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Abstract  9 

Existing automated compliance checking (ACC) systems require the extraction of requirements 10 

from regulatory documents into computer-processable representations. These information 11 

extraction (IE) processes are either fully manual, semi-automated, or automated. Semi-automated 12 

and manual approaches typically use manual annotations or predefined IE rules, which lack 13 

sufficient flexibility and scalability; the annotations and rules typically need adaptation if the 14 

characteristics of the regulatory document change. There is, thus, a need for a fully automated IE 15 

approach that can achieve high and consistent performance across different types of regulatory 16 

documents for supporting ACC. To address this need, this paper proposes a deep neural network-17 

based method for deep information extraction – extracting semantic and syntactic information 18 

elements – from regulatory documents in the architectural, engineering, and construction (AEC) 19 

domain. The proposed method was evaluated in extracting information from multiple regulatory 20 

documents in the AEC domain. It achieved average precision and recall of 93.1% and 92.9%, 21 

respectively.  22 
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1 Introduction 25 

Existing automated code checking (ACC) systems have achieved different levels of accuracy, 26 

automation, and coverage. However, they all require the extraction of requirements from 27 

regulatory documents, such as building codes, energy conservation codes, and specifications, 28 

into computer-processable representations. The information extraction (IE) processes in many of 29 

the existing ACC systems are still fully manual. For example, Solibri Model Checker requires 30 

users to read the building code and then manually convert the building-code requirements into 31 

computer-processable representations by filling in predefined templates. The IE processes in 32 

other ACC systems are semi-automated or automated. However, these processes still rely on 33 

manual annotations or manually defined IE rules. For example, SmartCode requires that code-34 

checking professionals annotate regulatory information using the requirement, application, 35 

selection, and exception (RASE) markups [1] manually, and the annotated building-code text is 36 

then converted into a computer-processable form using predefined rules. The state-of-the-art 37 

rule-based ACC systems by Zhang and El-Gohary [2] and Zhou and El-Gohary [3] use IE rules 38 

developed by experts based on the syntactic information of building-code sentences (e.g., part-39 

of-speech tags) and construction-domain ontologies to extract a defined set of semantic 40 

information elements. Despite the high IE performance they have achieved, the annotation-based 41 

or rule-based approaches, by nature, lack sufficient flexibility and scalability; the annotations and 42 

rules typically need adaptation if the characteristics of the building-code text change.  43 

Machine learning-based IE methods, instead of relying on manual annotation or hand-crafted 44 

rules, use machine learning models to automatically capture the underlying syntactic and 45 

semantic patterns of the text. A machine learning-based method is, thus, expected to be more 46 

flexible and scalable compared to the annotation-based or rule-based IE methods – saving the 47 
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initial effort to develop the annotations or rules, as well as the maintenance effort that would be 48 

required to adapt the annotations or rules across different types of regulatory documents or 49 

extraction tasks. However, not any machine learning algorithm would be suitable for this 50 

information extraction task. Using machine learning to extracting regulatory information from 51 

building codes to support ACC is challenging from two perspectives. First, existing machine 52 

learning-based IE methods in the AEC domain are only able to support shallow IE, where partial 53 

information (e.g., bridge deficiency-related entities [4]) is extracted from the text. However, 54 

ACC systems require deep IE, where the entire meaning of the text is captured for complete and 55 

correct extraction of the requirements [2]. Defining all semantic entities (e.g., subject, 56 

compliance checking attribute, reference) that can capture the full meaning of all types of 57 

requirements, and extracting them using machine learning methods, helps achieve such level of 58 

complete extraction. Second, building codes have hierarchically complex syntactic and semantic 59 

structures. Compared to general domain text, building-code sentences typically have deeply 60 

nested syntactic and semantic structures, including recursive clauses, conjunctive and alternative 61 

obligations, and multiple exceptions [3]. Recent efforts (e.g, [5]) have shown that deep neural 62 

networks are capable of learning the complex syntactics and semantics of the natural language. 63 

Thus, there is a need to explore the use of deep neural networks in deep IE for supporting ACC. 64 

To address this need, this paper proposes a deep neural network-based method for fully 65 

automated extraction of semantic and syntactic information elements from regulatory documents 66 

for supporting ACC in the architecture, engineering, and construction (AEC) domain. The deep 67 

learning models, which have significantly more parameters compared to traditional machine 68 

learning models, typically need a larger scale of data for training. However, there are no such 69 

annotated training datasets in the AEC domain, and creating these datasets would be highly 70 
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expensive. To solve this problem, the proposed method uses transfer learning strategies to enable 71 

the training of deep neural network models on both domain-general and AEC-specific annotated 72 

data. On one hand, domain-general data (i.e., the source-domain data in the context of transfer 73 

learning) are large in scale and rich in syntactic and semantic patterns, which helps train the 74 

models to deal with various text patterns across different regulatory documents for increased IE 75 

performance, flexibility, and scalability. However, the domain-general data are relatively 76 

different from the AEC-specific data in terms of vocabularies, syntactics, and semantics. On the 77 

other hand, AEC-domain data (i.e., the target-domain data in the context of transfer learning) are 78 

the target data to be analyzed, but they are much smaller in scale and lack syntactic and semantic 79 

richness, which would limit the flexibility and scalability of the models if they are solely used for 80 

training. The proposed approach, thus, takes the best of both worlds.  81 

The proposed deep neural network-based IE approach consists of four main steps: (1) prepare 82 

training data from both outside of the AEC domain (i.e., the source-domain data) and within the 83 

AEC domain (i.e., the target-domain data) and testing data; (2) develop a base deep IE model – a 84 

deep neural network model that consists of long short term memory networks (LSTM) and 85 

conditional random fields (CRF) for automatically extracting semantic and syntactic information 86 

elements from regulatory documents; (3) train the deep IE model using different transfer learning 87 

strategies including feature-based and model-based ones; and (4) evaluate the deep IE 88 

performance using precision, recall, and F1 measure.  89 

2 Background   90 

2.1 Information extraction 91 
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Information extraction (IE) aims to automatically extract structured information (e.g., entities 92 

and attributes that describe the entities) from text data, which are often unstructured and thus are 93 

not processable and understandable by computers [6]. Existing IE methods can be classified into 94 

two groups: rule-based and machine learning-based methods. Rule-based IE approaches rely on 95 

pattern-matching rules that are developed based on semantic and syntactic knowledge. The IE 96 

rules are often manually designed. For example, Fader et al. [7] developed IE rules based on the 97 

syntactic and lexical features of the text to extract assertions from the Web for supporting 98 

commonsense knowledge and question answering. The ClausIE by Del Corro and Gemulla [8] 99 

consisted of IE rules built upon English grammar and dependency parsing of sentences to extract 100 

arguments from text. The IE system by Gutierrez et al. [9] integrated IE rules and error detection 101 

rules built upon biology-related ontologies to extract facts from text in the biological domain. A 102 

few other research efforts explored a number of techniques to reduce the cost of creating IE 103 

rules, such as learning IE rules from plain text using statistical learning algorithms [10], 104 

designing simple programming languages and interactive environments for rules [11], and 105 

integrating existing rule programming languages and natural language processing applications in 106 

one rule development platform [12].  107 

Machine learning-based methods, rather than relying on IE rules, employ machine learning 108 

models to automatically learn the syntactic and semantic patterns from training text data – and 109 

the trained IE models are then used to extract the target information from new, unseen text data. 110 

The most commonly used machine learning-based methods formulate the IE problem as a 111 

sequence labeling problem, where each word in a sentence is assigned a label using supervised 112 

learning algorithms. Examples of IE approaches using traditional supervised learning algorithms, 113 

together with handcrafted syntactic and semantic features, include a hidden Markov algorithm-114 
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based named entity recognition (NER) method by Zhou and Su [13], a support vector machine-115 

based NER method by Li et al. [14], and a CRF-based IE method by Finkel et al. [15]. 116 

2.2 Deep learning in text analytics 117 

Deep learning methods use computational models that consist of multiple layers to capture 118 

different levels of information representations from large-scale data [16]. Deep learning methods 119 

have drastically improved the state-of-the-art performance in automatically processing and 120 

understanding different types of data, including image and text, and meanwhile reduced or 121 

eliminated the manual effort in feature engineering compared to traditional machine learning 122 

methods. Recurrent neural networks (RNN) and variants such as gated recurrent units (GRUs) 123 

[17] and LSTM [18] are deep neural networks that use internal states to process sequences of 124 

input data. They have been widely used in text analytics tasks including semantic and syntactic 125 

analysis (e.g., bidirectional LSTM and multilayer perceptron for dependency parsing and part-of-126 

speech (POS) tagging [19]), and partial or shallow IE (e.g., bidirectional LSTM and CRF for 127 

extracting named entities [20]). Examples of RNN-based IE efforts include a domain-specific 128 

event detection method using convolutional neural networks [21], an NER method using LSTM 129 

and CRF [20], and an entity and relation extraction system using bidirectional LSTM [22].  130 

Most recently, the Transformer [23] and transformer-based models and methods have been 131 

proposed, which allow training language models on large-scale text data much faster by 132 

abandoning complex RNN and solely relying on the attention mechanisms. For example, the 133 

OpenAI’s generative pre-trained transformer (GPT) [24] and Google’s bidirectional encoder 134 

representations from transformers (BERT) [25], as well as many of their variants (e.g., XLNet 135 

[26], DistilBERT [27], ALBERT [28]), which improve on either the performance or the training 136 
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speed, have achieved the state-of-the-art performance in various text analytics tasks (e.g., 137 

machine translation [29], question answering [30], and information retrieval [31]). 138 

A limited number of research efforts have been focused on deep learning-based methods to solve 139 

text analysis problems in the AEC domain. For example, Zhang and El-Gohary [32] used an 140 

RNN-based approach to extract requirement hierarchies from building-code sentences for 141 

supporting compliance checking. Pan and Zhang [33] developed RNN-based models to mine 142 

information from building information modeling (BIM) log data to support design decision 143 

making. Bang and Kim [34] developed models that consist of convolutional neural network 144 

(CNN) and LSTM layers to automatically generate time-spatial and visual context-based 145 

descriptions given construction site images for supporting construction site management. 146 

2.3 Transfer learning 147 

One challenge for deep learning-based IE is that the models typically need large annotated text 148 

data, which require significant time and effort to prepare. Such annotated data are scarce in many 149 

domains, including the AEC domain, which hinders the use of deep learning for domain-specific 150 

IE. Existing annotated datasets have mostly been developed for general natural language 151 

processing (NLP) applications (e.g., the Penn Treebank datasets for multiple syntactic and 152 

semantic analysis tasks [35], the CoNLL-2003 dataset for language-independent NER [36], and 153 

the CoNLL-2005 for semantic role labeling [37]), which are not sufficient for many domain-154 

specific applications such as IE for ACC. To address this problem, various research efforts have 155 

been undertaken to leverage labeled data from other domains using transfer learning strategies. 156 

Transfer learning aims to transfer knowledge for solving certain domain-specific tasks by 157 

leveraging existing labeled data of some related tasks or domains [38]. Transfer learning enables 158 
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the training of machine learning models using large-scale, pattern-rich, and annotated training 159 

data that are from source domains that are different from the target domain (e.g., the AEC 160 

domain). Thus, transfer learning improves both the performance and the flexibility and 161 

scalability of the machine learning models, as well as reduces the cost of preparing annotated 162 

training data for the target domain. Transfer learning strategies can be classified into three types 163 

based on how the knowledge is transferred from the source domains to the target domain: 164 

instance-based, feature-based, and model-based strategies.  165 

Instance-based strategies reweight or resample the source-domain data to be similar to the target-166 

domain data (e.g., the boosting method for cross-domain text classification [39]), which are then 167 

used for training the machine learning models. Feature or representation-based strategies 168 

discover transferable features or representations that are discriminative for both the source and 169 

the target domains through a new machine learning model (e.g., the global vectors for word 170 

representation model [40] and the deep contextualized word representations [41]). Model-based 171 

strategies reapply the partial deep neural networks – those layers trained on the source-domain 172 

data – in the target domain by adapting the models using target-domain data. Examples of 173 

methods for model adaptation include finetuning the pretrained CNN-based image classification 174 

models (e.g., [42-43]), finetuning the pretrained Transformer-based models (e.g., GPT, BERT, or 175 

their variants) for specific downstream text analytics tasks (e.g., [29-31]), and training the 176 

sequence labeling model on source-domain and target-domain data alternatingly (e.g., [44]).  177 

Transfer learning strategies have been used to solve computer vision and NLP problems such as 178 

sequence labeling (e.g., [44]), text classification (e.g., [39]), and sequence-to-sequence learning 179 

(e.g., [29-30]). In the AEC domain, transfer learning strategies have been mainly used to solve 180 

computer vision problems (e.g., [42-43]).  181 
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3 State of the art and knowledge gaps in information extraction in the construction 182 

domain 183 

Rule-based methods have been developed for solving various IE problems in the AEC domain. 184 

For example, Al Qady and Kandil [45] developed rules, which use syntactic features, for shallow 185 

parsing to extract concept relations from construction contract documents for improving 186 

electronic document management such as document categorization and retrieval. Zhang and El-187 

Gohary [2] and Zhou and El-Gohary [3] developed IE rules, which use semantic and syntactic 188 

features, to extract semantic information elements from regulatory documents such as building 189 

codes, energy conservation codes, and specifications for supporting ACC. Lee et al. [46] 190 

developed rules, which use syntactic parsing and predefined lexicon features, to extract 191 

poisonous clauses from construction contracts for supporting contract management. Despite the 192 

state-of-the-art performance levels many of them have achieved (e.g., nearly 100% recall 193 

reported by Zhang and El-Gohary [2] and Zhou and El-Gohary [3]), the rule-based approaches 194 

are difficult to scale to a variety of documents due to the relatively limited and inflexible patterns 195 

that are used to develop the rules. In general, when the type of regulatory document or the 196 

characteristics of the text change, although some of the IE rules could be reused, most of these 197 

rules will require significant retesting and possibly modification or addition. The lack of 198 

sufficient flexibility and scalability becomes a potential obstacle for using ACC systems built on 199 

rule-based IE, especially given the fact that building codes are updated frequently and vary 200 

across different regions. 201 

Recently, a limited number of machine learning-based methods have been developed for solving 202 

IE problems in the AEC domain. For example, Liu and El-Gohary [4] developed a semi-203 

supervised machine learning-based method to extract entity information from bridge inspection 204 
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reports for supporting bridge deterioration prediction. Zhang and El-Gohary [47] developed a 205 

supervised learning-based method to extract semantic roles including entities and relations from 206 

regulatory documents for supporting ACC. Kim and Shi [48] developed a supervised learning-207 

based method to extract knowledge from construction accident cases. Despite the importance of 208 

these efforts, there are three knowledge gaps that this paper aims to address. First, the 209 

aforementioned methods can be classified as shallow because they only extract partial 210 

information from the text, and thus they cannot be directly used for capturing the entire meaning 211 

of the text, which is essential for IE for ACC. Second, they use traditional machine learning 212 

algorithms such as CRF, which has been outperformed by deep neural networks such as RNN in 213 

many text analytics tasks including partial or shallow IE. Thus, there is a need to explore the use 214 

of deep neural networks in deep IE for supporting ACC. Third, there is generally a lack of 215 

labeled training data in the AEC domain, which is especially a challenge for deep neural 216 

networks because they require larger training datasets than those required for traditional 217 

algorithms. Thus, there is a need for techniques to leverage the larger-size and pattern-rich data 218 

that exist in other domains to help address this challenge while reducing the human-labeling 219 

effort. 220 

4 Proposed semantic and syntactic information elements for deep information extraction 221 

for supporting ACC 222 

In this study, two types of information elements, semantic and syntactic information elements, 223 

are used to represent the building-code requirements. The semantic information elements define 224 

the building-code requirements that are described in the natural language building-code 225 

sentences. In this study, a subset of the semantic information elements proposed by Zhang and 226 

El-Gohary [2] were utilized, including six of the essential semantic information elements (as 227 
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shown in Table 1): subject, compliance checking attribute, deontic operator indicator, 228 

comparative relation, quantity value, and quantity unit. Two new semantic information elements 229 

were added: subject relation and reference. Subject relation extends the original quantity relation 230 

to relations that apply to both quantitative and nonquantitative requirements. Reference extends 231 

the scope of existing ACC efforts to cover cross references that commonly exist in requirements. 232 

The secondary semantic information elements such as subject restrictions and quantity 233 

restrictions [2] were not utilized, because compared to the study by Zhang and El-Gohary, this 234 

study further granularizes the regulatory information represented by the secondary semantic 235 

information elements using the proposed information elements, and thus there is no need to 236 

include secondary elements. The syntactic information elements are used in the English sentence 237 

to form grammatically correct building-code sentences but do not directly contribute to defining 238 

the meaning of the building-code requirement. The syntactic information elements include three 239 

types of logic operator indicators – conjunctions (e.g., “and”), disjunctions (e.g., “or”), and 240 

negations (e.g., “not”) – and syntactic units such as some of the pronouns (e.g., “the”), adverbs 241 

(e.g., “so”), prepositions (e.g., “of”), and conjunctions that introduce a clause (e.g., “that”). 242 

These syntactic information elements better capture the syntactic structures of requirements 243 

(especially the deeply nested ones), which helps better understand the full meaning of the 244 

requirements. Fig. 1 shows example sentences from the International Building Code (IBC), 245 

International Energy Conservation Code (IECC), and Americans with Disabilities Act (ADA) 246 

Standards, and how the sentences are annotated using the proposed semantic and syntactic 247 

information elements. 248 

Table 1. Semantic Information Elements for Representing Requirements for Compliance 249 
Checking Purposes [2] 250 

Semantic information element Definition 
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Subject An ontology concept representing a thing (e.g., building element) that is 
subject to a particular requirement 

Compliance checking attribute An ontology concept representing a specific characteristic of a “subject” 
that is checked for compliance  

Deontic operator indicator A term or phrase that indicates the deontic type of the requirement (i.e., 
obligation, permission, or prohibition) 

Comparative relation 
A term or phrase for comparing quantitative values, including “greater 
than or equal to,” “greater than,” “less than or equal to,” “less than,” and 
“equal to” 

Quantity value A numerical value that defines the quantity 
Quantity unit The unit of measure for a “quantity value” 

Subject relation A term or phrase that defines the type of relation between two subjects, a 
subject and an attribute, or a subject or an attribute and a quantity  

Reference 
A term or phrase that denotes the mention or reference to a chapter, 
section, document, table, or equation in a building-code sentence (e.g., 
“Section 1312” in “the revolving door shall comply with Section 1312”) 

 251 
Fig. 1. Example building-code sentences annotated with the proposed syntactic and semantic 252 

information elements. 253 

5 Proposed deep neural network-based method for deep IE from regulatory documents  254 

The proposed deep learning-based method for deep IE from regulatory documents consists of 255 

four primary steps, as illustrated in Fig. 2: data preparation, base deep IE model development, 256 

model adaptation and training using transfer learning strategies, and deep IE performance 257 

evaluation. 258 

 259 



13 
 

Fig. 2.  Proposed deep neural network-based method for deep information extraction from 260 
regulatory documents. 261 

5.1 Data preparation 262 

5.1.1 Target-domain data preparation 263 

The target-domain data – building-code sentences that are annotated with the proposed semantic 264 

and syntactic information elements – were prepared for both training and testing the IE models. 265 

The data were prepared following four steps: corpus development, data preprocessing, sentence 266 

selection, and sentence annotation. First, a small building-code corpus was developed, which 267 

consists of sentences from multiple regulatory documents, including the IBC, IECC, ADA 268 

Standards, and IBC amendments (e.g., Champaign building code amendments). To construct the 269 

corpus, all documents were converted to the text file format (i.e., .txt) and combined into a single 270 

file. Second, the following four preprocessing techniques were used: data cleaning, sentence 271 

segmentation, sentence tokenization, and sentence filtering. Data cleaning aims to remove the 272 

noises created due to the conversion of the non-textual parts (e.g., figures) of the regulatory 273 

documents. Sentence segmentation aims to detect the sentence boundaries (e.g., punctuations) 274 

and segment the text into sentences. Sentence tokenization aims to further split the sentences into 275 

tokens (e.g., words). Sentence filtering aims to remove the sentence or sentence fragments that 276 

are not requirements (e.g., headings). The Natural Language Toolkit (NLTK) in Python was used 277 

for sentence segmentation and tokenization. Third, a group of building-code sentences, which 278 

consists of about 15,000 words, were randomly selected from the developed corpus. The selected 279 

sentences have different levels of computability. Computability is defined as the ability of the 280 

building-code sentence to be represented and processed by a computer in an effective manner 281 

[49]. Fourth, a group of four participants with both domain knowledge (especially codes and 282 

regulations) and NLP knowledge – the first author and three experts including two from 283 
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academia (faculty) and one from industry – manually annotated the selected sentences with the 284 

proposed semantic and syntactic information elements. The beginning-inside (BI) labeling 285 

scheme was adopted, where “B” indicates that the word is at the beginning of an information 286 

element, and “I” indicates that the word is inside of an information element. For example, the 287 

“door openings”, which is a subject, is annotated as “B-Subject I-Subject”, meaning that the 288 

word “door” is the beginning of a subject and the word “openings” is inside of a subject. The 289 

inter-annotator agreement was 80% in F1 measure, which indicates the reliability of the 290 

annotations [50]. The discrepancies among the annotations were then discussed and resolved to 291 

reach consensus on the final annotations. After annotation, the target-domain data was split into 292 

two sets using a 9:1 ratio: training and validation dataset and testing dataset. A ten-fold cross 293 

validation was performed, further splitting the first dataset into a training set (for training the 294 

model) and a validation set (for tuning the hyperparameters of the model). The testing dataset 295 

was used for evaluation. 296 

5.1.2 Source-domain data preparation 297 

The source-domain data, English sentences that are not from the AEC domain and are already 298 

annotated with different labels or markups (i.e., other than the proposed syntactic and semantic 299 

information elements), were prepared for training the IE model. The Penn Treebank [35] were 300 

used, which consist of over 100,000 English sentences that were collected from the Wall Street 301 

Journal and are annotated with POS tags. The Penn Treebank data are suitable for training the IE 302 

models for two reasons. First, the POS-tag annotations indicate the syntactic roles that words 303 

play in a sentence, which can be used for the syntactic and semantic analysis of the text. Second, 304 

compared to the target-domain data, the Penn Treebank data are large in scale and rich in 305 
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syntactic and semantic patterns. The entire source-domain data were used for training the IE 306 

models using transfer learning strategies. 307 

5.2 Base deep information extraction model development 308 

The deep neural network model – bidirectional LSTM with CRF [51] – was selected and adapted 309 

as the base IE model. The base model, thus, consists of three main components: the input layer, 310 

encoding layer, and output layer, as depicted in Fig. 3. The selections of the layers were 311 

conducted based on the scales and syntactic and semantic characteristics of the specific source 312 

and target data used in the training of the model, as discussed in the following subsections. 313 

  314 
Fig. 3. The architecture of the base deep information extraction model. 315 

5.2.1 Input layer 316 

The input layer aims to represent the semantics of each word in a vector representation for deep 317 

neural network computation purposes. To better capture the semantic information of the words in 318 

the target-domain training data, which are of relatively small scale, a word-embedding layer and 319 

a character-embedding layer were added to the input layer. The word-embedding layer aims to 320 

learn the vector representation of each token (e.g., word or punctuation). The character-321 

embedding layer aims to first learn the vector representation of each letter, digit, or symbol in the 322 

training data, and then feed the vector representations of all letters, digits, and symbols contained 323 

in a token into an LSTM layer to generate a second vector representation to represent this token. 324 
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For each token, the final output of the input layer is a vector representation formed by 325 

concatenating the vector representation generated by the word-embedding layer and the vector 326 

representation generated by the character-embedding layer.  327 

5.2.2 Encoding layer 328 

The encoding layer aims to further learn the contextual vector representation of each word that is 329 

discriminative in terms of the IE task, using the vector representations of both the current word 330 

and the context words generated by the input layer. To better capture the semantic information of 331 

the words in the target-domain training data, which are of relatively small scale, two LSTM 332 

layers were added to the encoding layer. To improve the ability of the IE model to deal with 333 

long-term syntactic and semantic dependencies that exist in hierarchically complex building-334 

code sentences, the vector representations of both forward and backward context words were 335 

used when encoding the contextual vector representation of the current word via the bidirectional 336 

LSTM architecture – where one LSTM layer is forward and the other layer is backward. For 337 

each input building-code sentence, the representations encoded by the forward LSTM layer are a 338 

sequence of vectors [𝑓1, 𝑓2, … , 𝑓𝑇], and the representations encoded by the backward LSTM layer 339 

are another sequence of vectors [𝑏1, 𝑏2, … , 𝑏𝑇], based on which the representations generated by 340 

the encoding layer are [ℎ1, ℎ2, … , ℎ𝑇], where ℎ𝑡 is the direct sum of 𝑓𝑡 and 𝑏𝑡 [20] and T is the 341 

size of the LSTM layers. 342 

To improve the model’s ability to reduce overfitting, a recurrent dropout layer was added to the 343 

encoding layer. The recurrent dropout layer drops a random fraction of the LSTM units in the 344 

encoding layer during the training of the IE model, according to a dropout probability d. 345 

Typically, the dropout probability is set to be smaller than 0.5, which means that less than half of 346 
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the LSTM units are dropped and the rest of the LSTM units are retained. The recurrent dropout 347 

layer is disabled during the testing and future use of the IE model (i.e., use in the ACC system), 348 

which means all the LSTM units in the encoding layer are used for generating the contextual 349 

vector representations of the tokens in the building-code sentences. 350 

5.2.3 Output layer 351 

The output layer aims to predict the type of syntactic and semantic information elements using 352 

the BI labeling scheme for each token in the building-code sentence, given the contextual vector 353 

representations of the tokens in the sentence generated by the encoding layer. To better capture 354 

the semantic and syntactic dependencies that exist in hierarchical complex building-code 355 

sentences, a CRF layer was added to the output layer. The cross-entropy loss was chosen as the 356 

objective function and was minimized during the training of the IE model. The cross-entropy 357 

loss L describes the difference between the labels (i.e., the type of semantic information elements 358 

using the BI labeling scheme or the POS tags) in the training data, denoted as 𝑦, and the labels 359 

predicted by the model 𝜃, denoted as c, based on the input building-code sentence x, as shown in 360 

Eq. (1), where D is a batch of the training data, C is the set of all the possible labels, and 361 

𝑝𝜃(𝑐|𝑥𝑖) is the conditional probability of c given the input sentence x generated by the CRF layer 362 

in the IE model with parameters 𝜃, and 1𝑦=𝑐 is the indicator function, which returns 1 when y 363 

and c are equal, and returns 0 when y and c are not equal.  364 

𝐿(𝜃) =
1

|𝐷|
∑ ∑ 1𝑦=𝑐 log 𝑝𝜃(𝑐|𝑥𝑖)

𝑐∈𝐶𝑥,𝑦∈𝐷

                                                                                              (1) 365 

Given a building-code sentence and a trained IE model, the corresponding sequence of labels 366 

was predicted by searching the optimal sequence of labels that maximizes the sum of the 367 

conditional log probabilities log 𝑝𝜃(𝑐|𝑥𝑖) computed by the CRF layer.  368 
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5.3   Model training using transfer learning strategies 369 

To enable the training of the base IE model on both the source-domain and the target-domain 370 

training data, the model was further adapted and trained using different transfer learning 371 

strategies. Based on the structure of the base IE model, four transfer learning strategies, 372 

belonging to two types – feature-based and model-based strategies – were selected for testing, as 373 

summarized in Table 2.  374 

Table 2. Transfer Learning Strategies Adopted for Training the Base Deep Information 375 
Extraction Model 376 

Transfer learning strategy Type of strategy Modification of the base deep information extraction model 

Fixed pretrained word 
embeddings Feature-based  Initially replace the word-embedding layer with pretrained word 

embeddings; fix the word-embedding layer  
Trainable pretrained word 
embeddings Feature-based  Initially replace the wording-embedding layer with pretrained 

word embeddings 

Two-stage training Model-based Replace the conditional random field (CRF) layer used in the first 
stage of the training with a new layer 

Alternating training Model-based Attach two separate CRF layers to the encoding layer 

5.3.1 Feature-based transfer learning strategy 377 

Feature-based transfer learning strategies were selected to directly transfer the semantic 378 

information contained in the source-domain data to the target-domain data in the word-379 

embedding layer of the base IE model. Pretrained word embeddings are vector representations of 380 

words learned on a large, cross-domain corpus by training a machine learning model on the 381 

corpus. The most commonly used machine learning model to generate pretrained word 382 

embeddings is the Global Vectors for Word Representation (GloVe) algorithm [40], where the 383 

training is performed on aggregated global word-word co-occurrence statistics from a large 384 

cross-domain corpus, and the resulting representations capture the contextual information of the 385 

words in the corpus. The word embeddings that were learned by applying the GloVe algorithm 386 

on a corpus consisting of Wikipedia 2014 and Gigaword 5 were adopted. The adopted word 387 
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representations consist of vector representations of 40,000 uncased English words, which have a 388 

dimension of 50. 389 

Two feature-based transfer learning strategies were adopted for training the deep IE model: the 390 

fixed pretrained word-embedding strategy and the trainable pretrained word-embedding strategy. 391 

The fixed pretrained word-embedding strategy aims to keep the weights in the input layer 392 

corresponding to the pretrained word embeddings not updated during the training of the deep 393 

neural networks. On the other hand, the trainable pretrained word-embedding strategy aims to 394 

use the pretrained word embeddings to initialize the weights in the input layer and then update 395 

the weights during the training. The performance of the two strategies depends on the 396 

relativeness of the corpus that is used to learn the pretrained word embeddings to the domain-397 

specific text and the complexity of the syntactics and semantics in the domain-specific task. 398 

5.3.2 Model-based transfer learning strategy 399 

Model-based transfer learning strategies were selected to indirectly transfer the semantic 400 

information contained in the source-domain data to the target-domain data in the input layer and 401 

embedding layer of the base IE model. Two model-based transfer learning strategies were 402 

adopted for training the IE model: a two-stage training strategy and an alternating training 403 

strategy. In the two-stage training strategy (as illustrated in Fig. 4), the IE model was trained in 404 

two separate stages. In the first stage, the model was trained on the source-domain data. The 405 

first-stage training was stopped if the difference between the training losses of two consecutive 406 

training epochs is smaller than the threshold (i.e., 0.01), or the training reaches 50 epochs, where 407 

an epoch is defined as training the model on the entire source-domain data. In the second stage, 408 

the output layer of the trained model (i.e., source output layer) was replaced by a new output 409 

layer (i.e., target output layer), and the model was trained on the target-domain data. In the 410 



20 
 

second stage, only the output layer was trainable, and the other two layers (i.e., the input layer 411 

and the encoding layer) were not – i.e., the parameters of these two layers were not updated 412 

during the training. The second-stage training was stopped if the difference between the training 413 

losses of two consecutive training epochs is smaller than the threshold (i.e., 0.01), or the training 414 

reaches 50 epochs, where an epoch is defined as training the model on the entire target-domain 415 

data.  416 

  417 
Fig. 4. Two-stage training strategy and model requirements. 418 

In the alternating training strategy (as illustrated in Fig. 5), the IE model was trained on the 419 

source-domain and the target-domain training data in an alternating manner. The model had two 420 

separate output layers – one layer is used when the model is trained on the source-domain data 421 

(i.e., source output layer) and the other layer is used when the model is trained on the target-422 

domain data (i.e., target output layer). In each training iteration, there is an alternating 423 
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probability p that the model is trained on a selected batch of source-domain data, and a 424 

probability of (1-p) that it was trained on a selected batch of target-domain data, where the total 425 

number of iterations is equal to the size of the training data divided by the size of a batch of 426 

training data. Typically, the alternating probability p is close to 1, meaning the model is more 427 

frequently trained on source-domain data rather than target-domain data, to capture as much 428 

syntactic and semantic patterns from the relatively large-scale source-domain data, and to 429 

prevent overfitting on the relatively small-scale target-domain data. The training was stopped if 430 

the difference between the training losses of two consecutive epochs when the model is trained 431 

on the target-domain data is smaller than the threshold (i.e., 0.01), or the training on the target-432 

domain data reaches 50 epochs, where an epoch is defined as training the model on the entire 433 

target-domain training data.   434 

 435 

Fig. 5. Alternating training strategy and model requirements. 436 

5.4 Deep information extraction and evaluation 437 
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To test and evaluate the proposed model, the information was extracted following two simple 438 

steps (Fig. 6). First, the building code was preprocessed into sentences, where each preprocessed 439 

sentence consisted of a sequence of tokens (e.g., words, numbers, punctuation marks). Second, 440 

the trained deep IE model automatically extracted the semantic and syntactic elements in the 441 

sentences. 442 

  443 
Fig. 6. Deep information extraction using the proposed method. 444 

Three metrics were used to evaluate the IE performance: precision, recall, and F1 measure, as 445 

shown in Eq. (2) to (4), where for a specific type of syntactic and semantic information element 446 

E, TP is the number of true positives (i.e., number of words correctly labeled as E), FP is the 447 

number of false positives (i.e., number of words incorrectly labeled as E), and FN is the number 448 

of false negatives (i.e., number of words not labeled as E but should have been) [52]. 449 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃 

𝑇𝑃 + 𝐹𝑃 
                                                                                                                            (2)   450 
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𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
                                                                                                                                      (3) 451 

𝐹1 = 2 ×
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 × 𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙
                                                                                                                  (4) 452 

6 Experimental results 453 

6.1 Deep information extraction model hyperparameter optimization 454 

The deep IE models and transfer learning strategies were implemented using Keras built in 455 

Python 3 and run using the Tesla K80 GPU provided in the Google Colaboratory. A ten-fold 456 

cross validation was conducted for optimizing the model hyperparameters. The optimized main 457 

hyperparameters for the deep IE models are shown in Table 3.  458 

Table 3. Optimized Main Hyperparameters for the Deep Information Extraction Models 459 
Hyperparameter Value 
Batch size for the source-domain training data 30 
Batch size for the target-domain training data 30 
Size of the word-embedding vector representation 50 
Size of the character-embedding vector representation 20 
Size of the long short term memory layer in the encoder layer 50 
Type of activation functions rectified linear unit (ReLU) 
Maximum length of input sentences 75 
Maximum length of input words 20 
Recurrent dropout rate 0.1 
Alternating probability when training the deep information extraction 
models using alternating training strategy 

90% 

Training loss difference threshold 0.01 

6.2 Comparison of the performances of the proposed method with different transfer learning 460 

strategies 461 

To determine the optimal transfer learning strategies for the proposed deep IE method, six 462 

different combinations of strategies were implemented and tested for comparative evaluation, as 463 

shown in Table 4: two-stage training with no feature-based strategy (SC1), alternating training 464 

with no feature-based strategy (SC2), two-stage training with trainable pretrained word 465 

embeddings (SC3), alternating training with trainable pretrained word embeddings (SC4), two-466 

stage training with fixed pretrained word embeddings (SC5), alternating training with fixed 467 
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pretrained word embeddings (SC6). During the training of the model, the hyperparameters were 468 

set as per Table 3. The proposed deep IE method achieved the highest performance when the 469 

strategy combination SC4 was adopted. The results indicate that, first, the differences between 470 

the semantic and syntactic characteristics of the source-domain and target-domain data have a 471 

significant impact on the choice of transfer learning strategies. Second, the two-stage training 472 

strategy might cause the IE model to overfit to the source-domain data and underfit to the target-473 

domain data. Third, the pretrained word embeddings contribute to the model’s ability to capture 474 

the semantic and syntactic patterns in both the source-domain and target-domain data; however, 475 

they are still not able to bridge the gap between the two domains (i.e., the general domain and the 476 

AEC domain). 477 

According to the aforementioned results, the proposed IE method uses the optimized 478 

hyperparameters in Section 6.1 (e.g., recurrent dropout rate as 0.1, alternating probability as 90%) 479 

and the transfer learning strategy combination SC4. For the remaining experiments (Sections 6.3 480 

to 6.5), this method was used.  481 

Table 4. Performance of the Proposed IE Method with Different Transfer Learning Strategy 482 
Combinations 483 

Strategy 
combination 

Feature-based transfer 
learning strategy 

Model-based transfer 
learning strategy Precision1 Recall1 F1 measure1 

SC1 None Two-stage training 79.7% 80.5% 80.1% 
SC2 None Alternating training 87.0% 87.5% 87.2% 

SC3 Trainable pretrained word 
embeddings Two-stage training 83.3% 84.0% 83.6% 

SC4 Trainable pretrained word 
embeddings  Alternating training 93.1% 92.9% 93.0% 

SC5 Fixed pretrained word 
embeddings Two-stage training 83.4% 83.9% 83.7% 

SC6 Fixed pretrained word 
embeddings Alternating training 90.0% 90.5% 90.2% 

  1Bolded font indicates the highest performance. 484 

6.3 Comparison of the performances of the proposed and baseline methods  485 
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To evaluate the effect of using deep neural networks and leveraging source-domain training data 486 

through transfer learning strategies on the extraction performance, the proposed IE method was 487 

compared to the linear CRF as a baseline. Linear CRF was selected because it has achieved the 488 

state-of-the-art performance for shallow IE in the AEC domain (e.g., [4]). Two linear CRF 489 

baseline models were constructed for performance comparison, one with word embeddings as 490 

features (Baseline 1) and another with both word embeddings and POS tags (Baseline 2). As 491 

shown in Table 5, compared to the baseline methods, the proposed IE method achieved higher 492 

performance, with an average increase of 9.6% in precision (14.2% for Baseline 1 and 4.9% for 493 

Baseline 2), 9.8% in recall (14.5% for Baseline 1 and 5.0% for Baseline 2), and 9.4% (14.4% for 494 

Baseline 1 and 4.4% for Baseline 2) in F1 measure.  495 

Table 5. Performance of the Proposed IE Method Compared to the Baseline 496 
Deep information extraction method Precision1 Recall1 F1 

measure1 
Proposed IE method (using deep neural networks) 93.1% 92.9% 93.0% 
Baseline 1 (using linear conditional random fields + word embeddings) 78.9% 78.4% 78.6% 
Baseline 2 (using linear conditional random fields + word embeddings + part-
of-speech tags) 87.9% 88.6% 88.2% 

   1Bolded font indicates the highest performance. 497 

6.4 Performance of the proposed method on different types of regulatory documents 498 

To evaluate the ability of the proposed IE method to extract syntactic and semantic information 499 

elements from regulatory documents that have different syntactic and semantic characteristics, 500 

the trained IE model was tested using building-code sentences from three different types of 501 

regulatory documents: the IBC, IECC, and ADA Standards, as shown in Table 6. The proposed 502 

IE method achieved consistent performance across the three types of documents, based on the 503 

three metrics, indicating that the method has high flexibility and scalability. As shown in Fig. 7, 504 

compared to the baseline methods, the proposed IE method achieved higher performance across 505 

the three types of documents. For IBC, the average increase is 11.5% in precision (17.3% for 506 
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Baseline 1 and 5.6% for Baseline 2), 11.3% in recall (17.1% for Baseline 1 and 5.5% for 507 

Baseline 2), and 11.1% (17.3% for Baseline 1 and 4.9% for Baseline 2) in F1 measure. For IECC, 508 

the average increase is 8.8% in precision (11.7% for Baseline 1 and 5.8% for Baseline 2), 8.2% 509 

in recall (12.6% for Baseline 1 and 3.7% for Baseline 2), and 8.5% (12.2% for Baseline 1 and 4.8% 510 

for Baseline 2) in F1 measure. For ADA, the average increase is 8.1% in precision (12.2% for 511 

Baseline 1 and 3.9% for Baseline 2), 8.3% in recall (12.6% for Baseline 1 and 3.9% for Baseline 512 

2), and 8.2% (12.4% for Baseline 1 and 3.9% for Baseline 2) in F1 measure.  513 

Table 6. Deep Information Extraction Performance Across Different Types of Regulatory 514 
Documents 515 

Type of regulatory document Deep information 
extraction method Precision1 Recall1 F1 measure1 

International Building Code 
Proposed method 94.9% 95.2% 95.1% 

Baseline 1 77.6% 78.1% 77.8% 
Baseline 2 89.3% 89.7% 90.2% 

International Energy 
Conservation Code 

Proposed method 87.3% 86.8% 87.1% 
Baseline 1 75.6% 74.2% 74.9% 
Baseline 2 81.5% 83.1% 82.3% 

Americans with Disabilities Act 
Standards 

Proposed method 95.1% 94.7% 94.9% 
Baseline 1 82.9% 82.1% 82.5% 
Baseline 2 91.2% 90.8% 91.0% 

         1Bolded font indicates the highest performance. 516 
 517 

  518 
Fig. 7. Comparison of Deep Information Extraction Performance Across Different Types of 519 

Regulatory Documents 520 
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6.5 Performance of the proposed method on building-code sentences of different levels of 521 

computability 522 

To evaluate the ability of the proposed IE method to extract syntactic and semantic information 523 

elements from different types of sentences, the trained IE model was tested using building-code 524 

sentences with different computability levels. Three different types of sentences were used for 525 

comparative evaluation, as shown in Table 7: moderately high, moderately low, and low 526 

computability, which are the top three types of sentences in terms of computability that appear 527 

most frequently in building codes (e.g., they account for 22%, 39%, and 23% of a corpus of 528 

sentences from IBC and its amendments, respectively) [49]. Sentences of moderately high 529 

computability have relatively simple syntactic and semantic structures (e.g., consisting of 530 

relatively short noun phrases, verb phrases, and preposition phrases at the sentence-level, or 531 

having simple or no restrictions). For example, “spacing of braced wall lines shall not exceed 35 532 

feet on center in both the longitudinal and transverse directions in each story” has moderately 533 

high computability. Sentences of moderately low computability have relatively complex 534 

syntactic and semantic structures (e.g., consisting of relatively long noun phrases, verb phrases, 535 

and preposition phrases at the sentence-level, or having one recursive restriction). For example, 536 

“openings between the Group S-2 enclosed parking garage and Group S-2 open parking garage, 537 

except exit openings, shall not be required to be protected” has moderately high computability. 538 

Sentences of low computability have very complex syntactic and semantic structures (e.g., 539 

consisting of very long noun phrases, verb phrases, and preposition phrases at the sentence-level, 540 

or having multiple recursive restrictions). For example, “where exterior walls serve as a part of a 541 

required fire-resistance-rated shaft or exit enclosure, or separation, such walls shall comply with 542 
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the requirements of Section 705 for exterior walls and the fire-resistance-rated enclosure or 543 

separation requirements shall not apply” has low computability. 544 

The proposed method achieved consistent performance across the three types of building-code 545 

sentences, based on the three metrics, indicating that the method has high flexibility and 546 

scalability. Also, all three selected types of sentences have hierarchical complex structures [3,49], 547 

indicating that the method is able to deal with complex building-code syntactic and semantic 548 

structures. As shown in Fig. 8, compared to the baseline methods, the proposed IE method 549 

achieved higher performance across sentences with all three levels of computability. For 550 

moderately high computability, the average increase is 5.3% in precision (7.5% for Baseline 1 551 

and 3.1% for Baseline 2), 5.2% in recall (8.1% for Baseline 1 and 2.2% for Baseline 2), and 5.2% 552 

(7.8% for Baseline 1 and 2.6% for Baseline 2) in F1 measure. For moderately low computability, 553 

the average increase is 8.4% in precision (13.3% for Baseline 1 and 3.4% for Baseline 2), 7.3% 554 

in recall (12.4% for Baseline 1 and 2.2% for Baseline 2), and 7.9% (12.9% for Baseline 1 and 2.8% 555 

for Baseline 2) in F1 measure. For low computability, the average increase is 12.6% in precision 556 

(18.0% for Baseline 1 and 7.2% for Baseline 2), 12.8% in recall (18.9% for Baseline 1 and 6.6% 557 

for Baseline 2), and 12.7% (18.5% for Baseline 1 and 6.9% for Baseline 2) in F1 measure. Both 558 

the proposed method and the baseline methods achieved high performance on sentences with 559 

moderately high computability, because they have relatively simple syntactic and semantic 560 

structures that are relatively easy to be captured by the models used in both methods. However, 561 

for sentences with low computability, the proposed method outperformed the baseline methods 562 

significantly, because they have relatively complex syntactic and semantic structures, especially 563 

long and recursive ones, which are better captured by the model used in the proposed method.  564 
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Table 7. Deep Information Extraction Performance for Building-Code Sentences with Different 565 
Computability Levels  566 

Computability of building-code 
sentences 

Deep information extraction 
method Precision1 Recall1 F1 measure1 

Moderately high 
Proposed method 95.2% 93.8% 94.5% 

Baseline 1 87.7% 85.7% 86.7% 
Baseline 2 92.1% 91.6% 91.9% 

Moderately low 
Proposed method 93.8% 93.5% 93.7% 

Baseline 1 80.5% 81.1% 80.8% 
Baseline 2 90.4% 91.3% 90.9% 

Low 
Proposed method 91.6% 92.1% 91.9% 

Baseline 1 73.6% 73.2% 73.4% 
Baseline 2 84.4% 85.5% 85.0% 

1Bolded font indicates the highest performance 567 
 568 

 569 
Fig. 8. Comparison of Deep Information Extraction Performance for Building-Code Sentences 570 

with Different Computability Levels 571 

6.6 Error analysis 572 

An error analysis was conducted to investigate the sources of errors and identify potential 573 

directions for performance enhancement in the future. To analyze the extraction errors, the 574 

confusion matrix (Fig. 9) was generated. Three main types of errors were identified based on the 575 

experimental results. First, the proposed approach had errors when dealing with multiword 576 

expressions, which consist of multiple words and function as individual syntactic and semantic 577 

units, especially those including prepositions. For example, the words in the multiword 578 
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expression “means of egress” should have been annotated with a single semantic information 579 

element – a subject, but instead it was annotated with a subject, a syntactic unit, and another 580 

subject. In future work, a multiword expression list for the AEC domain could be integrated into 581 

the proposed method. Second, the proposed method performed relatively lower on extracting 582 

compliance checking attributes and references compared to other types of semantic and syntactic 583 

information elements, as shown in the confusion matrix. For example, the “required insulation” 584 

in “the requirement insulation for roof or ceiling assemblies” should have been extracted as a 585 

compliance checking attribute, but was misextracted as a subject. The “U-factor and SHGC 586 

requirements” should have been extracted together as a reference, but the “U-factor” was 587 

misextracted separately as a subject. Also, “Group R-1”, which means the first residential group 588 

in the IBC use and occupancy classification, was mistakenly extracted as part of a subject instead 589 

of a compliance checking attribute. In the future, additional input layers could be added to 590 

capture syntactic and semantic patterns that are discriminative in distinguishing subjects from 591 

compliance checking attributes and references. Third, the proposed method performed relatively 592 

lower on the IECC compared to other types of regulatory documents. The lower performance 593 

results from the relatively low amount of target-domain training data built using IECC sentences. 594 

In the future, more experiments are needed to evaluate the ability of the proposed method to 595 

scale to different types of regulatory documents when the amount of training data changes. 596 
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 597 
Fig. 9. Confusion matrix for semantic and syntactic information elements. 598 

7 Contribution to the body of knowledge 599 

This paper contributes to the body of knowledge on two levels. On a methodological level, the 600 

paper offers a new method that integrates deep learning, transfer learning strategies, and both 601 

target-domain and general-domain data to fully automatically extract semantic and syntactic 602 

information elements from regulatory documents for supporting ACC in the AEC domain. The 603 

proposed approach improves the methodology of information extraction in three primary ways. 604 

First, it is the first effort to use a deep learning-based method to fully automatically extract 605 

semantic and syntactic information elements from regulatory documents in the AEC domain for 606 

supporting fully automated compliance checking. Second, it leverages both general-domain and 607 

AEC-specific training data through transfer learning strategies to improve the performance, 608 

flexibility, and scalability of the proposed deep IE method. The experimental results indicate that 609 

the transfer learning strategies could greatly impact the IE performance. Third, the deep neural 610 

network architectures and transfer learning strategies used in the proposed deep IE method are 611 
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adaptable to other types of text analytics tasks in the AEC domain such as requirement 612 

classification and semantic parsing.  613 

On a practical level, the paper contributes to the body of knowledge in two ways. First, the paper 614 

proposes a set of semantic and syntactic information elements to facilitate the representation of 615 

building-code requirements and the extraction of regulatory information for supporting building-616 

code analytics and compliance checking, which was effective for various types of regulatory 617 

documents such as IBC, IECC, and ADA Standards. Second, the paper offers a trained, ready-to-618 

use deep IE model that offers high extraction performance, with consistency across different 619 

types of building codes and across sentences with different levels of computability. Third, both 620 

the information elements and the deep IE model would help achieve full automation in ACC 621 

systems, including full automation in extraction and formalization of requirements/rules. Fully 622 

automated ACC would reduce code compliance errors and the time and cost associated with 623 

compliance checking, thereby bringing broad benefits to the construction industry such as 624 

reduced violations, enhanced resource efficiency, and faster permitting.  625 

8 Conclusions and future work 626 

This paper proposed a deep learning-based method that uses transfer learning strategies for deep 627 

information extraction from regulatory documents for supporting automated compliance 628 

checking in the AEC domain. A set of semantic and syntactic information elements for 629 

representing building-code requirements was proposed and used for deep IE from regulatory 630 

documents in the AEC domain. Two types of training data, target-domain and general-domain 631 

data, were prepared using text from multiple AEC regulatory documents and from the Penn 632 

Treebank, respectively. The deep neural network model consists of bidirectional LSTM and CRF 633 

layers, which were adopted as the base IE model. Four different feature-based and model-based 634 



33 
 

transfer learning strategies were used to adapt the base model and train the model on both 635 

domain-specific and general-domain training data.  636 

The proposed deep IE method was tested and evaluated using building-code sentences collected 637 

from three types of regulatory documents (i.e., IBC, IECC, and ADA Standards). Different 638 

combinations of transfer learning strategies were tested and compared, and the optimal 639 

combination was to use pretrained word embeddings to initialize the transfer feature information 640 

and use alternating training to transfer the model information. Average precision of 93.1%, recall 641 

of 92.9%, and F1 measure of 93.0% were achieved under the optimal hyperparameters and 642 

transfer learning strategies, indicating good extraction performance and outperforming the 643 

baseline linear CRF-based method. Also, the trained deep IE model performed consistently 644 

across different types of regulatory documents including IBC, IECC, and ADA Standards, and 645 

different types of building-code sentences in terms of computability.  646 

In their future work, the authors plan to improve the proposed method and leverage the deep IE 647 

model in five directions. First, the deep neural network model could be improved to enhance the 648 

extraction performance. For example, other model architectures, such as the Transformer-based 649 

architectures (e.g., finetuning BERT and its variants), could be explored. Second, more transfer 650 

learning and semi-supervised learning strategies could be explored for leveraging large-scale, 651 

pattern-rich general-domain annotated data for solving IE problems in the AEC domain. Third, 652 

the performance and flexibility of the IE model could be further improved by increasing the 653 

diversity of both the domain-specific and general-domain data. For example, annotated data from 654 

other sources could be used with data pruning techniques or instance-based transfer learning 655 

strategies. Fourth, additional evaluation efforts could be conducted to further test the proposed 656 

method on other types of regulatory documents and requirements. Reproducibility of the 657 
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performance results are expected. However, the results may show performance variations due to 658 

possible differences in the syntactic and semantic characteristics of the documents or 659 

requirements. More comparative evaluation could also be undertaken in the future, as publicly 660 

available benchmark datasets become more available in the AEC domain. Fifth, and most 661 

importantly, the authors will further implement the trained IE model in an ACC system. Our 662 

ultimate goal is to leverage machine learning and other artificial intelligence approaches to reach 663 

a level where we can automatically process the entire building code and represent it in a 664 

computable manner for fully ACC with minimal manual effort.   665 
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