
UPTPU: Improving Energy Efficiency of a Tensor Processing
Unit through Underutilization Based Power-Gating

Pramesh Pandey, Noel Daniel Gundi, Koushik Chakraborty, Sanghamitra Roy
USU BRIDGE LAB, Electrical and Computer Engineering, Utah State University

{pandey.pramesh1, noeldaniel}@aggiemail.usu.edu, {koushik.chakraborty, sanghamitra.roy}@usu.edu

Abstract—The AI boom is bringing a plethora of domain-specific architectures
for Neural Network computations. Google’s Tensor Processing Unit (TPU), a Deep
Neural Network (DNN) accelerator, has replaced the CPUs/GPUs in its data centers,
claiming more than 15× rate of inference. However, the unprecedented growth in
DNN workloads with the widespread use of AI services projects an increasing
energy consumption of TPU based data centers. In this work, we parametrize the
extreme hardware underutilization in TPU systolic array and propose UPTPU:
an intelligent, dataflow adaptive power-gating paradigm to provide a staggering
3.5 × −6.5× energy efficiency to TPU for different input batch sizes.

Index Terms—TPU, DNN Accelerator, Power-Gating, Energy Efficiency, Leakage

I. INTRODUCTION

Artificial intelligence (AI) is predicted to contribute up to $15.7
trillion to the global economy by 2030 [1]. In line with the AI
evolution, the computing industry has already embraced specialized
AI accelerators, as conventional CPUs and GPUs are no longer
able to match up the required throughput [2]–[5]. Google’s Tensor
Processing Unit (TPU) [6], a representative Systolic Array (SA)
based architecture, has been widely employed throughout Google data
centers to meet the excessive performance demand in its Deep Neural
Network (DNN) inference computations. The unprecedented growth
in DNN workloads demands huge energy efficiency in these architec-
tures. Additionally, the scarce energy resources coupled with limited
hardware cost in battery powered edge-AI applications necessitates
an extremely energy efficient inference architecture.

Researchers have demonstrated impressive energy savings from
power-gating in CPU/GPU architectures. However, the savings are be-
ing limited due to the relatively unpredictable idleness pattern (from
general purpose applications) and performance loss considerations
due to the sleep and wakeup cycles of sleep transistors [7]–[9].We
observe and parametrize a well structured and massive hardware
underutilization problem in TPU SA, and uncover a much larger
opportunity of improving energy efficiency through power-gating the
idle hardware resources.

DNN inference through TPU SA is carried out by performing
a matrix multiplication between input matrix and weight matrix,
in the array of 256 × 256 Multiply-And-Accumulate (MAC) units.
Weight matrix is preloaded into the SA and the input vectors can be
grouped and sent as batches of different sizes. Major chunk of the SA
energy consumption comes from the dynamic energy consumed by
the computationally active MAC units and leakage energy consumed
by idle MAC units. We observe that the number of computationally
active MACs on an average for a batch computation period decreases
with the batch size. We find that, the MAC units are computationally
active only for less than 40% of the time for practical batch sizes,
incurring a substantial leakage loss. By parameterizing the activity
and idleness pattern of the MAC units, we formulate UPTPU: an
intelligent and adaptive power-gating paradigm for SAs. Moreover,
UPTPU prevents any performance or accuracy loss by a smart control
around circuit level tolerances of the sleep transistors.

Furthermore, as the weights remain static for a batch computation
lifecycle and any computation with a zero weight is just an energy

overkill, we reuse the same sleep transistor resources to powergate
the zero weight holding MACs, further inflating the energy efficiency.
More importantly, as the share of leakage energy in the total energy
becomes more prominent for lower technology nodes [8], the effec-
tiveness of UPTPU magnifies with the future technology scaling.

Prior works have enhanced energy efficiency from optimizations in
different granularities of DNN accelerator spanning around dataflow,
algorithm, memory, undervolting and so on [2], [4], [5], [10]–[14],
which either reduce the number of computations, or skip unwanted
computations or reduce the energy per computation. However, our
work is the first one that improves the energy efficiency of TPUs by
saving leakage loss in the under-utilized SA resources which are idly
waiting for computations. Following are the key contributions of our
work:

• We parametrize the cycle accurate activity and idleness profile of
MAC units inside a TPU systolic array on different batch sizes of
inputs (Section II-B).
• We establish that the MACs in TPU systolic array remain com-

putationally idle for 40-90% of the time, depending on server or
edge Inference applications (Section II-C).
• We propose UPTPU - a low overhead power-gating paradigm,

adaptive of batch size, sleep transistor’s tolerances and zero-weight
computations (Section III).
• Combined with Zero-Skip [2], UPTPU offers a staggering 3.5×
−6.5× energy efficiency for eight DNN applications, with zero
sacrifice on the performance and inference accuracy (Section V).

II. MOTIVATION

In this section, we demonstrate the opportunities of drastically
reducing the energy consumption in TPU systolic arrays. Section
II-A provides a background and architectural overview of the TPU
systolic array. Section II-B presents a rigorous mathematical analysis
to parametrize the computation and dataflow pattern. Finally, Section
II-C presents new insights in energy saving opportunities.

A. TPU Systolic Array

Matrix Multiplication is the most crucial part of computation
in the inference phase of DNN applications. TPU hosts a weight
stationary 256× 256 systolic array of MAC units to perform Matrix
multiplication between 8-bit-quantized activation inputs and pre-
trained weights. Weights are fetched from weight FIFO and pre-
loaded to each MAC unit. Unified Buffer stores the activation inputs,
which are streamed into the corresponding row of the systolic array,
to be multiplied by all the weights in the row. Partial sums move
downstream, adding themselves to the multiplication outputs at each
row. Activation matrix is transposed and sent to the the systolic array
as a (systolic) diagonal wavefront, creating a predictable dataflow.

Figurative representation of the scaled down TPU systolic array
dataflow can be seen in Figure 1. A 3 × 3 Activation matrix

978-1-6654-3274-0/21/$31.00 c©2021 IEEE

Fig. 1: Cycle accurate representation of matrix multiplication between Activation and Weight matrices. Orange represents computationally
active MAC unit (only multiplication shown for space constraints), whereas, green represents idle MAC unit, waiting for activation stream.

([a0, .., a8]) is streaming into 3×3 systolic array, with Weight matrix
([W0, ..,W8]) preloaded into it. We can see a distinct systolic pattern
in the computation activity and idleness of a MAC with green and
orange colors, respectively. Seeking a general and exhaustive outlook
on the pattern, we present and analyze our accurate analytical model
of the usage of hardware resources in Section II-B.

B. Mathematical Parametrization

In this section, we accurately parametrize the usage of hardware
resources for a general B×N Activation matrix multiplied by N×N
Weight matrix in an N -dimension systolic array. We define different
metrics in Table I and illustrate them in Equations 1-3.

TC Architectural lifetime (clock cycles) of the matrix multi-
plication of B ×N activation and N ×N weight matrix.

U(n) No. of computationally active MACs in nth clock cycle.
TRU T rue Resource Usage : Number of computationally

active MACs over matrix multiplication lifecycle, TC .
MAR Maximum Available Resource : Maximum number

of MACs ideally available for computation over TC .
RUR Resource Usage Ratio : Percentage of the MAC

resources used for the matrix multiplication over TC .

TABLE I: Definitions of Metrics used for parametrization.

Through our rigorous mathematical analysis, we find that U(n)
(Equation 2) can be described accurately with eight distinct quadratic
and linear arithmetic sequences of n, as an artifact of varied de-
pendence on B and N . Six regions (viz. R1 − R3 and R6 − R8

in Equation 2) annotate the rise and fall in the number of actively
used MACs at the beginning and towards the end of Tc and two
regions (viz. R4 and R5) describe the connection between the rising
and falling regions. R1 (and R8) includes quadratic rise (fall) from
(to) the minimum of a single active MAC . They are followed (and
preceded) by linear regions R2 (and R7) for B < N or quadratic
regions R3 (and R6) for B > N . Finally, R4 connects R3 and R6

for large batch sized Activation matrix (B > 2N − 2) with capping
constant value (N2) representing the usage of all possible MACs.
And quadratic region R5 connects regions R1(R8) or R2(R7) or
R3(R6) for medium B’s (2 < B < 2N − 2).

TRU aggregates U(n) over Tc. MAR amounts to all N2 MAC
units available for TC clock cycles. Finally, RUR, reflecting the
actual resource usage ratio manifests itself as a function of N and B
(Equation 3). Next, we use this parametrization to better understand
the hardware utilization scenario in TPU systolic array with N=256.

Total Computation Clock Cycles (TC) = 2N +B − 2 (1)

U(n)=

n2

2
+

n

2
, R1 [1 ≤ n ≤ min(N,B)]

Bn− B(B − 1)

2
, R2 [min(N,B) < n ≤ N]

−n2

2
+

(4N − 1)n

2
−N(N − 1), R3 [N < n ≤ max(N,min(B, 2N − 2))]

N2, R4 [max(N,min(B, 2N − 2)) < n <= max(N,B)]

−n2

2
+ (B + 2N − 1)n− B(B − 1) + 2N(N − 1)

2
, R5 [max(N,B) < n <= max(B, (N +min(N,B)− 2))]

−n2

2
+

(2B − 1)n

2
− B(B − 1)− 2N2

2
, R6 [max(B, (N +min(N,B)− 2)) < n <= (TC −N)]

−Bn+
B2

2
+

(4N − 1)B

2
, R7 [(TC −N) < n <= (TC −min(N,B))]

n2

2
− (2B + 4N − 1)n

2
+

B2 +B(4N − 1) + 2N(2N − 1)

2
, R8 [(TC −min(N,B)) < n <= TC]

(2)

TRU =

TC∑
n=1

U(n) = N2 ×B, MAR = N2 × TC , RUR(%) =
TRU

MAR
×100% =

100B

(2N +B − 2)
(3)

C. TPU Hardware Resource Utilization

Using Equation 2, we plot the distribution of computationally
active MAC units, U(n), in the TPU SA (N = 256), for different
batch sized (B) activation matrices in Figure 2. We experimentally

verify the correctness of this distribution on our systolic array
simulator (Section IV). Following are the important observations from
the figure. Number of active MACs reach the peak, only during
the mid of the multiplication lifecycle. During the start and end

of the multiplication, maximum MACs are unused. We can only
spatially use all the available 65536 MACs simultaneously (region
R4 in Equation 2), if we supply a batch (B) with more than 510
inputs, and we can then sustain that peak utilization period for the
difference of (510 − B) cycles. For any batch size, the number of
active MACs at the beginning and the end of multiplication lifecycle
follows a rise and fall leading to a massive underutilized hardware
components. Furthermore, with smaller batch sizes, the distance from
the maximum usage keeps on increasing to result an almost entirely
unused SA.

Fig. 2: Distribution of computationally active MACs over all the clock
cycles for different B × 256 input matrices multiplied to 256× 256
weight matrix. X-axis labels show the respective ends of Tc.

Fig. 3: Resource Usage Ratio (%) for different batch sized input in
TPU Matrix Multiplier Unit.

Figure 3 plots the Resource Usage Ratio (RUR) (Equation 3 and
Table I). It exhibits the stark dependence of the RUR on the batch
size. We see that even for a batch size of 4× the SA dimension, the
SA resource usage is under 65%, while smaller batch sizes result in
very poor resource utilization. There are practical limits to the batch
size and thus the RUR, as outlined below.

• Very expensive high speed (typically on-chip SRAM) and higher
size unified buffer is required to stream the large batch sizes of
inputs and handle the consequent large output matrix.

• The inference decision from a batch of inputs can only be
completed after matrix multiplications with different weights
from all the layers of DNN. Hence, larger batch sizes introduce
real time inference response latency [6]. Consequently, although
TPU can accommodate batch sizes upto 2048 from its 24 MiB
SRAM, Google workloads’ latency requirements limit the batch
sizes to only around 30-200 (RUR = 5− 30%) [6].

• Edge Inference applications are limited to handful of batches (as
low as one) due to real time need of low response latencies, and

are bound by energy and cost budget for streaming inputs and
holding the outputs of larger batch sizes [15], [16].

This analysis points that any RUR less than 100% denotes that
100-RUR% MACs are consuming wasteful leakage energy while
waiting for computation and holding the weight value. This scenario
provides us with the unique opportunity to make the TPU highly
energy efficient by capping the wastage energy, while not interfering
with the computation throughput and accuracy. Section III details
UPTPU, an intelligent power gating paradigm to carefully exploit
this opportunity.

III. UPTPU DESIGN

In this section, we present UPTPU: Uunderutilization based
Power-gating Paradigm for TPU, a low overhead design paradigm
which curbs almost entire wasteful leakage energy coming from
severely underutilized MAC units, through intelligent power gating.
Section III-A presents the batch size aware gating control strategy.
Section III-B delves into replacing the volatile storage units of MAC
unit with NVMs. Finally, Section III-C discusses the circuit level
specifics on the power gating design choices.

A. Power-Gating Control Strategy

1) Systolic Power Gating (SPG): Section II exposes the stark
dependence of the underutilization of the TPU systolic array on
batch size. The batch of activation inputs is supplied to the systolic
array in a diagonal fashion so that the wave of the activity in MACs
advance diagonally to use up the idle MACs one diagonal each clock
cycle. After the clock cycles equal to the batch size, the wave of
idleness advances one diagonal each cycle. The phenomenon can be
seen in Figure 1 with orange (activity) and green (idleness) colors.
With the advance knowledge of batch size, we can have an accurate
assessment of which diagonal of MAC units are active and idle in any
computation clock cycle. We assume that the software can provide
batch size along with the data.

Figure 4 shows the design overview of UPTPU. Following the
systolic-diagonal trend of activity and idleness, We have a 2N − 1
bit Serial-In-Parallel-Out (SIPO) Right Shift Register (SR) whose bits
are physically mapped onto 2N−1 diagonals of MACs. The parallel
right-shifting bit values serve as systolic wake/sleep signals for each
diagonal. We conceive a Batch Counter which will be loaded with
the binary representation of Batch Size − 1, the value of which
will stream sleep bit and wake bit. Algorithm 1 and its respective
description explain how we use the batch size information to map
bits in the SR, while ensuring a zero overhead in performance.

2) Zero Weight Power Gating (ZWPG): We observe that sig-
nificant amount of the computations in the MAC units for the
practical DNN datasets see ‘zero computations’ involving either zero
activation or zero weight. Figure 6 shows the percentage distribution
of Zero Activation or Weight Computations (ZAWC) (average 75%)
and Zero Weight Computations (ZWC) (average 26%) for different
DNN datasets. These zero computations can occur either naturally
from the activation and trained weights or from zero padding of some
activation and weight matrices to fit into the 256×256 TPU Systolic
Array. However, only the MACs with zero weights are practical to be
powergated as the weights remain static over the batch computation
lifecycle, Tc (Equation 1) and the sleep transistors won’t have to be
woken up until Tc.

We propose Zero Weight Power Gating (ZWPG) to extend the
applicability of the SPG sleep transistor to curb the energy consump-
tions from zero weight MACs. As seen in figure 4, the zero weight
(zw) signal coming from weights stored in NVM (Section III-B) puts

Fig. 4: UPTPU design overview

Algorithm 1 SPG Control Algorithm

1: Batch Counter(BC)← Batch Size− 1
2: Systolic Array Dimension(N)← 256
3: Tw ← wake up tolerance
4: sleep bit← 1, wake bit← 0
5: SR[(2N − 2)......(2N − 2− Tw)]← wake bit
6: SR[(2N − 2− Tw)......0]← sleep bit
7: while BC > 0 do
8: SR← SR� 1
9: SR[2N − 2]← wake bit

10: BC ← BC − 1
11: end while
12: while current batch do
13: SR← SR� 1
14: SR[2N − 2]← sleep bit

15: end while

Line 3: Tw refers to the number of clock cycles alloted for the MAC diagonals to
completely power up from sleep-state and be ready for error free computation. This
enables a zero performance (TOPS) overhead.

Lines 5-6: SR is initialized to Tw wake bits followed entirely by sleep bits.
Right Shifting of SR along with these Tw wake bits ensures that all the idle MAC
diagonals will start switching on Tw clock cycles in advance of the computation
scheduled in that diagonal.

Lines 7-11: SR shifts right by injecting wake bit to the MSB, waking-up only
one additional diagonal at a time, until BC counts to zero.

Lines 12-15: After BC cycles, SR starts shifting right by injecting sleep bit at the
MSB, sleeping only one additional diagonal at a time.

the MAC unit to sleep irrespective of SPG-En signal. Unlike a MAC
gated with SPG, a MAC gated with ZWPG should be able to route the
upstream data through itself. A demux is used to route the upstream
MAC’s data by bypassing the MAC powergated with ZWPG.

B. Usage of NVMs

As each MAC unit stores a weight value in its associated volatile
SRAM cells, we need to preserve the weight values during power-
gating for seamless computation on wake-up. Classic powergating
employs retention cells, which call for further leakage [7], given that
there is a SRAM register in each of the 256×256 MACs. We envision
the replacement of leaky weight holding SRAM cells with non-leaky
STT-MRAM Non-Volatile Memory (NVM) to solve both the hurdles
of volatility and memory leakage. STT-MRAMs also provide other
compelling advantages for the niche of weight stationary systolic
arrays. STT-MRAMs boast about 20× reduction in leakage energy
and about 4× increment in packing density with respect to SRAMs
and they have comparable read characteristics to SRAMs [17].

The unique write pattern in TPU systolic array facilitates the
adoption of STT-MRAMs although they suffer from a 3× write speed
and 20× energy penalty for writes [17]. The weights in the MACs are
only written once for an entire batch of computation, which gives the
delay overhead of less than 0.5%, even for the smallest of batch sizes.
More importantly, the spread of 20× savings in leakage power over
the batch computation lifecycle, diminishes the once-per-batch 20×
write-energy-increase. Thus, usage of NVM overturns the otherwise
overkill in both energy and area consumption coming from SRAMs,

and also facilitates the sleep of entire MAC unit without retention
leakage. In attempt to replace the SRAMs with STTMRAMs in
CPU/GPU caches, researchers have compensated the write penalties
by packing manyfold MRAMs in the same area footprint of SRAM
cache [17], [18]. The area savings with STT-MRAM contributes to
amortizing the area overhead due to sleep transistors.

C. Circuit Level Considerations for Power-Gating

Sleep transistor design is a challenging VLSI domain because of
the difficulty in optimization around its various effects on design
performance, area, routability, overall power dissipation, and sig-
nal/power integrity [9]. We conceive one sleep transistor per MAC,
which receives a per-diagonal power gating control signal. Although
it might seem intuitive to house one sleep transistor per diagonal,
per-MAC strategy eliminates several circuit-level complications. As
the diagonals represent diverse switching loads pertaining to the
varying number of connected MACs (1-256), design of graded sleep
transistors adds huge design complexity. In addition, the usage of
sleep transistor at the granularity of a MAC facilitates ZWPG (Section
III-A2) and eliminates the need of having bulkier power lines running
through each diagonal, ultimately improving routability.

As the sleep and wake-up happens at a granularity of just one
diagonal at a time during computation (Algorithm 1), noise and
current crowding issues are minimized and the average sleep time is
maximized. Moreover, we favor the decrease in area penalty, noise,
and the high power-on rush current by compromising the switching
speed of the sleep transistor. The system wide performance is not

Fig. 5: Normalized TOPS/Watt of eight DNN datasets computed on a TPU systolic array with different batch sizes brought about by the
comparative schemes.

Fig. 6: Zero Activation or Weight Computations (ZAWC) and Zero
Weight Computations (ZWC) expressed as percentage of total com-
putations for different DNN datasets.

affected by slower sleep transistors because of the wake-up tolerance
included in the gating control strategy (Tw in Algorithm 1). The
6% area overhead of PMOS sleep transistors [8], combined with the
overheads from control hardware, dilutes to only around 3.4% area
overhead with respect to the entire TPU die.

IV. METHODOLOGY

We use our cycle accurate TPU systolic array simulator built
upon [19], with architectural details from [6], as an architectural
simulator for the cycle accurate assessment of computation data and
resource utilization pattern. First, we train eight DNN applications
(viz., MNIST [20] , Reuters [21] , CIFAR-10 [22] , IMDB [23] ,
SVHN [24] , GTSRB [25] , FMNIST [26] , FSDD (Audio-MNIST)
[27]) using Keras with TensorFlow back-end and extract the weights
from the trained model. We stream the 8-bit quantized activation
input from the datasets in several batch sizes to the simulator to be
multiplied with the weight matrices stored in SA. The output matrices
from the simulator are combined to evaluate the inference accuracy.

We develop the energy efficiency model by conjoining the archi-
tectural outcomes of the datasets with estimations of dynamic and
leakage energy from CAD tools. We synthesize the RTL description
of SA MAC units with different design augmentations, through Syn-
opsys Design Compiler followed by place and route through Cadence
SoC Encounter using 45nm standard cell library, to estimate the
area and energy (dynamic and leakage) consumption and associated
overheads. We find and use the leakage energy to be 20% of the
dynamic energy. The wake-up tolerance (Tw in Algorithm 1) is set to
three clock cycles, inline with the prior power gate implementations
[8], [9], [28] . The switching energy overhead is embedded in the
model with break even clock cycles, as suggested by [28].

V. EXPERIMENTAL RESULTS

In this section, we evaluate the efficacy of different schemes
on increasing the energy efficiency of a 256 × 256 TPU systolic
array. Section V-A presents the comparative schemes. Section V-B
compares and describes the energy efficiency coming from different
schemes.

A. Comparative Schemes

• Zero-Skip (ZS): This is a widely used technique for drastically
improving the energy efficiency of DNN Accelerators [2], [29],
where the computation in MAC is entirely skipped if activation
input or weight is equal to zero. Zero skipping gets rid of the
dynamic energy for those MAC units which hold zero weight or
receive zero activation.
• UPTPU-LITE: This is an extension to ZS, with application of

Zero Weight Power Gating (ZWPG). All the MAC units holding
the weight value of zero are power gated for the computation
lifecycle of a batch of activation inputs. In addition to the dynamic
energy savings from ZS, this scheme prevents the leakage power
from the zero weight holding MACs.
• UPTPU: UPTPU includes the Systolic Power Gating (SPG) of
unutilized MAC units, in addition to the benefits provided by
UPTPU-LITE. It intelligently powergates almost all the idle MAC
units arising from TPU underutilization on different batch sizes.

B. Interpretation of Energy Efficiency

We simulate the gains in energy efficiency for eight DNN datasets,
when the computation is performed in different batch sizes. Fig-
ure 5 presents the gain in Tera Operations Per Second per Watt
(TOPS/Watt) normalized with base TPU SA for eight DNN datasets,
for different comparative schemes. Figure 6 presents the batch-size
independent Zero Activation or Weight Computations (ZAWC) and
Zero Weight Computations (ZWC) among the total MAC compu-
tations pertinent to the ZS and ZWPG schemes respectively. We
see various trends in energy efficiency gains for different datasets
and schemes. In general, the maximum average gain for any dataset
(Figure 5) is dictated by the percentage of ZAWC (Figure 6). Higher
ZAWC gives many opportunities for ZS embedded in all comparative
schemes. The datasets with relatively lower ZAWC (viz. IMDB and
CIFAR) have relatively lower energy efficiency gains.

We see a minimal benefit in UPTPU-LITE (ZS+ZWPG) in com-
parison to ZS, as the extra ZWPG scheme adds the small additional
leakage savings coming from the small subset (ZWC-Figure 6) of
dynamically skipped MACs. The relatively smaller subsets (viz.
REUTERS, AMNIST, GTSRB) result in minimal benefit addition
to gains. However, more importantly, the gains from UPTPU-LITE
(ZS+ZWPG) decrease for lower batch sizes. As the RUR decreases

with lower batch sizes (Section II), the constant benefits coming from
ZS and ZWPG are progressively diluted by the increasing leakage
energy consumption in unutilized MACs.

Finally, UPTPU (ZS+ZWPG+SPG) is able to achieve much higher
gains, because of the addition of Systolic Power Gating (SPG)
which intelligently power gates the unutilized MACs. In addition to
higher average gain, we also get a complementing effect to ZS and
ZWPG, pronounced by the increase of the energy efficiency with the
decrease in the batch size. As the batch sizes decrease, SPG gets
increasing opportunities from decreasing RUR to give massive gain
in TOPS/Watt. UPTPU achieves, on a average of 3.5×−6.5× gain
in TOPS/Watt for batch sizes 1024 − 32. This shows that UPTPU
can achieve staggering energy efficiency gains throughout the range
of both highest and lowest ends of the batch sizes. The performance
and inference accuracy is not compromised at all, because of our
dataflow adaptive intelligent power gating (Algorithm 1).

VI. RELATED WORK

Improvement of energy efficiency in DNN accelerators has been
explored in several ways. Chen et al. proposes an energy efficient
Row-Stationary dataflow to optimize the data movement inside a deep
neural network (DNN) [3]. Reagen et al. outlines automated methods
to extract collective energy efficiency from each of the algorithm,
architecture, and circuit layers [2]. Researches have also explored
voltage underscaling to increase energy efficiency. Zhang et al. un-
derscaled the supply voltage and tackled the timing errors by skipping
the errant computations [10]. Power-gating the unutilized sections of
computing systems have been extensively explored. Tschanz et al.
have demonstrated the efficacy of a PMOS sleep transistor in reducing
the power consumption by 8% in 130-nm node microprocessor
[8]. Shi et al. outline the challenges and opportunities in optimal
sleep transistor design in different configurations [9]. Hu et al. have
provided extensive analytical model of the idleness in CPU [28].
However, our work is the first one in the DNN accelerator domain
to explore the severe, yet predictable resource underutilization and
propose power-gating strategies to extract a staggering gain in energy
efficiency.

VII. CONCLUSION

The upsurge in the AI based economies around the globe and the
consequent growth of DNN workloads are demanding highly energy
efficient DNN accelerators both at the server and the edge. This paper
parametrizes a huge hardware underutilization problem in the weight
stationary systolic array, and provides a staggering energy efficiency
to TPU by solving the problem through intelligent power-gating. Our
scheme can be superimposed on top of other existing architectural
or circuit level techniques to inflate the energy efficiency, without
any compromise in the inference accuracy or performance. More
generally, due to a predictable data-flow pattern in the AI workload,
this work opens up newer avenues for exploration of power-gating
based energy efficient solutions for all forms of AI accelerators.

REFERENCES

[1] “Ai will add 15 trillion to the world economy by
2030,” https://www.forbes.com/sites/greatspeculations/2019/02/25/
ai-will-add-15-trillion-to-the-world-economy-by-2030/, 2019.

[2] B. Reagen, P. Whatmough, R. Adolf, S. Rama, H. Lee, S. K. Lee, J. M. Hernández-
Lobato, G.-Y. Wei, and D. Brooks, “Minerva: Enabling low-power, highly-accurate
deep neural network accelerators,” in ACM SIGARCH Computer Architecture News,
vol. 44, no. 3. IEEE Press, 2016, pp. 267–278.

[3] Y.-H. Chen, J. Emer, and V. Sze, “Using dataflow to optimize energy efficiency of
deep neural network accelerators,” IEEE Micro, vol. 37, no. 3, pp. 12–21, 2017.

[4] S. Kim, P. Howe, T. Moreau, A. Alaghi, L. Ceze, and V. S. Sathe, “Energy-efficient
neural network acceleration in the presence of bit-level memory errors,” IEEE
Transactions on Circuits and Systems I: Regular Papers, no. 99, pp. 1–14, 2018.

[5] V. Gokhale, A. Zaidy, A. X. M. Chang, and E. Culurciello, “Snowflake: An efficient
hardware accelerator for convolutional neural networks,” in Circuits and Systems
(ISCAS), 2017 IEEE International Symposium on. IEEE, 2017, pp. 1–4.

[6] N. P. Jouppi, C. Young, N. Patil, D. Patterson, G. Agrawal, R. Bajwa, S. Bates,
S. Bhatia, N. Boden, A. Borchers et al., “In-datacenter performance analysis of a
tensor processing unit,” in Computer Architecture (ISCA), 2017 ACM/IEEE 44th
Annual International Symposium on. IEEE, 2017, pp. 1–12.

[7] Y.Wang, S.Roy, and N.Ranganathan, “Run-time power-gating in caches of gpus for
leakage energy savings,” in Proc. of DATE, March 2012.

[8] J. Tschanz, S. Narendra, Y. Ye, B. Bloechel, S. Borkar, and V. De, “Dynamic-sleep
transistor and body bias for active leakage power control of microprocessors,” in
2003 IEEE International Solid-State Circuits Conference, 2003. Digest of Technical
Papers. ISSCC., Feb 2003, pp. 102–481 vol.1.

[9] K. Shi and D. Howard, “Challenges in sleep transistor design and implementation
in low-power designs,” in Proc. of DAC, 2006, pp. 113–116.

[10] J. Zhang, K. Rangineni, Z. Ghodsi, and S. Garg, “Thundervolt: Enabling aggressive
voltage underscaling and timing error resilience for energy efficient deep neural
network accelerators,” arXiv preprint arXiv:1802.03806, 2018.

[11] P. Pandey, P. Basu, K. Chakraborty, and S. Roy, “Greentpu: Improving timing error
resilience of a near-threshold tensor processing unit,” in Proc. of DAC, 2019, pp.
173:1–173:6.

[12] N. D. Gundi, T. Shabanian, P. Basu, P. Pandey, S. Roy, K. Chakraborty, and
Z. Zhang, “Effort: Enhancing energy efficiency and error resilience of a near-
threshold tensor processing unit,” in 2020 25th Asia and South Pacific Design
Automation Conference (ASP-DAC). IEEE, 2020, pp. 241–246.

[13] V. Gokhale, J. Jin, A. Dundar, B. Martini, and E. Culurciello, “A 240 g-ops/s mobile
coprocessor for deep neural networks,” in Proceedings of the 2014 IEEE Conference
on Computer Vision and Pattern Recognition Workshops, 2014, p. 696–701.

[14] Z. Du, R. Fasthuber, T. Chen, P. Ienne, L. Li, T. Luo, X. Feng, Y. Chen,
and O. Temam, “Shidiannao: Shifting vision processing closer to the sensor,” in
2015 ACM/IEEE 42nd Annual International Symposium on Computer Architecture
(ISCA), June 2015, pp. 92–104.

[15] J. Hanhirova, T. Kamaainen, S. Seppaa, M. Siekkinen, V. Hirvisalo, and A. Yla-
Jaaski, “Latency and throughput characterization of convolutional neural networks
for mobile computer vision,” in Proceedings of the 9th ACM Multimedia Systems
Conference, ser. MMSys ’18, 2018, p. 204–215.

[16] Z. Jiang, “Efficient deep learning inference on edge devices,” in SysML COnference,
2018.

[17] X. Dong, X. Wu, G. Sun, Y. Xie, H. Li, and Y. Chen, “Circuit and microarchi-
tecture evaluation of 3d stacking magnetic ram (mram) as a universal memory
replacement,” in 2008 45th ACM/IEEE Design Automation Conference, June 2008,
pp. 554–559.

[18] J. Zhang, M. Jung, and M. Kandemir, “Fuse: Fusing stt-mram into gpus to alleviate
off-chip memory access overheads,” in 2019 IEEE International Symposium on
High Performance Computer Architecture (HPCA), Feb 2019, pp. 426–439.

[19] “Ucsb archlab opentpu project,” https://github.com/UCSBarchlab/OpenTPU.
[20] Y. LeCun and C. Cortes, “MNIST handwritten digit database,” http://yann.lecun.

com/exdb/mnist/, 2010.
[21] “Reuters-21578 dataset,” http://kdd.ics.uci.edu/databases/reuters21578/

reuters21578.html, 2021.
[22] A. Krizhevsky, “Learning multiple layers of features from tiny images,” Tech. Rep.,

2009.
[23] A. L. Maas, R. E. Daly, P. T. Pham, D. Huang, A. Y. Ng, and C. Potts, “Learning

word vectors for sentiment analysis.” Association for Computational Linguistics,
2011, pp. 142–150.

[24] Y. Netzer, T. Wang, A. Coates, A. Bissacco, B. Wu, and A. Y. Ng, “Reading
digits in natural images with unsupervised feature learning,” in NIPS Workshop
on Deep Learning and Unsupervised Feature Learning 2011, 2011. [Online].
Available: http://ufldl.stanford.edu/housenumbers/nips2011 housenumbers.pdf

[25] J. Stallkamp, M. Schlipsing, J. Salmen, and C. Igel, “Man vs. computer:
Benchmarking machine learning algorithms for traffic sign recognition,” Neural
Networks, no. 0, pp. –, 2012. [Online]. Available: http://www.sciencedirect.com/
science/article/pii/S0893608012000457

[26] H. Xiao, K. Rasul, and R. Vollgraf, “Fashion-mnist: a novel image dataset for
benchmarking machine learning algorithms,” CoRR, vol. abs/1708.07747, 2017.
[Online]. Available: http://arxiv.org/abs/1708.07747

[27] “Free spoken digit dataset (fsdd),” https://github.com/Jakobovski/
free-spoken-digit-dataset, 2021.

[28] Z. Hu, A. Buyuktosunoglu, V. Srinivasan, V. Zyuban, H. Jacobson, and P. Bose,
“Microarchitectural techniques for power gating of execution units,” in ISLPED,
2004, pp. 32–37.

[29] Y.-H. Chen, T. Krishna, J. S. Emer, and V. Sze, “Eyeriss: An energy-efficient
reconfigurable accelerator for deep convolutional neural networks,” IEEE Journal
of Solid-State Circuits, vol. 52, no. 1, pp. 127–138, 2016.

