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Frieze varieties are invariant under Coxeter mutation

Kiyoshi Igusa and Ralf Schiffler

Abstract. We define a generalized version of the frieze variety introduced
by Lee, Li, Mills, Seceleanu and the second author. The generalized frieze
variety is an algebraic variety determined by an acyclic quiver and a generic
specialization of cluster variables in the cluster algebra for this quiver. The
original frieze variety is obtained when this specialization is (1, . . . , 1).

The main result is that a generalized frieze variety is determined by any
generic element of any component of that variety. We also show that the
“Coxeter mutation” cyclically permutes these components. In particular, this
shows that the frieze variety is invariant under the Coxeter mutation at a
generic point.

The paper contains many examples which are generated using a new tech-
nique which we call an invariant Laurent polynomial. We show that a symme-
try of a mutation of a quiver gives such an invariant rational function.
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Introduction

At the ARTA VI Conference in Mexico celebrating Jose Antonio de la Peña’s
60th birthday, the second author presented his paper [2] defining “frieze varieties” of
an acyclic quiver and, using a result of Jose Antonio de la Peña [3,6] on eigenvalues
of the Coxeter matrix of the quiver, to prove the main result: The dimension of
this frieze variety is equal to 0,1, or ≥ 2 if and only if the representation type of
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the quiver is finite, tame, or wild, respectively. In particular, the dimension of the
frieze variety is 1 if and only if Q is an extended Dynkin quiver.

After the talk, the two authors discussed properties and examples of frieze
varieties throughout the conference. This paper is a report on these discussions.

The basic idea was to generalize the notion of frieze varieties by allowing for
arbitrary generic vectors (b1, b2, . . . , bn) instead of the vector (1, 1, . . . , 1) as the
initial condition for the defining recurrence. We show that, for any generic point
a∗ = (a1, . . . , an) in any component of the (generalized) frieze variety, the Coxeter
mutations of a∗ (2.1) will be contained as a dense subset of the variety. (Theorems
2.3, 3.5)

We also show that the Coxeter mutation cyclically permutes the components
of the (generalized) frieze variety (Theorem 3.2). In nice examples, we can use this
cyclic permutation to generate all polynomials which define all components of the
generalized frieze variety out of a single rational function. (Proposition 4.2)

Finally, we also observe that a symmetry of a mutation of a quiver decreases
the dimension of the frieze variety. (Proposition 6.2)

1. Preliminaries

We recall the main result of [2]. Let Q be a connected finite quiver without
oriented cycles and label the vertices 1, 2, . . . , n such that if there is an arrow i → j
then i > j.

Definition 1.1. [2]

(1) For every vertex i ∈ Q0 define positive rational numbers fi(t) (t ∈ Z≥0)
recursively by fi(0) = 1 and

fi(t+ 1) =
1 +

∏
j→i fj(t)

∏
j←i fj(t+ 1)

fi(t)
.

(2) For every t ≥ 0, define the point Pt = (f1(t), . . . , fn(t)) ∈ C
n.

(3) The frieze variety X(Q) of the quiver Q is the Zariski closure of the set
of all points Pt (t ∈ Z≥0).

The main result in [2] is the following characterization of the finite–tame–wild
trichotomy for acyclic quivers Q in terms of its frieze variety X(Q).

Theorem 1.2. [2] Let Q be an acyclic quiver.

(a) If Q is representation finite then the frieze variety X(Q) is of dimension
0.

(b) If Q is tame then the frieze variety X(Q) is of dimension 1.
(c) If Q is wild then the frieze variety X(Q) is of dimension at least 2.

2. Definitions and main result

Let Q be a quiver as in section 1, or an acyclic valued quiver. Let A(Q) be
the skew-symmetric (if Q is a quiver) or the skew-symmetrizable (if Q is a valued
quiver) cluster algebra of Q and let x = (x1, . . . , xn) be the initial cluster in A(Q).
Let μk denote the mutation in direction k and let x′

k be the new cluster variable
obtained by this mutation, thus μk(x) = (x1, . . . , xk−1, x

′
k, xk+1, . . . , xn). We define

the Coxeter mutation to be the mutation sequence

(2.1) μ∗ = μn ◦ · · · ◦ μ2 ◦ μ1,
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where the order 1, 2, . . . , n of the vertices is as in section 1. It is shown in [2] that
the point Pt in Definition 1.1 is equal to the specialization of the cluster μt

∗(x) at
xi = 1.

For an arbitrary point a∗ = (a1, · · · , an) ∈ Cn with ai �= 0 and any 1 ≤ k ≤ n,
let

μk(a1, · · · , an) = (a1, · · · , ak−1, a
′
k, ak+1, · · · , an) ∈ C

n

where a′k is obtained from the cluster variable x′
k by specializing the initial cluster

variables xi = ai, i = 1, 2, . . . , n. For generic a∗ we will have a′k �= 0, so the Coxeter
mutation can be repeated. Let μ∗(a∗) = μn ◦ · · · ◦ μ1(a∗) .

We propose the following generalization of the frieze variety.

Definition 2.1. (1) We say that a∗ ∈ Cn is a generic specialization of x
if all coordinates of μt

∗(a∗) are nonzero for all t ≥ 0.
(2) We refer to the set of all μt

∗(a∗) ∈ Cn for t ≥ 0 as the μ∗-orbit of a∗.
(3) For any generic specialization a∗ of x, the generalized frieze variety X(Q, a∗)

is defined to be the Zariski closure in Cn of the μ∗-orbit of a∗.

(4) Let X̃(Q, a∗) be X(Q, a∗) with zero dimensional components removed.

So, X̃(Q, a∗) is empty when X(Q, a∗) is finite, e.g. when Q has finite
type. (Theorem 1.2, Remark 3.9.)

Remark 2.2. (1) By the well-known Laurent Phenomenon proved by
Fomin and Zelevinsky in [1], the coordinates of μt

∗(a∗) for any integer
t are given by Laurent polynomials in a1, · · · , an. Therefore, μt

∗(a∗) is
defined for all t as long as a∗ ∈ (C×)n, i.e. ai �= 0 for all i.

Moreover, by the positivity theorem proved in [4] (for acyclic quivers
already in [5]), if a∗ is a positive real vector, then all μt

∗(a∗) are pos-
itive real vectors. In particular, every positive real vector is a generic
specialization.

(2) There are negative integer vectors which are not generic. For example,
the vector a∗ = (−1,−1) is not generic for the quiver Q : 1 ← 2 since
μ∗(−1,−1) = (0,−1).

(3) The frieze variety of Q is X(Q) = X(Q, (1, 1, · · · , 1)).
(4) We will see that all components of X(Q, a∗) have the same dimension and,

therefore, X̃(Q, a∗) = X(Q, a∗) when the set is infinite. (Theorem 3.3)
(5) The Zariski closure of the set of all μt

∗(a∗) for all t ∈ Z is the union of
X(Q, a∗) and X(Qop, a∗). One could speculate that these two varieties
should always be equal. In any case, our theorems apply to these varieties
separately.

We will show that the frieze variety is invariant under mutation in the following
sense.

Theorem 2.3. If a∗ ∈ Cn is a generic point on the frieze variety, then a∗
is a generic specialization of x and X(Q, a∗) = X̃(Q). More precisely, for each
component Xi of X(Q) of dimension ≥ 1 there is a subset Ui ⊂ Xi given as a
countable intersection of open subsets Ud

i so that, for any a∗ in any Ui we have

X(Q, a∗) = X̃(Q).

Corollary 2.4. If a∗ ∈ X(Q) is a generic point then μ∗(a∗) ∈ X(Q).

We note that frieze varieties often have nongeneric points. See, e.g., Remark
5.1 and the end of Example 3.8.
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3. Proof of Theorem 2.3

We prove a more general result (Theorem 3.5 below) using the following lem-
mas.

Lemma 3.1. If b∗ is a generic specialization of x and a∗ ∈ X̃(Q, b∗) ∩ (C×)n

then

μ∗(a∗) ∈ X̃(Q, b∗).

Proof. Since X̃(Q, b∗) contains all but finitely many elements of X(Q, b∗),

X̃(Q, b∗) = X(Q,μt
∗(b∗)) for sufficiently large t > 0. Replacing b∗ with μt

∗(b∗), we

may therefore assume that X̃(Q, b∗) = X(Q, b∗) contains μ
t
∗(b∗) for all t ≥ 0.

The varietyX(Q, b∗) is given by a finite number of polynomials fj . For any a∗ ∈
(C×)n, μ∗(a∗) ∈ Cn is well-defined and lies in X(Q, b∗) if and only if fj(μ∗(a∗)) = 0
for all j. Since the coordinates of μ∗(x∗) are Laurent polynomials in x1, · · · , xn,
each fj(μ∗(x∗)) is also a Laurent polynomial in the xi. So, there are monomials
gj(x∗) with the property that

(3.1) Fj(x∗) := fj(μ∗(x∗))gj(x∗) ∈ C[x1, · · · , xn].

The polynomials Fj have the property that, for any a∗ ∈ (C×)n, μ∗(a∗) ∈ X(Q, b∗)
if and only if Fj(a∗) = 0 for all j. Since μt

∗(b∗) ∈ X(Q, b∗) for all t ≥ 0, this implies
that Fj(μ

t
∗(b∗)) = 0 for all t ≥ 0. This implies that Fj = 0 on the Zariski closure of

this set of points: X(Q, b∗). Now let a∗ ∈ X(Q, b∗), then Fj(a∗) = 0 for all j, and

by the above argument, μ∗(a∗) ∈ X(Q, b∗) = X̃(Q, b∗) as claimed. �

In order to state the main result (Theorem 3.5 which will generalize Theorem

2.3), we need to consider the irreducible components of the variety X̃(Q, b∗). We
will show that the the Coxeter mutation μ∗ cyclically permutes these components.

Theorem 3.2. Let b∗ be any generic specialization of the cluster x, for example,

b∗ = (1, 1, · · · , 1). Choose t0 ≥ 0 so that μt
∗(b∗) ∈ X̃(Q, b∗) for all t ≥ t0. Then

the components of X̃(Q, b∗) = X(Q,μt0
∗ (b∗)) can be numbered X1, · · · , Xm with the

following properties.

(1) For each t ≥ t0, μ
t
∗(b∗) ∈ Xi if and only if t ≡ i modulo m. In particular,

for each t ≥ t0, μ
t
∗(b∗) lies in exactly one Xi.

(2) Xi is the closure of the set of all μi+km
∗ (b∗) for all integers k ≥ t0/m.

(3) For any a∗ ∈ Xi ∩ (C×)n we have μ∗(a∗) ∈ Xi+1 (or X1 if i = m).

Proof. By replacing b∗ with μt0
∗ (b∗) we may assume that t0 = 0 and X̃(Q, b∗) =

X(Q, b∗).
Let X1, · · · , Xm be the components of X(Q, b∗).
Consider the polynomials fjk which define the component Xj . As in (3.1),

there are polynomials Fjk with the property that, for any a∗ ∈ (C×)n, μ∗(a∗) ∈ Xj

if and only if Fjk(a∗) = 0 for all k. Then the polynomials Fjk and fip define a
subvariety Xij of Xi which contains all a∗ ∈ (C×)n ∩Xi so that μ∗(a∗) ∈ Xj . By

Lemma 3.1, μ∗(a∗) ∈ X̃(Q, b∗) = ∪Xj , for all a∗ ∈ (C×)n ∩ Xi. Therefore, Xi is
the union of the subvarieties Xij . Since Xi is irreducible, Xi = Xij for some j. In
fact j is uniquely determined by i, but we don’t need to verify this.

The equation Xi = Xij implies that, for any a∗ ∈ Xi∩(C×)n, μ∗(a∗) ∈ Xj . For
each i, choose one such j. Then π(i) = j defines a mapping of the set {1, 2, · · · ,m}
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to itself. Statement (3) will follow from this after we show that π is a cyclic
permutation.

Claim 1. π is a permutation which is transitive, i.e. π is an m-cycle.

Proof. Since b∗ ∈ X(Q, b∗), it must lie in one of the components; suppose
that b∗ ∈ Xi. Then μ∗(b∗) ∈ Xπ(i) and μt

∗(b∗) ∈ Xπt(i). Thus, the μ∗-orbit of b∗
lies in the union of all Xj where j is in the π-orbit of i. But the closure of the
μ∗-orbit of b∗ is the union of all the Xj . So π must be transitive, which also implies
π is a permutation and, in particular, an m-cycle.

Since π is an m-cycle, we may reindex the sets Xi so that π(i) = i+1 for i < m
and π(m) = 1 and so that b∗ ∈ Xm. �

Claim 2. For each t ≥ 0, μt
∗(b∗) lies in only one Xi: the one where i ≡ t mod

m.

Proof. Suppose not. Then μt
∗(b∗) ∈ Xi ∩ Xj ⊂ Xj where j �= i. By the

division algorithm, any s ≥ t can be written as s = p + km where 1 ≤ p < m. If
p �= i, then μs

∗(b∗) ∈ Xp. If p = i then μs
∗(b∗) ∈ Xj . So, the set of all μs

∗(b∗) for all
s ≥ t lies in the union of all Xp for p �= i which is a contradiction. �

These claims prove Statement (1). Statement (2) follows from the definition of
Xi. �

Theorem 3.2 can be strengthened as follows.

Theorem 3.3. For all generic specializations b∗ of x, all components of X(Q, b∗)

have the same dimension. In particular, if X(Q, b∗) is infinite, then X̃(Q, b∗) =
X(Q, b∗) and t0 = 0 in Theorem 3.2 above.

Proof. The Coxeter mutation μ∗ and its inverse are given by Laurent polyno-
mials which are rational functions whose denominators are monomials. By Theorem
3.2 μ∗ gives a bijection between dense subsets of Xi, Xi+1 which are disjoint from

the coordinate hyperplanes. Therefore, the components Xi of X̃(Q, b∗) are bira-
tionally equivalent and therefore have the same dimension since the dimension of
an irreducible variety is the transcendence degree of its field of rational functions.
When X(Q, b∗) is finite, the Coxeter mutation clearly acts as a cyclic permutation
of that set. So, assume X(Q, b∗) is infinite.

To see that X̃(Q, b∗) = X(Q, b∗) in the infinite case, suppose not. Then there

must one point μt
∗(b∗) not in X̃(Q, b∗) so that μt+1

∗ (b∗) ∈ Xi for some i. Choose
a regular function f : Cn → C, i.e. a polynomial in n variables, which is zero on
Xi−1 and nonzero on the point μt

∗(b∗). Composing with the rational morphism
μ−1
∗ gives a rational function on Xi whose denominator is a monomial and whose

numerator is a polynomial function g. Moreover, g is zero on a dense subset of Xi

by Theorem 3.2(2) and thus zero on all of Xi, but g is nonzero on μt+1
∗ (b∗) ∈ Xi,

since g(μt+1
∗ (b∗)) = f(μt

∗(b∗)) �= 0. This contradiction shows that μt
∗(b∗) ∈ Xi−1 as

claimed. �

Lemma 3.4. For every component Xi of X(Q, b∗) and every integer d > 0,
there is a pd > d and a dense open subset Ud

i of Xi so that, for every a∗ ∈ Ud
i , we

have the following.

(1) For every 0 ≤ t ≤ pd, the coordinates of μt
∗(a∗) are nonzero.
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(2) Any polynomial of degree ≤ d which is zero on μt
∗(a∗) for all 0 ≤ t ≤ pd

will also be zero on X(Q, b∗).

Before we prove this lemma, we will show that it implies the following gener-
alization of Theorem 2.3. We use the notation U∞

i for the intersection of Ud
i over

all d > 0.

Theorem 3.5. Let b∗ ∈ Cn be any generic specialization of the cluster x of Q.
Then, for generic a∗ ∈ X(Q, b∗), i.e. for a∗ ∈

⋃
U∞
i , we have X(Q, a∗) = X(Q, b∗).

Proof. By (1) in Lemma 3.4, every element of U∞
i is a generic specialization

of x. By Lemma 3.1, the entire μ∗-orbit of a∗ lies in X̃(Q, b∗) = X(Q, b∗). So,
X(Q, a∗) ⊂ X(Q, b∗).

If X(Q, a∗) �= X(Q, b∗) there must be a polynomial f which is zero on the
μ∗-orbit of a∗ but nonzero on X(Q, b∗). Let d = deg f . Given that f is zero on
the μ∗-orbit of a∗ ∈ U∞

i ⊂ Ud
i , we conclude by (2) in Lemma 3.4 that f is zero on

X(Q, b∗). This contradiction proves the theorem. �

Remark 3.6. Theorem 2.3 follows from Theorem 3.5 by choosing b∗ = (1, 1, . . . , 1).

It remains to prove the lemma:

Proof of Lemma 3.4. We consider only the nontrivial case when X(Q, b∗)
is infinite. By Theorems 3.2 and 3.3, X(Q, b∗) = X0 ∪ · · · ∪ Xm−1 and t0 = 0 in

Theorem 3.2. By (1) in Theorem 3.2 we have that μi
∗(b∗) ∈ Xi. Since X̃(Q, b∗) =

X(Q, b∗), a polynomial f will be zero on X(Q, b∗) if and only if f(μt
∗(b∗)) = 0 for all

t ≥ i. The key point of the proof is to show that, for f of degree ≤ d, we only need
to check this condition for t ≤ pd for some fixed pd > 0. This is a linear condition
on the coefficients of f . Since the rank of a linear system is a lower semi-continuous
function, there will be an open subset Ud

i of Xi on which this system is defined
(Condition (1)) and has maximum rank. This will be the desired set.

We now construct the linear system. With n, d fixed, consider the polynomial
mapping

Pd : Cn → C(
n+d
n )

which sends x∗ = (x1, · · · , xn) ∈ C
n to the sequence of all monomials in xj of

degree ≤ d. For example, when n = 2, d = 3, we have:

P3(x, y) = (1, x, y, x2, xy, y2, x3, x2y, xy2, y3).

Then any polynomial function f on Cn of degree ≤ d is given as the composition

of Pd with a linear mapping f∗ : C(
n+d
n ) → C.

Let Bd ⊂ C(
n+d
n ) be the vector space span of all Pd(μ

t
∗(b∗)) for all t ≥ m. Then

a polynomial f of degree ≤ d is zero on X(Q,μm
∗ (b∗)) = X(Q, b∗) if and only if

f∗(Bd) = 0. So, Pd(a∗) ∈ Bd for all a∗ ∈ X(Q, b∗). Let k be the dimension of Bd.

Then Bd has a basis consisting of Pd(μ
tj
∗ (b∗)) for some m ≤ t1 < t2 < · · · < tk.

These vectors form a
(
n+d
n

)
× k matrix of rank k. So, there is some k× k minor M

of this matrix which is nonzero. Since tj ≥ m ≥ i, the entries of the matrix, being

monomials in the coordinates of μ
tj−i
∗ (μi

∗(b∗)) for some j, are given as Laurent
polynomials in the coordinates of μi

∗(b∗) ∈ Xi. Therefore, for each i, the minor M
is a Laurent polynomial in the coordinates of μi

∗(b∗). Let Fi be the numerator of
this polynomial. Then Fi(μ

i
∗(b∗)) �= 0.
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Let pd = tk − i and let V d
i be the subset of Xi of all points a∗ so that μt

∗(a∗) is
defined with nonzero coordinates for 0 ≤ t ≤ pd. Since this is an open condition and
μi
∗(b∗) ∈ V d

i , V
d
i is a dense open subset of Xi. By Lemma 3.1, μt

∗(a∗) ∈ X(Q, b∗) for
all 0 ≤ t ≤ pd. Therefore, Pd(μ

t
∗(a∗)) ∈ Bd for all 0 ≤ t ≤ pd. The condition that

the vectors Pd(μ
t
∗(a∗)), for 0 ≤ t ≤ pd span Bd is an open condition which holds

for a∗ = μi
∗(b∗) ∈ Xi ∩ V d

i . Therefore, it holds on some Zariski open neighborhood
of μi

∗(b∗) in Xi ∩ V d
i . In fact, this condition will hold on the open subset Ud

i of
Xi ∩ V d

i on which Fi �= 0.
Since Ud

i ⊂ V d
i , then a∗ ∈ Ud

i will satisfy Condition (1). For any polynomial f
of degree ≤ d which is zero on μt

∗(a∗) for all 0 ≤ t ≤ pd, the corresponding linear
map f∗ will vanish on the vector Pd(μ

t
∗(a∗)) for all 0 ≤ t ≤ pd. Since these vectors

span Bd, f∗(Bd) = 0. This implies that f is zero on the set X(Q, b∗), proving
Condition (2) and concluding the proof of Lemma 3.4, Theorems 3.5 and 2.3. �

We illustrate some of the concepts in the proof of Lemma 3.4 with two examples.

Example 3.7. Consider the A2 quiver

Q : 1 ←− 2.

Then X(Q) has only five points μi
∗(b∗) = (1, 1), (2, 3), (2, 1), (1, 2), (3, 2) for i =

0, 1, 2, 3, 4. Thus m = 5 and each Xi consists of one point. For d = 2,
(
n+d
n

)
= 6.

So, the five vectors P2(μ
i
∗(b∗)) do not span C6. These five vectors are the rows of

the following 5 × 6 matrix. (The proof of Lemma 3.4 uses the transpose of this
matrix.)

1 x y x2 xy y2

b∗ 1 1 1 1 1 1
μ∗(b∗) 1 2 3 4 6 9
μ2
∗(b∗) 1 2 1 4 2 1

μ3
∗(b∗) 1 1 2 1 2 4

μ4
∗(b∗) 1 3 2 9 6 4

The span of these five vectors is B2 ⊂ C6. This is a hyperplane perpendicular to
the vector (3,−2,−2, 1,−1, 1). Dot product with this vector gives a linear map
f∗ : C6 → C, composing with P2 gives

f(x, y) = f∗(P2(x, y)) = x2 − xy + y2 − 2x− 2y + 3.

This is the only quadratic polynomial which vanishes on the frieze variety X(Q).
The real points form an ellipse centered at (2, 2) with major axis going from (1, 1)
to (3, 3).

Here is another example which explains the minor M and numerator F .

Example 3.8. Consider the Kronecker quiver

Q : 1 ⇐= 2

Consider the frieze variety X(Q). The first three points are b∗ = (1, 1), μ∗(b∗) =
(2, 5), μ2

∗(b∗) = (13, 34).
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Take d = 1. Then
(
n+d
n

)
= 3. In order to span C3 we need three vectors:

P1(μ
t
∗(b∗)) for t = 0, 1, 2. These are the rows of the following matrix.

1 x y
b∗ 1 1 1

μ∗(b∗) 1 2 5
μ2
∗(b∗) 1 13 34

Since this has full rank, the determinant of this matrix (which is−15) is the maximal
minor. However we need the minor as a Laurent polynomial in the coordinates of
μi
∗(b∗). Take i = 1 and write μ1

∗(b∗) = (y1, y2). Thus y1 = x′
1, y2 = x′

2. In terms of
the cluster y1, y2, the 3× 3 matrix under consideration is:⎡⎢⎣1

y4
1+y2

2+2y2
1+1

y1y2
2

y2
1+1
y2

1 y1 y2

1
y2
2+1
y1

y4
1+2y2

2+y2
1+1

y1
1y2

⎤⎥⎦
The determinant of this matrix is the rational function M . The numerator of M is
the polynomial F = y21y

2
2M . This is a polynomial of degree 8 in y1, y2. The reason

we use these variables is because we are looking for points a∗ = (a1, a2) close to
μ1
∗(b∗) = (2, 5). What we have already calculated is: M(2, 5) = −15.

Using invariant rational functions, the generalized frieze variety X(Q, b∗) can
be given as follows. The rational function

h(x) =
x2
1 + x2

2 + 1

x1x2

is equal to itself, as an element of C(x), on all iterated Coxeter mutations of the
cluster x. To see this, write it as:

h(x1, x2) =
x1 + x′

1

x2
= h(x′

1, x2)

which is invariant under Coxeter mutation since μ1 switches the terms x1, x
′
1 and

similarly for μ2. So, it is invariant under μ2 ◦ μ1. At b∗ = (1, 1) it takes the value
h(1, 1) = 3. This makes

(3.2) x2
1 + x2

2 + 1 = 3x1x2

at all points in X(Q). Note that equation (3.2) is a specialization of the Markov
equation x2

1 + x2
2 + x2

3 = 3x1x2x3.
Using this equation we can see that the value of M at any point (y1, y2) in

X(Q) is equal to −15. So, F = −15y21y
2
2 . The set Ud

1 for d = 1 is given by
F (μt

∗(a∗)) �= 0 for three values of t, namely t = −1, 0, 1 since we are thinking of
a∗ as a specialization of (y1, y2) = (x′

1, x
′
2). This makes Ud

1 = V d
1 the complement

in X(Q) of the 12 points consisting of μ−t
∗ , for t = −1, 0, 1, applied to the points

(0,±
√
−1), (±

√
−1, 0).

Remark 3.9. We observe that Theorem 1.2 does not always hold for the gener-
alized frieze variety. For example, when Q is the Kronecker quiver considered above

and b∗ =
(√

2i
2 ,

√
2i
2

)
, X(Q, b∗) consists of only two points, b∗ and −b∗. However,

we believe that, for almost all b∗, the analogue of Theorem 1.2 hold.
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4. Construction from invariant rational functions

For any k ≥ 0, the coordinates of μk
∗(x) are Laurent polynomials in x. Fur-

thermore, each coordinate of x is given as a Laurent polynomial in μk
∗(x). So,

the set of values of μk
∗(x) is not contained in any hypersurface in C

n. So, for any
rational function h(x) ∈ C(x) and any t ≥ 0, we have another rational function
h(μt

∗(x)) ∈ C(x) since the denominator of h(μt
∗(x)) cannot be identically zero. Sup-

pose, furthermore, that h(x) is a Laurent polynomial in x and a∗ ∈ Cn is a generic
specialization of x. Then h(μt

∗(a∗)) is a well-defined complex number for any t ≥ 0.
This is particularly useful when h(x) is periodic in the following sense.

Definition 4.1. We say that a rational function h(x) is invariant under μk
∗ if:

(4.1) h(μk
∗(x)) = h(x)

as an element of C(x). If k > 0 is minimal and h(x) is Laurent, we say that h(x) is
an invariant Laurent polynomial for Q of period k. For each t ≥ 0 we will use the
notation:

(4.2) h(μt
∗(x)) =

ft(x)

gt(x)

Note that ft, gt ∈ C[x] depend only on the residue class of t modulo the period k.

Proposition 4.2. Let h(x) be an invariant Laurent polynomial of period k.
Let a∗ be a generic specialization of x. For each t ≥ 0, let ct = h(μt

∗(a∗)) and let
ft(x), gt(x) be as in (4.2). For 0 ≤ t < k, let

Fj,t(x) := ft(x)− ct+jgt(x)

be the numerator of the rational function h(μt
∗(x))−h(μj+t

∗ (a∗)), and let Xj be the
intersection of the k hypersurfaces given by Fj,t(x) = 0, for 0 ≤ j < k.

Then the generalized quiver variety X(Q, a∗) is contained in the union X0 ∪
X1 ∪ · · · ∪Xk−1.

Proof. For any 0 ≤ j < k and s ≥ 0, let b∗ = μj+ks
∗ (a∗). Then, for any

t ≥ 0, we have h(μt
∗(b∗)) = h(μj+t

∗ (a∗)) = cj+t. Since Fj,t(x) is the numerator

of h(μt
∗(x)) − h(μj+t

∗ (a∗)), we get Fj,t(b∗) = 0. Therefore, b∗ = μj+ks
∗ (a∗) lies in

Xj for all s ≥ 0 and the union of the Xj contains the entire μ∗-orbit of a∗. So,
X(Q, a∗) ⊂

⋃
Xj . �

Remark 4.3. Thus, the single Laurent polynomial h(x) generates k2 polyno-
mials Fj,t(x) giving k varieties Xj whose union contains X(Q, a∗) and, in many
cases, is equal to X(Q, a∗) as shown in several examples below. In these exam-
ples, all of the rational functions h(μt

∗(x)) = ft(x)/gt(x) are Laurent polynomials
with positive integer coefficients. This is reflected in the fact that the monomials
in the polynomials Fj,t(x) = ft(x) − cj+tgt(x) have the same sign except for one:
−cj+tgt(x). We note that this is not a general phenomenon since, e.g., when Q has
finite type, μk

∗(x) = x for some k and, therefore, every Laurent polynomial will be
invariant with period dividing k.

5. Examples

To illustrate Proposition 4.2, we give two examples, both tame, where a single
invariant Laurent polynomial h(x) whose period k is one less than the number of
vertices of Q gives the complete decomposition of X(Q) as a union of k curves.
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5.1. The affine quiver Ã2. Let Q be the quiver:

2

�����
�

1 3��

������

This quiver has the property that μ1Q ∼= Q after renumbering the vertices. In
terms of the cluster variables (x, y, z), after one mutation, we get back the same
quiver with new variables (y, z, x′) where x′ = 1

x (yz+1). For any rational function
h(x, y, z) let

h′(x, y, z) := h(y, z, x′),

where x′ is the cluster variable obtained from the cluster (x, y, z) by mutation in
x. We also use the notation h′ = h ◦ μ̃ where

(5.1) μ̃(x, y, z) := (y, z, x′).

Note that h(3)(x, y, z) = h′′′(x, y, z) = h(μ∗(x, y, z)).
For example, let h(x) be the Laurent polynomial

h(x, y, z) =
x+ z

y

Then h′, h′′ are given by

h′(x, y, z) = h(y, z, x′) =
y + x′

z
=

xy + yz + 1

xz

h′′(x, y, z) = h′(y, z, x′) = h(z, x′, y′) =
z + y′

x′

Observe that
h

h′′ =
(x+ z)x′

y(z + y′)
=

yz + 1 + zx′

yz + 1 + zx′ = 1

and thus h′′ = h and, consequently, h(a) = h if a is even, and h(a) = h′ if a is odd.
Therefore h and h′ are invariant under μ2

∗:

h(μ2
∗(x, y, z)) = h(6)(x, y, z) = h(x, y, z),

and similarly, h′ ◦ μ2
∗ = h(7) = h′.

Thus, h(x) is an invariant Laurent polynomial forQ of period 2. So, Proposition
4.2 applies with

c0 = h(1, 1, 1) = 2

c1 = h′(1, 1, 1) = 3.

So, X(Q) is contained in the union of two curves X0 ∪X1 where X0 is given by the
polynomial equations F00 = F01 = 0 where

F00(x, y, z) = Num(h(x, y, z)− c0) = x+ z − 2y

F01(x, y, z) = Num(h′(x, y, z)− c1) = xy + yz + 1− 3xz

and X1 is given by F11 = F12 = 0 where

F10(x, y, z) = Num(h(x, y, z)− c1) = x+ z − 3y

F11(x, y, z) = Num(h′(x, y, z)− c0) = xy + yz + 1− 2xz.

From these equations it is easy to verify the observation from [2] that X0 is
a nonsingular degree 2 curve. Indeed the equation F00 = 0 is equivalent to the
linear equation z = 2y − x which reduced the second equation to F01(x, y, z) =
F01(x, y, 2y − x) = 0 which is a nondegenerate quadratic in two variables. Thus
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X0 is a nonsingular curve in C3 containing the infinite set of points μ2k
∗ (1, 1, 1) for

k ≥ 0. So, it must be the closure of this set. Similarly, the curve X1 must be the
closure of the set of all μ2k+1

∗ (1, 1, 1). We therefore see that the frieze variety X(Q)
has two components given by the above four polynomials. These polynomials come
from an example worked out in [2], but here all four polynomials come from the
same Laurent polynomial h.

Remark 5.1. We note that frieze varieties often have nongeneric points. For
example, the first component X0 of the frieze variety discussed above contains the
point (0,

√
2i/2,

√
2i). Mutation at the first vertex gives x′ = (yz + 1)/x = 0/0

which is undefined. However, μ̃ (defined in (5.1) above) sends the 0-component of
X(Q) to the 1-component X1. So, the value of x′ can be computed from the linear
equation F10(y, z, x

′) = 0:

x′ = 3z − y =
5

2

√
2i.

5.2. The affine quiver Ãn. More generally, consider the quiver:

1

����
��

2�� �� · · · n− 1��

Q : 0 n��

�������

for n ≥ 3. Let h be the Laurent polynomial:

h(x0, x1, · · · , xn) =
xn−2 + xn

xn−1
.

Mutation gives:

h′(x0, · · · , xn) := h(x1, x2, · · · , xn, x0) =
xn−1 + x′

0

xn
=

xn−1x0 + x1xn + 1

x0xn
.

Mutating k times for 3 ≤ k ≤ n (k = 2 is given in (5.2) below) gives

h(k)(x0, x1, · · · , xn) = h(xk, xk+1, · · · , xn, x
′
0, · · · , x′

k−1) =
x′
k−3 + x′

k−1

x′
k−2

For k = n, h(n) = h since the quotient is:

h

h(n)
=

(xn−2 + xn)x
′
n−2

xn−1(x′
n−3 + x′

n−1)
=

xn−1x
′
n−3 + 1 + xnx

′
n−2

xn−1x′
n−3 + 1 + xnx′

n−2

= 1

This gives us a cleaner formula for h(k) for 2 ≤ k ≤ n using 2− n ≤ k − n ≤ 0:

(5.2) h(k)(x) = h(k−n)(x) = h(x′
k+1, · · · , x′

n, x0, x1, · · · , xk) =
xk−2 + xk

xk−1
.

The equation h = h(n) also implies that h(nk) = h, for all k ≥ 0. So,

h(μk
∗(x)) = hk(n+1)(x) = h(k)(x).

In particular h(μn
∗ (x)) = h(n)(x) = h(x). So, h(x) is an invariant Laurent polyno-

mial for Q of period dividing n. To see that the period of h is exactly n we compute
ck:

(5.3) ck = h(k)(1, 1, · · · , 1) = h(1, 1, · · · , 1, 2, 3, · · · , k + 1) =

{
3 if k = 1;

2 if 2 ≤ k ≤ n.
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Also, h(k) is invariant under μn
∗ , for all k ≥ 0, since h(k)(μsn

∗ (x)) = h(k+sn)(x) =
h(k)(x). So, for generic a∗, the frieze variety X(Q, a∗) has n components

X(Q, a∗) = X0 ∪X1 ∪ · · · ∪Xn−1;

the first component X0, containing the μn
∗ -orbit of a∗ = (1, 1, · · · , 1), is given by

the n polynomials F01, · · · , F0,n−1, F0n = F00 where

F01 = Num(h′(x)− c1) = x0xn−1 + x1xn + 1− 3x0xn,

by Proposition 4.2 and (5.3); and for 2 ≤ k ≤ n

F0k = Num(h(k)(x)− ck) = xk−2 + xk − 2xk−1,

by Proposition 4.2 ,(5.2) and (5.3).

Remark 5.2. Note that, for any point in X0, the equations F0k = 0 for 2 ≤
k ≤ n express the coordinates x2, x3, · · · , xn as linear combinations of x0, x1. Thus,
points in X0 are determined by their first two coordinates. Since X0 contains the 3
points (1, 1, · · · ), (1, 2, · · · ), (n+1, 2n+3, · · · ) and their negatives (where we ignore
all but the first two coordinates) and does not contain (0, 0, · · · ), linear algebra
in C2 shows X0 cannot be a union of two straight lines. So, X0 is an irreducible
degree 2 curve containing the μn

∗ -orbit of the point a∗ = (1, 1, · · · , 1). Since no two
distinct curves can have an infinite intersection, X0 is the Zariski closure of this
set.

By Proposition 4.2, X1 is given by the n polynomial equations F1,t = 0 for
0 < t ≤ n

F1n = Num(h(x)− c1) = xn−2 + xn − 3xn−1

F11 = Num(h′(x)− c2) = x0xn−1 + x1xn + 1− 2x0xn

F1k = F0k, for k = 2, · · · , n− 1.

The other polynomials Fjt are similar. As in the case of Ã2, all polynomials Fjk are

given by the single Laurent polynomial h and its n−1 mutations h(k) for 1 ≤ k < n.

6. Symmetry

One easy observation [2] is that, if a permutation σ of {1, 2 · · · , n} leaves the
quiver Q invariant, then the frieze variety X(Q) satisfies xk = xσ(k) for all k. In

terms of invariant rational functions, h = xσ(k)/xk is invariant under μ2
∗ since μ∗

inverts h.
A similar result holds true if a mutation of Q has symmetry. For example,

Q : 1 ⇐= 2 ⇐= 3

becomes symmetric after one mutation:

μ1(Q) : 1′ =⇒ 2 ⇐= 3

This implies that

h =
x′
1

x3
=

x2
2 + 1

x1x3

is invariant under μ2
∗. Since c0 = h(1, 1, 1) = 2 and c1 = 1/c0 = 1/2, the frieze

variety of Q is X(Q) = X0 ∪ X1, where X0 is the hypersurface given by F0 = 0,
where

F0 = Num(h(x)− c0) = x2
2 + 1− 2x1x3
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and X1 containing μ∗(1, 1, 1) = (2, 5, 26) is the hypersurface given by F1 = 0, where

F1 = Num

(
h(x)− 1

2

)
= Num (2h(x)− 1) = 2x2

2 + 2− x1x3.

Remark 6.1. The hypersurfaceX0 contains the μ
2
∗-orbit of the point (1, 1, · · · , 1).

Since this set is not contained in any curve by Theorem 1.2, there cannot be a
smaller variety containing this set. So, X0 is the Zariski closure of the μ2

∗ orbit of
(1, 1, · · · , 1) and similarly for X1.

More generally we have the following.

Proposition 6.2. Suppose that i is a sink in the quiver Q and j is a source
so that, for any other vertex k, the number nk of arrows from k to i is equal to
the number of arrows from j to k. Then, the frieze variety X(Q) is contained in
the union of two hypersurfaces X0, X1 given by the equations F0 = 0 and F1 = 0,
where

F0 = 1− 2xixj +
∏
k

xnk

k

F1 = 2− xixj + 2
∏
k

xnk

k .

Proof. After the mutation μ∗ = μn ◦ · · · ◦ μ1, we will have x′
∗ where

x′
i =

1 +
∏

xnk

k

xi
, x′

j =
1 +

∏
(x′

k)
nk

xj

So, the rational function h(x) = x′
i/xj will mutate to

h(μ∗(x)) =
x′′
i

x′
j

=

(
1 +

∏
(x′

k)
nk

x′
i

)(
xj

1 +
∏
(x′

k)
nk

)
=

xj

x′
i

=
1

h(x)
.

So, h(x) is μ2
∗ invariant. Since h(x) = f(x)/g(x) where f(x) = 1 +

∏
xnk

k and
g(x) = xixj , c0 = h(1, 1, · · · , 1) = 2, c1 = 1/c0 = 1

2 , the numerator of h(x) − c0
is F0 and the numerator ofh(x) − c1 is F1. By Proposition 4.2, the μ2

∗ orbit of
(1, 1, · · · , 1) satisfies F0 = 0 and the μ2

∗ orbit of μ∗(1, 1, · · · , 1) satisfies F1 = 0. �

7. Questions and answers

We list a few questions from the first version of this paper and short answers
to these questions following suggestions by Gordana Todorov. Details will be given
in another paper.

(1) Question: In the tame case, does an invariant Laurent polynomial h(x)
always exist? Answer: Yes. The cluster character of a regular module in
a tube of rank k will be an invariant Laurent polynomial of period k.

(2) Question: Can h(x) be chosen to have positive integer coefficients? An-
swer: In the tame case yes. In the wild case we also believe the answer
is yes since we believe that the only invariant rational functions are the
ones given by symmetry of the quiver as in Proposition 6.2.

(3) Question: Can h(x) be chosen such that all iterated Coxeter mutations
h(μt

∗(x)) have positive integer coefficients? Answer: In the tame case,
yes. The answer also seems to be yes in the wild case if, as we suspect,
the only invariant rational functions come from symmetry of the quiver



This is a free offprint provided to the author by the publisher. Copyright restrictions may apply.

116 KIYOSHI IGUSA AND RALF SCHIFFLER

as observed in [2] or as given in Proposition 6.2. However we note that,
in the latter case, h(μ∗(x)) = 1/h(x) is not Laurent.

(4) Question: Is the period of the invariant Laurent polynomial always equal
to the number of components ofX(Q, a∗)? Answer: No, a counterexample
is given by the following quiver

2
����
��

3��

Q : 1 5

�����
���

�

		����

4



							

Here there is a tube of rank 3 giving an invariant Laurent polynomial of
period 3 and another tube of rank 2 giving an invariant Laurent polyno-
mial of period 2. This suggest that there should be 6 components.
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