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Abstract: Increasing processing requirements in the Artificial Intelligence (AI) realm has led to the
emergence of domain-specific architectures for Deep Neural Network (DNN) applications. Tensor
Processing Unit (TPU), a DNN accelerator by Google, has emerged as a front runner outclassing its
contemporaries, CPUs and GPUs, in performance by 15×–30×. TPUs have been deployed in Google
data centers to cater to the performance demands. However, a TPU’s performance enhancement is
accompanied by a mammoth power consumption. In the pursuit of lowering the energy utilization,
this paper proposes PREDITOR—a low-power TPU operating in the Near-Threshold Computing
(NTC) realm. PREDITOR uses mathematical analysis to mitigate the undetectable timing errors
by boosting the voltage of the selective multiplier-and-accumulator units at specific intervals to
enhance the performance of the NTC TPU, thereby ensuring a high inference accuracy at low voltage.
PREDITOR offers up to 3×–5× improved performance in comparison to the leading-edge error
mitigation schemes with a minor loss in accuracy.

Keywords: near-threshold computing; NTC; deep neural network; DNN; accelerators; timing error;
AI; tensor processing unit; TPU; multiply and accumulate; MAC; energy efficiency

1. Introduction

Rapid progress in the Artificial Intelligence (AI) realm has evidenced an emergence
in the domain-specific AI architectures to sustain the colossal boom in the development
of Deep Neural Network (DNN) applications. The rising efficiency of DNN accelerators
further bears witness to the ongoing empirical advancements within the sphere of Deep
Learning [1,2]. Google’s Tensor Processing Unit (TPU), a systolic array of multiplier-and-
accumulate (MAC) units, has been spearheading this race by demonstrating a massive
performance boost over the contemporary CPUs and GPUs [3].

However, the growth in AI processing is accompanied by a monumental increase in
the power consumption as affirmed by the carbon footprint for a single AI training [4]. To
sustain the performance and trim the energy consumption, we conceive operating TPU
in the Near-Threshold Computing (NTC) realm. Operating a TPU at NTC benefits in a
massive energy savings as the operating voltage is scaled close to the threshold voltage.
However, extreme Process Variation (PV) sensitivity [5] introduced at NTC induces a high
rate of timing errors, which degrades the overall system performance [6], thereby reducing
the energy-efficiency gains at low-voltage operation [7]. In this paper, we emphasize the
significance of undetectable timing errors (Section 2.1) on the performance of an NTC TPU and
exploit the architectural homogeneity to detect and tackle timing errors, thereby presenting
a reliable and energy-efficient TPU design paradigm.

Razor is a very popular timing speculation methodology using a double sampling
flip-flop to detect and correct timing errors [8]. Razor employs an instruction replay to
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correct the erroneous computation. The tightly pipelined architecture of the TPU will result
in inflating the execution time, thereby restricting the use of an instruction replay in a TPU.
TE-Drop, a recently proposed technique, prompts the MAC unit encountering a timing error
to steal a clock cycle from the downstream MAC to correct the timing error [9]. The erring
MAC overrides the downstream MAC’s output with its corrected value. However, TE-Drop
does not address the timing errors, which cannot be detected by Razor Flip-Flop [8] which
leads to the erroneous value to propagate down the output.

To overcome the limitations in existing schemes, we propose a novel timing error
prediction strategy based on the foreseeable timing error occurrence pattern in the TPU
systolic array. We observe the impacts of undetectable timing errors on the inference accuracy
(Section 2.1). Integrating the mathematical analysis on the initially recorded timing error
data and using an efficient voltage-boosting mechanism, we propose PREDITOR—a novel
low-power error-resilient TPU design paradigm to predict and mitigate timing errors. To
the best of our knowledge, this is the first work emphasizing the impacts of undetectable timing
errors on the inference accuracy and presents a channel to limit its effects. The following are the
precise contributions in this paper:

• We observe a monumental increase of undetected timing errors at higher frequencies
and ultra-low NTC voltages (Section 2).

• We propose PREDITOR—a low-power TPU design paradigm that predicts and miti-
gates the timing errors over a range of operational cycles using an effective voltage
boost mechanism (Section 3).

• We demonstrate that PREDITOR tackles up to ∼68% of the undetectable timing errors,
thereby preserving the inference accuracy of the DNN datasets. PREDITOR offers
3×–5× better performance in comparison to TE-DROP and Modified Razor Flip-Flop,
with under 3% average loss in accuracy for five out of eight DNN datasets and incurs
an area and power overhead of ∼7.7% and ∼2.5%, respectively (Section 5).

• We illustrate that PREDITOR offers up to 87% energy-efficiency gain in relative to a
TPU operating in the Super-Threshold Computing (STC) realm, while utilizing only
14% of its power (Section 5).

2. Motivation

In this section, we investigate the correlation between the data flow and timing
error emergence, and we reveal the concealed opportunity that can be utilized to tackle
timing errors in a TPU systolic array. Section 2.1 provides the background of a TPU and
elaborates the drawbacks for an NTC TPU operation. Section 2.2 introduces the architectural
homogeneity of the TPU. Using the cross-layer methodology explained in Section 2.3, we
explore the timing error profiles illustrated in Section 2.4 and establish the need for a timing
error prediction scheme in an NTC TPU.

2.1. Background and Limitations
2.1.1. Systolic Array Based DNN Accelerator

DNNs use multiple layers of computation to obtain the output inference. In each layer,
the activation matrix is multiplied with the weight matrix. TPU employs a systolic array
of 256× 256 MAC units to accelerate matrix multiplication [3]. The activation matrix and
weight matrix both maintain an 8-bit precision. The weight matrices are pre-loaded into
the MACs, while the activation flows from left to right in successive clock cycles. The 24-bit
precision accumulator output from each MAC moves downstream in each cycle.

2.1.2. Limitations to NTC Performance

Dynamic Scaling of Voltage (DVS) is a common practice used in the modern processing
elements to yield significant power savings. The critical voltage is fixed at an optimum
point to ensure correct operation of the processing element. However, aggressive scaling
leads to an increase in the critical path due to the decrease in the clock period of the
operation.
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Figure 1a shows the typical scenario of an operation. The critical path is shorter than
the clock period of an operation. In Figure 1b, the frequency of the operation has increased
to obtain better performance. During this scenario, the clock period of an operation
decreases, leading to the delayed transitioning of the data (i.e., data1 to data2.). This
phenomenon where the wrong data (i.e., data1.) are being latched onto the output instead
of the correct data (i.e., data2.) is called a timing error [5,10]. Timing speculation methods
such as Razor uses a double sampling flop to capture this delayed transitioning in data and
employs an instant replay to latch the correct data onto the output [8]. Figure 1c depicts
the operation of a Razor flop, where a delayed clock is employed by the shadow flop to
detect the delayed transition. However, when the frequency of operation increases even
further, the speculative window becomes too small even for the Razor flop to capture
the delayed transition. Figure 1d elaborates the scenario when the delayed transitions
cannot be captured any further. These extremely delayed transitions are the undetectable
timing errors .

(a) Normal Scenario. (b) Timing Error.

(c) Instant Replay with Razor. (d) Undetectable Timing Error.

Figure 1. Multiple data-latching scenarios as the frequency of operation increases and the timing
error detection window diminishes. In (a), baseline frequency is in operation. The frequency of
operation is the same for (b,c) but higher than (a). The highest frequency of operation is employed
in (d).

Figure 2a depicts the increase of the undetectable timing errors with an increase of frequency
for eight different DNN datasets. These undetectable errors propagate down the systolic array,
resulting in an erroneous output, adversely affecting the system performance [6,7]. Figure 2b
appropriately shows the drop in inferential accuracy as the operational frequency level is
bolstered [9]. Especially, in case of DNN computations, where inference accuracy dictates the
performance of the system, the deterioration of classification accuracy renders the system inept
to address the increasing performance needs.

(a) Undetectable Timing Errors. (b) Normalized accuracies.

Figure 2. Rise of undetected timing errors with an increase in the operational frequency is shown in (a).
The effects of the increasing timing errors are depicted in (b), where the classification accuracy drops
drastically. This experimentation is performed on the Baseline TPU (Section 5.1).
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2.2. Predictive Systolic Array Dataflow

There exists a strong interdependence between the data flow pattern inside the systolic
array and number of timing errors occurring during the systolic array operation. Although
the occurrence of timing errors are majorly dependent on the computational delays, the
magnitude of timing errors per cycle of operation is dependent on the number of operations
during the same period of clock cycles. Due to the disparate number of operations during
every active execution cycle, the scope of timing errors varies but closely follows a fore-
seeable pattern. To further investigate this property, we employ an exhaustive cross-layer
methodology, which is discussed next.

2.3. Methodology

We synthesize a MAC unit at NTC, using 15 nm FinFET library from NanGate [11].
To model the PV at NTC for FinFET, we use VARIUS-NTV models [12]. For a conservative
estimate, we consider PV-induced delays in randomly chosen 2% of the gates in the
circuit. We use our in-house Statistical Timing Analysis (STA) tool to investigate the delay
distribution of the sensitized path for different inputs to the MAC unit. We use our in-house
TPU systolic array simulator to simulate the working of a TPU. We use different levels of
high degree timing error inducing input vectors with our TPU simulator to investigate the
operational flow and timing error intricacies.

2.4. Results and Significance

Figure 3 demonstrates the extensively observed timing error count variances in a
systolic array operation. The Y-axes are normalized to the highest timing error in the
respective plots. X-axes are normalized to the total number of operational cycles. Plots1–3
in Figure 3 show an exponential increase/decrease in the timing errors, and Plot 4 depicts a
relatively linear rise/fall. The operational cycle in which the highest timing errors occur
varies across the plots in Figure 3. For example, in Plot 2 of Figure 3, the highest timing
error occurs at the 42nd cycle, whereas for Plot 3, the highest timing error occurs at the 58th
cycle.

Figure 3. Plots present the various timing error profiles during the high-frequency operations of
the TPU.

The results indicate a disparity in the timing error profiles, but all the plots have a
symmetrical nature. Plots 1–3 of Figure 3 nearly exhibit a normal distribution curve characteristic,
while Plot 4 resembles a triangular curve. The symmetrical nature of the profiles is mainly
attributed to the uneven number of MAC units being active during each clock cycle of
a systolic array operation. Utilizing this predictable timing error occurrence model, we
devise a prediction strategy to significantly lower the timing errors in a TPU. With this
insight, we propose our scheme—PREDITOR, to mitigate up to 68% of the timing errors by
boosting the operating voltage during the high timing error occurrence cycles.

3. Design

In this section, we propose Analytical PREDIcTion based ErrOR Resilient TPU (PREDI-
TOR), a novel low-power design paradigm to enhance the error resilience of an NTC TPU
using mathematical analysis of the detectable timing errors. Section 3.1 outlines the design
overview. Sections 3.2–3.4 elaborate on the components of PREDITOR.
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3.1. Design Overview

Figure 4 depicts the top-level overview of PREDITOR. The prime enhancement of
PREDITOR is the Error Management Unit (EMU). The main components of an EMU are
Error Collection Unit (ECU) and Voltage Control Unit (VCU). Each MAC unit is augmented
with a Modified Razor Flip-Flop (MRFF) to detect and mitigate timing errors during the
non-boosted cycles of operation. MRFF captures a timing error using a shadow latch and
delivers an error signal to the ECU. Additionally, MRFF also provides the corrected value
to the downstream MAC unit. ECU records the number of timing errors occurring during
every operational clock cycle. VCU profiles and analyzes the timing error information from
ECU once every two clock cycles to predict the operational clock cycle intervals, which
yields maximum timing errors. VCU will then boost the operating voltage of the MACs
during the predicted intervals to ensure an error-free operation. Since the data flow in
the systolic array as a diagonal wavefront, MACs along the diagonal (i.e., left bottom to
right top) will be active/inactive at the same time [3]. Hence, VCU will only boost the
voltage of the MACs which are computationally active, thereby introducing a minuscule
energy overhead.

Figure 4. Each MAC in the systolic array is enhanced with an MRFF. EMU comprises ECU and
VCU. ECU collects and stores the timing error count from each cycle. VCU queries the timing error
information from ECU to predict the operational clock cycles and boost the operating voltage during
the predicted cycle interval.

3.2. Modified Razor Flip-Flop (MRFF)

MRFF detects and corrects timing errors without using any additional operational
clock cycles. In a MAC unit, a multiplier is sensitized only to the periodically changing
activation input, as the pre-loaded weights remain unchanged throughout the entire systolic
array operation. Additionally, the multiplier operation is computationally prolonged
compared to the accumulation operation. It thus opens up a timing aperture, which can
be exploited to override the previously transmitted erroneous value with the updated
upstream MAC output. Figure 5a depicts the changes in the schematic between a regular
Razor Flip-Flop (RFF) and MRFF.

Figure 5b demonstrates the error-handling capabilities of an RFF and MRFF for a
column-wise systolic array operation. As depicted in Figure 5b, whenever an RFF detects
a timing error due to the delayed manipulation of the output data, an instant replay is
initiated, which requires an additional clock cycle to correct the erroneous value. How-
ever, an MRFF will detect and correct the timing error within the same clock cycle by
opportunistically using the timing aperture.

However, MRFF cannot correct timing errors when the computational delays are
beyond detection (Section 2.1.2). Hence, VCU will utilize the timing error information
stored in ECU to predict the range of operational cycles to mitigate timing errors, which is
explained in Section 3.4.
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(a) Razor Flip-Flop to Modified Flip-Flop.

(b) MRFF detects and corrects Timing Errors within a clock period.

Figure 5. (a) depicts the conversion of Razor Flip-Flop to Modified Razor Flip-Flop by altering the
multiplexer input/output connections. The timing error correction capability of MRFF is shown
in (b).

3.3. Error Collection Unit (ECU)

ECU contains a 16-bit Error Counter and a content-addressable memory. During each
operational clock cycle, ECU captures the timing errors from individual MAC units, and
these error signals are accumulated using the 16-bit Error Counter. The Timing Error Count
(TEC) (i.e., the total number of timing errors) obtained during every clock cycle is stored in
the consecutive locations of a content-addressable memory and successively updated at
the end of every operational clock cycle.

3.4. Voltage Control Unit (VCU)

VCU houses the Control Unit (CU) and the Boost Unit (BU). CU computes the range
of operational clock cycles for voltage boosting by analyzing the cycle-wise TEC from ECU.
BU boosts the supply voltage of MACs for the clock cycle interval predicted by the CU.
Voltage boosting aids in mitigating both detectable and undetectable timing errors.

3.4.1. Control Unit (CU)

CU is responsible for predicting the operational clock cycle intervals yielding maxi-
mum timing errors. Based on the findings in Section 2.4, we develop an algorithm modeled
on the Normal Distribution Curve characteristic. Since ∼68% of the area of a Normal
Distribution curve is covered between the first standard deviations from the mean, by
mathematical analysis, we identify that ∼68% of the timing errors will be occurring within
the ∼33% operational clock cycles centered around the mean clock cycle. Hence, we target
∼68% of undetectable timing errors to be mitigated by PREDITOR.

Figure 6a,b show the representative area-wise Normal and Triangular Distribution of
a timing error profile. The boost cycles prediction procedures are elaborated in Algorithm 1.
Based on experimental analysis, we determine that a rapid rise in the rate of timing errors
results in the timing error profile exhibiting a Normal Distribution curve characteristic, and
a slower rise results in a Triangular Distribution curve characteristic. Hence, we define a
metric, Curve Factor (CF), to determine the nature of the timing error profile. CF is defined
as the ratio of Areas between the Threshold clock cycle (cycleTh) and Half Threshold clock
cycle (cycleThHal f ) (line 18 of Algorithm 1) (Figure 6a). The values of cycleTh and cycleThHal f
are empirically ascertained based on earlier analysis.



J. Low Power Electron. Appl. 2022, 12, 32 7 of 17

(a) Normal Distribution. (b) Triangular Distribution.

Figure 6. Representative Timing Error Profiles.

Algorithm 1 Boost Cycles Prediction Algorithm

1: dim← systolic_array_dimension

2: cycleops ← current_operational_clock_cycle

3: total_num_cycles← ((3 ∗ dim)− 2)

4: cyclemean ← (total_num_cycles÷ 2)

5: cyclehigh ← (4/3) cyclemean

6: cyclelow ← (2/3) cyclemean

7: cycleTh ← (1/3) cyclemean

8: cycleThHal f ← (1/2) cycleTh

9: procedure AREA_CALCULATION(init_cycle, f inal_cycle)

10: Area← 0

11: for iterator← (init_cycle) to ( f inal_cycle) do

12: Area← Area + TEC[iterator]

13: end for

14: return Area

15: end procedure

16: procedure CURVE_PREDICTION(cycleops)

17: if (cycleops = cycleTh) then

18: CF ← AreaTh/AreaThHal f

19: if CF > NDthresh then

20: Curve_Distcoe f f ← NDcoe f f

21: boost_initiate← 1

22: else if CF < NDthresh & CF > TDthresh then
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Algorithm 1 Cont.

23: Curve_Distcoe f f ← TDcoe f f

24: cyclelow ← cycleTh

25: cycleTh ← cycleThHal f

26: boost_initiate← 1

27: else

28: boost_initiate← 0

29: end if

30: end if

31: end procedure

32: procedure BOOST_INTERVAL_COMPUTE(cycleops)

33: if cycleops = cyclelow + 1 then

34: if Arealow < (Curve_Distcoe f f ∗ AreaTh) then

35: cycleTh ← cycleTh + 1

36: cyclelow ← cyclelow + 1

37: else

38: deviation← (cyclelow − cycleTh)

39: cyclehigh ← (cyclelow + (2 ∗ deviation))

40: end if

41: end if

42: end procedure

To predict the boost intervals, we compare the accumulated areas AreaTh and Arealow.
Areas (i.e., summation of TECs) between specific cycles are computed using an area calcu-
lation heuristic (lines 9–15 of Algorithm 1). For example, Arealow is a summation of TECs
from cycleTh to cyclelow. As new TECs are updated after every clock cycle, a balancing
metric, Curve_Distcoe f f , is used to dynamically balance the areas at specific clock cycle
boundaries (i.e., cycleTh and cyclelow.). The empirically determined balancing metric for a
Normal Distribution curve (NDcoe f f ) is expressed in Equation (1). The cycles are adjusted
dynamically (lines 35–36 of Algorithm 1) in case the areas are unbalanced.

NDcoe f f =
α2
α1

(1)

For a Triangular Distribution curve, appropriate changes for cycles under considera-
tion are made (lines 23–25 of Algorithm 1), as the timing error counts at lower cycles need
to be analyzed. The empirically determined balancing metric for a Triangular Distribution
curve (TDcoe f f ) is defined as:

TDcoe f f =
β2
β1

(2)

A very low CF evades the need for voltage boosting (line 28 of Algorithm 1). Whenever
there is alteration in the central cycle (Plot 3 of Figure 3), an increase in the timing error rate
(not shown in Algorithm 1) is employed to dynamically calibrate the change.
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3.4.2. Boost Unit (BU)

BU boosts the operating voltage of the MAC units to mitigate detectable and unde-
tectable timing errors. As depicted in Figure 7, BU houses the Boost Register (BR), where
each bit of this 511-bit register corresponds to a series of active MAC units along the di-
agonally active wavefront [13]. A boosting technique proposed in [14] is employed by
BU, where supply voltage to MAC units has two rails, VNTC and VBoost. VNTC represents
near-threshold voltage, which is set at 0.45 V, and VBoost is the boost voltage, which is set at
0.6 V. BU utilizes the procedure in Algorithm 2 to boost the supply voltage. Incorporating
the booster infrastructure in [14], we observe that switching between VNTC and VBoost can
be procured within a single cycle of operation. BU boosts the supply voltage to VBoost and
switches to VNTC at the end of each boost cycle. To maintain a trade-off between boosting
cycle intervals and the voltage boosting energy overhead, bits in BR are set empirically.
This action is performed to lower the energy footprint in case the magnitude of timing
errors is significantly high in number. In such a scenario, MRFF will continue to handle the
detectable timing errors. The experimental results and area/power overheads are discussed
in Section 5.

Figure 7. Interaction of BU with MACs along the diagonal.

Algorithm 2 Voltage Boost Algorithm

1: procedure VOLTAGE_BOOST(cycleops, boost_initiate)

2: if boost_initiate = 1 then

3: if (cycleops ≥ cyclelow) ‖ (cycleops ≤ cyclehigh) then

4: supply_voltage← VBoost

5: else

6: supply_voltage← VNTC

7: end if

8: end if

9: end procedure
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4. Methodology

In this section, we describe our comprehensive cross-layer methodology, as shown in
Figure 8, which is used to implement our proposed design. The cross-layer methodology
will aid in evaluating our proposed design’s capabilities across DNN applications.

Figure 8. Cross-Layer Methodology.

4.1. Device Layer

In order to estimate gate delay distributions, we simulate HSPICE models of basic
logic gates (viz., NOR, NAND and Inverter) based on a 16 nm Predictive Technology Model.
To incorporate the impact of PV at NTC, we consider the VARIUS-NTV model [10]. We
model the impact of FinFETs using a VARIUS-TC model [15]. To affirm sensitized path
delay in a MAC unit, the delays of basic gates are employed in the circuit layer (Section 4.2).

4.2. Circuit Layer

We implement a systolic array in the Verilog RTL description and enhance it with
PREDITOR components. RTLs are synthesized using Synopsys Design Compiler to estimate
area and power overheads. We obtain sensitized delays for a MAC array using our in-
house STA tool by employing real dataset-driven inputs. By utilizing libraries of delay
distributions for basic logic gates from HSPICE simulations (Section 4.1), the STA tool
provides the delays of sensitized paths in the MAC circuit.

4.3. Architecture Layer

We employ our in-house cycle-accurate TPU systolic array simulator developed using
C++ based on the TPU architectural details provided in [3]. To accurately model timing
errors resembling real-time sensitized path delays in MAC units, we incorporate the STA
tool (Section 4.2) into the TPU simulator. We replicate a real-life inference engine by
interfacing Keras [16] with our TPU simulator. Using Keras and employing TensorFlow
in the backend, we train multiple DNN applications, as mentioned in Section 5.3. Table
1 provides the size and layer information for the eight DNN datasets. We have used a
filter size of (3,3) and default stride of 1 for all datasets. We have also added padding to
the input feature map. The DNN datasets include representations from different Neural
Network domains (Image Recognition, Speech, Audio, etc.). The diverse range of datasets
aids in exploring the efficacy of PREDITOR in handling the timing violations, arising due
to the wider set of variations in the activation patterns. The trained models have varying
input sizes and utilize the state-of-art layers such as dropout and batch normalization. The
trained model weights and the activations from each layer are extracted into 256× 256
8-bit integer matrices. The TPU simulator performs the matrix multiplication operation for
each pair of activation and weight matrices. The resulting output matrices are combined
together to determine the inference accuracy.
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Table 1. List of DNN datasets.

Datasets

Name Layer Architecture

SVHN [17]
CONV: (32, 32, 3) × (32, 32, 32) × (32, 32, 32) × (14, 14, 64) × (14, 14, 64)

× (5, 5, 128) × (5, 5, 128),
FC: 512 × 512 × 10

GTSRB [18]
CONV: (3, 48, 48) × (32, 48, 48) × (32, 46, 46) × (64, 23, 23)× (64, 21, 21)

× (128, 10, 10) × (128, 8, 8),
FC: 2048 × 512 × 43

Reuters [19] FC: 2048 × 256 × 256 × 46

IMDB [20] CONV: 400 × (400x50) × (398, 256), FC: 256 × 1

MNIST [21] FC: 784 × 256 × 256 × 10

CIFAR-10 [22]
CONV: (32, 32, 3) × (32, 32, 32) × (32, 32, 32) × (16, 16, 64) × (16, 16, 64)

× (8, 8, 128) × (8, 8, 128),
FC: 2048 × 512 × 10

FMNIST [23] FC: 784 × 256 × 512 × 10

AMNIST [24] CONV: (20, 25, 1) × (20,25,128) × (20,25,64), FC: 32000 × 256 × 128 × 40

5. Experimental Results

In this section, we evaluate the effectiveness of different timing error-resilient schemes
by employing a TPU in NTC operating conditions. The baseline operation condition of
the NTC TPU is (0.45V, 67.5MHz) to ensure error-free systolic array operations. Section 5.1
describes the different comparative schemes. Section 5.2 presents the error resilience of
PREDITOR. Section 5.3 elaborates the inference accuracies. Section 5.4 presents the energy
efficiency of PREDITOR. Section 5.5 discusses the area and power overheads.

5.1. Comparative Schemes

• Baseline TPU (B-TPU): This technique does not employ any timing speculation
methodologies and propagates the erroneous values down the systolic array computa-
tion stages [25].

• TE-DROP (TED): In this scheme, an MAC encountering a timing error recomputes the
correct value by borrowing a clock cycle from the downstream MAC. The downstream
MAC effectively annuls its operation and procures the recomputed upstream MAC
output onto the next stage [9].

• MRFF: This scheme exploits the timing aperture to drive the delayed output onto the
downstream MAC. Delayed output beyond detection results in an erroneous value
being propagated down the systolic array.

• PREDITOR (PRED): This is our proposed scheme which uses the timing error in-
formation obtained using the timing speculation mechanism to predict and mitigate
eminent timing errors by boosting the operating voltage of the MAC units for a definite
period of operation (Section 3).

5.2. Error Resilience

Figure 9 demonstrates the number of undetected timing errors mitigated by PREDI-
TOR when the TPU is operated at higher frequencies compared to the baseline frequency
of operation. The Y-axis represents the percentage of undetected timing errors effectively
handled by PREDITOR. The operating voltage is kept constant at 0.45 V for all frequencies
denoted by the X-axis. The X-axis is normalized to the baseline frequency of operation.
Up to 1.44x, the baseline frequency and detectable timing errors are effectively handled by
MRFF. Hence, the effect of timing errors on the inference accuracy is negligible, as explained
in Section 5.3. PREDITOR’s voltage boosting mechanism becomes eminent after 1.44x the
baseline frequency, thereby correcting the undetectable timing errors. Meanwhile, ∼68% of
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undetectable timing errors are mitigated for six out of eight DNN datasets, as evidenced in
Figure 9, validating the expectation elaborated in Section 3.4.1.

Figure 9. Percentage of undetected timing errors mitigated by PREDITOR for eight different datasets.

5.3. Inference Accuracy and Voltage Boost

Figure 10 depicts the variations in normalized inference accuracies for eight different
datasets with various error-resilient schemes. Y-axes are normalized to error-free inference
accuracy at the baseline frequency for all datasets (error-free accuracy for datasets are
SVHN: 0.94 [17], CIFAR-10: 0.77 [22], IMDB: 0.89 [20], GTSRB: 0.97 [18], REUTERS:
0.80 [19], MNIST: 0.98 [21], FMNIST: 0.89 [23], AMNIST: 0.92 [24])). Figure 10 also depicts
the Voltage Boost Energy (BE) of PREDITOR across all frequencies of operation. BE is
computed as the percentage of energy consumed by an NTC TPU operating at baseline
conditions without any voltage-boosting mechanism.

Consistent error resiliency is provided by all schemes up to 1.36× the baseline fre-
quency. As the performance is increased, PREDITOR surpasses B-TPU, TED and MRFF
by providing an appreciably better accuracy. PREDITOR mitigates more timing errors at
higher frequencies due to a superior prediction engine. The number of undetected timing
errors during non-boosted cycles for AMNIST and FMNIST is relatively high, resulting in a
drop of accuracy for PREDITOR. A large number of MAC operations being bypassed due
to higher timing errors contributes to a deterioration of accuracy for TED. MRFF encounters
a sudden fall in accuracy at higher frequencies due to an increase in undetected timing
errors. Hence, PREDITOR-enhanced NTC TPU contributes to an accuracy loss of only 3%
in five datatsets when operated up to 5× the baseline frequency.

Voltage boosting from PREDITOR is not utilized until 1.67× the baseline frequency
due to a lower number of timing errors which are corrected by MRFF. As frequency is scaled
beyond 1.67×, nearly all datasets witness an identical rise in BE, as voltage boosting across
a period of operational cycles becomes imminent. BE for four out of eight DNN datasets
(SVHN, CIFAR-10, GTSRB and AMNIST) is relatively higher at ∼7%, compared to other
datasets, as the significant number of timing errors occurring during initial operational
cycles compels PREDITOR’s prediction mechanism to boost a relatively higher number of
operational cycles. However, the number of boosted cycles is relatively small compared to
the entire systolic array of operation cycles.

5.4. Is NTC TPU Worth It?

Figure 11 presents the average power consumption and energy efficiency, measured in
Tera Operations Per Second (TOPS)/Watt of a GoogleTPU for 8 DNN datasets, as it scaled
from the STC to NTC region. The figures also demonstrate the power consumption and
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energy efficiency of PREDITOR operating at NTC. Power consumption and TOPS/Watt
metrics at different frequencies are normalized to that of the GoogleTPU operating at STC
(i.e., 700 MHz). A steady decline in power is noted for GoogleTPU as the operating voltage
is reduced along with the operating frequency. The power consumption of PREDITOR is
significantly lower than GoogleTPU as it is operated in the NTC region. As the GoogleTPU
is scaled below the STC region, timing errors appear in the system, leading to a deterioration
in the performance [9]. However, an NTC TPU equipped with PREDITOR can effectively
handle timing errors for more than 3× its baseline frequency (Sections 5.2 and 5.3), thereby
providing an efficient performance per unit consumption. PREDITOR working at NTC
delivers up to 87% energy-efficiency gain of a GoogleTPU operating at STC (Figure 11b), while
consuming only 14% of its power (Figure 11a). Hence, PREDITOR is validated as a low-power
and error-resilient design paradigm, offering a high performance in an NTC TPU.

Figure 10. Normalized Inference Accuracy (IA) of different comparative schemes and Voltage Boost
Energy (BE) of Preditor for 8 DNN datasets at various normalized frequencies.

5.5. Hardware Overheads

The area and power overhead incurred by PREDITOR are ∼7.7% and ∼2.5% respec-
tively. Area overhead in PREDITOR is due to inclusion of the MRFF into each MAC unit
and EMU into the TPU systolic array. Power overheads obtained are in comparison to the
error-free operation of a baseline NTC TPU.
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(a) Power Consumption. (b) Energy Efficiency.

Figure 11. (a,b) depicts the power consumption and energy efficiency comparison of GoogleTPU
with PREDITOR.

6. Related Work

Earlier research efforts associated with our work focus on enhancing the energy ef-
ficiency and error resilience of DNN accelerators. Koppala et al. proposed a framework
to improve the energy efficiency and performance of DNNs by retraining the DNN for
an approximate DRAM device to increase the error tolerance of DNNs and meeting the
DNN accuracy requirements by ensuring an approximate DRAM partition being efficiently
mapped from a specific DNN data type [26]. Zhao et al. presented an algorithmic-based
fault tolerance technique utilizing checksum schemes to ensure high detection and correc-
tion ability accompanied by a lower runtime overhead [27]. Ozen et al. obtained a highly
resilient DNN using modified algorithms by comparing the reductions in the vulnerability
surface through appropriate quantization techniques using efficient training methods [28].
Shafique et al. shed light on techniques to improve the performance and energy efficiency
of Edge AI systems using optimizations in hardware/software and present cost-effective
techniques to address the reliability threats [29]. Yu et al. proposed a hardware pruning
technique which uses SIMD-aware weight and node pruning in coalition to enhance the
energy efficiency of DNNs [30]. Ozen et al. filtered the effect of bit errors before the layer
execution using a unique median feature selection to tackle high error rates [31]. Zhang
et al. presented an aggressive voltage underscaling method without deteriorating the
classification accuracy amidst the presence of high timing errors [9]. Ye et al. introduce a
flexible framework with a hybrid convolution processing engine to implement a hybrid
DNN accelerator with high performance [32]. Choi et al. achieved significant energy
savings by using sensitive weight analysis to divide computations among MAC units [33].
Lin et al. introduced a statistical error compensation-based technique to correct timing
errors occuring due to process variation while operating in near-threshold conditions [34].
Yu et al. proposed a hardware prunning technique which uses SIMD-aware weight and
node prunning in coalition to reduce the size of underlying hardware at run time to en-
hance the energy efficiency of DNNs [30]. Zhang et al. presented an aggressive voltage
underscaling method without deteriorating the classification accuracy amidst the presence
of high timing errors [9]. Kim et al. demonstrated a memory adaptive training with in situ
canaries, which improves the energy efficiency by enabling an aggressive voltage scaling of
DNN accelerator weight memories [35]. Wang et al. propose an elastic DNN accelerator
architecture to detect the adversary sample attacks by organizing the execution of DNN
and the detect algorithm concurrently [36].

Pandey and Gundi et al. have elaborated various challenges faced by the low-power
computation environment in the DNN accelerator domain [37]. Predictive and dynamic
timing error handling opportunities have been detailed in [37]. The concept of MRFF
(Section 3.2) has been inculcated from the ReModeled Razor, and its efficacy has been
proven using timing simulation scenarios. The work also depicted the cycle-accurate
pattern utilization of the MAC units in the systolic array. It then aids in boosting the
diagonal active MAC units to save energy consumption, which could be otherwise wasted
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on the computationally inactive MAC units. Additionally, our proposed work utilized the
statistical curve-based algorithm as discussed in Section 3.4. It exploits the opportunity
arising due to the cycle-wise occurrence of timing errors and the uneven number of MAC
units being active in each cycle of an operation. The algorithm also predicts the maximum
timing error cycles and reduces the effect of the timing errors on the output.

7. Conclusions

The meteoric rise in the DNN computations demands a low-power error-resilient DNN
accelerator design paradigm capable of delivering quintessential classification accuracy.
This paper proposes PREDITOR—an energy-efficient high-performance novel design for an
NTC TPU. PREDITOR efficiently predicts and mitigates timing errors in the TPU, thereby
ensuring superior error-resilience and delivering high performance.
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