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Dedicated to José Antonio de la Pena on the occasion of his sixtieth birthday

ABSTRACT. This short note is devoted to motivate and clarify the notion of
sequential walk that has been previously introduced by the authors. We also
give some applications of this concept.

1. Introduction

The class of tilted algebras, introduced by Happel and Ringel [16], is among
the most ubiquitous classes in the representation theory of algebras. For instance,
any cluster-tilted algebra is the trivial extension of a tilted algebra by a particular
bimodule [2]. Surprisingly enough, it is difficult to check whether a given algebra
is tilted or not without a good knowledge of its module category. Indeed, most
known criteria revolve around the existence of a combinatorial configuration called
a complete slice, see, for instance, [6].

It was thus needed to have a handy criterion depending only on the bound
quiver of the algebra. The most powerful criterion so far is the existence of so-
called sequential walks. Sequential walks have a long history; they first appeared
in [1], where it was shown that an iterated tilted algebra of type A is tilted if and
only if it has no sequential walk. They surfaced again in [I7] under the name
of “sequential pairs” in the classification of quasi-tilted string algebras, then in
[8] in the classification of shod string algebras and in [12] in the classification of
laura string algebras under the name of “double zeros”. Their present guise was
introduced in [4] in the context of non-necessarily monomial algebras. It was proved
there that if an algebra contains a sequential walk, then it is not tilted.

This shows that this notion is very natural. Indeed, as we prove here, it follows
from simple considerations on the comparison between the shape of the bound
quiver and the homological dimensions of some modules.

It was pointed out to the authors that the definition of sequential walk given
in [4] contained an ambiguity. It is the first purpose of this note to clarify this
ambiguity. While doing so, we slightly generalize the definition of sequential walk,
and try to illustrate its usefulness for computing homological dimensions.

Our main result is the following.
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THEOREM 1.1. Let A be a finite dimensional algebra over an algebraically closed
field. If the quiver of A contains a sequential walk, then A is not shod. In particular,
A is not quasi-tilted.

This note is organized as follows. In Section 2] we recall the definitions and
known results which are necessary for the proof of our theorem. In Section B, we
give our definition of sequential walk, try to motivate it, then we prove our theorem.
Section [4] is then devoted to applications and examples.

2. Preliminaries

2.1. Notation. Throughout, we let k denote an algebraically closed field and
A a finite dimensional basic k-algebra. We recall that any basic and connected finite
dimensional k-algebra A can be written in the form A 2 k@ /I where kQ 4 is the
path algebra of the quiver Q4 of A and I is an ideal generated by finitely many
relations. The pair (Qa, 1) is then called a bound quiver. A relation on a quiver is
a linear combination p = ZZ'LI Aiui, where the \; are nonzero scalars and the u;
are paths of length at least two having all the same source and the same target,
called respectively the source and the target of the relation p. The relation p is
called quadratic if each of the u; has length two. It is called a monomial relation if
it is a path, and a minimal relation if m > 2 and, for any nonempty proper subset
J C{1,2,...,m} one has > . ; A\ju; ¢ I.

Relations in a bound quiver (@, I) are generated by top relations. Indeed, let
k@t be the two-sided ideal of k@ consisting of the linear combinations of paths
of length at least one and e, be the primitive idempotent of A corresponding to a
point z € (Qa)o. Then a relation p € e e, is called a top relation if its residual

class in e, (m) ey is nonzero. They are called top relations because they

correspond to nonzero elements of the top of I, considered as a kQ-k@-bimodule.
Intuitively one may think of the top relations as being the shortest ones.

For a point x in the ordinary quiver of A, we denote by P,, I, S, respectively,
the indecomposable projective, injective and simple A-modules corresponding to
x. The support of an A-module M is the full subquiver Supp M generated by the
points z € (Qa)o such that Me, # 0. For further definitions and facts, we refer
the reader to [620].

2.2. Classes of algebras. We need the following classes of algebras.

DEFINITION 2.1. (a) [I1] An algebra A is shod (for small homological dimensions)
if every indecomposable A-module is of projective or injective dimension at most
one.

(b) [I5] An algebra A is quasi-tilted if it is shod of global dimension at most
two, or, equivalently, if it is the endomorphism algebra of a tilting object in a
hereditary, locally finite abelian k-category.

(c) [16] An algebra is tilted if it is the endomorphism algebra of a tilting module
over a hereditary algebra.

In particular, every tilted algebra is quasi-tilted, and every quasi-tilted algebra
is shod.
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2.3. Full subcategories. There is a reduction procedure which we shall use
in the proof of our main result, called taking full subcategories.

Let e € A be an idempotent. The finite dimensional k-algebra eAe is called the
full subcategory determined by e; indeed, if one considers A as a category whose
objects are the elements of a complete set of primitive orthogonal idempotents and
the morphism space from e, to e, is e, Aey, then a full subcategory is always of
the aforementioned form with e equal to a sum of primitive idempotents.

We need the following lemma.

LEMMA 2.2. Let A be an algebra and e € A an idempotent, then

(a) If A is shod, then so is eAe.
(b) If A is quasi-tilted, then so is eAe.
(c) If A is tilted, then so is eAe.

PROOF. (a) is proved in [18] 1.2], (b) in [I5] II.1.15] and (c) in [14] I11.6.5]. O
2.4. Split-by-nilpotent extensions. Let A be an algebra and E an A-A-
bimodule which is finite dimensional as a k-vector space. We say that E is equipped

with an associative product if there exists an A-A-bimodule morphism F ® 4 F —
E,e®¢€ — ee, such that e(e’e”) = (ee')e” for all e,e’,e” € E.

DEFINITION 2.3. Let A, E be as before. An algebra R is called a split extension
of A by E if

R={(a,e)|ac Aeec E}
is equipped with the componentwise addition and the multiplication defined by
(a,e)(a’,e") = (ad’,ae’ + ed’ + e’}

for (a,e), (a’,¢’) € R. If E is nilpotent with respect to its product, then R is called
a split-by-nilpotent extension.

It is clear that, if R is a split extension of A by FE, then there exists an exact
sequence

0 E R—7—sA 0,

where the projection 7 is an algebra morphism having a section o: A — R. Also,

FE is nilpotent if and only if it is contained in rad R. If an exact sequence as above

and a section o to 7 are given, then we say that this sequence realizes R as a split

extension of A by E. If E? = 0, then the split extension is called a trivial extension.
We need the following lemma.

LEMMA 2.4. Let R be a split extension of an algebra A by a nilpotent bimodule
E.

(a) If R is shod, then so is A.
(b) If R is quasi-tilted, then so is A.
(¢) If R is tilted, then so is A.

PRrROOF. (a) and (b) are proved in 7, 2.5] and (c¢) in [21]. O
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2.5. Cutting arrows. Let R be a split extension of an algebra A by a nilpo-
tent bimodule E. We recall how one can pass from R to A by dropping arrows from
the quiver of R. Let w be a path in the quiver Q4 of A and « an arrow such that
there exist subpaths wy,ws of w such that w = wiaws, then we write afw. Also,
when we speak of a relation, then we can assume without loss of generality that it
is monomial or minimal. Let thus p = >, A\ju; be a relation on Q4 from z to y,
say, with the \; nonzero scalars and the u; paths of length at least two from x to
y. We say that p is consistently cut by a set S of arrows (or that S is a consistent
cut), if, whenever there exist ¢ and a;|u; such that «; € S then, for any j # 4, there
exists a|u; satisfying a; € S.

THEOREM 2.5. [3| 2.5] Let nr: kQr — R be a presentation of R, let E be an
ideal of R generated by the classes modulo Ir = kerng of a set S of arrows, and
let m: R — R/E = A be the projection. Assume moreover that every relation in Ig
is consistently cut by S, then the exact sequence

0 E R—Ts A 0

realizes R as a split extension of A by E.

2.6. Reduction of an algebra. We now define a notion which we call reduc-
tion of an algebra. We say that an algebra B is a reduction of an algebra A if there
exist an idempotent e € A and a two-sided ideal E of eAe contained in its radical
such that the sequence

0 F eAe B 0

realizes eAe as a split extension of B by the nilpotent bimodule E. Thus B is
obtained from A by the combination of two consecutive processes: one first drops
points of @4 by passing to the full subcategory eAe, then one drops arrows as
explained in Theorem[2Z.5l One then has the following obvious corollary of lemmata

22 and 224

COROLLARY 2.6. Let B be a reduction of A.

(a) If A is shod, then so is B.
(b) If A is quasi-tilted, then so is B.
(c) If A is tilted, then so is B.

EXAMPLE 2.7. Taking full subcategories can be used to make a relation qua-
dratic. Indeed, assume that the bound quiver of an algebra A contains a relation
m .
p = . 4 Aiu; with source z and target y

Denote by z1,...,z, the immediate successors of = on the paths uq,...,u,, re-
spectively, and let e = e, + >~ | €5, + €, + ¢/, where ¢’ is the sum of all primitive
idempotents corresponding to points in @4 not lying on the paths u;. Then the
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bound quiver of eAe contains a relation p/ = >

i=
target y
T
2
/27 : B2
T : Y .

m

1 Ai(ifi) with source z and

Clearly, p’ is quadratic. This procedure will be used in the proof of our key lemma
below.

3. Sequential walks

3.1. The definition. Given an arrow « in a quiver, its formal inverse is de-
noted by a1, where we agree that the source of ! is the target of a and the target
of a~! is the source of a. A walk w is an expression of the form w = af' - --«f’,
where the «; are arrows and the ¢; € {+1,—1} are such that the target of o’
equals the source of ai-ff, for all 4. Such a walk is called reduced if it contains no
expression of one of the forms aa™" or a~'a, with a an arrow. It is called a zigzag
walk if it is of the form af' - - - o;* with €; # ¢;41 for all 4.

We start by recalling the definition of sequential walk as stated in [4]. Let w
be a nontrivial walk in a bound quiver (@, I). Assume that one writes w = uw’v
where each of u, w’, v is a subwalk of w. We say that u, v point to the same direction
in w if both v and v, or both v~ ! and v~! are paths in Q.

A reduced walk w = uw’v having u, v pointing to the same direction was called
a sequential walk in [4] if there is a relation p = >, \ju; such that v = uy, or
u = ufl, there is a relation o = Zl wiv; such that v = vy, or v = vfl and no
subpath w; of w’, or of (w')~! is involved in a relation of the form >~ v;w;.

As mentioned in the introduction, there is an ambiguity in this definition arising
from the undefined word “involved”. Indeed, the word “involved” can be under-
stood as meaning “is a branch of a relation”. But this is not correct as shown in
the following example.

EXAMPLE 3.1. Let A be given by the quiver

o [e')
l—=2—=3
B1 B2
bound by the relation aj;as + 8182 = 0. Then A is the one-point extension of the

Kronecker algebra with quiver

Q2
2—=3

B2

by the indecomposable postprojective module 5%2;. In particular, A is tilted [19]
3.5].

Consider the reduced walk w = (aya0) (85 'a7!)(B182) in the quiver of A, with
u = ajag, v = BBz and w’ = By 'a;*. Then neither w’ nor (w')~! = a3, is a
branch of any relation while v and v satisfy the conditions of the definition of [4].
If one understands “involved” as meaning “is a branch of a relation”, then w would
be a sequential walk and we would get a counterexample to [4, 2.4].

We propose the following definition.
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DEFINITION 3.2. Let w be a reduced walk in a bound quiver (@, I), then w is
called a sequential walk if the following hold.

(a) w = uw'v, where u,v point to the same direction, there is a top relation
p = >_; Aiu; such that v = uy, or u = ul_l, and there is a top relation
o =Y, iv; such that v = vy, or v = vl_l;

(b) no subpath of w’, or of (w’)~! lies in I, nor is a branch of a relation having
a branch which has a point in common with one of the wu; or v;;

(c) w' itself has no arrows in common with one of the u; or v;.

REMARK 3.3. Condition (b) holds for example if no subpath of w’ or (w’)~! is
the branch of a relation.

REMARK 3.4. Our definition of sequential walk is clearly inspired by the defi-
nition of sequential pair in [I7] but it is not identical to it.

Let A =kQ/I be a string algebra. In particular A is monomial. A sequential
pair of monomial relations is a reduced walk w that contains exactly two zero-
relations and these two zero-relations point to the same direction in w. Our defini-
tion differs from [I7] in the case of string algebras. For example, the algebra given
by the quiver

(63

1
57455
6

2 3

%

bound by the relations a3 = v6 = o3 = 0 contains the sequential pair afBe " 1ovd,
where u = a8, w' = e ‘o and v = 4, but this is not a sequential walk because the
target of ¢ is a point on u but not an endpoint of u.

Our definition differs from [17] also because sequential walks do not detect
overlapping relations. For example, the algebra given by the quiver

L S S A

bound by the relations af = 0 = By does not admit a sequential walk.

REMARK 3.5. As we shall see below, if A is a tree algebra of global dimension
two, then the two notions of sequential walk and sequential pair coincide.

3.2. Why this notion is natural. It is well-known that if A = kQ/T is an
algebra, and S, a simple module, then pd S, > 1 if and only if x is the source of a
top relation in (@, ). This is easily seen for instance by looking at the radical of
P,. The following considerations go in this direction.

LEMMA 3.6. Let A = kQ/I be an algebra and M an A-module of projective
dimension d > 1. Then there exists x € (Supp M )g and, for each i < d, there exists
Yi € Qo such that Ext’y(S;,S,,) # 0.

PRrROOF. We first claim that M has a composition factor .S, such that pd S, > d.
Consider the socle series

0 C socM Csoc’M C --- Csoc!M = M,
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where ¢ is the Loewy length of M, see for example [4], V.I]. If there exists a simple
summand of soc M of projective dimension d, then we are done. Otherwise, there
exists i < £ such that pdsoc?M < d and pdsoc’*!M = d. The short exact sequence

0 —— soc!M —soc' T M S‘;g;;\/[M 0
yields an exact sequence of functors
Ext‘i(s‘;g:;vy, -) Ext% (soc' ™1 M, —) —— Ext? (soc' M, —) = 0.
Now Extj(‘i?c”lM,—) # 0 implies Exti(scs’g:;\%,—) # 0. Hence, because the
module S‘:gcl MM is semisimple, there exists a simple composition factor S, of M

such that pd S, > d.
We deduce the result. Because of our claim, there exists a minimal projective
resolution

R e R N

with P; # 0 for all ¢ < d. Consider the projection p;: P; — top P;. Then p; fix1 =0
because of the minimality of the resolution. Moreover, p; does not factor through f;
because P; is the projective cover of Ker f; ;. Therefore Exti‘ (Sz,top P;) # 0 and
there exists a simple composition factor S, of top F; such that Exti; (Sx, Sy,) #
0. |

COROLLARY 3.7. Let M be a module of projective dimension d > 2. Then there
exists x € (Supp M)o which is the source of a top relation in (Q,I).

PROOF. Because d > 2, there exists yo such that Ext% (S, S,,) # 0. We then
apply [9]. O

Let thus M be a module with both projective and injective dimension larger
than one. Because of Corollary [3.7 and its dual, there exist two points z,y in
Supp M which are respectively the source of a top relation and the target of a top
relation. The notion of sequential walk (and all other similar notions like sequential
pairs, double zeros etc.) arose from the attempt to connect y to x by a walk.

3.3. A necessary condition for shod. In this subsection, we prove our main
result. We start with the following remark.

REMARK 3.8. If the quiver of an algebra A contains a nonzero walk w =
af' - ai, then there is a reduction B of A in which w is replaced by a zigzag walk
which is moreover a full subcategory of B. Let z1,...,z, be all the sources on w
and y1,...,ys all the sinks, then set e = >\, e,, + ijl ey, + €', where ¢’ is the
sum of the primitive idempotents corresponding to points in Q4 not lying on w.
In eAe, w is replaced by a new walk w’ which is a zigzag walk. However, we may
have in eAe new arrows between the z; and the y; not corresponding to subpaths
of w. Let S be the set of all these arrows, namely those arrows 8 in Qe Whose
source and target lie on w’ but neither 3 nor 37! lies on w’. Since w’ is a zigzag
walk, it contains no (branches of) relations, so S is a consistent cut, as defined in
Let E be the two-sided ideal of eAe generated by S and B = eAe/E. Then it
follows from Theorem that eAe is a split extension of B by E. Moreover, w’ is
a full subcategory of B.
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LEMMA 3.9. Let A have a sequential walk. Then there exists a reduction B of
A containing one of the following (perhaps not full) subquivers.

N

where p', o’ are quadratic relations, w'" is a zigzag walk having no point in common
with p', o’ except x and y.
Moreover, w" generates a full subcategory of B.

PROOF. Let w = uw’v be a sequential walk in A. Then u,v are branches of
top relations p = Y A\;ju; from a to b, say, and o = ) p;v; from c to d, say, while
w’ is a walk from b to c satisfying the conditions of Definition Clearly, one may
have p = 0. We construct B in the following steps.

(a) We make p, o quadratic, using the recipe of Example 2.7 above. Let e; be
the sum of the primitive idempotents of A corresponding to:

(1) The sources and targets a,b,c,d of p and o.
(2) All immediate successors of a,c lying on one of the paths u;,v; respec-
tively.
(3) All points of Q4 not lying on any of the paths u;, v;.
Then A, = ey Ae; is a full subcategory of A whose quiver contains a sequential pair
w = u'w'v’ where u/,v" are branches of quadratic relations and w’ is the same walk
as before.

(b) We make w’ a zigzag walk, as in Remark B.§ above. Let z1,...,2, and
Y1,.--,Ys be respectively all the sources and all the sinks on w’, and ey be the
sum of the primitive idempotents corresponding to the z;,y; and all the points of
Q4, not on w'. Then Ay = esAjes contains a zigzag walk w” which replaces w’,
such that there are perhaps additional arrows in @4, between points of w” not
corresponding to subpaths of w'.

(c) We eliminate excessive arrows in Ao making w” a full subcategory of the
resulting algebra. Consider the set S of all arrows a in As whose source and
target lies in w”, but such that neither a nor o' belongs to w”. Since there are
no relations on the zigzag walk w’, the set S is a consistent cut. Let E be the
two-sided ideal of Ay generated by S, and let B = Ay/E. Then we get an exact
sequence

0 E A, B 0
realizing Ao as a split extension of B by F, as seen in Theorem
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It is then clear that the bound quiver of B contains one of the subquivers in
the statement, the second one occurring if p = o. ([l

We call the reduction B as in the lemma the standard reduction corresponding
to a given sequential walk.

LEMMA 3.10. Let A have a sequential walk and B the corresponding standard
reduction of A. Then the string module of the zigzag walk w" in B has projective
and injective dimension larger than one.

PROOF. Let M = M(w"”) be the string module corresponding to w”, that is,
M is the B-module defined as a representation by

k if x is a point ofw”;
M(z) = { 0 otherwise;

and
id if o is an arrow of w”;

M{a) = { 0 otherwise.

Notice that in B, there may be arrows between points in w” and points on one of
the relations p’, o’. But because of the definition of the string module, for any such
arrow 3, we have M (8) = 0. Because no subpath of w” is a branch of a relation in
B, then M is indeed a B-module. Moreover, M is a string module, see [10], and
in particular, it is indecomposable.

We now prove that pd Mg > 1. The support of M contains the source y of
o', Therefore the projective cover of M admits a direct summand P, such that z
lies on w”, and either z = y or there is an arrow z — y. It is easily seen that a
nonprojective summand of Q'S is a direct summand of Q'M. Because Q'S is
not projective, neither is Q' M. This establishes the claim.

Dually, we also have id Mp > 1. a

We are now ready to prove our main result. It generalizes [4] 2.4].

THEOREM 3.11. Let A = kQ/I be an algebra having a sequential walk. Then
A is not shod. In particular, A is not quasi-tilted.

PRrROOF. Let B be the standard reduction of A corresponding to the sequential
walk. By Lemma B0 there exists an indecomposable B-module that has both
injective and projective dimension larger than one. Therefore B is not shod.

Because of Corollary 2.0] neither is A. a
ExAMPLE 3.12. Consider the quiver
7
a1 [e3] a3z g as
2 3 4 5 6
B1 B2 B3 Ba Bs
1

bound by the relations a; 81 + asfs = 0, azfs + a4f4s + a58; = 0. We show how
to perform the reduction procedure of Theorem 3.1l Let here

w = (a161)6§1a§1(0@62)7
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with u = a1 81, v = asfs and w' = Bglagl. It is clear that u,v and w’ satisfy the
conditions of Definition

We first eliminate points by taking e = e; 4+ e3 4+ e3 + e7. Then eAe is given by
the quiver

7
(e 5] a2
2 3 A #
B1 B2
1

bound by the relation a; 87 + asB2 = 0. This is a split extension of the algebra B
given by the quiver

1

bound by a3 81 + asf2 = 0, by the two-sided ideal generated by the arrow pu.
The indecomposable B-module M of the proof is the module M = 7 supported
by the arrow A. Clearly, we have a minimal projective resolution

0——=P  ——= PP P; M 0

so pd Mp = 2. Notice that Q'M = 2,3 while Q'S; = 23 & 1. Thus Q'M and
Q! S; have a common summand but are not equal. Similarly, id Mp = 2. Thus B,
and A, are not shod.

The following examples illustrate that the converse of Theorem B.11] does not
hold without additional conditions on the algebra A or the module M. In Section
[, we give examples of such additional conditions.

ExAaMPLE 3.13. If an indecomposable module has both projective and injec-
tive dimension larger than one, this does not necessarily imply the existence of a
sequential walk. Indeed, there exist x,y in the support of the module such that x
is the starting point of a top relation v, and y the ending point of a top relation
u. Then there exists a walk w’ from z to y inside the support of M, but this does
not imply that w = ww'v is a sequential walk because it may not be reduced. For
instance, let A be the monomial tree algebra given by the quiver

1—2%s>9-"53

!

5 )

6—>7
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bound by the relations af = 0 = ~de, then there is no sequential walk but the
module M = 3.4 has both projective and injective dimension 2.

ExXAMPLE 3.14. There exist sincere indecomposable modules of projective and
injective dimension 2. Let A be given by the quiver

1:1;2:2;3

B1 B2
bound by the relations ayas = 0 and £182 = 0. Note that A is gentle and in par-
ticular tame. The indecomposable module M = é is sincere and of both projective
and injective dimension 2.

4. Applications and examples

4.1. The case of global dimension two. Because sequential walks do not
detect overlaps, it is natural to think of them in the context of algebras of global
dimension two.

PROPOSITION 4.1. If A is a monomial algebra of global dimension 2 and M
is a uniserial A-module whose injective and projective dimensions are both larger
than one then there exists a sequential walk in A.

PROOF. Since M is uniserial, the support of M is of the form
2] —>= 29— - —z.

By Corollary B.7 and its dual, there exist z;, z; € Supp M such that z; is the source
of a top relation v, and z; the ending point of a top relation u. Since A is monomial
of global dimension 2, the two relations w,v do not overlap [13]. Thus ¢ < j.
Now let w’ be a path z; — --- — z; in Supp M. Then the composition vw'v is a

sequential walk in A. O

COROLLARY 4.2. Let A be a Nakayama algebra of global dimension 2. Then
there exists a sequential walk in A if and only if A is not tilted.

PROOF. Necessity follows from Theorem B.IIl To show sufficiency, suppose
A is not quasi-tilted. Then there exists an indecomposable A-module M of both
projective and injective dimension 2. Since A is a Nakayama algebra, A is monomial
and M is uniserial. Now the result follows from Proposition 1] and the fact that
quasi-tilted Nakayama algebras are representation-finite, and hence tilted. O

We have the following characterization of projective dimension 2.

PROPOSITION 4.3. Let M be an indecomposable module over an algebra of global
dimension 2 such that one of the sinks in the support of M is the starting point of
a top relation. Then the projective dimension of M is two.

PROOF. Indeed, we have pd S, > 1 and an exact sequence
0 Sy M M/S, 0.

Hence we have an exact sequence of functors
Ext?(M/S,, —) — Ext} (M, —) — Ext?(S,, —) —= 0,
because Ext% = 0. Hence Ext? (S, —) # 0 implies Ext? (M, —) # 0. O
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For tree algebras of global dimension two, sequential walks are easy to charac-
terize.

PROPOSITION 4.4. Let A be a tree algebra of global dimension two. Then the
two notions of sequential walk and sequential pair coincide.

PROOF. Indeed, because A is a tree algebra (not necessarily a string algebra)
it is monomial, and the global dimension two means that no two top relations
overlap. Because @ is a tree, two points of () are connected by a unique walk, and
so a sequential walk as well as a sequential pair mean a walk of the form w = uw’v,
where u, v are monomial relations pointing to the same direction while w’ is any
walk not containing a relation. O

4.2. An application to laura algebras. For our next corollary, we recall a
few notions. Given an algebra A, we denote by ind A a full subcategory of mod A
consisting of exactly one representative from each isomorphism class of indecom-
posable modules. The left part L4 of mod A consists of all modules M in ind A
such that, for every L for which there exists a path of nonzero morphisms from L
to M, we have pd L < 1. The right part R4 of mod A is defined dually, and an
algebra A is called a laura algebra if and only if £L4 U R 4 is cofinite in ind A.

In [12], Dionne has shown that a string algebra is laura if and only if its bound
quiver does not contain a combinatorial configuration called intertwined double
zero which we now define.

DEFINITION 4.5. [12] 2.1.1] Let A = kQ/I be a string algebra. A reduced walk
w in @ is called an intertwined double zero if w = pywijwowsps where
(a) p1=aq...Qn,p2 = B1... 0, are monomial relations pointing in the same
direction,
(b) neither as...apwiwowsfi ... Lr—1 nor its inverse contains a monomial
relation, and
(c) wsq is a band.
The next corollary shows that one direction of Dionne’s result follows from
ours. Observe first that, if A = k@Q/I is a string algebra, and w is an intertwined
double zero then w is a sequential walk in our sense.

COROLLARY 4.6. Let A be a string algebra having an intertwined double zero.
Then A is not laura.

ProoF. It follows from Definition that if w = pjwywsowsps as above is an
intertwined double zero, then, for any n > 1, the reduced walk w,, = piwiwiwsps
is also a sequential walk in the bound quiver of A. Because of Lemma [B.10] we
have pd M (wy,) > 1 and id M (w,) > 1. In particular, the M (w,,) form an infinite
family of nonisomorphic indecomposable modules lying neither in £4 nor in R 4.
Thus A is not laura. O

4.3. An application to 2-Calabi-Yau tilted algebras. Let C = kQ/I be
a quasi-tilted algebra. In particular, its relation extension C = k@/ I , which is the
trivial extension of C' by the bimodule ExtZ(DC,C) is a cluster-tilted algebra or
a 2-Calabi-Yau tilted algebra of canonical type, see [Bl 3.1]. A walk w = aw’f in

(@, f) is called a C-sequential walk if
(i) w’ consists entirely of old arrows, see [2] for the terminology “old” vs

“new” arrows;
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(ii) @, B are new arrows corresponding respectively to old relations p = >, Aju;
and o = >, pjv;
(iii) For all ¢, 7, the walk w = u,w'v; is sequential in (Q, I).

Then we have

COROLLARY 4.7. Let C be a quasi-tilted algebra. Then the bound quiver of its
relation extension C' contains no C-sequential walk.

4.4. Example. We have seen in Example 3] that the algebra A given by the
quiver

(o5} Qg
1l—=2—=3

B1 B2

bound by the relation ajas + 5162 = 0 is a tilted algebra. Notice that here w =
(alag)ﬁglafl(ﬁlﬂg) is not a sequential walk in the sense of Definition [3.2] since
the subpath (w’)~! = ;3 has arrows in common with the branches of the relation
u = ajas and v = [ 82. In fact, this bound quiver contains no sequential walks.

On the other hand, the algebra A’ given by the same quiver but bound by the
relation oy s = 0 contains evidently the sequential walk w = (ay ag)ﬁglﬁfl(al Q).
In particular, Theorem B.I1] implies that this algebra is not tilted.

It is interesting to note that the relation extensions of both algebras A and A’
have the same quiver @ Therefore the associated cluster categories C4 and C4/ are

categorifications of the same cluster algebra A(Q).

Acknowledgment

The authors thank Claire Amiot for useful discussions on the topic.

References

[1] Ibrahim Assem, Tilted algebras of type A, Comm. Algebra 10 (1982), no. 19, 2121-2139,
DOI 10.1080/00927878208822826. MRI675347

[2] 1. Assem, T. Briistle, and R. Schiffler, Cluster-tilted algebras as trivial extensions, Bull. Lond.
Math. Soc. 40 (2008), no. 1, 151-162, DOI 10.1112/blms/bdm107. MR2409188

[3] Ibrahim Assem, Fldvio U. Coelho, and Sonia Trepode, The bound quiver of a split extension,
J. Algebra Appl. 7 (2008), no. 4, 405-423, DOI 10.1142/S0219498808002928. MR2442069

[4] Ibrahim Assem, Maria Julia Redondo, and Ralf Schiffler, On the first Hochschild cohomology
group of a cluster-tilted algebra, Algebr. Represent. Theory 18 (2015), no. 6, 1547-1576, DOI
10.1007/s10468-015-9551-x. MR3435102

[5] Ibrahim Assem, Ralf Schiffler, and Khrystyna Serhiyenko, Cluster-tilted and quasi-tilted al-
gebras, J. Pure Appl. Algebra 221 (2017), no. 9, 2266-2288, DOI 10.1016/j.jpaa.2016.12.008.
MR3631717

[6] Ibrahim Assem, Daniel Simson, and Andrzej Skowrorniski, Elements of the representation the-
ory of associative algebras. Vol. 1, London Mathematical Society Student Texts, vol. 65, Cam-
bridge University Press, Cambridge, 2006. Techniques of representation theory. MR2197389

[7] Ibrahim Assem and Dan Zacharia, On split-by-nilpotent extensions, Colloq. Math. 98 (2003),
no. 2, 259-275, DOI 10.4064/cm98-2-10. MR2033112

[8] Jennifer Bélanger and Cecilia Tosar, Shod string algebras, Comm. Algebra 33 (2005), no. 8,
2465-2487, DOI 10.1081/AGB-200065183. MR2159481

[9] Klaus Bongartz, Algebras and quadratic forms, J. London Math. Soc. (2) 28 (1983), no. 3,
461-469, DOI 10.1112/jlms/s2-28.3.461. MR724715

[10] M. C. R. Butler and Claus Michael Ringel, Auslander-Reiten sequences with few middle
terms and applications to string algebras, Comm. Algebra 15 (1987), no. 1-2, 145-179, DOI
10.1080,/00927878708823416. MR876976

This is a free offprint provided to the author by the publisher. Copyright restrictions may apply.


https://www.ams.org/mathscinet-getitem?mr=675347
https://www.ams.org/mathscinet-getitem?mr=2409188
https://www.ams.org/mathscinet-getitem?mr=2442069
https://www.ams.org/mathscinet-getitem?mr=3435102
https://www.ams.org/mathscinet-getitem?mr=3631717
https://www.ams.org/mathscinet-getitem?mr=2197389
https://www.ams.org/mathscinet-getitem?mr=2033112
https://www.ams.org/mathscinet-getitem?mr=2159481
https://www.ams.org/mathscinet-getitem?mr=724715
https://www.ams.org/mathscinet-getitem?mr=876976

50 IBRAHIM ASSEM, MARfA JULIA REDONDO, AND RALF SCHIFFLER

[11] Fldvio Ulhoa Coelho and Marcelo Américo Lanzilotta, Algebras with small homological
dimenstons, Manuscripta Math. 100 (1999), no. 1, 1-11, DOI 10.1007/s002290050191.
MR1714397

[12] Julie Dionne, Algebres de cordes de type laura et conjecture de Skowronski (French), ProQuest
LLC, Ann Arbor, MI, 2008. Thesis (Ph.D.)-Universite de Sherbrooke (Canada). MR2712494

[13] E. L. Green, D. Happel, and D. Zacharia, Projective resolutions over Artin algebras with zero
relations, lllinois J. Math. 29 (1985), no. 1, 180-190. MR769766

[14] Dieter Happel, Triangulated categories in the representation theory of finite-dimensional
algebras, London Mathematical Society Lecture Note Series, vol. 119, Cambridge University
Press, Cambridge, 1988. MR935124

[15] Dieter Happel, Idun Reiten, and Sverre O. Smalg, Tilting in abelian categories and quasitilted
algebras, Mem. Amer. Math. Soc. 120 (1996), no. 575, viii+ 88, DOI 10.1090/memo/0575.
MR1327209

[16] Dieter Happel and Claus Michael Ringel, Tilted algebras, Trans. Amer. Math. Soc. 274 (1982),
no. 2, 399-443, DOI 10.2307/1999116. MR675063

[17] Frangois Huard and Shiping Liu, Tilted string algebras, J. Pure Appl. Algebra 153 (2000),
no. 2, 151-164, DOI 10.1016/S0022-4049(99)00101-2. MR 1780740

[18] Mark Kleiner, Andrzej Skowroriski, and Dan Zacharia, On endomorphism algebras with
small homological dimensions, J. Math. Soc. Japan 54 (2002), no. 3, 621-648, DOI
10.2969/jmsj/1191593912. MR 1900960

[19] Miki Oryu and Ralf Schiffler, On one-point extensions of cluster-tilted algebras, J. Algebra
357 (2012), 168-182, DOI 10.1016/j.jalgebra.2012.02.013. MR2905247

(20] Ralf Schiffler, Quiver representations, CMS Books in Mathematics/Ouvrages de
Mathématiques de la SMC, Springer, Cham, 2014. MR3308668

[21] Stephen Zito, Short proof of a conjecture concerning split-by-nilpotent extensions, Arch.
Math. (Basel) 111 (2018), no. 5, 479-483, DOI 10.1007/s00013-018-1208-7. MR 3859429

DEPARTEMENT DE MATHEMATIQUES, UNIVERSITE DE SHERBROOKE, SHERBROOKE, QUEBEC,
CANADA, J1K 2R1
Email address: ibrahim.assem@usherbrooke.ca

DEPARTAMENTO DE MATEMATICA, UNIVERSIDAD NACIONAL DEL SUR, Av. ALEM 1253, 8000
BaAHiA BLANCA, ARGENTINA
Email address: mredondo@criba.edu.ar

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF CONNECTICUT, STORRS, CONNECTIVUT 06269-
3009
Email address: schiffler@math.uconn.edu

This is a free offprint provided to the author by the publisher. Copyright restrictions may apply.


https://www.ams.org/mathscinet-getitem?mr=1714397
https://www.ams.org/mathscinet-getitem?mr=2712494
https://www.ams.org/mathscinet-getitem?mr=769766
https://www.ams.org/mathscinet-getitem?mr=935124
https://www.ams.org/mathscinet-getitem?mr=1327209
https://www.ams.org/mathscinet-getitem?mr=675063
https://www.ams.org/mathscinet-getitem?mr=1780740
https://www.ams.org/mathscinet-getitem?mr=1900960
https://www.ams.org/mathscinet-getitem?mr=2905247
https://www.ams.org/mathscinet-getitem?mr=3308668
https://www.ams.org/mathscinet-getitem?mr=3859429

	A note on sequential walks
	1. Introduction
	2. Preliminaries
	3. Sequential walks
	4. Applications and examples
	Acknowledgment
	References


