
• = • •

Y G G G† G† •

(19)

with the y-axis rotation gate G = Ry(π/4). Then the four-qubit controlled phase gate

�3(Z) can be constructed as

• • •
• • •

= |0� Y • Y †

• •
• •

(20)

with one ancillary qubit |0�. The rightmost CZ gate in circuit (19) can be cancelled

with the CZ gate in �2(Y
†) when the above �3(Z) gate is realized. Note that the CZ

gate commutes with the �2(Z) gate.

Similar to the realization of �3(Z) gate, we design the five-qubit controlled phase

gate �4(Z) via two four-qubit controlled-Y gates �3(Y ) and one three-qubit controlled

phase gate �2(Z), in addition to one clean ancillary qubit. The four-qubit controlled

gates �3(Y ) can be decomposed as [43]

• • • •
• • • •
•

=
• •

Y H T T † H T T † T T † H T T † H −i Z

(21)
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Fig. 1 Qubits layout of the IBM quantum processors. a The five-qubit system, named as Vigo, has the “T”

connectivity. b The five-qubit system, named as Athens, has the linear connectivity. c The sixteen-qubit

system, is named as Guadalupe. The color on dots represent for the frequency of each qubit. The color

on connectivities represent for the error rate of two-qubit gate on the connected two qubits (Color figure

online)

Above circuit requires that the target qubit connects all the control qubits. The right-

most four-qubit controlled gate gives a relative phase ∓i to the states |1100� and

|1101�, respectively. We do not need to physically realize such gate since it would be

cancelled with its inverse in the realization of the �4(Z) gate, as shown below.

• • •
• • •
• • •

=
|0� Y • Y †

• •
• •

(22)

We can also design the �4(Z) gate via four �2(Y ) gates and one �2(Z) gate, which

requires two clean ancillary qubits. Although this realization has fewer CNOT gates,

its fidelity is lower. Seven-qubit superposition is more fragile than the superposition

on the six qubits.

4.2 Setup

We run each circuit with randomly chosen target states in 30 trials. In each trial,

the circuit is run with 8192 shots to calculate the success probability. We use the

same 30 random target states for different search circuits, in order to compare the

results between different search circuits. Since in the unstructured search problem,

any target state is equally possible. Random chosen target state is more closed to

the practical situation. Besides, state |1� relaxes to the ground state |0� with some

probability. Therefore, target strings with larger Hamming weights have lower success

probabilities on real devices. Random chosen target state can also mitigate such biases.

To make sure that the random chosen target states are not biased, we list those target

states in “Appendix A”.

IBM provides processors with different number of qubits, ranging from one qubit

to sixty five qubits. For our purposes, we implement the three-qubit search circuits
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on the five-qubit processor, Vigo. The four-qubit search circuits are implemented on

both Vigo (the five-qubit backend with “T” connectivity) and Athens (the five-qubit

backend with linear connectivity). The five-qubit search circuits are tested on the

sixteen-qubit system, Guadalupe. See Fig. 1 for the topological layout of the qubits in

different processors. Note that the connectivity of Vigo is better than the connectivity

of Athens. However, Athens has lower gate error rates in average than Vigo. In terms

of the metric quantum volume, which characterizes the largest random circuit of equal

width and depth that the computer successfully implements [9], Athens has quantum

volume 32 while Vigo has 16.

Besides the success probability of the circuit, we also record the depth of each

circuit. The depth is obtained after compiling for each specified backend. The depth

obtained in this way represents the real operational length of the circuit. Every quantum

processor can only perform four different gates (called the universal gate set) - z-axis

rotation gate, X gate, square root X gate and CNOT gate. Oracles encoded different

target states have slightly different depths. Combining the success probability and the

circuit depth, we calculate the expected depth according to Eqs. (12) and (16), for the

single- and two-stage circuits, respectively.

Recently, Wang et al. introduced the selectivity parameter, S, to quantify how dis-

tinct the signal is compared to the next most probable outcome [20]. The selectivity is

also separately proposed in [45], called inference strength. It is important for under-

standing the quality of results obtained by a search algorithm on real devices. For our

purposes, we simply treat it as the ratio between Pt (the probability of obtaining the

target string) and the maximum of Pnt (the probability of obtaining the non-target

string), defined by

S =
Pt

max{Pnt }
. (23)

Selectivity less than 1 suggests the failure of the implementation. Note that the ampli-

tudes of non-target states are never amplified in the quantum search algorithms. For

the classical-quantum hybrid circuit, we only consider the selectivity for the results

obtained from the quantum algorithm. In other words, Pt is the probability of obtaining

the target substring. For the multi-stage circuits, we choose the minimal selectivity

among the circuits from the different stages. Note that the selectivity reveals the prob-

abilistic distribution of the implementation results, rather than a theoretical parameter.

We also benchmark the results via the degraded ratio, defined as

RIBMq =
PIBMq

Ptheo
. (24)

Here, the probability Ptheo is the theoretical success probability of finding the target

string (the theoretical success probability of the search circuit); probability PIBMq is

the success probability obtained from the IBM quantum processors. Degraded ratio

has been reported to decay exponentially with the number of two-qubit gates in [32].

Such fast degradation is the motivation for our multi-stage strategy.
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Fig. 2 Success probabilities of the three-qubit search circuits on the IBM quantum processors Vigo (left)

and Athens (right). Circuit names with black and red colors are the circuits with one and two oracles,

respectively. The standard Grover’s algorithm circuits are boxed. Circuits are ordered as the magnitude of

the success probabilities obtained from the Vigo machine (red circle). Standard deviations are obtained

from 30 trials with random target states. Each trial has 8192 shots (Color figure online)

For different circuits, we use the following notations. The Grover operator with

the diffusion operator Dm is denoted as Dm. Measurement on p qubits is Mp. If

there is a classical initialization on q number of qubits, then it is Gq (see the hybrid

search algorithm in Sect. 3.1). Note that the italic notation Gm is for the Grover

operator defined in Eq. (7). The left to right ordering represents the order in which

these operations are carried out. We always specify the search domain for each circuit

notations. For example, the three-qubit search circuit G1D2M2 represents the random

initialization of one qubit followed by the Grover operator with a two-qubit diffusion

operator and then measure these two qubits.

For the two-stage algorithm, we follow the same rules, but each of the stages is sep-

arated by a vertical line “|”. For example, the three-qubit search circuit D2M1|D2M2

is a two-stage algorithm. In the first stage, the Grover operator G2 (with two-qubit

diffusion operator) is applied, then one of the qubits is measured (acted upon by the

diffusion operator). The second stage is to initialize the state according to the results

from the first stage (see Sect. 3.3 for details), then apply the Grover operator G2 (with

two-qubit diffusion operator) followed by the measurement on the two qubits (to be

searched). A list of explanations on all the circuit notations can be found in Appendix.

See Table 4 for the three-qubit search circuits and Table 7 for the four-qubit search

circuits.

4.3 Three-qubit cases

Three-qubit Grover’s algorithm gives the theoretical success probabilities of 0.781

and 0.945 with one and two Grover iterations, respectively. These two circuits are
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Fig. 3 Circuit depths and expected depths of the three-qubit search circuits on the IBM quantum processors

Vigo (left) and Athens (right). Here d(1) or d(2) is the depth of first or second stage circuit; "dvigo�theo or

"dathens�theo is the theoretical expected depth of the circuit (given by the theoretical success probability)

on Vigo or Athens; "dvigo� or "dathens�is the real expected depth of the circuit (given by the real success

probability) on Vigo or Athens. Circuit names with black and red colors indicate the circuits with one and

two oracles, respectively. The standard Grover’s algorithm circuits are boxed. Circuits are ordered according

to the magnitude of the expected depth obtained from the Vigo machine (top blue bar). Standard deviations

are obtained from 30 trials with random target states. Each trial has 8192 shots (Color figure online)

denoted as D3M3 and D3D3M3. We design another two circuits with one oracle, i.e.,

D2M3 and G1D2M2, which both give the 0.5 theoretical success probabilities. We

design two different two-stage three-qubit search circuits. They both find one bit of

the target in the first stage. One uses the three-qubit diffusion operator, i.e., D3M1,

the other uses the two-qubit diffusion operator, i.e., D2M1. In the second stage, the

circuits are equivalent to the two-qubit search, which gives success probability as 1

with just a single Grover iteration, i.e., D2M2. The detailed explanations about these

six circuits can be found in Appendix (Table 4).

We plot the success probabilities, as well as the selectivities, of the three-qubit

search circuits in Fig. 2. The detailed data, as well as the thirty random target states,

can be found in “Appendix A”. To exclude any possible biases from the random

target states, we also provide supplementary data based on the average target states in

“Appendix B’ (Table 11). Both on the Vigo and Athens machines, the two-stage circuit

D3M1|D2M2 gives the largest success probabilities. Both the two-stage circuits have

higher success probabilities than Grover’s realization D3D3M3, though D3D3M3 has

the largest theoretical success probability. Such results demonstrate the significance

of the divide-and-conquer strategy. The circuit G1D2M2 has the largest selectivity,

which shows its robustness against the errors. The circuits D2M3 and G1D2M2 have

the identical implementations except for the initial states. The success probability of

G1D2M2 is slightly higher than D2M3 because the latter is only manipulating the

two-qubit superposition states.

Incorporating the circuit depth with their success probabilities, we plot the expected

depth in Fig. 3. There are three different categories of the depth parameter. The first is

the depth of the circuit, such as d(D3M3). The second is the theoretical expected depth,

123



Implementation of efficient quantum search algorithms… Page 15 of 27 233

Fig. 4 Probabilities of the one-stage four-qubit search circuits on the IBM quantum processor Vigo (left

figure) and Athens (right figure). Circuit names with black and red color are circuits with one and two

oracles, respectively. The standard Grover’s algorithm circuits are boxed. Circuits are ordered according to

the magnitude of the success probabilities (red circle). Standard deviations are obtained from 30 trials with

random target states. Each trial has 8192 shots (Color figure online)

given by the theoretical success probability of the circuits. The last is the expected

depth on real machines, given by the success probabilities obtained from the IBM

quantum processors. The least expected depth on the Vigo and Athens machines are

both given by the circuit G1D2M2. Although G1D2M2 has lower success probability

than D3M3, its shallow depth can find the target state more efficiently. The two two-

stage circuits have lower expected depth than Grover’s D3D3M3, since they have

lower depth realizations while maintaining higher success probabilities. Both D3M3

and D3D3M3 are the standard Grover’s algorithm. Neither the one-oracle D3M3 nor

the two-oracle D3D3M3 gives the optimal expected depth. Depth optimizations for

the search algorithm are necessary when running on the real quantum devices.

4.4 Four-qubit cases

Four-qubit search has more scope for exploiting the partial diffusion operators than

the three-qubit search. Including the standard Grover’s algorithm with one and two

oracles, we design a total of fourteen different circuits and test them on both the Vigo

and Athens processors. See Appendix (Table 7) for detailed explanations on each

circuit. Among the fourteen circuits, eight are one-stage circuits and six are two-stage

circuits. Success probabilities of the one-stage circuits are plotted in Fig. 4. For the

two-stage circuits, the success probabilities are plotted in Fig. 5. Also see Table 3

in “Appendix A” for the thirty random target states. The supplementary data on the

average target states can be found in “Appendix B” (Table 12).
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Fig. 5 Probabilities of the two-stage four-qubit search circuits on the IBM quantum processor Vigo (left

figure) and Athens (right figure). Circuits are ordered according to the magnitude of the success probabilities

(red circle). Standard deviations are obtained from 30 trials with random target states. Each trial has 8192

shots (Color figure online)

Fig. 6 Circuit depths and expected depths of the one-stage four-qubit search circuits on the IBM quantum

processor Vigo (left figure) and Athens (right figure). Here dvigo or dathens is the circuit depth on Vigo or

Athens; "dvigo�theo or "dathens�theo is the theoretical expected depth of the circuit (given by the theoretical

success probability) on Vigo or Athens; "dvigo� or "dathens�is the real expected depth of the circuit (given

by the real success probability) on Vigo or Athens. Circuit names with black and red colors are circuits with

one and two oracles, respectively. The standard Grover’s algorithm circuits are boxed. Circuits are ordered

according to the magnitude of the expected depth (top blue bar). Standard deviations are obtained from 30

trials with random target states. Each trial has 8192 shots (Color figure online)
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Fig. 7 Circuit depths and expected depths of the two-stage four-qubit search circuits on the IBM quantum

processor Vigo (left figure) and Athens (right figure). Here d(1) or d(2) is the depth of first or second stage

circuit; "dvigo�theo or "dathens�theo is the theoretical expected depth of the circuit (given by the theoretical

success probability) on Vigo or Athens; "dvigo� or "dathens�is the real expected depth of the circuit (given

by the real success probability) on Vigo or Athens. Circuits are ordered according to the magnitude of the

expected depth (top blue bar). Standard deviations are obtained from 30 trials with random target states.

Each trial has 8192 shots (Color figure online)

Among the eight one-stage search circuits, D4D4M4 gives the largest theoretical

probability 0.908. However, the real success probability is degraded below to 0.2

(both on Vigo and Athens) due to the actual implementation that has longer depth. On

Vigo and Athens both, G1D3M3 gives the largest success probability among the one-

stage circuits on real machines. On the Vigo machine, the two-oracle circuit D2D4M4

has larger success probability than the Grover’s two-oracle circuit D4D4M4. Similar

results are found on Athens. Local diffusion operators may decrease the theoreti-

cal success probability, but its low depth overcomes such disadvantages on quantum

devices.

For more information on the two-stage circuits, see Fig. 5. There are two types

of two-stage four-qubit circuits. One type finds a target bit at the first stage; then

finds the rest of the three target bits in the second stage. The other type searches

two target bits in each of the two stages, which provides a higher probability than

the first dividing strategy. Circuits implemented on Vigo have quite similar results on

Athens. The two-stage circuit, D2M2|D2M2, gives the average success probability of

0.345. The two-oracle Grover’s search, D4D4M4, has the average success probability

of 0.195. Notably, our divide-and-conquer circuit D2M2|D2M2 nearly doubles the

success probability of the standard Grover’s circuit D4D4M4. Compared to a recent

study [32], our success probability for the four-qubit search algorithm exceeds 0.3,

which is significant.

For the depth (the circuit depth, the theoretical expected depth and the expected

depth on the real devices) of the one-stage and the two-stage four-qubit search circuits,

see Figs. 6 and 7 . Note that because of the better connectivity of the Vigo, every circuit

has slightly longer depth on Athens as compared to Vigo. The averaged circuit depth
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Fig. 8 Degraded ratio of the

success probabilities vs. the

number of two-qubit gates. The

curve is fitted according to the

logistic function. If the number

of two-qubit gates exceeds

thirty, the noise may lead to an

inefficient search (Color figure

online)

of G2D2M2 is less than the half of one-oracle Grover’s circuit D4M4. However, the

overall success probability of G2D2M2 is higher than D4M4. The expected depth of

circuit G2D2M2 is far shorter than that of D4M4. The circuit G2D2M2 has the shortest

theoretical expected depth both on the Vigo and Athens.

In the two-stage circuits, the two-two dividing has shorter depth than the one-three

dividing. The two-two dividing exploits the local diffusion operator more efficiently.

Note that the one-qubit quantum search algorithm is not well defined; therefore we

do not have the three-one dividing. The expected depth of two-oracle Grover’s circuit

D4D4M4 is > 800 (833.99 on Vigo and 1378.31 on Athens). The divide-and-conquer

circuit (D2M2|D2M2) suppresses the expected depth below 300 (211.35 on Vigo and

287.58 on Athens).

Quantum algorithms with long circuits cannot be directly divided into several

stages, with new initialized states during the algorithm. Measurements in the mid-

dle will wipe out the established coherence between qubits. Suppose that the long

circuit has the success probability of p. Dividing it into two parts gives the success

probabilities p1 and p2 for each part, respectively. Previous theoretical study shows

that p > p1 p2 [29]. However, our tests demonstrate that p� < p�
1 p�

2 on real quan-

tum computers. The explanation relies on benchmarking the parameter, the degraded

ratio R, defined in Eq. (24). Based on our data from the four-qubit search circuits, we

plot the degraded ratio versus the number of two-qubit gates in Fig. 8. The degraded

ratio drops dramatically when the circuits have more than 30 two-qubit gates. In other

words, if the number of two-qubit gates exceeds thirty, the noises may surpass the

amplified amplitude of the target state. The data is fitted by the logistic function

R(x) =
a

1 + exp(−b(x − c))
+ d. (25)

Here, x is the number of two-qubit gates and the numbers {a, b, c, d} are the parameters

to be fitted. Similar benchmarking results have been reported in [32]. This exponential

drop is the motivation for our divide-and-conquer designs and explains why the divide-

and-conquer circuits have better performance than the one-stage circuits.
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4.5 Five-qubit cases

To the best of our knowledge, the five-qubit search algorithm has never been

successfully implemented on any of the IBM quantum processors. The five-qubit con-

trolled Toffoli gate �4(X) requires more gates as well as more connectivity between

qubits. We test the standard one-oracle Grover’s algorithm D5M5 on the sixteen-qubit

processor Guadalupe (only six qubits are used by our circuits). We choose the six

qubits with least two-qubit gate errors. The probability of finding the target string is

degraded to a lower value than the probability of finding the non-target string. See the

results listed in Table 1. The selectivity is below 1, which implies the failure of the

algorithm. Classical unstructured search with one oracle can find the target string with

the probability 0.0625: randomly pick up a string then verify it with the oracle; if it is

not the target string then randomly pick up another one ( 1
25 + 25−1

25 × 1
25−1

= 0.0625).

The quantum search D5M5 (with the averaged success probability of 0.0257) is worse

than the classical case. Similar results on the average target states can be found in

Table 13 in “Appendix B”.

Although there are plenty of implementations of the five-qubit one-oracle search

via the local diffusion operators, most of them give failed results (selectivity less

than 1 and success probability less than classical search). However, we found that the

classical-quantum hybrid search circuits G2D3M3 and G3D2M2 have selectivities

larger than 1, see Table 1. G2D3M3 gives success probability higher than random

pick, but relatively same as the classical search. G3D2M2 gives the average success

probability 0.0963, which is higher than the classical algorithm (with one oracle).

G3D2M2 randomly chooses three bits to perform the normalized two-qubit search

algorithm. Since there are more two-qubit gates acting on the two qubits to be searched,

we choose the physical two qubits with least errors of two-qubit gates. In our setup,

physical qubits 13 and 14 are chosen, see Fig. 1. The theoretical success probability

is 1/8 = 0.125, since the two-qubit search with one oracle has 1 as the success

probability. Theoretically, G3D2M2 has only half success probability compared to

D5M5. In practical, the success probability of G3D2M2 is three times higher than

Grover’s algorithm D5M5 because of its shallow depth. In the three- and four-qubit

cases, such hybrid classical-quantum circuits always have the largest selectivity (see

Figs. 2 and 4 ). Thus, we can expect that the five-qubit search G3D2M2 stands out in

the five-qubit search implementations.

Based on the success of G2D3M3 and G3D2M2, we test the divide-and-conquer cir-

cuits D2M2|D3M3 and D3M3|D2M2, which replace the random guesses in G2D3M3

and G3D2M2 by the quantum partial search algorithms. Although we have selec-

tivities of G2D3M3 and G3D2M2 larger than 1, the selectivities D2M2|D3M3 and

D3M3|D2M2 are less than 1. It suggests that the quantum partial search algorithm in

the first stage is not efficient, which does not provide quantum speedup.
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5 Conclusion

In this paper, we have implemented the three-, four- and five-qubit search algorithms

on the IBM quantum processors. Grover’s algorithm does not provide the optimal

performance on the NISQ devices. To reduce the noise, we have designed the quantum

search circuits using the local diffusion operators. There are three different strategies

to exploit the local diffusion operators. We realized the four-qubit search algorithm

with the highest success probability compared to other studies. We also successfully

ran the five-qubit search algorithm on the IBM quantum devices for the first time.

Additionally, the use of multi-stage circuits makes it possible to run the search in

parallel. We envision our work still be useful in post-NISQ era, since the lower depth

circuits would require less resources for the error corrections.
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A Supplementary data for random target states

Calibration parameters of the IBM quantum processors (for the random target states)

are listed in Table 2. The calibration data was retrieved at the time when the circuits

were implemented. The thirty random chosen target states for the three-, four-, and

five-qubit search are listed in Table 3. The explanations on the three-qubit circuits are

listed in Tables 4, 5. The experimental results for the three-qubit circuits are presented

in Table 6. The naming convention for the four-qubit circuits are listed in Table 7. The

theoretical and experimental data for the four-qubit search circuits are presented in

Tables 8 and 9, respectively.

Table 2 Calibration specs for the IBM quantum processors were retrieved on the day of data (for random

target states)

Backends CNOT error Readout error T1 T2 Quantum volume Version Date

Vigo 8.627e−3 3.222e−2 98.13 66.88 16 1.3.5 Jan. 9, 2021

Athens 9.262e−3 1.842e−2 84.55 102.56 32 1.3.6 Jan. 17, 2021

Guadalupe 1.245e−2 2.056e−2 78.15 90.72 32 1.2.18 June 12, 2021
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Table 3 Thirty random generated target states for the three-, four-, and five-qubit search algorithms

Number of qubits Thirty random target states

001 101 010 001 001 111 010 111 001 100

Three 011 000 100 111 010 011 110 111 110 011

101 111 110 001 001 000 001 001 001 001

1001 1101 1010 0001 1110 0010 1001 0100 0011 0111

Four 0001 0101 1110 0000 1010 1010 0101 0011 0001 0000

1100 0110 1111 0111 0000 0101 1101 1111 1000 0111

01010 10001 01011 01000 11111 00000 00000 00100 01010 00010

Five 01011 11100 10101 11010 00100 10100 01010 11001 01100 10001

00011 01101 00011 10000 10100 10000 11000 10100 11111 11000

Table 4 Naming explanations for the three-qubit search circuits

Circuits Oracle numbers Initial state Operation Measurement Remarks on the second stage

D3M3† 1 H⊗3|0�⊗3 G3 All qubits NA

D2M3 1 H⊗3|0�⊗3 G2 All qubits NA

G1D2M2 1 |t1� ⊗ H⊗2|0�⊗2 G2 Qubits of |t2t3� NA

D3D3M3† 2 H⊗3|0�⊗3 G2
3 All qubits NA

D3M1|D2M2 2 H⊗3|0�⊗3 G3 Qubit of |t1� Equivalent to G1D2M2

D2M1|D2M2 2 H⊗3|0�⊗3 G2 Qubit of |t1� Equivalent to G1D2M2

Suppose that the target string is t1t2t3, corresponding to the target state |t1t2t3�. Circuit names with † are

the standard Grover’s algorithms

Table 5 Parameters of the three-qubit search circuits on the Vigo and Athens

Circuits Ptheo d
(1)
vigo, d

(2)
vigo "dvigo�theo d

(1)
athens, d

(2)
athens "dathens�theo

D3M3† 0.781 39.43 50.47 40.03 51.24

D2M3 0.5 32.30 64.60 33.17 66.33

G1D2M2 0.5 28.70 57.40 29.73 59.47

D3D3M3† 0.945 67.83 71.76 68.63 72.60

D3M1|D2M2 0.875 39.43, 28.70 79.73 40.03, 29.73 79.73

D2M1|D2M2 0.750 31.87, 28.70 83.87 33.17, 29.73 83.87

Circuit names with † are the standard Grover’s algorithms

B Supplementary data for average target states

Calibration parameters of the IBM quantum processors (for the average target states)

are listed in Table 10. The results for the three-, four-, and five-qubit search based on

the average target states are listed in Tables 11, 12 and 13, respectively.
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Table 6 Success probabilities, selectivities and depths of the three-qubit search circuits

Circuits Pvigo Svigo "dvigo� Pathens Sathens "dathens�

D3M3† 0.538 ± 0.042 5.86 ± 1.59 73.58 ± 3.29 0.559 ± 0.022 5.36 ± 0.99 71.71 ± 3.29

D2M3 0.407 ± 0.033 2.70 ± 0.40 79.52 ± 3.09 0.400 ± 0.013 2.88 ± 0.15 83.00 ± 5.28

G1D2M2 0.415 ± 0.019 14.65 ± 3.70 66.49 ± 3.20 0.443 ± 0.019 19.66 ± 4.49 66.60 ± 3.18

D3D3M3† 0.575 ± 0.044 7.10 ± 1.93 118.29 ± 8.16 0.638 ± 0.027 8.44 ± 1.73 107.67 ± 4.13

D3M1|D2M2 0.635 ± 0.042 3.28 ± 0.40 107.58 ± 6.58 0.657 ± 0.025 2.89 ± 0.30 106.31 ± 7.11

D2M1|D2M2 0.604 ± 0.038 2.67 ± 0.25 100.61 ± 6.44 0.621 ± 0.017 2.35 ± 0.13 101.26 ± 5.87

Circuit names with † are the standard Grover’s algorithms. Standard deviations are obtained from 30 trials

with random target states. Each trial has 8192 shots

Table 7 Naming explanations for the four-qubit search circuits

Circuits Oracle numbersInitial state OperationMeasurement Remarks on the second stage

D4M4† 1 H⊗4|0�⊗4 G4 All qubits NA

D3M4 1 H⊗4|0�⊗4 G3 All qubits NA

D2M4 1 H⊗4|0�⊗4 G2 All qubits NA

G1D3M3 1 |t1� ⊗ H⊗3|0�⊗3 G3 Qubits of |t2t3t4�NA

G2D2M2 1 |t1t2� ⊗ H⊗2|0�⊗2G2 Qubits of |t3t4� NA

D4D4M4† 2 H⊗4|0�⊗4 G2
4 All qubits NA

D3D4M4 2 H⊗4|0�⊗4 G4G3 All qubits NA

D2D4M4 2 H⊗4|0�⊗4 G4G2 All qubits NA

D4M1|D3M32 H⊗4|0�⊗4 G4 Qubit of |t1� Equivalent to G1D3M3

D3M1|D3M32 H⊗4|0�⊗4 G3 Qubit of |t1� Equivalent to G1D3M3

D2M1|D3M32 H⊗4|0�⊗4 G2 Qubit of |t1� Equivalent to G1D3M3

D4M2|D2M22 H⊗4|0�⊗4 G4 Qubits of |t1t2� Equivalent to G2D2M2

D3M2|D2M22 H⊗4|0�⊗4 G3 Qubits of |t1t2� Equivalent to G2D2M2

D2M2|D2M22 H⊗4|0�⊗4 G2 Qubits of |t1t2� Equivalent to G2D2M2

Suppose that the target string is t1t2t3t4, corresponding to the target state |t1t2t3t4�. Circuit names with †

are the standard Grover’s algorithms
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Table 8 Parameters of the four-qubit search circuits on the Vigo and Athens

Circuits Ptheo d
(1)
vigo, d

(2)
vigo "dvigo�theo d

(1)
athens, d

(2)
athens "dathens�theo

D4M4† 0.473 86.07 182.07 130.87 276.85

D3M4 0.390 74.00 189.65 83.70 214.51

D2M4 0.250 34.97 139.87 47.87 191.47

G1D3M3 0.391 74.00 189.43 83.70 214.26

G2D2M2 0.250 34.97 139.87 46.73 186.93

D4D4M4† 0.908 161.13 177.38 250.27 275.50

D3D4M4 0.821 166.13 202.28 207.00 252.04

D2D4M4 0.660 99.57 150.81 140.87 213.37

D4M1|D3M3 0.561 72.07, 74.00 260.35 104.80, 83.70 336.10

D3M1|D3M3 0.537 74.00, 74.00 275.53 83.70, 83.70 311.65

D2M1|D3M3 0.488 34.77, 74.00 222.75 47.80, 83.70 269.30

D4M2|D2M2 0.578 72.33, 34.97 185.61 105.20, 46.73 262.81

D3M2|D2M2 0.531 74.00, 34.97 205.09 83.70, 46.73 245.50

D2M2|D2M2 0.438 34.97, 34.97 159.85 47.93, 46.73 216.38

Circuit names with † are the standard Grover’s algorithms

Table 9 Success probabilities, selectivities and depths of the four-qubit search circuits on IBM’s Vigo and

Athens machines

Circuits Pvigo Svigo "dvigo� Pathens Sathens "dathens�

D4M4† 0.165 ± 0.018 1.91 ± 0.17 526.66 ± 54.17 0.181 ± 0.010 2.28 ± 0.33 725.65 ± 41.46

D3M4 0.195 ± 0.019 2.10 ± 0.37 382.49 ± 39.23 0.208 ± 0.016 1.90 ± 0.28 404.27 ± 31.08

D2M4 0.173 ± 0.013 2.06 ± 0.24 203.71 ± 17.62 0.170 ± 0.008 1.78 ± 0.17 282.61 ± 15.28

G1D3M3 0.209 ± 0.018 3.69 ± 0.51 356.10 ± 44.06 0.230 ± 0.010 4.67 ± 0.41 364.03 ± 11.11

G2D2M2 0.199 ± 0.019 8.43 ± 1.99 176.24 ± 10.40 0.211 ± 0.004 13.36 ± 2.76 221.21 ± 5.72

D4D4M4† 0.195±0.022 2.19±0.17 833.99±83.83 0.183±0.018 2.03±0.38 1378.31±136.04

D3D4M4 0.151±0.017 1.76±0.16 1110.15±116.230.205±0.013 2.44±0.40 1013.44±64.76

D2D4M4 0.197 ± 0.023 2.15 ± 0.20 513.59 ± 60.89 0.195 ± 0.019 2.41 ± 0.31 727.35 ± 64.34

D4M1|
D3M3

0.264 ± 0.055 1.46 ± 0.16 570.74±88.11 0.282 ± 0.012 1.58 ± 0.06 670.76±28.76

D3M1|
D3M3

0.253 ± 0.038 1.46 ± 0.18 595.99 ± 83.11 0.286 ± 0.017 1.64 ± 0.11 586.68 ± 28.91

D2M1|
D3M3

0.249 ± 0.038 1.40 ± 0.13 443.90 ± 50.68 0.286 ± 0.014 1.64 ± 0.10 460.51 ± 18.70

D4M2|
D2M2

0.311 ± 0.045 1.58 ± 0.17 351.38 ± 42.16 0.324 ± 0.015 1.87 ± 0.17 444.56 ± 20.50

D3M2|
D2M2

0.314 ± 0.042 1.68 ± 0.23 352.18 ± 37.03 0.333 ± 0.021 1.78 ± 0.19 392.85 ± 21.87

D2M2|
D2M2

0.345 ± 0.077 1.70 ± 0.19 211.35 ± 39.81 0.335 ± 0.043 1.70 ± 0.37 287.58 ± 39.97

Circuit names with † are the standard Grover’s algorithms. Standard deviations are obtained from 30 trials

with random target states. Each trial has 8192 shots
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Table 10 Calibration specs for the IBM quantum processors were retrieved on the day of data (for average

target states)

Backends CNOT error Readout error T1 T2 Quantum volume Version Date

Athens 1.212e−2 1.476e−2 85.96 78.79 32 1.3.19 June 9, 2021

Guadalupe 1.245e−2 2.056e−2 78.15 90.72 32 1.2.18 June 12, 2021

Table 11 Success probabilities, selectivities and depths of the three-qubit search with average target states

Circuits Pathens (Phighest, Plowest) Sathens "dathens�

D3M3† 0.526 ± 0.028 (0.550, 0.470) 5.38 ± 0.78 76.26 ± 3.57

D2M3 0.370 ± 0.018 (0.380, 0.335) 2.48 ± 0.13 94.93 ± 6.56

G1D2M2 0.441 ± 0.018 (0.453, 0.425) 18.02 ± 5.60 22.09 ± 2.14

D3D3M3† 0.616 ± 0.025 (0.660, 0.593) 8.15 ± 0.90 110.92 ± 2.57

D3M1|D2M2 0.645 ± 0.030 (0.691, 0.582) 2.77 ± 0.29 92.03 ± 3.18

D2M1|D2M2 0.611 ± 0.016 (0.638, 0.594) 2.26 ± 0.14 87.73 ± 4.05

Circuit names with † are the standard Grover’s algorithms. Standard deviations are obtained from eight

trails (with eight different target states). Each trial has 8192 shots

Table 12 Success probabilities, selectivities and depths of the four-qubit search with average target states

Circuits Pathens (Phighest, Plowest) Sathens "dathens�

D4M4† 0.177 ± 0.016 (0.207, 0.157) 2.15 ± 0.46 744.81 ± 59.87

D3M4 0.209 ± 0.014 (0.231, 0.175) 2.01 ± 0.15 401.15 ± 25.07

D2M4 0.178 ± 0.010 (0.193, 0.152) 1.98 ± 0.15 269.56 ± 18.53

G1D3M3 0.218 ± 0.014 (0.237, 0.185) 4.03 ± 0.37 384.65 ± 22.82

G2D2M2 0.211 ± 0.06 (0.219, 0.200) 13.60 ± 3.62 221.79 ± 59.09

D4D4M4† 0.163 ± 0.014 (0.196, 0.137) 1.87 ± 0.28 1548.59 ± 129.69

D3D4M4 0.219 ± 0.015 (0.253, 0.200) 2.71 ± 0.35 947.37 ± 60.44

D2D4M4 0.188 ± 0.017 (0.217, 0.161) 2.23 ± 0.22 757.44 ± 65.97

D4M1|D3M3 0.263 ± 0.017 (0.298, 0.231) 1.53 ± 0.12 720.55 ± 45.95

D3M1|D3M3 0.268 ± 0.024 (0.305, 0.213) 1.60 ± 0.16 628.39 ± 56.31

D2M1|D3M3 0.269 ± 0.022 (0.306, 0.222) 1.62 ± 0.16 490.25 ± 36.06

D4M2|D2M2 0.328 ± 0.016 (0.346, 0.294) 1.73 ± 0.13 463.54 ± 25.87

D3M2|D2M2 0.339 ± 0.015 (0.360, 0.305) 1.86 ± 0.16 385.39 ± 15.82

D2M2|D2M2 0.364 ± 0.015 (0.382, 0.336) 2.14 ± 0.16 259.73 ± 11.33

Circuit names with † are the standard Grover’s algorithms. Standard deviations are obtained from sixteen

trails (with sixteen different target states). Each trial has 8192 shots
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Table 13 Success probabilities, selectivities and depths of the five-qubit search with average target states

Circuits Pguada (Phighest, Plowest) Sguada "dguada�

D5M5† 0.0392 ± 0.0606 (0.0522, 0.0184) 0.656 ± 0.154 3072.73 ± 857.30

G2D3M3 0.0570 ± 0.0050 (0.0636, 0.0471) 1.453 ± 0.164 1263.78 ± 111.71

G3D2M2 0.0985 ± 0.0025 (0.1038, 0.0942) 8.971 ± 1.355 444.13 ± 8.45

D2M2|D3M3 0.0576 ± 0.0109 (0.0779, 0.0371) 0.884 ± 0.192 2078.96 ± 429.64

D3M3|D2M2 0.1135 ± 0.0284 (0.1568, 0.0647) 0.804 ± 0.310 1093.12 ± 322.35

Circuit names with † are the standard Grover’s algorithms. Standard deviations are obtained from thirty

two trails (with thirty two different target states). Each trial has 8192 shots
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