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Abstract  9 

Most of the existing automated code compliance checking (ACC) systems are unable to fully automatically convert 10 

building-code requirements, especially requirements that have hierarchically complex semantic and syntactic 11 

structures, into computer-processable forms. The state-of-the-art rule-based ACC methods that are able to deal with 12 

complex requirements are based on information extraction and transformation rules, which are inflexible when 13 

applied to different types of regulatory documents. More research is, thus, needed to develop a flexible method to 14 

automatically process and understand requirements to support the downstream tasks in ACC systems such as 15 

information matching and compliance reasoning. To address this need, this paper proposes (1) a new representation 16 

of requirements, the requirement hierarchy, and (2) a deep learning-based method to automatically extract semantic 17 

relations between words from building-code sentences, which are used to transform the sentences into such 18 

hierarchies. The proposed method was evaluated using a corpus of sentences from multiple regulatory documents. It 19 

achieved high semantic relation and requirement hierarchy extraction performance. 20 

Keywords: Requirement representation; Semantic relation extraction; Code checking; Deep learning; Semi-21 

supervised learning. 22 

Introduction 23 

Building designs are governed by a variety of regulatory documents (e.g., building codes, standards, and 24 

specifications) in the architecture, engineering, and construction (AEC) domain. To reduce the time, cost, and error 25 

of the process of checking the compliance of building designs with these regulatory documents, various automated 26 

compliance checking (ACC) systems have been developed. Existing ACC systems require that the regulatory 27 

information (e.g., subjects, compliance checking attributes, and quantity values and units) is first extracted from 28 
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natural language regulatory-document sentences and converted into computer-processable forms. Although these 29 

ACC systems have achieved different levels of automation, representativeness, and accuracy, most of them are 30 

unable to extract and convert the regulatory information in a fully automated way (Nawari 2019; Bloch and Sacks 31 

2020; Sacks et al. 2020). This can be attributed to two factors/challenges: (1) the complexity of the task at hand, in 32 

terms of text characteristics and level of analytics needed, and (2) the limitations of the approaches used.  33 

Automatically converting natural-language requirements into computable rules is not an easy task for two reasons. 34 

First, different from other types of text (e.g., social media posts), sentences in the regulatory documents usually have 35 

hierarchically complex semantic and syntactic structures (e.g., nested clauses, conjunctive and alternative 36 

obligations, multiple restrictions or exceptions, etc., see Fig. 1) (Zhou and El-Gohary 2017), and thus are more 37 

challenging for computers to automatically process, represent, and understand. Second, different from other 38 

applications [e.g., sentiment analysis or shallow information extraction (e.g., Marzouk and Enaba 2019, Akanbi and 39 

Zhang 2021)], ACC requires full understanding of the text to correctly capture the meaning of the requirements 40 

including the alternatives, restrictions, and exceptions, etc. (Beach et al. 2020; Solihin et al. 2020; Xue and Zhang 41 

2020), which adds to the challenge.  42 

The other factor is the limitations of the approaches used. First, most of the existing ACC methods that can represent, 43 

process, or check regulatory requirements are not fully automated, requiring intensive human effort. For example, 44 

manual encoding-based ACC methods require professionals to read the regulatory text and then encode these 45 

sentences into computer-processable forms, such as the Building Environment Rule and Analysis language (Lee et 46 

al. 2015), regulatory knowledge query language (Dimyadi et al. 2016), and visual language for compliance checking 47 

(Preidel and Borrmann 2016). Annotation-based ACC methods require professionals to read the regulatory text and 48 

then annotate the sentences with a set of predefined semantic labels or markups that indicate the semantic roles or 49 

the semantic relations between these roles in the context of compliance checking. For example, Hjelseth and Hisbet 50 

(2011) defined the requirement, application, selection, and exception (RASE) markups to manually annotate the 51 

sentences from the International Building Code (IBC) via the Smartcode user interface for supporting compliance 52 

checking. Second, efforts that have achieved full automation, which are very limited in number, have scalability 53 

limitations. For example, rule-based methods have achieved the state-of-the-art performance in extracting regulatory 54 

information and transforming the extracted information into computer-processable forms, while only requiring 55 
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limited human effort (e.g., Zhang and El-Gohary 2013; Li et al. 2016; Zhou and El-Gohary 2017; Kim et al. 2019). 56 

However, rule-based methods usually lack flexibility and scalability, because the rules for extraction are developed 57 

manually by experts and may need to be updated or adapted when applied to a different type of regulatory document 58 

or when the document goes through major updates. In contrast, machine learning methods, instead of relying on 59 

hand-crafted rules, develop computational models that automatically capture the underlying semantic and syntactic 60 

patterns of the training text and have a good capability of generalizing to a variety of text. Particularly, deep learning 61 

approaches have shown increased capabilities in text analytics (LeCun et al. 2015). However, such deep learning 62 

methods have not been leveraged in analyzing the semantic and syntactic structures of AEC domain-specific 63 

regulatory text in the context of ACC.  64 

To address the aforementioned challenges, this paper proposes a deep learning-based approach to automatically 65 

convert building-code sentences, especially the structurally complex ones, into smaller, easier-to-digest, and less-66 

complex interconnected units of requirements for facilitating the succeeding steps of ACC such as compliance 67 

reasoning.  The proposed approach is threefold.  First, this paper proposes a new representation of requirements for 68 

supporting ACC-related building-code analytics – the requirement hierarchy – to decompose the sentences into the 69 

interconnected requirement units. Each requirement hierarchy consists of one or more requirement units and the 70 

dependencies between the units, with each unit representing a simple requirement or condition that can be processed 71 

by most of the existing ACC systems. Second, the paper proposes a set of semantic relations between words in 72 

sentences, which are used to segment and link the units and construct the requirement hierarchies. Third, the paper 73 

proposes a deep learning-based method to automatically extract these semantic relations and transform the building-74 

code sentences with the relations into requirement hierarchies. The proposed method uses a semi-supervised 75 

learning strategy to train the deep learning models on both labeled and unlabeled building-code text data. 76 

Background   77 

Semantic Representations of Natural-langue Requirements  78 

In the AEC domain, different types of semantic representations have been developed and used for representing, 79 

processing, and checking natural-language requirements by computers in ACC systems. For example, Hjelseth and 80 

Nisbet (2011) proposed a set of markups including the requirement, applicability, selection, and exception (RASE) 81 

for supporting the annotation of normative requirements. Solihin and Eastman (2016) used conceptual graphs to 82 
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represent building-code requirements, where nodes and edges represent the entities and relations contained in the 83 

requirements. Sydora and Stroulia (2020) developed a BIM-based rule language for describing interior design rules. 84 

Yurchyshyna and Zarli (2009) and Xu and Cai (2020) used modeling languages such as SPARQL protocol and 85 

Resource Description Framework (RDF) query language to represent requirements as queries to the BIM models. 86 

Häußler et al. (2021) adopted the Business Process Model and Notation (BPMN) and Decision Model and Notation 87 

(DMN), which are graphical representations for specifying business and management processes, for supporting rule 88 

representation. Despite the importance of these representations, they are limited in supporting fully automated (i.e., 89 

without manually crafted rules or human annotations) conversion of natural-language requirements into computable 90 

rules.  91 

Deep Learning for Text Analytics 92 

Deep learning methods use computational models that consist of multiple layers to capture different levels of 93 

information representations from large-scale data (LeCun et al. 2015). Deep learning methods have drastically 94 

improved the state-of-the-art performance in automatically processing and understanding different types of data, 95 

including image, video, and text, and meanwhile reduced or eliminated the manual effort in feature engineering 96 

compared to traditional machine learning methods. Recurrent neural networks (RNN) are deep learning models 97 

consisting of internal states specifically designed to process sequential data, such as text (sequences of words) and 98 

time series (sequences of quantity values). However, original RNN units suffer from vanishing gradient problems 99 

and are unable to capture long-term dependencies. Thus, two variants of the original RNN units, long short-term 100 

memories (LSTM) (Greff et al. 2016) and gated recurrent units (GRU) (Cho et al. 2014) have been proposed and 101 

adopted.  102 

RNN have been widely used in natural language understanding tasks including machine translation [e.g., sequence-103 

to-sequence RNN model for machine translation (Sutskever et al. 2014)], semantic analysis [e.g., bidirectional 104 

LSTM and multiplayer perceptron (MLP) for dependency parsing and part-of-speech tagging (Clark et al. 2018)], 105 

and information extraction [e.g., bidirectional LSTM and conditional random fields (CRF) for extracting named 106 

entities (Lample et al. 2016)]. However, only limited research efforts have been focused on RNN-based methods to 107 

solve text analysis problems in the AEC domain. Pan and Zhang (2020) developed RNN-based models to mine 108 

information from building information modeling (BIM) log data to support design decisions. Zhang and El-Gohary 109 
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(2020) developed encoder-decoder models that consist of LSTM layers to generate semantically enriched building-110 

code sentences to facilitate automatic semantic analysis of regulatory documents. Zhang and El-Gohary (2021) used 111 

bidirectional LSTM and CRF with transfer learning strategies for extracting semantic and syntactic information 112 

elements (e.g., subjects, compliance checking attributes, and quantity values and units) from building-code 113 

sentences for supporting compliance checking. 114 

Semi-supervised Learning 115 

Semi-supervised learning is a machine learning approach that learns from both labeled and unlabeled data. Semi-116 

supervised learning approaches combine the supervised and unsupervised learning approaches by leveraging 117 

unlabeled data to improve the performance, flexibility, and scalability of machine learning models trained using 118 

labeled data. Examples of recent semi-supervised learning approaches in the domains of computer vision and natural 119 

language understanding include (1) creating labels for unlabeled data using labeling functions (e.g., Ye and Ling 120 

2019; Ratner et al. 2020; Sohn et al. 2020); (2) capturing the underlying structures from both labeled and unlabeled 121 

data using data augmentation methods (e.g., Miyato et al. 2018, Berthelot et al. 2019; Sohn et al. 2020); and (3) 122 

improving the representativeness of deep learning models by training the models simultaneously on both unlabeled 123 

and labeled data (e.g., Clark et al. 2018, Chen et al. 2020). 124 

Semi-supervised learning-based methods have been proposed to solve various AEC domain-specific tasks. For 125 

example, Naganathan et al. (2016) used semi-supervised learning and clustering techniques to automate the 126 

identification of the loss factors contributing to the energy loss during transmission for facilitating building energy 127 

modeling. Yang et al. (2016) used a semi-supervised learning algorithm to automatically detect near-miss falls in 128 

ironwork based on worker's kinematic data captured from wearable inertial measurement units. Liu and El-Gohary 129 

(2017) used ontology-based semi-supervised CRF for automated information extraction from bridge inspection 130 

reports. 131 

State of the Art and Knowledge Gaps in Semantic Relation Extraction 132 

Semantic relation extraction aims to detect and classify the semantic relationships between words or phrases in 133 

natural-language text. Examples of such relations include entity relations (e.g., Ratner et al. 2020), event relations 134 

(e.g., Wang et al. 2020), and word dependencies (e.g., Liu and El-Gohary 2021). Rule-based semantic relation 135 

extraction methods use rules that are usually manually developed based on domain ontologies, dictionaries, 136 
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gazetteers, knowledge bases, and/or syntactics such as part-of-speech tags for the extraction (e.g., Ravikumar et al. 137 

2017, Farahmand et al. 2020). Rule-based methods have been used in the AEC domain to extract domain-specific 138 

semantic relations for supporting various downstream tasks. For example, Al Qady and Kandil (2010) developed 139 

rules based on the shallow parsing of sentences to extract semantic relations from construction contract documents 140 

for improving document management. Zhang and El-Gohary (2013, 2015) developed a rule-based, semantic natural 141 

language processing approach to extract information from regulatory documents including building codes and 142 

transform them into logic clauses for supporting ACC. Despite the wide use of rule-based methods, in general, they 143 

do not scale well when the characteristics of the text change – the rules might need additions or modifications to 144 

deal with the different text characteristics (Zhou and El-Gohary 2017; Sacks et al. 2020).  145 

Machine learning-based methods, rather than relying on experts for developing relation extraction rules, employ 146 

machine learning models to automatically learn the semantic and syntactic patterns from existing text data, based on 147 

which the relations are detected from new text data. Supervised learning-based relation extraction methods (e.g., 148 

Wang et al. 2020, Liu and El-Gohary 2021) require labeled data – text data annotated with semantic relations. 149 

Compared to rule-based methods, supervised learning-based methods have achieved a higher level of flexibility and 150 

scalability, but they often suffer from lack of training data due to the high cost of annotating the data. Semi-151 

supervised learning-based methods (e.g., Ratner et al. 2020, Hu et al. 2020), on the other hand, allow for improving 152 

the models trained on small-scale labeled data using large-scale unlabeled data. For application in the ACC domain, 153 

there is a lack of research efforts to leverage semi-supervised learning in building-code analytics; and, most of the 154 

semantic relations studied in the aforementioned efforts (outside of the AEC domains) cannot capture the semantic 155 

and syntactic structural characteristics of AEC domain-specific regulatory text in the context of ACC.  156 

Proposed Requirement Hierarchy and Semantic Relations for Supporting Automated Compliance Checking 157 

Requirement Hierarchy 158 

This paper proposes a new semantic representation – requirement hierarchy – to model building-code requirements, 159 

including hierarchically complex requirements with restrictions and/or exceptions for automated representation, 160 

processing, and understanding of these requirements for supporting ACC. A requirement hierarchy aims to represent 161 

a building-code requirement in a hierarchical structure that consists of several requirement units and the 162 

dependencies between these units.  163 
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A requirement unit, which consists of only essential semantic information elements (see Table 1), describes a 164 

requirement or a constraint on a subject or a compliance checking attribute for supporting compliance checking. 165 

Thus, each unit has one subject, one compliance checking attribute, or both, and may or may not have other types of 166 

information elements. Each unit does not have any secondary semantic information elements such as restrictions and 167 

exceptions, and thus is easily processable by most of the existing ACC methods and applications.  168 

There are two types of dependencies between the requirement units: simple dependency and complex dependency. 169 

Simple dependencies include conjunctions (e.g., “and”) and disjunctions (e.g., “or”). Complex dependencies include 170 

exceptions (e.g., “egress doors shall be side-hinged swinging type, except for doors serving a bathroom within a 171 

sleeping unit in Group R-1”) and restrictions (e.g., “the door between a private garage and a dwelling unit”). The 172 

restrictions can be further classified as locative, attributive, and other restrictions (e.g., restrictions indicating the 173 

time, manner, or purpose) in terms of the content of the restriction or how the restriction is applied to the restricted 174 

requirement unit. The restrictions can also be classified as subject, attribute, and quantity restrictions in terms of 175 

which type of semantic information element in the restricted requirement unit is applied to.  176 

Fig. 2 shows an example building-code sentence from IBC 2018 and the requirement hierarchy corresponding to the 177 

sentence. The example sentence is modeled as a requirement hierarchy consisting of three requirement units, where 178 

unit 1 is the main unit and units 2 and 3 are restrictions of the main unit. 179 

Semantic Relations 180 

This paper proposes a set of semantic relations to (1) link single words in a regulatory sentence/requirement into 181 

multi-terms concepts (i.e., the semantic information elements); (2) link these semantic information elements into 182 

requirement units; and (3) link these requirement units into a requirement hierarchy. Four types of relations were 183 

defined: inner information element, inner requirement unit, inter requirement unit, and root semantic relations.  An 184 

inner information element relation is a relation between two words, where the words belong to a single semantic or 185 

syntactic information element in a requirement unit. An inner requirement unit relation is a relation between two 186 

words, where the words belong to a single requirement unit, but to two different information elements. An inter 187 

requirement unit relation is a relation between two words, where the words belong to two different requirement units. 188 

An inter requirement unit relation may also exist between words in different sentences that form a single 189 

requirement (i.e., a multi-sentence requirement); however, for this paper, the analysis of semantic relations and 190 
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requirement hierarchies is at the individual sentence-level. A root semantic relation is a relation that denotes the 191 

starting word for transforming a sentence annotated with semantic relations into a requirement hierarchy. Thus, each 192 

sentence must have one and only one word associated with the root relation. Fig. 3 shows the semantic relations 193 

between the words in the example building-code sentence (same as the sentence used in Fig. 2).   194 

Proposed Deep Learning-based Method for Semantic Relation and Requirement Hierarchy Extraction  195 

The proposed deep learning-based method is composed of two primary components: (1) a deep learning model for 196 

semantic relation extraction, and (2) an algorithm for transforming regulatory sentences with semantic relations into 197 

requirement hierarchies. The research methodology included five main steps, as per Fig. 4: data preparation, 198 

semantic relation extraction model development, model training using a semi-supervised learning strategy, semantic 199 

relation-based requirement hierarchy construction, and evaluation. An example to illustrate how the requirement 200 

hierarchies are extracted from building codes using the proposed method is shown in Fig. 5. 201 

Data Preparation 202 

Labeled Data Preparation 203 

The labeled data – regulatory sentences that are represented in the form of the requirement hierarchy and are labeled 204 

with the four semantic relations – were prepared for training the semantic relation extraction model and evaluation. 205 

The labeled data were prepared following three steps: corpus preparation, sentence selection, and annotation. First, a 206 

small-scale corpus was constructed, which consists of text from multiple codes and standards in the AEC domain, 207 

including the IBC, International Energy Conservation Code (IECC), Americans with Disabilities Act (ADA) 208 

Standards for Accessible Design, and building-code amendments (e.g., the Champaign IBC Amendments). All 209 

documents were converted to the text file format (i.e., .txt) and combined into a single corpus. The corpus was then 210 

converted to sentences following two steps – sentence segmentation and sentence tokenization. Sentence 211 

segmentation aims to detect the sentence boundaries (e.g., punctuations) and segment the text into sentences. 212 

Sentence tokenization aims to further split the sentences into tokens (e.g., words). Second, a group of 600 sentences, 213 

which consists of about 15,000 words, were randomly selected from the developed corpus. The selected sentences 214 

have different levels of computability. Computability is defined as the ability of the building-code sentence to be 215 

represented and processed by a computer in an effective manner (Zhang and El-Gohary 2021). Third, a group of 216 

four experts – two from academia (faculty) and two from industry – annotated each word in the selected sentences 217 



9 
 

with the proposed semantic relations. A purposive sampling strategy, which pinpoints a specific type of participants 218 

according to predefined selection criteria (Clark and Creswell 2008), was adopted for selecting the experts. Three 219 

main selection criteria were defined: (1) expertise in the AEC domain; (2) familiarity with building codes and 220 

compliance checking processes; and (3) awareness of natural language processing and text analytics techniques. 221 

Each expert independently annotated the entire set of selected sentences, and the initial inter-annotator agreement 222 

was 80% in F1 measure, indicating good reliability of the annotations (Pestian et al. 2012). The discrepancies among 223 

the annotations were then resolved by the experts to reach full agreement on the final annotations. The labeled data 224 

were split into two sets using a 9:1 ratio: training and validation dataset and testing dataset. The first dataset was 225 

further split into a training set (for training the model) and a validation set (for tuning the hyperparameters of the 226 

model) for cross-validation. The testing dataset was used for evaluation only.  227 

Unlabeled Data Preparation 228 

The unlabeled data – a large corpus consisting of sentences and sentence fragments from a collection of multiple 229 

regulatory documents in the AEC domain – were prepared for training the semantic relation extraction model using 230 

a semi-supervised learning strategy. The corpus consists of a total of 20,000 sentences, or about 200,000 tokens, and 231 

the size of the entire corpus is 100 Megabytes. The collection used to build the corpus includes four main types of 232 

regulatory documents: (1) building codes published by the International Code Council (ICC) (e.g., IBC, IECC, 233 

International Residential Code, etc.), (2) local regulatory documents in the AEC domain (e.g., Champaign building 234 

code amendments), (3) standard specifications (e.g., MasterFormat specification), and (4) other regulatory 235 

documents (e.g., Occupational Safety and Health Standard 1910). The documents of different formats were 236 

converted to the TXT format and combined into a single file. The file was then cleaned based on heuristic rules that 237 

(1) filter out noises introduced during file format conversion; (2) filter out short-word sequences or fragments that 238 

are likely to have no semantic relations (e.g., section headings and standalone words and phrases); and (3) filter out 239 

non-textual sequences (e.g., sequences of symbols, numbers, and units converted from equations and tables in the 240 

documents). Examples of the rules used include: remove candidate sentences and sentence fragments that (1) have 241 

less than 20 characters or have less than five tokens, (2) do not have verbs of any form, or (3) start with section 242 

indices. 243 

 244 
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Semantic Relation Extraction Model Development 245 

The deep-learning model (Dozat and Manning 2016) – the LSTM with MLP – was adopted as the base model for 246 

extracting the semantic relations from the regulatory sentences, where LSTM learns the representations of words (or 247 

tokens) in the sentences to extract the semantic relations, and MLP, on top of the LSTM, further classifies the 248 

extracted relations given the learnt representations. The model consists of three types of layers: the input layer, the 249 

encoding layer, and the output layer, as shown in Fig. 6.  250 

Input Layer 251 

The input layer aims to represent the semantics of each word in a vector representation for deep neural network 252 

computation purposes. Pretrained word embeddings were used to initialize the weights in the input layer. Pretrained 253 

word embeddings are vector representations of words learned on a large, cross-domain corpus by training a machine 254 

learning model on the corpus. The word embeddings that were learned by applying the Global Vectors for Word 255 

Representation (GloVe) algorithm (Pennington et al. 2014) on a corpus consisting of Wikipedia 2014 and Gigaword 256 

5 were adopted. The adopted word representations consist of vector representations of 40,000 uncased English 257 

words, which have a dimension of 300.  258 

Encoding Layer 259 

The encoding layer aims to further learn the contextual vector representations of each word in the input sentence that 260 

is discriminative in terms of the semantic relation extraction task. Two strategies were adopted when developing the 261 

encoding layer for improved semantic relation extraction performance. First, to enhance the capability of the model 262 

to capture long-term semantic and syntactic dependencies that exist in hierarchically complex regulatory sentences, 263 

bidirectional LSTM layers were employed. Each such layer consists of a backward and a forward LSTM layer for 264 

using the representations of both forward and backward context words when learning the representation of the 265 

current word.  266 

Second, to improve the capability of the model in reducing overfitting, dropout layers were added. The layers drop a 267 

random fraction of the LSTM units in the encoding layer during the training of the model, according to dropout 268 

probabilities. Two dropout probabilities were used, one for training using the unlabeled data and the other using the 269 

labeled data. Typically, the dropout probabilities are between 0 and 0.5, which means that less than half of the 270 
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LSTM units are dropped and the rest of the LSTM units are retained. The dropout layers are disabled during the 271 

evaluation and future use of the semantic relation extraction model (i.e., use in the ACC system).  272 

Output Layer 273 

For each pair of words in the regulatory sentence, the output layer aims to predict (1) whether there is a semantic 274 

relation linking the two words and (2) the type of the semantic relation if it exists. The output layer consists of MLP 275 

layers and a softmax function. For two words d and h in a sentence, given their encoded representations (denoted as 276 

𝑧𝑑 and 𝑧ℎ) generated by the encoding layers and a specific type of semantic relation r, the MLP layers computes a 277 

score [denoted as 𝑠(𝑧𝑑 , 𝑧ℎ, 𝑟)]. For each word in the sentence, the scores corresponding to the word and all the other 278 

words in the sentence, with all possible types of relations, are normalized into a probability distribution through the 279 

softmax function. Thus, the probability that a word d is linked to another word h by a specific type of semantic 280 

relation r is 𝑝(𝑑, ℎ, 𝑟) =  
𝑠(𝑑,ℎ,𝑟)

∑ 𝑠(𝑑,ℎ,𝑟)ℎ∈𝑊,𝑟∈𝑅
, where W is the set of all words in the sentence in which d and h are located 281 

and R is the set of all possible types of semantic relations. Thus, for each word in a sentence of length |𝑊|, the 282 

output layer evaluates all |𝑊||𝑅| different semantic relations and the final semantic relation predicted by the output 283 

layer is the one that has the highest probability.  284 

Model Training 285 

To enable the training of the semantic relation extraction model on both labeled and unlabeled data, the semi-286 

supervised training strategy proposed by Clark et al. (2018) was adopted. In each iteration during the training 287 

process, the model was first trained on a batch of labeled data [as shown in Fig. 7 (a)] and then trained on a batch of 288 

unlabeled data [as shown in Fig. 7 (b)], so that the model learns from the labeled and unlabeled data simultaneously.  289 

When the model is trained on the labeled data, the objective function 𝐿𝑠 that describes the difference between the 290 

semantic relation from the gold standard, denoted as 𝑦, and the semantic relation c predicted by the model 𝜃 for the 291 

word x, is minimized, as shown in Eq. (1) (Clark et al. 2018), where D is the batch of labeled data, C is the set of all 292 

possible semantic relations, and 𝑝𝜃(𝑐|𝑥) is the probability of c given the input word x generated by the softmax 293 

layer in the output layer of the model. 294 

𝐿𝑠(𝜃) =
1

|𝐷|
∑ ∑ 1𝑦=𝑐 log 𝑝𝜃(𝑐|𝑥)

𝑐∈𝐶𝑥,𝑦∈𝐷

                                                                                                                               (1) 295 
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The model is trained on the unlabeled data following three steps (Clark et al. 2018). First, for each word in a 296 

sentence in the unlabeled data, modified versions of the original sentence were created by removing the preceding or 297 

following words in the sentence. Second, the original and modified sentences were provided to the semantic relation 298 

extraction model as input separately. Third, the objective function 𝐿𝑢  that describes the difference between the 299 

probability distribution generated by the output layer for the original sentences, denoted as 𝑝𝜃
𝑜(𝑐|𝑥) , and the 300 

probability distribution generated by the output layer m for the modified sentences, denoted as 𝑝𝜃
𝑚(𝑐|𝑥) , is 301 

minimized, as shown in Eq. (2) (Clark et al. 2018), where D is the batch of unlabeled data, M is the set of all output 302 

layers for modified sentences for unsupervised learning, and KL is the Kullback–Leibler divergence. The parameters 303 

of the output layer for supervised learning are fixed and only the parameters of the other layers are updated during 304 

the training on the unlabeled data. By being trained to minimize the semantic relation extraction results attained 305 

using the original and modified sentences, the model improves its ability to capture contextual syntactic and 306 

semantic information that can support semantic relation extraction. 307 

𝐿𝑢(𝜃) =
1

|𝐷|
∑ ∑ 𝐾𝐿(𝑝𝜃

𝑜(𝑐|𝑥)||𝑝𝜃
𝑚(𝑐|𝑥))

𝑚∈𝑀𝑥∈𝐷

                                                                                                              (2) 308 

Semantic Relation-based Requirement Hierarchy Construction 309 

A hybrid width and depth first traversal-based algorithm was used to convert the regulatory sentences annotated 310 

with semantic relations to the form of the requirement hierarchy, as shown in Fig. 8. For applying this algorithm, 311 

two types of data structures were maintained. First, the sentence (i.e., words) with the semantic relations is modeled 312 

as a directed graph, where the words are the vertices and the semantic relations are the edges, and for each edge, its 313 

direction is from the node corresponding to the dependent word to the node corresponding to the head word. Second, 314 

the requirement hierarchy was constructed by updating three lists: two lists of requirement units, unfinished and 315 

finished requirement units, and one list of the dependencies between requirement units.  316 

The algorithm consists of three main stages. First, the algorithm starts at the node corresponding to the word 317 

annotated with the root semantic relation. Meanwhile, the unfinished requirement unit list is initialized with one 318 

empty requirement unit. Second, the algorithm traverses the entire graph along the edges. At each node, the 319 

algorithm traverses the edges that point to the node, according to the following order: inner information element 320 

semantic relations, inner requirement unit semantic relations, and inter requirement unit semantic relations (as 321 
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shown in Fig. 8). The words corresponding to the traversed nodes and the semantic relations corresponding the 322 

traversed edges are added to the lists. Third, the algorithm terminates when all the nodes are traversed. The finished 323 

requirement unit list and the dependency list together are the final requirement hierarchy. 324 

Additionally, two rules are applied to index the requirement units and interpret the dependencies between the 325 

requirement units. First, the requirement units are indexed based on the order that they appear in the unfinished 326 

requirement unit list (e.g., the empty requirement unit contained in the unfinished requirement unit list when 327 

initialized is indexed as the first requirement unit), and the first requirement unit is the main requirement unit of the 328 

requirement hierarchy, which does not act as a restriction or an exception to any other requirement units. Second, the 329 

dependencies between two requirement units are interpreted based on the type of semantic relation that link the 330 

words in these two requirement units – one requirement unit is a restriction or an exception of the other requirement 331 

unit if there is a inter requirement unit semantic relation linking a word (i.e., the dependent word) in the first 332 

requirement unit to a word (i.e., the head word) in the second requirement unit. 333 

Experimental Results and Analysis 334 

A set of experiments were conducted to first optimize the hyperparameters of the proposed model for cross-335 

validation and then to assess the performance of the proposed method in ablation studies to better understand the 336 

impact of the important components of the method. Three ablation experiments were conducted to (1) evaluate the 337 

impact of the semi-supervised learning strategy by comparing the proposed semi-supervised method to a fully 338 

supervised method; (2) evaluate the impact of unlabeled training data, in terms of type and scale; and (3) evaluate 339 

the performance of the proposed method on different types of sentences, in terms of types of building 340 

codes/standards and levels of computability. 341 

Evaluation Metrics 342 

Semantic Relation Extraction Evaluation 343 

Two metrics were used to evaluate the semantic relation extraction performance: accuracy and unlabeled attachment 344 

score (UAS). Accuracy (Zhai and Massung 2016) was used to evaluate the extracted semantic relations in terms of 345 

relation types, as shown in Eq. (3), where SRT is the set of words that are labeled with the correct type of semantic 346 

relation and N is the total number of words in the regulatory sentence.  347 
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Accuracy =
|𝑆𝑅𝑇| 

𝑁
                                                                                                                                                                     (3)   348 

UAS (Buchholz and Marsi 2006) was used to evaluate the extracted semantic relations in terms of head word indices, 349 

as shown in Eq. (4), where SRI is the set of words that are linked to the correct head word and N is the total number 350 

of words in the regulatory sentence.  351 

UAS =
|𝑆𝑅𝐼| 

𝑁 
                                                                                                                                                                                (4)   352 

Requirement Hierarchy Extraction Evaluation 353 

The labeled attachment score (LAS) (Buchholz and Marsi 2006) was used to evaluate the overall performance of the 354 

proposed method on extracting the requirement hierarchies from regulatory sentences, as shown in Eq. (5), where 355 

SRI is the set of words that are linked to the correct head word, SRT is the set of words that are labeled with the 356 

correct type of semantic relation, and N is the total number of words in the sentence. 357 

LAS =
|𝑆𝑅𝐼 ∩ 𝑆𝑅𝑇|

𝑁
                                                                                                                                                                     (5) 358 

Semantic Relation Extraction Model Hyperparameter Optimization 359 

The semantic relation extraction models and semi-supervised learning strategies were implemented using 360 

TensorFlow built in Python 2 and run using the Tesla K80 GPU provided in Google Colaboratory. A five-fold cross 361 

validation was conducted for optimizing the main hyperparameters of the model. For the cross validation, the 362 

labeled training data were further split into two subsets – one set for model training and the other for model 363 

validation. The values of other hyperparameters were determined based on the characteristics of the sentences used 364 

in the experiments (e.g., the maximum sentence length is 100 and maximum token length is 20), or the practices 365 

adopted by Clark et al. (2018) (e.g., the base learning rate is 0.5). The values of the optimized main hyperparameters 366 

are shown in Table 2. 367 

The hyperparameters were optimized through search including grid search and random search. For example, for the 368 

dropout rate for labeled data and the dropout rate for unlabeled data, three values were tested: 0 (i.e., no dropout), 369 

0.2, and 0.4. Thus, nine pairs of dropout rates were tested and compared in terms of all the evaluation metrics for 370 

both semantic relation extraction and requirement hierarchy extraction. The model achieved the highest performance 371 

when the dropout rates for unlabeled and labeled data were set as 0.4 and 0.2, respectively. The results indicate that 372 
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models with no or very little dropout for any of the two types of data might overfit to the training data, while models 373 

with large dropout for any of the two types of data might underfit to the training data. 374 

Comparison of the Proposed Semi-supervised and Supervised Methods in Semantic Relation Extraction and 375 

Requirement Hierarchy Extraction 376 

In addition to the proposed semi-supervised learning-based method, a supervised method was developed (to serve as 377 

a baseline) and tested for comparative evaluation. The supervised method uses the semantic parser proposed by 378 

Chen and Manning (2014) and extracts the requirement hierarchies based on the generated semantic parsing trees. 379 

The two methods were trained on the same labeled training data and were evaluated using the same testing data. As 380 

shown in Table 3, the proposed semi-supervised method achieved better semantic relation extraction performance: it 381 

outperformed the supervised method by 3.5% of accuracy, 3.0% of UAS, and 3.2% of LAS. 382 

Performance of the Proposed Approach Using Semi-supervised Learning Strategy with Different Unlabeled 383 

Training Data 384 

Different Types of Unlabeled Training Data 385 

Two types of unlabeled data were tested for comparative evaluation: the domain-general text data – the one-billion-386 

word language model benchmark data (Chelba et al. 2013), which consists of English news sentences – and the 387 

domain-specific text data. The one-billion-word language model benchmark data were selected for comparison 388 

because the dataset was used as a benchmark in many natural language understanding tasks, such as statistical 389 

language modeling (e.g., Chelba et al. 2013) and semantic parsing (e.g., Clark et al. 2018) and the dataset is not 390 

domain-specific. For this comparative evaluation, the model was trained using the same labeled data.  391 

As shown in Table 4, the model achieved better performance when trained using domain-specific unlabeled data in 392 

terms of both semantic relation extraction and requirement hierarchy extraction – the model trained using domain-393 

specific unlabeled data outperformed the one trained using general-domain unlabeled data by 2.2% of accuracy, 2.0% 394 

of UAS, and 2.1% of LAS. The results indicate that the semantic and syntactic patterns in the domain-specific 395 

unlabeled data increased the ability of the model to extract semantic relations defined in the same domain, especially 396 

predicting the semantic relation types. Although the level of increase is not large, it shows the potential of enhancing 397 

the performance of domain-specific semantic relation extraction models by leveraging domain-specific unlabeled 398 

data. Domain-specific text data prepared using more types of regulatory documents in the AEC domain and with 399 
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more tailored and elaborate data cleaning techniques could be tested in future research to further improve the benefit 400 

of using such data.  401 

Different Scales of Unlabeled Training Data 402 

Four different scales of unlabeled data were tested for comparative evaluation: large [100 Megabyte (MB), 403 

approximately 10,000,000 tokens], medium (10 MB, approximately 1,000,000 tokens), small (1 MB, approximately 404 

100,000 tokens), and zero (0 MB, 0 tokens). For this comparative evaluation, the model was trained using the same 405 

labeled data.   406 

As shown in Table 5, the model achieved the best performance when trained using the large-size data, in terms of 407 

both semantic relation extraction and requirement hierarchy extraction. For example, compared to the model trained 408 

without (zero) unlabeled data, the one trained using the large unlabeled data increased the accuracy by 3.2%, UAS 409 

by 4.0%, and LAS by 3.4%. The results indicate that as the scale of unlabeled training data increases, the model 410 

benefits from the semantic and syntactic patterns contained in the extra data and hence its performance increases. 411 

However, such increase (i.e., the increase of accuracy, UAS, and LAS per token) gradually diminishes due to both 412 

the constraints on the architecture of the model (e.g., depth of the encoding layer) and the diversity and the 413 

relativeness of the semantic and syntactic patterns contained in the data. Larger data sizes could be tested in future 414 

research to assess the upper bound of the performance increase and the amount of additional unlabeled data required 415 

to achieve such increase.  416 

Performance of the Proposed Method on Semantic Relation Extraction and Hierarchy Extraction Across 417 

Different Types of Regulatory Sentences 418 

Performance Across Different Types of Building Codes and Standards  419 

The trained semantic relation extraction model was evaluated using sentences from three different types of building 420 

codes and standards: IBC, IECC, and ADA Standards. As shown in Table 6, the proposed method achieved high 421 

performance across all three types, in terms of both semantic relation extraction and requirement hierarchy 422 

extraction, indicating that the proposed method has high scalability and flexibility across different types of building 423 

codes and standards. A slightly lower performance was shown for IECC, compared to the other two types, which is 424 

likely due to unseen syntactic and semantic patterns in the training data (e.g., IECC-specific tokens such as “R-30”). 425 
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Performance Across Sentences with Different Levels of Computability 426 

The performance of the trained semantic relation extraction model was evaluated across sentences with three 427 

different levels of computability: moderately high, moderately low, and low computability, which are the top three 428 

types of sentences in terms of computability that appear most frequently in building codes (e.g., they account for 429 

22%, 39%, and 23% of a corpus of sentences from IBC and its amendments, respectively) (Zhang and El-Gohary 430 

2021). Sentences with different levels of computability have different semantic and syntactic structures. For 431 

example, sentences of moderately high computability have relatively simple syntactic and semantic structures, 432 

sentences of moderately low computability have relatively complex syntactic and semantic structures, and sentences 433 

of low computability have very complex syntactic and semantic structures.  434 

Table 7 shows the performance of the proposed method across sentences with different levels of computability, in 435 

terms of both semantic relation extraction and requirement hierarchy extraction. As expected, the performance 436 

decreased for low-computability sentences. However, high performance (i.e., over 90% of accuracy, and over 85% 437 

of both UAS and LAS) was still achieved for all three types, which indicates that the method has high scalability and 438 

flexibility. Given their complexity, the performance level achieved on moderately low- and low-computability 439 

sentences additionally indicates that the proposed method is able to extract semantic relations and requirement 440 

hierarchies from hierarchically complex sentences. 441 

Error Analysis 442 

Two types of errors were identified based on the experimental results. First, the proposed method showed some 443 

errors when dealing with multiword expressions or concepts that are domain-specific and include prepositions. For 444 

example, the semantic relation (i.e., inner information element relation) within the multiword expression “path of 445 

egress” (i.e., a subject in the requirement) was not correctly extracted. Second, some errors occurred in segmenting 446 

the requirement units, which was caused by errors in differentiating between the inter requirement unit relation and 447 

the inner requirement unit relation.  For example, the semantic relation between “span” and “concrete” in the 448 

sentence fragment “the clear span of the gypsum concrete” is an inner requirement unit relation, because the entire 449 

sentence fragment forms a part of a requirement unit. However, the method misclassified it as an inter requirement 450 

unit, and thus segmented “the clear span” and “of the gypsum concrete” into two different requirement units. Such 451 

error also appeared for sentences with low computability. For example, the following sentence  has four requirement 452 
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units (i.e., “the area of a Group H-2 aircraft paint hangar shall not be limited”, “a Group H-2 aircraft paint hangar no 453 

more than one story above grade plane”, “such aircraft is surrounded and adjoined by public ways or yards”, and 454 

“not less in width than one and one-half time the building height”): “the area of a Group H-2 aircraft paint hangar no 455 

more than one story above grade plane shall not be limited where such aircraft is surrounded and adjoined by public 456 

ways or yards not less in width than one and one-half time the building height”. However, the method failed to 457 

segment these requirement units correctly due to the high syntactic and semantic complexity of the sentence.  458 

Limitations 459 

Two limitations related to the proposed semantic relation and requirement hierarchy extraction method and the 460 

conducted experiments are acknowledged. First, the proposed method was well-tested on individual building-code 461 

sentences, but not on multi-sentence requirements. Additional experiments are needed to further evaluate the 462 

performance of the proposed method on multi-sentence requirements – where both the proposed semantic relations 463 

and requirement hierarchy and the proposed method would be directly applied, but additional efforts would be 464 

needed for preparing both the labeled (e.g., expert annotation of semantic relations) and unlabeled domain-specific 465 

data (e.g., heuristic rules for text cleaning). Second, although the proposed method and the proposed semantic 466 

relations and requirement hierarchy have successfully addressed different text characteristics and different levels of 467 

computability for different building codes and standards, they cannot address the semantic representation and 468 

interpretation problems for all types of requirements, such as requirements that have hidden dependencies or 469 

assumptions (Solihin and Eastman 2015, 2016) or requirements that require human judgment by nature. Further 470 

research is needed to study the limit of the performance of such machine learning-based methods on these 471 

challenging types of requirements, by (1) using a larger scale of labeled data or unlabeled data, or data with more 472 

diversified semantic and syntactic patterns, (2) exploring more deep learning model structures (e.g., transformers-473 

based models), and (3) integrating additional external knowledge (e.g., legal practices) either in the current ACC 474 

process (i.e., information extraction and transformation), or in downstream ACC processes (e.g., compliance 475 

reasoning and information matching or disambiguation).    476 

Contribution to the Body of Knowledge 477 

This paper contributes to the body of knowledge in five main ways. First, the paper proposes a new representation, 478 

the requirement hierarchy, to represent building-code requirements for supporting downstream ACC processes. The 479 
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requirement hierarchy consists of requirement units, each of which further consists of semantic information elements 480 

that define a simple requirement or a condition, and dependencies between the units. The requirement hierarchy 481 

could facilitate automated (or semi-automated if desired) compliance checking by enabling the decomposition of 482 

hierarchically complex requirements into units that are simple and readily processable by many of the existing ACC 483 

systems, and representing and visualizing the semantic and syntactic structures for better comprehension of complex 484 

requirements. Second, the paper proposes a set of semantic relations between words in regulatory-document 485 

sentences, which can be used not only for requirement hierarchy extraction, but also in other regulatory text 486 

analytics tasks such as requirement or sentence classification and knowledge graph extraction as features. Third, the 487 

paper offers a method to extract requirement hierarchies from building codes and standards. It is the first effort to 488 

automatically extract requirement hierarchies to facilitate the analysis of hierarchically complex regulatory 489 

sentences for supporting ACC. The proposed method showed high performance across different types of regulatory 490 

documents and across sentences with different levels of computability. Fourth, it is the first effort to use a deep 491 

learning model that consists of LSTM and MLP to extract semantic relations from building codes and train the 492 

model using a semi-supervised learning strategy. Fifth, this research leveraged both labeled data and large-scale 493 

unlabeled text data to enhance the performance of the proposed method, increase the scalability and flexibility of the 494 

method, and most importantly, significantly reduce the effort to prepare the labeled data for training the deep 495 

learning models.  496 

Conclusions and Future Work 497 

In this paper, the requirement hierarchy, a new representation for representing AEC regulatory requirements, was 498 

proposed to decompose sentences, especially the hierarchically complex ones, into much smaller, manageable 499 

requirement units that would be directly processable using most of the existing ACC methods. The requirement 500 

hierarchy consists of requirement units and dependencies between these units. To facilitate the extraction of such 501 

requirement hierarchies, a set of semantic relations between words in regulatory sentences was also proposed. A 502 

deep learning model, which consists of bi-directional LSTM and MLP, was used for extracting the hierarchies from 503 

regulatory-document sentences. Two types of data – labeled data, which consist of sentences annotated with 504 

semantic relations, and unlabeled data, which consists of AEC domain-specific regulatory text without any 505 

annotation – were prepared for training and evaluating the model. The model was trained using a semi-supervised 506 

learning strategy: it was alternatingly trained on the unlabeled and labeled training data, and the supervised and 507 
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unsupervised loss were minimized, so that the model can learn from the semantic and syntactic patterns contained in 508 

both types of training data. The extracted semantic relations and the original sentences were transformed into 509 

requirement hierarchies using a hybrid width and depth first traversal-based algorithm, with rules for indexing the 510 

requirement units and interpreting the dependencies between the units. 511 

The proposed semantic relation model was trained on 100 MB of unlabeled text data from multiple types of 512 

regulatory documents of the AEC domain, and labeled data that consisted of 540 annotated sentences from the IBC, 513 

IECC, and ADA Standards. The trained model achieved an accuracy of 94.0%, a UAS of 90.1, and a LAS of 88.0, 514 

indicating high semantic relation and requirement hierarchy extraction performance. The model achieved high 515 

performance across different types of regulatory documents including IBC, IECC, and ADA Standards, and across 516 

regulatory sentences with different levels of computability. 517 

The experimental results also showed that the semi-supervised learning strategy improves the performance of the 518 

relation extraction model by providing more semantic and syntactic patterns contained in the unlabeled training data. 519 

The results also showed that the model’s performance increases when the amount of training data increases and 520 

domain-specific unlabeled training data is used, indicating the potential of the proposed method to achieve higher 521 

relation extraction performance if more unlabeled, domain-specific text data is used, which is significantly less 522 

costly to prepare than labeled, domain-specific text data. 523 

In their future work, the authors plan to improve the proposed method and leverage the semantic relation extraction 524 

model in four directions. First, different deep learning model designs could be tested to enhance the semantic 525 

relation extraction performance. For example, different model architectures (e.g., adding more LSTM layers in the 526 

encoding layer) and recent deep neural network advances (e.g., transformers and attention mechanisms) could be 527 

explored. Second, different semi-supervised learning strategies could be explored for leveraging large-scale, pattern-528 

rich unlabeled text data in the AEC domain. Third, the performance and flexibility of the model could be further 529 

improved by increasing the amount, quality, and the relativeness of the unlabeled training data. For example, text 530 

from more types of regulatory documents in the AEC domain such as local building-code amendments and contracts 531 

could be used. Fourth, and most importantly, the authors will further use the proposed semantic relation-based 532 

requirement hierarchy extraction method to improve automated processing and understanding of building codes, and 533 

to integrate it with downstream processes such as information matching and compliance reasoning. Our ultimate 534 



21 
 

goal is to leverage machine learning and other artificial intelligence (AI) approaches to reach a level where users can 535 

automatically process the entire building code and represent it in a computable manner for fully automated 536 

compliance checking, with minimum manual effort in developing the underlying models (e.g., for preparing the 537 

training and testing data and for adapting the models to different types of building codes). Fifth, beyond automated 538 

compliance checking applications, future research could explore how the proposed requirement representation could 539 

support further code- and contract-analytics processes such as detecting conflicting or onerous requirements. The 540 

computability of the representation, as well as its structured and semantic nature, would help leverage automated 541 

analytics and AI techniques to support further diagnostic analytics tasks to identify potential conflicts among 542 

different requirements within one document (e.g., a specific code) or across multiple documents (e.g., codes vs. 543 

specifications), detect onerous contractual requirements, or diagnose other unfair situations like one-sided 544 

contractual agreements.  545 
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Tables 684 

Table 1. Semantic Information Elements for Representing Requirements for Compliance Checking (Zhang and El-685 
Gohary 2013, Zhang and El-Gohary 2021) 686 
Semantic information element Definition 

Subject An ontology concept representing a thing (e.g., building element) that is subject to a 
particular requirement 

Subject relation A term or phrase that defines the type of relation between two subjects, a subject and an 
attribute, or a subject or an attribute and a quantity 

Compliance checking attribute An ontology concept representing a specific characteristic of a “subject” that is checked for 
compliance  

Deontic operator indicator A term/phrase that indicates the deontic type of the requirement (i.e., obligation, permission, 
or prohibition) 

Quantitative relation A term/phrase that defines the type of relation for the quantity (e.g., extend) 

Comparative relation A term/phrase for comparing quantitative values, including “greater than or equal to,” 
“greater than,” “less than or equal to,” “less than,” and “equal to” 

Quantity value A numerical value that defines the quantity 
Quantity unit The unit of measure for a “quantity value” 

Reference A term or phrase that denotes the mentioning or reference to a chapter, section, document, 
table, or equation in a regulatory document 

 687 
Table 2. Optimized Main Hyperparameters for the Semantic Relation Extraction Models 688 

Hyperparameter Value 
Batch size for labeled training data 60 
Batch size for unlabeled training data 60 
Dimension of the input layer 50 
Dimension of the bidirectional long short-term memories (LSTM) 
layers in the encoding layer 512 

Dimension of the output layer 512 
Dropout rate for labeled data 0.4 
Dropout rate for unlabeled data 0.2 

 689 
Table 3. Performance of Proposed Semi-supervised and Supervised Methods 690 

Requirement hierarchy extraction 
method 

Semantic relation  
extraction 

Requirement hierarchy 
extraction 

Accuracy Unlabeled attachment 
score (UAS) 

Labeled attachment 
score (LAS) 

Semi-supervised learning-based 
method 94.0% 90.0% 87.2% 

Supervised learning-based method 90.5% 87.0% 84.0% 
            1Bolded font indicates highest performance. 691 
 692 
Table 4. Performance of Proposed Method Across Different Types of Unlabeled Training Data 693 

Type of unlabeled training data 

Semantic relation  
extraction 

Requirement hierarchy 
extraction 

Accuracy Unlabeled attachment 
score (UAS) 

Labeled attachment 
score (LAS) 

Domain-specific text  94.0% 90.0% 87.2% 
Domain-general text 91.8% 88.0% 85.1% 

           1Bolded font indicates highest performance. 694 
 695 
 696 
 697 
 698 
 699 
 700 
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Table 5. Performance of Proposed Method with Different Scales of Unlabeled Training Data 701 

Scale of unlabeled training data in Megabyte 
(MB) and approximate number of tokens 

Semantic relation  
extraction 

Requirement hierarchy 
extraction 

Accuracy Unlabeled attachment 
score (UAS) 

Labeled attachment 
score (LAS) 

Large (100 MB, 10,000,000 tokens) 94.0% 90.0% 87.2% 
Medium (10 MB, 1,000,000 tokens) 92.3% 87.9% 85.3% 
Small (1 MB, 100,000 tokens) 91.3% 86.5% 84.5% 
Zero (0 MB, 0 tokens) 90.8% 86.0% 83.8% 

     1Bolded font indicates highest performance. 702 
 703 
Table 6. Performance of Proposed Method Across Different Types of Building Codes and Standards 704 

Type of regulatory document 

Semantic relation  
extraction 

Requirement hierarchy 
extraction 

Accuracy Unlabeled attachment 
score (UAS) 

Labeled attachment 
score (LAS) 

International Building Code 95.0% 91.8% 88.9% 
International Energy Conservation Code 93.0% 86.9% 83.4% 
ADA Standards 95.0% 92.0% 89.3% 

 705 
Table 7. Performance of Proposed Method Across Sentences with Different Levels of Computability 706 

Computability level of regulatory 
sentences 

Semantic relation  
extraction 

Requirement hierarchy 
extraction 

Accuracy Unlabeled attachment 
score (UAS) 

Labeled attachment 
score (LAS) 

Moderately high  95.0% 92.1% 89.2% 
Moderately low 96.0% 91.2% 89.5% 
Low 93.0% 89.4% 85.9% 
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