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Abstract

Most of the existing automated code compliance checking (ACC) systems are unable to fully automatically convert
building-code requirements, especially requirements that have hierarchically complex semantic and syntactic
structures, into computer-processable forms. The state-of-the-art rule-based ACC methods that are able to deal with
complex requirements are based on information extraction and transformation rules, which are inflexible when
applied to different types of regulatory documents. More research is, thus, needed to develop a flexible method to
automatically process and understand requirements to support the downstream tasks in ACC systems such as
information matching and compliance reasoning. To address this need, this paper proposes (1) a new representation
of requirements, the requirement hierarchy, and (2) a deep learning-based method to automatically extract semantic
relations between words from building-code sentences, which are used to transform the sentences into such
hierarchies. The proposed method was evaluated using a corpus of sentences from multiple regulatory documents. It

achieved high semantic relation and requirement hierarchy extraction performance.

Keywords: Requirement representation; Semantic relation extraction; Code checking; Deep learning; Semi-

supervised learning.

Introduction

Building designs are governed by a variety of regulatory documents (e.g., building codes, standards, and
specifications) in the architecture, engineering, and construction (AEC) domain. To reduce the time, cost, and error
of the process of checking the compliance of building designs with these regulatory documents, various automated
compliance checking (ACC) systems have been developed. Existing ACC systems require that the regulatory

information (e.g., subjects, compliance checking attributes, and quantity values and units) is first extracted from
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natural language regulatory-document sentences and converted into computer-processable forms. Although these
ACC systems have achieved different levels of automation, representativeness, and accuracy, most of them are
unable to extract and convert the regulatory information in a fully automated way (Nawari 2019; Bloch and Sacks
2020; Sacks et al. 2020). This can be attributed to two factors/challenges: (1) the complexity of the task at hand, in

terms of text characteristics and level of analytics needed, and (2) the limitations of the approaches used.

Automatically converting natural-language requirements into computable rules is not an easy task for two reasons.
First, different from other types of text (e.g., social media posts), sentences in the regulatory documents usually have
hierarchically complex semantic and syntactic structures (e.g., nested clauses, conjunctive and alternative
obligations, multiple restrictions or exceptions, etc., see Fig. 1) (Zhou and El-Gohary 2017), and thus are more
challenging for computers to automatically process, represent, and understand. Second, different from other
applications [e.g., sentiment analysis or shallow information extraction (e.g., Marzouk and Enaba 2019, Akanbi and
Zhang 2021)], ACC requires full understanding of the text to correctly capture the meaning of the requirements
including the alternatives, restrictions, and exceptions, etc. (Beach et al. 2020; Solihin et al. 2020; Xue and Zhang

2020), which adds to the challenge.

The other factor is the limitations of the approaches used. First, most of the existing ACC methods that can represent,
process, or check regulatory requirements are not fully automated, requiring intensive human effort. For example,
manual encoding-based ACC methods require professionals to read the regulatory text and then encode these
sentences into computer-processable forms, such as the Building Environment Rule and Analysis language (Lee et
al. 2015), regulatory knowledge query language (Dimyadi et al. 2016), and visual language for compliance checking
(Preidel and Borrmann 2016). Annotation-based ACC methods require professionals to read the regulatory text and
then annotate the sentences with a set of predefined semantic labels or markups that indicate the semantic roles or
the semantic relations between these roles in the context of compliance checking. For example, Hjelseth and Hisbet
(2011) defined the requirement, application, selection, and exception (RASE) markups to manually annotate the
sentences from the International Building Code (IBC) via the Smartcode user interface for supporting compliance
checking. Second, efforts that have achieved full automation, which are very limited in number, have scalability
limitations. For example, rule-based methods have achieved the state-of-the-art performance in extracting regulatory

information and transforming the extracted information into computer-processable forms, while only requiring
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limited human effort (e.g., Zhang and El-Gohary 2013; Li et al. 2016; Zhou and El-Gohary 2017; Kim et al. 2019).
However, rule-based methods usually lack flexibility and scalability, because the rules for extraction are developed
manually by experts and may need to be updated or adapted when applied to a different type of regulatory document
or when the document goes through major updates. In contrast, machine learning methods, instead of relying on
hand-crafted rules, develop computational models that automatically capture the underlying semantic and syntactic
patterns of the training text and have a good capability of generalizing to a variety of text. Particularly, deep learning
approaches have shown increased capabilities in text analytics (LeCun et al. 2015). However, such deep learning
methods have not been leveraged in analyzing the semantic and syntactic structures of AEC domain-specific

regulatory text in the context of ACC.

To address the aforementioned challenges, this paper proposes a deep learning-based approach to automatically
convert building-code sentences, especially the structurally complex ones, into smaller, easier-to-digest, and less-
complex interconnected units of requirements for facilitating the succeeding steps of ACC such as compliance
reasoning. The proposed approach is threefold. First, this paper proposes a new representation of requirements for
supporting ACC-related building-code analytics — the requirement hierarchy — to decompose the sentences into the
interconnected requirement units. Each requirement hierarchy consists of one or more requirement units and the
dependencies between the units, with each unit representing a simple requirement or condition that can be processed
by most of the existing ACC systems. Second, the paper proposes a set of semantic relations between words in
sentences, which are used to segment and link the units and construct the requirement hierarchies. Third, the paper
proposes a deep learning-based method to automatically extract these semantic relations and transform the building-
code sentences with the relations into requirement hierarchies. The proposed method uses a semi-supervised

learning strategy to train the deep learning models on both labeled and unlabeled building-code text data.

Background

Semantic Representations of Natural-langue Requirements

In the AEC domain, different types of semantic representations have been developed and used for representing,
processing, and checking natural-language requirements by computers in ACC systems. For example, Hjelseth and
Nisbet (2011) proposed a set of markups including the requirement, applicability, selection, and exception (RASE)

for supporting the annotation of normative requirements. Solihin and Eastman (2016) used conceptual graphs to
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represent building-code requirements, where nodes and edges represent the entities and relations contained in the
requirements. Sydora and Stroulia (2020) developed a BIM-based rule language for describing interior design rules.
Yurchyshyna and Zarli (2009) and Xu and Cai (2020) used modeling languages such as SPARQL protocol and
Resource Description Framework (RDF) query language to represent requirements as queries to the BIM models.
HauBler et al. (2021) adopted the Business Process Model and Notation (BPMN) and Decision Model and Notation
(DMN), which are graphical representations for specifying business and management processes, for supporting rule
representation. Despite the importance of these representations, they are limited in supporting fully automated (i.e.,
without manually crafted rules or human annotations) conversion of natural-language requirements into computable

rules.

Deep Learning for Text Analytics

Deep learning methods use computational models that consist of multiple layers to capture different levels of
information representations from large-scale data (LeCun et al. 2015). Deep learning methods have drastically
improved the state-of-the-art performance in automatically processing and understanding different types of data,
including image, video, and text, and meanwhile reduced or eliminated the manual effort in feature engineering
compared to traditional machine learning methods. Recurrent neural networks (RNN) are deep learning models
consisting of internal states specifically designed to process sequential data, such as text (sequences of words) and
time series (sequences of quantity values). However, original RNN units suffer from vanishing gradient problems
and are unable to capture long-term dependencies. Thus, two variants of the original RNN units, long short-term
memories (LSTM) (Greff et al. 2016) and gated recurrent units (GRU) (Cho et al. 2014) have been proposed and

adopted.

RNN have been widely used in natural language understanding tasks including machine translation [e.g., sequence-
to-sequence RNN model for machine translation (Sutskever et al. 2014)], semantic analysis [e.g., bidirectional
LSTM and multiplayer perceptron (MLP) for dependency parsing and part-of-speech tagging (Clark et al. 2018)],
and information extraction [e.g., bidirectional LSTM and conditional random fields (CRF) for extracting named
entities (Lample et al. 2016)]. However, only limited research efforts have been focused on RNN-based methods to
solve text analysis problems in the AEC domain. Pan and Zhang (2020) developed RNN-based models to mine

information from building information modeling (BIM) log data to support design decisions. Zhang and El-Gohary
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(2020) developed encoder-decoder models that consist of LSTM layers to generate semantically enriched building-
code sentences to facilitate automatic semantic analysis of regulatory documents. Zhang and El-Gohary (2021) used
bidirectional LSTM and CRF with transfer learning strategies for extracting semantic and syntactic information
elements (e.g., subjects, compliance checking attributes, and quantity values and units) from building-code

sentences for supporting compliance checking.

Semi-supervised Learning

Semi-supervised learning is a machine learning approach that learns from both labeled and unlabeled data. Semi-
supervised learning approaches combine the supervised and unsupervised learning approaches by leveraging
unlabeled data to improve the performance, flexibility, and scalability of machine learning models trained using
labeled data. Examples of recent semi-supervised learning approaches in the domains of computer vision and natural
language understanding include (1) creating labels for unlabeled data using labeling functions (e.g., Ye and Ling
2019; Ratner et al. 2020; Sohn et al. 2020); (2) capturing the underlying structures from both labeled and unlabeled
data using data augmentation methods (e.g., Miyato et al. 2018, Berthelot et al. 2019; Sohn et al. 2020); and (3)
improving the representativeness of deep learning models by training the models simultaneously on both unlabeled

and labeled data (e.g., Clark et al. 2018, Chen et al. 2020).

Semi-supervised learning-based methods have been proposed to solve various AEC domain-specific tasks. For
example, Naganathan et al. (2016) used semi-supervised learning and clustering techniques to automate the
identification of the loss factors contributing to the energy loss during transmission for facilitating building energy
modeling. Yang et al. (2016) used a semi-supervised learning algorithm to automatically detect near-miss falls in
ironwork based on worker's kinematic data captured from wearable inertial measurement units. Liu and El-Gohary
(2017) used ontology-based semi-supervised CRF for automated information extraction from bridge inspection

reports.

State of the Art and Knowledge Gaps in Semantic Relation Extraction

Semantic relation extraction aims to detect and classify the semantic relationships between words or phrases in
natural-language text. Examples of such relations include entity relations (e.g., Ratner et al. 2020), event relations
(e.g., Wang et al. 2020), and word dependencies (e.g., Liu and El-Gohary 2021). Rule-based semantic relation

extraction methods use rules that are usually manually developed based on domain ontologies, dictionaries,
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gazetteers, knowledge bases, and/or syntactics such as part-of-speech tags for the extraction (e.g., Ravikumar et al.
2017, Farahmand et al. 2020). Rule-based methods have been used in the AEC domain to extract domain-specific
semantic relations for supporting various downstream tasks. For example, Al Qady and Kandil (2010) developed
rules based on the shallow parsing of sentences to extract semantic relations from construction contract documents
for improving document management. Zhang and El-Gohary (2013, 2015) developed a rule-based, semantic natural
language processing approach to extract information from regulatory documents including building codes and
transform them into logic clauses for supporting ACC. Despite the wide use of rule-based methods, in general, they
do not scale well when the characteristics of the text change — the rules might need additions or modifications to

deal with the different text characteristics (Zhou and El-Gohary 2017; Sacks et al. 2020).

Machine learning-based methods, rather than relying on experts for developing relation extraction rules, employ
machine learning models to automatically learn the semantic and syntactic patterns from existing text data, based on
which the relations are detected from new text data. Supervised learning-based relation extraction methods (e.g.,
Wang et al. 2020, Liu and El-Gohary 2021) require labeled data — text data annotated with semantic relations.
Compared to rule-based methods, supervised learning-based methods have achieved a higher level of flexibility and
scalability, but they often suffer from lack of training data due to the high cost of annotating the data. Semi-
supervised learning-based methods (e.g., Ratner et al. 2020, Hu et al. 2020), on the other hand, allow for improving
the models trained on small-scale labeled data using large-scale unlabeled data. For application in the ACC domain,
there is a lack of research efforts to leverage semi-supervised learning in building-code analytics; and, most of the
semantic relations studied in the aforementioned efforts (outside of the AEC domains) cannot capture the semantic

and syntactic structural characteristics of AEC domain-specific regulatory text in the context of ACC.

Proposed Requirement Hierarchy and Semantic Relations for Supporting Automated Compliance Checking

Requirement Hierarchy

This paper proposes a new semantic representation — requirement hierarchy — to model building-code requirements,
including hierarchically complex requirements with restrictions and/or exceptions for automated representation,
processing, and understanding of these requirements for supporting ACC. A requirement hierarchy aims to represent
a building-code requirement in a hierarchical structure that consists of several requirement units and the

dependencies between these units.
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A requirement unit, which consists of only essential semantic information elements (see Table 1), describes a
requirement or a constraint on a subject or a compliance checking attribute for supporting compliance checking.
Thus, each unit has one subject, one compliance checking attribute, or both, and may or may not have other types of
information elements. Each unit does not have any secondary semantic information elements such as restrictions and

exceptions, and thus is easily processable by most of the existing ACC methods and applications.

There are two types of dependencies between the requirement units: simple dependency and complex dependency.
Simple dependencies include conjunctions (e.g., “and”) and disjunctions (e.g., “or”). Complex dependencies include
exceptions (e.g., “egress doors shall be side-hinged swinging type, except for doors serving a bathroom within a
sleeping unit in Group R-1”’) and restrictions (e.g., “the door between a private garage and a dwelling unit”). The
restrictions can be further classified as locative, attributive, and other restrictions (e.g., restrictions indicating the
time, manner, or purpose) in terms of the content of the restriction or how the restriction is applied to the restricted
requirement unit. The restrictions can also be classified as subject, attribute, and quantity restrictions in terms of

which type of semantic information element in the restricted requirement unit is applied to.

Fig. 2 shows an example building-code sentence from IBC 2018 and the requirement hierarchy corresponding to the
sentence. The example sentence is modeled as a requirement hierarchy consisting of three requirement units, where

unit 1 is the main unit and units 2 and 3 are restrictions of the main unit.

Semantic Relations

This paper proposes a set of semantic relations to (1) link single words in a regulatory sentence/requirement into
multi-terms concepts (i.e., the semantic information elements); (2) link these semantic information elements into
requirement units; and (3) link these requirement units into a requirement hierarchy. Four types of relations were
defined: inner information element, inner requirement unit, inter requirement unit, and root semantic relations. An
inner information element relation is a relation between two words, where the words belong to a single semantic or
syntactic information element in a requirement unit. An inner requirement unit relation is a relation between two
words, where the words belong to a single requirement unit, but to two different information elements. An inter
requirement unit relation is a relation between two words, where the words belong to two different requirement units.
An inter requirement unit relation may also exist between words in different sentences that form a single

requirement (i.e., a multi-sentence requirement); however, for this paper, the analysis of semantic relations and
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requirement hierarchies is at the individual sentence-level. A root semantic relation is a relation that denotes the
starting word for transforming a sentence annotated with semantic relations into a requirement hierarchy. Thus, each
sentence must have one and only one word associated with the root relation. Fig. 3 shows the semantic relations

between the words in the example building-code sentence (same as the sentence used in Fig. 2).

Proposed Deep Learning-based Method for Semantic Relation and Requirement Hierarchy Extraction

The proposed deep learning-based method is composed of two primary components: (1) a deep learning model for
semantic relation extraction, and (2) an algorithm for transforming regulatory sentences with semantic relations into
requirement hierarchies. The research methodology included five main steps, as per Fig. 4: data preparation,
semantic relation extraction model development, model training using a semi-supervised learning strategy, semantic
relation-based requirement hierarchy construction, and evaluation. An example to illustrate how the requirement

hierarchies are extracted from building codes using the proposed method is shown in Fig. 5.

Data Preparation

Labeled Data Preparation

The labeled data — regulatory sentences that are represented in the form of the requirement hierarchy and are labeled
with the four semantic relations — were prepared for training the semantic relation extraction model and evaluation.
The labeled data were prepared following three steps: corpus preparation, sentence selection, and annotation. First, a
small-scale corpus was constructed, which consists of text from multiple codes and standards in the AEC domain,
including the IBC, International Energy Conservation Code (IECC), Americans with Disabilities Act (ADA)
Standards for Accessible Design, and building-code amendments (e.g., the Champaign IBC Amendments). All
documents were converted to the text file format (i.e., .txt) and combined into a single corpus. The corpus was then
converted to sentences following two steps — sentence segmentation and sentence tokenization. Sentence
segmentation aims to detect the sentence boundaries (e.g., punctuations) and segment the text into sentences.
Sentence tokenization aims to further split the sentences into tokens (e.g., words). Second, a group of 600 sentences,
which consists of about 15,000 words, were randomly selected from the developed corpus. The selected sentences
have different levels of computability. Computability is defined as the ability of the building-code sentence to be
represented and processed by a computer in an effective manner (Zhang and El-Gohary 2021). Third, a group of

four experts — two from academia (faculty) and two from industry — annotated each word in the selected sentences
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with the proposed semantic relations. A purposive sampling strategy, which pinpoints a specific type of participants
according to predefined selection criteria (Clark and Creswell 2008), was adopted for selecting the experts. Three
main selection criteria were defined: (1) expertise in the AEC domain; (2) familiarity with building codes and
compliance checking processes; and (3) awareness of natural language processing and text analytics techniques.
Each expert independently annotated the entire set of selected sentences, and the initial inter-annotator agreement
was 80% in F1 measure, indicating good reliability of the annotations (Pestian et al. 2012). The discrepancies among
the annotations were then resolved by the experts to reach full agreement on the final annotations. The labeled data
were split into two sets using a 9:1 ratio: training and validation dataset and testing dataset. The first dataset was
further split into a training set (for training the model) and a validation set (for tuning the hyperparameters of the

model) for cross-validation. The testing dataset was used for evaluation only.

Unlabeled Data Preparation

The unlabeled data — a large corpus consisting of sentences and sentence fragments from a collection of multiple
regulatory documents in the AEC domain — were prepared for training the semantic relation extraction model using
a semi-supervised learning strategy. The corpus consists of a total of 20,000 sentences, or about 200,000 tokens, and
the size of the entire corpus is 100 Megabytes. The collection used to build the corpus includes four main types of
regulatory documents: (1) building codes published by the International Code Council (ICC) (e.g., IBC, IECC,
International Residential Code, etc.), (2) local regulatory documents in the AEC domain (e.g., Champaign building
code amendments), (3) standard specifications (e.g., MasterFormat specification), and (4) other regulatory
documents (e.g., Occupational Safety and Health Standard 1910). The documents of different formats were
converted to the TXT format and combined into a single file. The file was then cleaned based on heuristic rules that
(1) filter out noises introduced during file format conversion; (2) filter out short-word sequences or fragments that
are likely to have no semantic relations (e.g., section headings and standalone words and phrases); and (3) filter out
non-textual sequences (e.g., sequences of symbols, numbers, and units converted from equations and tables in the
documents). Examples of the rules used include: remove candidate sentences and sentence fragments that (1) have
less than 20 characters or have less than five tokens, (2) do not have verbs of any form, or (3) start with section

indices.
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Semantic Relation Extraction Model Development

The deep-learning model (Dozat and Manning 2016) — the LSTM with MLP — was adopted as the base model for
extracting the semantic relations from the regulatory sentences, where LSTM learns the representations of words (or
tokens) in the sentences to extract the semantic relations, and MLP, on top of the LSTM, further classifies the
extracted relations given the learnt representations. The model consists of three types of layers: the input layer, the

encoding layer, and the output layer, as shown in Fig. 6.

Input Layer

The input layer aims to represent the semantics of each word in a vector representation for deep neural network
computation purposes. Pretrained word embeddings were used to initialize the weights in the input layer. Pretrained
word embeddings are vector representations of words learned on a large, cross-domain corpus by training a machine
learning model on the corpus. The word embeddings that were learned by applying the Global Vectors for Word
Representation (GloVe) algorithm (Pennington et al. 2014) on a corpus consisting of Wikipedia 2014 and Gigaword
5 were adopted. The adopted word representations consist of vector representations of 40,000 uncased English

words, which have a dimension of 300.

Encoding Layer

The encoding layer aims to further learn the contextual vector representations of each word in the input sentence that
is discriminative in terms of the semantic relation extraction task. Two strategies were adopted when developing the
encoding layer for improved semantic relation extraction performance. First, to enhance the capability of the model
to capture long-term semantic and syntactic dependencies that exist in hierarchically complex regulatory sentences,
bidirectional LSTM layers were employed. Each such layer consists of a backward and a forward LSTM layer for
using the representations of both forward and backward context words when learning the representation of the

current word.

Second, to improve the capability of the model in reducing overfitting, dropout layers were added. The layers drop a
random fraction of the LSTM units in the encoding layer during the training of the model, according to dropout
probabilities. Two dropout probabilities were used, one for training using the unlabeled data and the other using the

labeled data. Typically, the dropout probabilities are between 0 and 0.5, which means that less than half of the
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LSTM units are dropped and the rest of the LSTM units are retained. The dropout layers are disabled during the

evaluation and future use of the semantic relation extraction model (i.e., use in the ACC system).

Output Layer

For each pair of words in the regulatory sentence, the output layer aims to predict (1) whether there is a semantic
relation linking the two words and (2) the type of the semantic relation if it exists. The output layer consists of MLP
layers and a softmax function. For two words d and % in a sentence, given their encoded representations (denoted as
z, and z,) generated by the encoding layers and a specific type of semantic relation », the MLP layers computes a
score [denoted as s(z4, z,, 7)]. For each word in the sentence, the scores corresponding to the word and all the other
words in the sentence, with all possible types of relations, are normalized into a probability distribution through the

softmax function. Thus, the probability that a word d is linked to another word / by a specific type of semantic

s(d,h,r)

———— - where W is the set of all words in the sentence in which d and / are located
Yhew,rers(d,hr)

relation ris p(d, h,7) =

and R is the set of all possible types of semantic relations. Thus, for each word in a sentence of length |W|, the
output layer evaluates all |W||R| different semantic relations and the final semantic relation predicted by the output

layer is the one that has the highest probability.

Model Training

To enable the training of the semantic relation extraction model on both labeled and unlabeled data, the semi-
supervised training strategy proposed by Clark et al. (2018) was adopted. In each iteration during the training
process, the model was first trained on a batch of labeled data [as shown in Fig. 7 (a)] and then trained on a batch of

unlabeled data [as shown in Fig. 7 (b)], so that the model learns from the labeled and unlabeled data simultaneously.

When the model is trained on the labeled data, the objective function L that describes the difference between the
semantic relation from the gold standard, denoted as y, and the semantic relation ¢ predicted by the model 8 for the
word x, is minimized, as shown in Eq. (1) (Clark et al. 2018), where D is the batch of labeled data, C is the set of all
possible semantic relations, and pg(c|x) is the probability of ¢ given the input word x generated by the softmax

layer in the output layer of the model.

1
L) =57 . D Ly=clogpo(cl) M

x,yED ceC
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The model is trained on the unlabeled data following three steps (Clark et al. 2018). First, for each word in a
sentence in the unlabeled data, modified versions of the original sentence were created by removing the preceding or
following words in the sentence. Second, the original and modified sentences were provided to the semantic relation
extraction model as input separately. Third, the objective function L, that describes the difference between the
probability distribution generated by the output layer for the original sentences, denoted as pg(clx), and the
probability distribution generated by the output layer m for the modified sentences, denoted as pg'(c|x), is
minimized, as shown in Eq. (2) (Clark et al. 2018), where D is the batch of unlabeled data, M is the set of all output
layers for modified sentences for unsupervised learning, and KL is the Kullback—Leibler divergence. The parameters
of the output layer for supervised learning are fixed and only the parameters of the other layers are updated during
the training on the unlabeled data. By being trained to minimize the semantic relation extraction results attained
using the original and modified sentences, the model improves its ability to capture contextual syntactic and

semantic information that can support semantic relation extraction.

1
Lu(0) =57 ) ) KLGB(EllIpy (elx)) @

XED meM

Semantic Relation-based Requirement Hierarchy Construction

A hybrid width and depth first traversal-based algorithm was used to convert the regulatory sentences annotated
with semantic relations to the form of the requirement hierarchy, as shown in Fig. 8. For applying this algorithm,
two types of data structures were maintained. First, the sentence (i.e., words) with the semantic relations is modeled
as a directed graph, where the words are the vertices and the semantic relations are the edges, and for each edge, its
direction is from the node corresponding to the dependent word to the node corresponding to the head word. Second,
the requirement hierarchy was constructed by updating three lists: two lists of requirement units, unfinished and

finished requirement units, and one list of the dependencies between requirement units.

The algorithm consists of three main stages. First, the algorithm starts at the node corresponding to the word
annotated with the root semantic relation. Meanwhile, the unfinished requirement unit list is initialized with one
empty requirement unit. Second, the algorithm traverses the entire graph along the edges. At each node, the
algorithm traverses the edges that point to the node, according to the following order: inner information element

semantic relations, inner requirement unit semantic relations, and inter requirement unit semantic relations (as
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shown in Fig. 8). The words corresponding to the traversed nodes and the semantic relations corresponding the
traversed edges are added to the lists. Third, the algorithm terminates when all the nodes are traversed. The finished

requirement unit list and the dependency list together are the final requirement hierarchy.

Additionally, two rules are applied to index the requirement units and interpret the dependencies between the
requirement units. First, the requirement units are indexed based on the order that they appear in the unfinished
requirement unit list (e.g., the empty requirement unit contained in the unfinished requirement unit list when
initialized is indexed as the first requirement unit), and the first requirement unit is the main requirement unit of the
requirement hierarchy, which does not act as a restriction or an exception to any other requirement units. Second, the
dependencies between two requirement units are interpreted based on the type of semantic relation that link the
words in these two requirement units — one requirement unit is a restriction or an exception of the other requirement
unit if there is a inter requirement unit semantic relation linking a word (i.e., the dependent word) in the first

requirement unit to a word (i.e., the head word) in the second requirement unit.

Experimental Results and Analysis

A set of experiments were conducted to first optimize the hyperparameters of the proposed model for cross-
validation and then to assess the performance of the proposed method in ablation studies to better understand the
impact of the important components of the method. Three ablation experiments were conducted to (1) evaluate the
impact of the semi-supervised learning strategy by comparing the proposed semi-supervised method to a fully
supervised method; (2) evaluate the impact of unlabeled training data, in terms of type and scale; and (3) evaluate
the performance of the proposed method on different types of sentences, in terms of types of building

codes/standards and levels of computability.

Evaluation Metrics

Semantic Relation Extraction Evaluation

Two metrics were used to evaluate the semantic relation extraction performance: accuracy and unlabeled attachment
score (UAS). Accuracy (Zhai and Massung 2016) was used to evaluate the extracted semantic relations in terms of
relation types, as shown in Eq. (3), where SRT is the set of words that are labeled with the correct type of semantic

relation and N is the total number of words in the regulatory sentence.
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UAS (Buchholz and Marsi 2006) was used to evaluate the extracted semantic relations in terms of head word indices,
as shown in Eq. (4), where SRI is the set of words that are linked to the correct head word and N is the total number

of words in the regulatory sentence.

UAS = —— 4)

Requirement Hierarchy Extraction Evaluation

The labeled attachment score (LAS) (Buchholz and Marsi 2006) was used to evaluate the overall performance of the
proposed method on extracting the requirement hierarchies from regulatory sentences, as shown in Eq. (5), where
SRI is the set of words that are linked to the correct head word, SRT is the set of words that are labeled with the
correct type of semantic relation, and A is the total number of words in the sentence.

_ISRI N SRT|

LA
S N

)

Semantic Relation Extraction Model Hyperparameter Optimization

The semantic relation extraction models and semi-supervised learning strategies were implemented using
TensorFlow built in Python 2 and run using the Tesla K80 GPU provided in Google Colaboratory. A five-fold cross
validation was conducted for optimizing the main hyperparameters of the model. For the cross validation, the
labeled training data were further split into two subsets — one set for model training and the other for model
validation. The values of other hyperparameters were determined based on the characteristics of the sentences used
in the experiments (e.g., the maximum sentence length is 100 and maximum token length is 20), or the practices
adopted by Clark et al. (2018) (e.g., the base learning rate is 0.5). The values of the optimized main hyperparameters

are shown in Table 2.

The hyperparameters were optimized through search including grid search and random search. For example, for the
dropout rate for labeled data and the dropout rate for unlabeled data, three values were tested: 0 (i.e., no dropout),
0.2, and 0.4. Thus, nine pairs of dropout rates were tested and compared in terms of all the evaluation metrics for
both semantic relation extraction and requirement hierarchy extraction. The model achieved the highest performance

when the dropout rates for unlabeled and labeled data were set as 0.4 and 0.2, respectively. The results indicate that
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373 models with no or very little dropout for any of the two types of data might overfit to the training data, while models

374 with large dropout for any of the two types of data might underfit to the training data.

375 Comparison of the Proposed Semi-supervised and Supervised Methods in Semantic Relation Extraction and
376  Requirement Hierarchy Extraction

377 In addition to the proposed semi-supervised learning-based method, a supervised method was developed (to serve as
378 a baseline) and tested for comparative evaluation. The supervised method uses the semantic parser proposed by
379 Chen and Manning (2014) and extracts the requirement hierarchies based on the generated semantic parsing trees.
380 The two methods were trained on the same labeled training data and were evaluated using the same testing data. As
381 shown in Table 3, the proposed semi-supervised method achieved better semantic relation extraction performance: it

382  outperformed the supervised method by 3.5% of accuracy, 3.0% of UAS, and 3.2% of LAS.

383 Performance of the Proposed Approach Using Semi-supervised Learning Strategy with Different Unlabeled
384 Training Data

385 Different Types of Unlabeled Training Data

386 Two types of unlabeled data were tested for comparative evaluation: the domain-general text data — the one-billion-
387 word language model benchmark data (Chelba et al. 2013), which consists of English news sentences — and the
388 domain-specific text data. The one-billion-word language model benchmark data were selected for comparison
389 because the dataset was used as a benchmark in many natural language understanding tasks, such as statistical
390 language modeling (e.g., Chelba et al. 2013) and semantic parsing (e.g., Clark et al. 2018) and the dataset is not

391 domain-specific. For this comparative evaluation, the model was trained using the same labeled data.

392 As shown in Table 4, the model achieved better performance when trained using domain-specific unlabeled data in
393 terms of both semantic relation extraction and requirement hierarchy extraction — the model trained using domain-
394 specific unlabeled data outperformed the one trained using general-domain unlabeled data by 2.2% of accuracy, 2.0%
395 of UAS, and 2.1% of LAS. The results indicate that the semantic and syntactic patterns in the domain-specific
396 unlabeled data increased the ability of the model to extract semantic relations defined in the same domain, especially
397 predicting the semantic relation types. Although the level of increase is not large, it shows the potential of enhancing
398 the performance of domain-specific semantic relation extraction models by leveraging domain-specific unlabeled

399 data. Domain-specific text data prepared using more types of regulatory documents in the AEC domain and with
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more tailored and elaborate data cleaning techniques could be tested in future research to further improve the benefit

of using such data.

Different Scales of Unlabeled Training Data

Four different scales of unlabeled data were tested for comparative evaluation: large [100 Megabyte (MB),
approximately 10,000,000 tokens], medium (10 MB, approximately 1,000,000 tokens), small (1 MB, approximately
100,000 tokens), and zero (0 MB, 0 tokens). For this comparative evaluation, the model was trained using the same

labeled data.

As shown in Table 5, the model achieved the best performance when trained using the large-size data, in terms of
both semantic relation extraction and requirement hierarchy extraction. For example, compared to the model trained
without (zero) unlabeled data, the one trained using the large unlabeled data increased the accuracy by 3.2%, UAS
by 4.0%, and LAS by 3.4%. The results indicate that as the scale of unlabeled training data increases, the model
benefits from the semantic and syntactic patterns contained in the extra data and hence its performance increases.
However, such increase (i.e., the increase of accuracy, UAS, and LAS per token) gradually diminishes due to both
the constraints on the architecture of the model (e.g., depth of the encoding layer) and the diversity and the
relativeness of the semantic and syntactic patterns contained in the data. Larger data sizes could be tested in future
research to assess the upper bound of the performance increase and the amount of additional unlabeled data required

to achieve such increase.

Performance of the Proposed Method on Semantic Relation Extraction and Hierarchy Extraction Across
Different Types of Regulatory Sentences

Performance Across Different Types of Building Codes and Standards

The trained semantic relation extraction model was evaluated using sentences from three different types of building
codes and standards: IBC, IECC, and ADA Standards. As shown in Table 6, the proposed method achieved high
performance across all three types, in terms of both semantic relation extraction and requirement hierarchy
extraction, indicating that the proposed method has high scalability and flexibility across different types of building
codes and standards. A slightly lower performance was shown for IECC, compared to the other two types, which is

likely due to unseen syntactic and semantic patterns in the training data (e.g., IECC-specific tokens such as “R-307).
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Performance Across Sentences with Different Levels of Computability

The performance of the trained semantic relation extraction model was evaluated across sentences with three
different levels of computability: moderately high, moderately low, and low computability, which are the top three
types of sentences in terms of computability that appear most frequently in building codes (e.g., they account for
22%, 39%, and 23% of a corpus of sentences from IBC and its amendments, respectively) (Zhang and El-Gohary
2021). Sentences with different levels of computability have different semantic and syntactic structures. For
example, sentences of moderately high computability have relatively simple syntactic and semantic structures,
sentences of moderately low computability have relatively complex syntactic and semantic structures, and sentences

of low computability have very complex syntactic and semantic structures.

Table 7 shows the performance of the proposed method across sentences with different levels of computability, in
terms of both semantic relation extraction and requirement hierarchy extraction. As expected, the performance
decreased for low-computability sentences. However, high performance (i.e., over 90% of accuracy, and over 85%
of both UAS and LAS) was still achieved for all three types, which indicates that the method has high scalability and
flexibility. Given their complexity, the performance level achieved on moderately low- and low-computability
sentences additionally indicates that the proposed method is able to extract semantic relations and requirement

hierarchies from hierarchically complex sentences.

Error Analysis

Two types of errors were identified based on the experimental results. First, the proposed method showed some
errors when dealing with multiword expressions or concepts that are domain-specific and include prepositions. For
example, the semantic relation (i.e., inner information element relation) within the multiword expression “path of
egress” (i.e., a subject in the requirement) was not correctly extracted. Second, some errors occurred in segmenting
the requirement units, which was caused by errors in differentiating between the inter requirement unit relation and
the inner requirement unit relation. For example, the semantic relation between “span” and “concrete” in the
sentence fragment “the clear span of the gypsum concrete” is an inner requirement unit relation, because the entire
sentence fragment forms a part of a requirement unit. However, the method misclassified it as an inter requirement
unit, and thus segmented “the clear span” and “of the gypsum concrete” into two different requirement units. Such

error also appeared for sentences with low computability. For example, the following sentence has four requirement
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units (i.e., “the area of a Group H-2 aircraft paint hangar shall not be limited”, “a Group H-2 aircraft paint hangar no
more than one story above grade plane”, “such aircraft is surrounded and adjoined by public ways or yards”, and
“not less in width than one and one-half time the building height”): “the area of a Group H-2 aircraft paint hangar no
more than one story above grade plane shall not be limited where such aircraft is surrounded and adjoined by public

ways or yards not less in width than one and one-half time the building height”. However, the method failed to

segment these requirement units correctly due to the high syntactic and semantic complexity of the sentence.

Limitations

Two limitations related to the proposed semantic relation and requirement hierarchy extraction method and the
conducted experiments are acknowledged. First, the proposed method was well-tested on individual building-code
sentences, but not on multi-sentence requirements. Additional experiments are needed to further evaluate the
performance of the proposed method on multi-sentence requirements — where both the proposed semantic relations
and requirement hierarchy and the proposed method would be directly applied, but additional efforts would be
needed for preparing both the labeled (e.g., expert annotation of semantic relations) and unlabeled domain-specific
data (e.g., heuristic rules for text cleaning). Second, although the proposed method and the proposed semantic
relations and requirement hierarchy have successfully addressed different text characteristics and different levels of
computability for different building codes and standards, they cannot address the semantic representation and
interpretation problems for all types of requirements, such as requirements that have hidden dependencies or
assumptions (Solihin and Eastman 2015, 2016) or requirements that require human judgment by nature. Further
research is needed to study the limit of the performance of such machine learning-based methods on these
challenging types of requirements, by (1) using a larger scale of labeled data or unlabeled data, or data with more
diversified semantic and syntactic patterns, (2) exploring more deep learning model structures (e.g., transformers-
based models), and (3) integrating additional external knowledge (e.g., legal practices) either in the current ACC
process (i.e., information extraction and transformation), or in downstream ACC processes (e.g., compliance

reasoning and information matching or disambiguation).

Contribution to the Body of Knowledge
This paper contributes to the body of knowledge in five main ways. First, the paper proposes a new representation,

the requirement hierarchy, to represent building-code requirements for supporting downstream ACC processes. The
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requirement hierarchy consists of requirement units, each of which further consists of semantic information elements
that define a simple requirement or a condition, and dependencies between the units. The requirement hierarchy
could facilitate automated (or semi-automated if desired) compliance checking by enabling the decomposition of
hierarchically complex requirements into units that are simple and readily processable by many of the existing ACC
systems, and representing and visualizing the semantic and syntactic structures for better comprehension of complex
requirements. Second, the paper proposes a set of semantic relations between words in regulatory-document
sentences, which can be used not only for requirement hierarchy extraction, but also in other regulatory text
analytics tasks such as requirement or sentence classification and knowledge graph extraction as features. Third, the
paper offers a method to extract requirement hierarchies from building codes and standards. It is the first effort to
automatically extract requirement hierarchies to facilitate the analysis of hierarchically complex regulatory
sentences for supporting ACC. The proposed method showed high performance across different types of regulatory
documents and across sentences with different levels of computability. Fourth, it is the first effort to use a deep
learning model that consists of LSTM and MLP to extract semantic relations from building codes and train the
model using a semi-supervised learning strategy. Fifth, this research leveraged both labeled data and large-scale
unlabeled text data to enhance the performance of the proposed method, increase the scalability and flexibility of the
method, and most importantly, significantly reduce the effort to prepare the labeled data for training the deep

learning models.

Conclusions and Future Work

In this paper, the requirement hierarchy, a new representation for representing AEC regulatory requirements, was
proposed to decompose sentences, especially the hierarchically complex ones, into much smaller, manageable
requirement units that would be directly processable using most of the existing ACC methods. The requirement
hierarchy consists of requirement units and dependencies between these units. To facilitate the extraction of such
requirement hierarchies, a set of semantic relations between words in regulatory sentences was also proposed. A
deep learning model, which consists of bi-directional LSTM and MLP, was used for extracting the hierarchies from
regulatory-document sentences. Two types of data — labeled data, which consist of sentences annotated with
semantic relations, and unlabeled data, which consists of AEC domain-specific regulatory text without any
annotation — were prepared for training and evaluating the model. The model was trained using a semi-supervised

learning strategy: it was alternatingly trained on the unlabeled and labeled training data, and the supervised and
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unsupervised loss were minimized, so that the model can learn from the semantic and syntactic patterns contained in
both types of training data. The extracted semantic relations and the original sentences were transformed into
requirement hierarchies using a hybrid width and depth first traversal-based algorithm, with rules for indexing the

requirement units and interpreting the dependencies between the units.

The proposed semantic relation model was trained on 100 MB of unlabeled text data from multiple types of
regulatory documents of the AEC domain, and labeled data that consisted of 540 annotated sentences from the IBC,
IECC, and ADA Standards. The trained model achieved an accuracy of 94.0%, a UAS of 90.1, and a LAS of 88.0,
indicating high semantic relation and requirement hierarchy extraction performance. The model achieved high
performance across different types of regulatory documents including IBC, IECC, and ADA Standards, and across

regulatory sentences with different levels of computability.

The experimental results also showed that the semi-supervised learning strategy improves the performance of the
relation extraction model by providing more semantic and syntactic patterns contained in the unlabeled training data.
The results also showed that the model’s performance increases when the amount of training data increases and
domain-specific unlabeled training data is used, indicating the potential of the proposed method to achieve higher
relation extraction performance if more unlabeled, domain-specific text data is used, which is significantly less

costly to prepare than labeled, domain-specific text data.

In their future work, the authors plan to improve the proposed method and leverage the semantic relation extraction
model in four directions. First, different deep learning model designs could be tested to enhance the semantic
relation extraction performance. For example, different model architectures (e.g., adding more LSTM layers in the
encoding layer) and recent deep neural network advances (e.g., transformers and attention mechanisms) could be
explored. Second, different semi-supervised learning strategies could be explored for leveraging large-scale, pattern-
rich unlabeled text data in the AEC domain. Third, the performance and flexibility of the model could be further
improved by increasing the amount, quality, and the relativeness of the unlabeled training data. For example, text
from more types of regulatory documents in the AEC domain such as local building-code amendments and contracts
could be used. Fourth, and most importantly, the authors will further use the proposed semantic relation-based
requirement hierarchy extraction method to improve automated processing and understanding of building codes, and

to integrate it with downstream processes such as information matching and compliance reasoning. Our ultimate
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goal is to leverage machine learning and other artificial intelligence (AI) approaches to reach a level where users can
automatically process the entire building code and represent it in a computable manner for fully automated
compliance checking, with minimum manual effort in developing the underlying models (e.g., for preparing the
training and testing data and for adapting the models to different types of building codes). Fifth, beyond automated
compliance checking applications, future research could explore how the proposed requirement representation could
support further code- and contract-analytics processes such as detecting conflicting or onerous requirements. The
computability of the representation, as well as its structured and semantic nature, would help leverage automated
analytics and Al techniques to support further diagnostic analytics tasks to identify potential conflicts among
different requirements within one document (e.g., a specific code) or across multiple documents (e.g., codes vs.
specifications), detect onerous contractual requirements, or diagnose other unfair situations like one-sided

contractual agreements.
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List of Figure Captions

Fig. 1. Example building-code sentences with different levels of semantic and syntactic complexities.

Fig. 2. Example building-code sentence with the corresponding requirement hierarchy.

Fig. 3. Example building-code sentence annotated with semantic relations.

Fig. 4. Research methodology.

Fig. 5. Semantic relation and requirement hierarchy extraction using the proposed method.

Fig. 6. Deep learning model for extracting semantic relations from regulatory sentences: architecture and example.

Fig. 7. Semi-supervised learning strategy for adapting and training the semantic relation extraction model using (a)

labeled data and (b) unlabeled data.

Fig. 8. Hybrid width and depth first traversal-based algorithm to convert regulatory sentences with semantic

relations to requirement hierarchies.
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Tables

Table 1. Semantic Information Elements for Representing Requirements for Compliance Checking (Zhang and El-
Gohary 2013, Zhang and El-Gohary 2021)

Semantic information element

Definition

Subject

IAn ontology concept representing a thing (e.g., building element) that is subject to a
articular requirement

Subject relation

IA term or phrase that defines the type of relation between two subjects, a subject and an
attribute, or a subject or an attribute and a quantity

Compliance checking attribute

IAn ontology concept representing a specific characteristic of a “subject” that is checked for
compliance

Deontic operator indicator

IA term/phrase that indicates the deontic type of the requirement (i.e., obligation, permission,
or prohibition)

Quantitative relation

|A term/phrase that defines the type of relation for the quantity (e.g., extend)

Comparative relation

IA term/phrase for comparing quantitative values, including “greater than or equal to,”
“greater than,” “less than or equal to,” “less than,” and “equal to”

Quantity value

IA numerical value that defines the quantity

Quantity unit

[The unit of measure for a “quantity value”

Reference

IA term or phrase that denotes the mentioning or reference to a chapter, section, document,

table, or equation in a regulatory document

Table 2. Optimized Main Hyperparameters for the Semantic Relation Extraction Models

Hyperparameter Value
Batch size for labeled training data 60
Batch size for unlabeled training data 60
Dimension of the input layer 50
Dimension of the bidirectional long short-term memories (LSTM) 512
layers in the encoding layer
Dimension of the output layer 512
Dropout rate for labeled data 0.4
Dropout rate for unlabeled data 0.2
Table 3. Performance of Proposed Semi-supervised and Supervised Methods
Semantic relation Requirement hierarchy
Requirement hierarchy extraction extraction extraction
method Aceurac Unlabeled attachment Labeled attachment
Y score (UAS) score (LAS)
Semi-supervised learning-based 94.0% 90.0% 87.2%
method
Supervised learning-based method 90.5% 87.0% 84.0%

'Bolded font indicates highest performance.

Table 4. Performance of Proposed Method Across Different Types of Unlabeled Training Data

Semantic relation Requirement hierarchy
. extraction extraction
Type of unlabeled training data Aceurac Unlabeled attachment Labeled attachment
y score (UAS) score (LAS)
Domain-specific text 94.0% 90.0% 87.2%
Domain-general text 91.8% 88.0% 85.1%

'Bolded font indicates highest performance.
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701 Table 5. Performance of Proposed Method with Different Scales of Unlabeled Training Data

Semantic relation Requirement hierarchy
Scale of unlabeled training data in Megabyte extraction extraction
(MB) and approximate number of tokens Accurac Unlabeled attachment Labeled attachment
y score (UAS) score (LAS)
Large (100 MB, 10,000,000 tokens) 94.0% 90.0% 87.2%
Medium (10 MB, 1,000,000 tokens) 92.3% 87.9% 85.3%
Small (1 MB, 100,000 tokens) 91.3% 86.5% 84.5%
Zero (0 MB, 0 tokens) 90.8% 86.0% 83.8%
702 'Bolded font indicates highest performance.
703
704 Table 6. Performance of Proposed Method Across Different Types of Building Codes and Standards
Semantic relation Requirement hierarchy
Type of reeulatory document extraction extraction
yp & y A Unlabeled attachment Labeled attachment
ceuracy score (UAS) score (LAS)
International Building Code 95.0% 91.8% 88.9%
International Energy Conservation Code  93.0% 86.9% 83.4%
ADA Standards 95.0% 92.0% 89.3%
705
706 Table 7. Performance of Proposed Method Across Sentences with Different Levels of Computability
Semantic relation Requirement hierarchy
Computability level of regulatory extraction extraction
sentences Accuracy Unlabeled attachment Labeled attachment
score (UAS) score (LAS)
Moderately high 95.0% 92.1% 89.2%
Moderately low 96.0% 91.2% 89.5%
Low 93.0% 89.4% 85.9%
707
708
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