

A deep neural network-based method for deep information extraction using transfer learning strategies to support automated compliance checking

Ruichuan Zhang^a; and Nora El-Gohary^b

^a Graduate Student, Department of Civil and Environmental Engineering, University of Illinois at Urbana-Champaign, 205 N. Mathews Ave., Urbana, IL 61801, United States. E-mail: rzhang65@illinois.edu.

^b Associate Professor, Department of Civil and Environmental Engineering, University of Illinois at Urbana-Champaign, 205 N. Mathews Ave., Urbana, IL 61801, United States (corresponding author). E-mail: gohary@illinois.edu; Tel: +1-217-333-6620; Fax: +1-217- 265-8039.

Abstract

10 Existing automated compliance checking (ACC) systems require the extraction of requirements
11 from regulatory documents into computer-processable representations. These information
12 extraction (IE) processes are either fully manual, semi-automated, or automated. Semi-automated
13 and manual approaches typically use manual annotations or predefined IE rules, which lack
14 sufficient flexibility and scalability; the annotations and rules typically need adaptation if the
15 characteristics of the regulatory document change. There is, thus, a need for a fully automated IE
16 approach that can achieve high and consistent performance across different types of regulatory
17 documents for supporting ACC. To address this need, this paper proposes a deep neural network-
18 based method for deep information extraction – extracting semantic and syntactic information
19 elements – from regulatory documents in the architectural, engineering, and construction (AEC)
20 domain. The proposed method was evaluated in extracting information from multiple regulatory
21 documents in the AEC domain. It achieved average precision and recall of 93.1% and 92.9%,
22 respectively.

Keywords: Code checking; Information extraction; Deep learning; Transfer learning.

25 **1 Introduction**

26 Existing automated code checking (ACC) systems have achieved different levels of accuracy,
27 automation, and coverage. However, they all require the extraction of requirements from
28 regulatory documents, such as building codes, energy conservation codes, and specifications,
29 into computer-processable representations. The information extraction (IE) processes in many of
30 the existing ACC systems are still fully manual. For example, Solibri Model Checker requires
31 users to read the building code and then manually convert the building-code requirements into
32 computer-processable representations by filling in predefined templates. The IE processes in
33 other ACC systems are semi-automated or automated. However, these processes still rely on
34 manual annotations or manually defined IE rules. For example, SmartCode requires that code-
35 checking professionals annotate regulatory information using the requirement, application,
36 selection, and exception (RASE) markups [1] manually, and the annotated building-code text is
37 then converted into a computer-processable form using predefined rules. The state-of-the-art
38 rule-based ACC systems by Zhang and El-Gohary [2] and Zhou and El-Gohary [3] use IE rules
39 developed by experts based on the syntactic information of building-code sentences (e.g., part-
40 of-speech tags) and construction-domain ontologies to extract a defined set of semantic
41 information elements. Despite the high IE performance they have achieved, the annotation-based
42 or rule-based approaches, by nature, lack sufficient flexibility and scalability; the annotations and
43 rules typically need adaptation if the characteristics of the building-code text change.

44 Machine learning-based IE methods, instead of relying on manual annotation or hand-crafted
45 rules, use machine learning models to automatically capture the underlying syntactic and
46 semantic patterns of the text. A machine learning-based method is, thus, expected to be more
47 flexible and scalable compared to the annotation-based or rule-based IE methods – saving the

48 initial effort to develop the annotations or rules, as well as the maintenance effort that would be
49 required to adapt the annotations or rules across different types of regulatory documents or
50 extraction tasks. However, not any machine learning algorithm would be suitable for this
51 information extraction task. Using machine learning to extracting regulatory information from
52 building codes to support ACC is challenging from two perspectives. First, existing machine
53 learning-based IE methods in the AEC domain are only able to support shallow IE, where partial
54 information (e.g., bridge deficiency-related entities [4]) is extracted from the text. However,
55 ACC systems require deep IE, where the entire meaning of the text is captured for complete and
56 correct extraction of the requirements [2]. Defining all semantic entities (e.g., subject,
57 compliance checking attribute, reference) that can capture the full meaning of all types of
58 requirements, and extracting them using machine learning methods, helps achieve such level of
59 complete extraction. Second, building codes have hierarchically complex syntactic and semantic
60 structures. Compared to general domain text, building-code sentences typically have deeply
61 nested syntactic and semantic structures, including recursive clauses, conjunctive and alternative
62 obligations, and multiple exceptions [3]. Recent efforts (e.g, [5]) have shown that deep neural
63 networks are capable of learning the complex syntactics and semantics of the natural language.
64 Thus, there is a need to explore the use of deep neural networks in deep IE for supporting ACC.

65 To address this need, this paper proposes a deep neural network-based method for fully
66 automated extraction of semantic and syntactic information elements from regulatory documents
67 for supporting ACC in the architecture, engineering, and construction (AEC) domain. The deep
68 learning models, which have significantly more parameters compared to traditional machine
69 learning models, typically need a larger scale of data for training. However, there are no such
70 annotated training datasets in the AEC domain, and creating these datasets would be highly

71 expensive. To solve this problem, the proposed method uses transfer learning strategies to enable
72 the training of deep neural network models on both domain-general and AEC-specific annotated
73 data. On one hand, domain-general data (i.e., the source-domain data in the context of transfer
74 learning) are large in scale and rich in syntactic and semantic patterns, which helps train the
75 models to deal with various text patterns across different regulatory documents for increased IE
76 performance, flexibility, and scalability. However, the domain-general data are relatively
77 different from the AEC-specific data in terms of vocabularies, syntactics, and semantics. On the
78 other hand, AEC-domain data (i.e., the target-domain data in the context of transfer learning) are
79 the target data to be analyzed, but they are much smaller in scale and lack syntactic and semantic
80 richness, which would limit the flexibility and scalability of the models if they are solely used for
81 training. The proposed approach, thus, takes the best of both worlds.

82 The proposed deep neural network-based IE approach consists of four main steps: (1) prepare
83 training data from both outside of the AEC domain (i.e., the source-domain data) and within the
84 AEC domain (i.e., the target-domain data) and testing data; (2) develop a base deep IE model – a
85 deep neural network model that consists of long short term memory networks (LSTM) and
86 conditional random fields (CRF) for automatically extracting semantic and syntactic information
87 elements from regulatory documents; (3) train the deep IE model using different transfer learning
88 strategies including feature-based and model-based ones; and (4) evaluate the deep IE
89 performance using precision, recall, and F1 measure.

90 **2 Background**

91 **2.1 Information extraction**

92 Information extraction (IE) aims to automatically extract structured information (e.g., entities
93 and attributes that describe the entities) from text data, which are often unstructured and thus are
94 not processable and understandable by computers [6]. Existing IE methods can be classified into
95 two groups: rule-based and machine learning-based methods. Rule-based IE approaches rely on
96 pattern-matching rules that are developed based on semantic and syntactic knowledge. The IE
97 rules are often manually designed. For example, Fader et al. [7] developed IE rules based on the
98 syntactic and lexical features of the text to extract assertions from the Web for supporting
99 commonsense knowledge and question answering. The ClausIE by Del Corro and Gemulla [8]
100 consisted of IE rules built upon English grammar and dependency parsing of sentences to extract
101 arguments from text. The IE system by Gutierrez et al. [9] integrated IE rules and error detection
102 rules built upon biology-related ontologies to extract facts from text in the biological domain. A
103 few other research efforts explored a number of techniques to reduce the cost of creating IE
104 rules, such as learning IE rules from plain text using statistical learning algorithms [10],
105 designing simple programming languages and interactive environments for rules [11], and
106 integrating existing rule programming languages and natural language processing applications in
107 one rule development platform [12].

108 Machine learning-based methods, rather than relying on IE rules, employ machine learning
109 models to automatically learn the syntactic and semantic patterns from training text data – and
110 the trained IE models are then used to extract the target information from new, unseen text data.
111 The most commonly used machine learning-based methods formulate the IE problem as a
112 sequence labeling problem, where each word in a sentence is assigned a label using supervised
113 learning algorithms. Examples of IE approaches using traditional supervised learning algorithms,
114 together with handcrafted syntactic and semantic features, include a hidden Markov algorithm-

115 based named entity recognition (NER) method by Zhou and Su [13], a support vector machine-
116 based NER method by Li et al. [14], and a CRF-based IE method by Finkel et al. [15].

117 **2.2 Deep learning in text analytics**

118 Deep learning methods use computational models that consist of multiple layers to capture
119 different levels of information representations from large-scale data [16]. Deep learning methods
120 have drastically improved the state-of-the-art performance in automatically processing and
121 understanding different types of data, including image and text, and meanwhile reduced or
122 eliminated the manual effort in feature engineering compared to traditional machine learning
123 methods. Recurrent neural networks (RNN) and variants such as gated recurrent units (GRUs)
124 [17] and LSTM [18] are deep neural networks that use internal states to process sequences of
125 input data. They have been widely used in text analytics tasks including semantic and syntactic
126 analysis (e.g., bidirectional LSTM and multilayer perceptron for dependency parsing and part-of-
127 speech (POS) tagging [19]), and partial or shallow IE (e.g., bidirectional LSTM and CRF for
128 extracting named entities [20]). Examples of RNN-based IE efforts include a domain-specific
129 event detection method using convolutional neural networks [21], an NER method using LSTM
130 and CRF [20], and an entity and relation extraction system using bidirectional LSTM [22].

131 Most recently, the Transformer [23] and transformer-based models and methods have been
132 proposed, which allow training language models on large-scale text data much faster by
133 abandoning complex RNN and solely relying on the attention mechanisms. For example, the
134 OpenAI’s generative pre-trained transformer (GPT) [24] and Google’s bidirectional encoder
135 representations from transformers (BERT) [25], as well as many of their variants (e.g., XLNet
136 [26], DistilBERT [27], ALBERT [28]), which improve on either the performance or the training

137 speed, have achieved the state-of-the-art performance in various text analytics tasks (e.g.,
138 machine translation [29], question answering [30], and information retrieval [31]).

139 A limited number of research efforts have been focused on deep learning-based methods to solve
140 text analysis problems in the AEC domain. For example, Zhang and El-Gohary [32] used an
141 RNN-based approach to extract requirement hierarchies from building-code sentences for
142 supporting compliance checking. Pan and Zhang [33] developed RNN-based models to mine
143 information from building information modeling (BIM) log data to support design decision
144 making. Bang and Kim [34] developed models that consist of convolutional neural network
145 (CNN) and LSTM layers to automatically generate time-spatial and visual context-based
146 descriptions given construction site images for supporting construction site management.

147 **2.3 Transfer learning**

148 One challenge for deep learning-based IE is that the models typically need large annotated text
149 data, which require significant time and effort to prepare. Such annotated data are scarce in many
150 domains, including the AEC domain, which hinders the use of deep learning for domain-specific
151 IE. Existing annotated datasets have mostly been developed for general natural language
152 processing (NLP) applications (e.g., the Penn Treebank datasets for multiple syntactic and
153 semantic analysis tasks [35], the CoNLL-2003 dataset for language-independent NER [36], and
154 the CoNLL-2005 for semantic role labeling [37]), which are not sufficient for many domain-
155 specific applications such as IE for ACC. To address this problem, various research efforts have
156 been undertaken to leverage labeled data from other domains using transfer learning strategies.

157 Transfer learning aims to transfer knowledge for solving certain domain-specific tasks by
158 leveraging existing labeled data of some related tasks or domains [38]. Transfer learning enables

159 the training of machine learning models using large-scale, pattern-rich, and annotated training
160 data that are from source domains that are different from the target domain (e.g., the AEC
161 domain). Thus, transfer learning improves both the performance and the flexibility and
162 scalability of the machine learning models, as well as reduces the cost of preparing annotated
163 training data for the target domain. Transfer learning strategies can be classified into three types
164 based on how the knowledge is transferred from the source domains to the target domain:
165 instance-based, feature-based, and model-based strategies.

166 Instance-based strategies reweight or resample the source-domain data to be similar to the target-
167 domain data (e.g., the boosting method for cross-domain text classification [39]), which are then
168 used for training the machine learning models. Feature or representation-based strategies
169 discover transferable features or representations that are discriminative for both the source and
170 the target domains through a new machine learning model (e.g., the global vectors for word
171 representation model [40] and the deep contextualized word representations [41]). Model-based
172 strategies reapply the partial deep neural networks – those layers trained on the source-domain
173 data – in the target domain by adapting the models using target-domain data. Examples of
174 methods for model adaptation include finetuning the pretrained CNN-based image classification
175 models (e.g., [42-43]), finetuning the pretrained Transformer-based models (e.g., GPT, BERT, or
176 their variants) for specific downstream text analytics tasks (e.g., [29-31]), and training the
177 sequence labeling model on source-domain and target-domain data alternately (e.g., [44]).

178 Transfer learning strategies have been used to solve computer vision and NLP problems such as
179 sequence labeling (e.g., [44]), text classification (e.g., [39]), and sequence-to-sequence learning
180 (e.g., [29-30]). In the AEC domain, transfer learning strategies have been mainly used to solve
181 computer vision problems (e.g., [42-43]).

182 **3 State of the art and knowledge gaps in information extraction in the construction
183 domain**

184 Rule-based methods have been developed for solving various IE problems in the AEC domain.
185 For example, Al Qady and Kandil [45] developed rules, which use syntactic features, for shallow
186 parsing to extract concept relations from construction contract documents for improving
187 electronic document management such as document categorization and retrieval. Zhang and El-
188 Gohary [2] and Zhou and El-Gohary [3] developed IE rules, which use semantic and syntactic
189 features, to extract semantic information elements from regulatory documents such as building
190 codes, energy conservation codes, and specifications for supporting ACC. Lee et al. [46]
191 developed rules, which use syntactic parsing and predefined lexicon features, to extract
192 poisonous clauses from construction contracts for supporting contract management. Despite the
193 state-of-the-art performance levels many of them have achieved (e.g., nearly 100% recall
194 reported by Zhang and El-Gohary [2] and Zhou and El-Gohary [3]), the rule-based approaches
195 are difficult to scale to a variety of documents due to the relatively limited and inflexible patterns
196 that are used to develop the rules. In general, when the type of regulatory document or the
197 characteristics of the text change, although some of the IE rules could be reused, most of these
198 rules will require significant retesting and possibly modification or addition. The lack of
199 sufficient flexibility and scalability becomes a potential obstacle for using ACC systems built on
200 rule-based IE, especially given the fact that building codes are updated frequently and vary
201 across different regions.

202 Recently, a limited number of machine learning-based methods have been developed for solving
203 IE problems in the AEC domain. For example, Liu and El-Gohary [4] developed a semi-
204 supervised machine learning-based method to extract entity information from bridge inspection

205 reports for supporting bridge deterioration prediction. Zhang and El-Gohary [47] developed a
206 supervised learning-based method to extract semantic roles including entities and relations from
207 regulatory documents for supporting ACC. Kim and Shi [48] developed a supervised learning-
208 based method to extract knowledge from construction accident cases. Despite the importance of
209 these efforts, there are three knowledge gaps that this paper aims to address. First, the
210 aforementioned methods can be classified as shallow because they only extract partial
211 information from the text, and thus they cannot be directly used for capturing the entire meaning
212 of the text, which is essential for IE for ACC. Second, they use traditional machine learning
213 algorithms such as CRF, which has been outperformed by deep neural networks such as RNN in
214 many text analytics tasks including partial or shallow IE. Thus, there is a need to explore the use
215 of deep neural networks in deep IE for supporting ACC. Third, there is generally a lack of
216 labeled training data in the AEC domain, which is especially a challenge for deep neural
217 networks because they require larger training datasets than those required for traditional
218 algorithms. Thus, there is a need for techniques to leverage the larger-size and pattern-rich data
219 that exist in other domains to help address this challenge while reducing the human-labeling
220 effort.

221 **4 Proposed semantic and syntactic information elements for deep information extraction
222 for supporting ACC**

223 In this study, two types of information elements, semantic and syntactic information elements,
224 are used to represent the building-code requirements. The semantic information elements define
225 the building-code requirements that are described in the natural language building-code
226 sentences. In this study, a subset of the semantic information elements proposed by Zhang and
227 El-Gohary [2] were utilized, including six of the essential semantic information elements (as

228 shown in Table 1): subject, compliance checking attribute, deontic operator indicator,
229 comparative relation, quantity value, and quantity unit. Two new semantic information elements
230 were added: subject relation and reference. Subject relation extends the original quantity relation
231 to relations that apply to both quantitative and nonquantitative requirements. Reference extends
232 the scope of existing ACC efforts to cover cross references that commonly exist in requirements.
233 The secondary semantic information elements such as subject restrictions and quantity
234 restrictions [2] were not utilized, because compared to the study by Zhang and El-Gohary, this
235 study further granularizes the regulatory information represented by the secondary semantic
236 information elements using the proposed information elements, and thus there is no need to
237 include secondary elements. The syntactic information elements are used in the English sentence
238 to form grammatically correct building-code sentences but do not directly contribute to defining
239 the meaning of the building-code requirement. The syntactic information elements include three
240 types of logic operator indicators – conjunctions (e.g., “and”), disjunctions (e.g., “or”), and
241 negations (e.g., “not”) – and syntactic units such as some of the pronouns (e.g., “the”), adverbs
242 (e.g., “so”), prepositions (e.g., “of”), and conjunctions that introduce a clause (e.g., “that”).
243 These syntactic information elements better capture the syntactic structures of requirements
244 (especially the deeply nested ones), which helps better understand the full meaning of the
245 requirements. Fig. 1 shows example sentences from the International Building Code (IBC),
246 International Energy Conservation Code (IECC), and Americans with Disabilities Act (ADA)
247 Standards, and how the sentences are annotated using the proposed semantic and syntactic
248 information elements.

249 **Table 1.** Semantic Information Elements for Representing Requirements for Compliance
250 Checking Purposes [2]

Semantic information element	Definition
------------------------------	------------

Subject	An ontology concept representing a thing (e.g., building element) that is subject to a particular requirement
Compliance checking attribute	An ontology concept representing a specific characteristic of a “subject” that is checked for compliance
Deontic operator indicator	A term or phrase that indicates the deontic type of the requirement (i.e., obligation, permission, or prohibition)
Comparative relation	A term or phrase for comparing quantitative values, including “greater than or equal to,” “greater than,” “less than or equal to,” “less than,” and “equal to”
Quantity value	A numerical value that defines the quantity
Quantity unit	The unit of measure for a “quantity value”
Subject relation	A term or phrase that defines the type of relation between two subjects, a subject and an attribute, or a subject or an attribute and a quantity
Reference	A term or phrase that denotes the mention or reference to a chapter, section, document, table, or equation in a building-code sentence (e.g., “Section 1312” in “the revolving door shall comply with Section 1312”)

International Building Code	<u>Door openings between a private garage and the dwelling unit shall</u>							
	S	Rel	SU	S	LO	SU	S	D
<u>be equipped with steel doors not less than 34.9 mm thick</u>								
	Rel		S	CR	QV	QU	A	

International Energy Conservation Code	<u>Slab-on-grade floors with a floor surface less than 12 inches below grade</u>							
	S	Rel	SU	S	CR	QV	QU	Rel
	<u>shall be insulated in accordance with Table R402.1.1</u>							
	D	Rel		Ref				

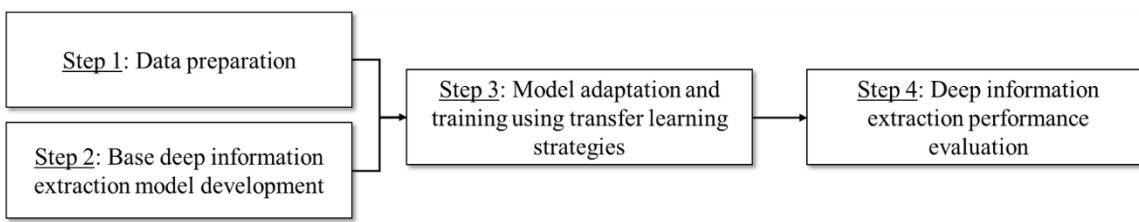
Americans with Disabilities Act Standards	Guardrails or other barriers shall be provided where the vertical clearance is less than 80 inches high							
	S	LO	S	D	Rel	SU	SU	S
Rel	CR	QV	QU	A				

A=compliance checking attribute; CR= comparative relation; D=deontic operator indicator; LO=logic operator indicator; QV=quantity value; QU=quantity unit; Ref=reference; Rel=subject relation; S=subject; SU=syntactic unit

Fig. 1. Example building-code sentences annotated with the proposed syntactic and semantic information elements.

254 5 Proposed deep neural network-based method for deep IE from regulatory documents

255 The proposed deep learning-based method for deep IE from regulatory documents consists of
256 four primary steps, as illustrated in Fig. 2: data preparation, base deep IE model development,
257 model adaptation and training using transfer learning strategies, and deep IE performance
258 evaluation.



260 Fig. 2. Proposed deep neural network-based method for deep information extraction from
261 regulatory documents.

262 **5.1 Data preparation**

263 **5.1.1 Target-domain data preparation**

264 The target-domain data – building-code sentences that are annotated with the proposed semantic
265 and syntactic information elements – were prepared for both training and testing the IE models.
266 The data were prepared following four steps: corpus development, data preprocessing, sentence
267 selection, and sentence annotation. First, a small building-code corpus was developed, which
268 consists of sentences from multiple regulatory documents, including the IBC, IECC, ADA
269 Standards, and IBC amendments (e.g., Champaign building code amendments). To construct the
270 corpus, all documents were converted to the text file format (i.e., .txt) and combined into a single
271 file. Second, the following four preprocessing techniques were used: data cleaning, sentence
272 segmentation, sentence tokenization, and sentence filtering. Data cleaning aims to remove the
273 noises created due to the conversion of the non-textual parts (e.g., figures) of the regulatory
274 documents. Sentence segmentation aims to detect the sentence boundaries (e.g., punctuations)
275 and segment the text into sentences. Sentence tokenization aims to further split the sentences into
276 tokens (e.g., words). Sentence filtering aims to remove the sentence or sentence fragments that
277 are not requirements (e.g., headings). The Natural Language Toolkit (NLTK) in Python was used
278 for sentence segmentation and tokenization. Third, a group of building-code sentences, which
279 consists of about 15,000 words, were randomly selected from the developed corpus. The selected
280 sentences have different levels of computability. Computability is defined as the ability of the
281 building-code sentence to be represented and processed by a computer in an effective manner
282 [49]. Fourth, a group of four participants with both domain knowledge (especially codes and
283 regulations) and NLP knowledge – the first author and three experts including two from

284 academia (faculty) and one from industry – manually annotated the selected sentences with the
285 proposed semantic and syntactic information elements. The beginning-inside (BI) labeling
286 scheme was adopted, where “B” indicates that the word is at the beginning of an information
287 element, and “I” indicates that the word is inside of an information element. For example, the
288 “door openings”, which is a subject, is annotated as “B-Subject I-Subject”, meaning that the
289 word “door” is the beginning of a subject and the word “openings” is inside of a subject. The
290 inter-annotator agreement was 80% in F1 measure, which indicates the reliability of the
291 annotations [50]. The discrepancies among the annotations were then discussed and resolved to
292 reach consensus on the final annotations. After annotation, the target-domain data was split into
293 two sets using a 9:1 ratio: training and validation dataset and testing dataset. A ten-fold cross
294 validation was performed, further splitting the first dataset into a training set (for training the
295 model) and a validation set (for tuning the hyperparameters of the model). The testing dataset
296 was used for evaluation.

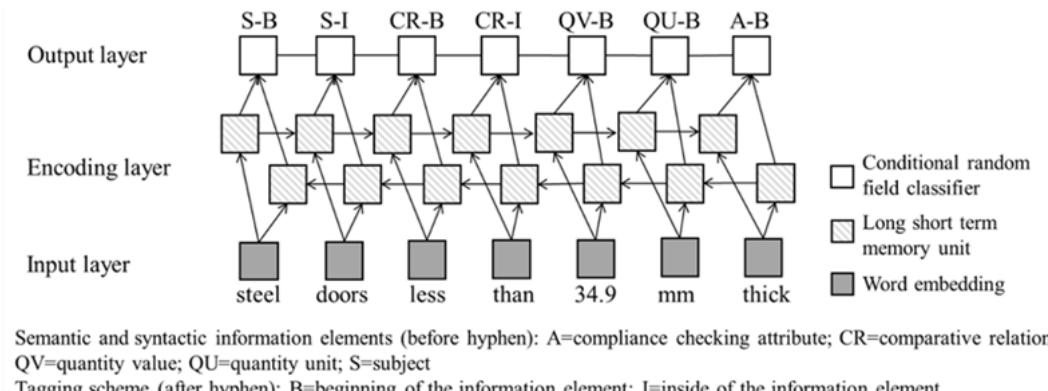
297 5.1.2 Source-domain data preparation

298 The source-domain data, English sentences that are *not* from the AEC domain and are already
299 annotated with different labels or markups (i.e., other than the proposed syntactic and semantic
300 information elements), were prepared for training the IE model. The Penn Treebank [35] were
301 used, which consist of over 100,000 English sentences that were collected from the Wall Street
302 Journal and are annotated with POS tags. The Penn Treebank data are suitable for training the IE
303 models for two reasons. First, the POS-tag annotations indicate the syntactic roles that words
304 play in a sentence, which can be used for the syntactic and semantic analysis of the text. Second,
305 compared to the target-domain data, the Penn Treebank data are large in scale and rich in

306 syntactic and semantic patterns. The entire source-domain data were used for training the IE
307 models using transfer learning strategies.

308 **5.2 Base deep information extraction model development**

309 The deep neural network model – bidirectional LSTM with CRF [51] – was selected and adapted
310 as the base IE model. The base model, thus, consists of three main components: the input layer,
311 encoding layer, and output layer, as depicted in Fig. 3. The selections of the layers were
312 conducted based on the scales and syntactic and semantic characteristics of the specific source
313 and target data used in the training of the model, as discussed in the following subsections.



314 Fig. 3. The architecture of the base deep information extraction model.

315 **5.2.1 Input layer**

316 The input layer aims to represent the semantics of each word in a vector representation for deep
317 neural network computation purposes. To better capture the semantic information of the words in
318 the target-domain training data, which are of relatively small scale, a word-embedding layer and
319 a character-embedding layer were added to the input layer. The word-embedding layer aims to
320 learn the vector representation of each token (e.g., word or punctuation). The character-
321 embedding layer aims to first learn the vector representation of each letter, digit, or symbol in the
322 training data, and then feed the vector representations of all letters, digits, and symbols contained
323 in a token into an LSTM layer to generate a second vector representation to represent this token.

325 For each token, the final output of the input layer is a vector representation formed by
326 concatenating the vector representation generated by the word-embedding layer and the vector
327 representation generated by the character-embedding layer.

328 5.2.2 Encoding layer

329 The encoding layer aims to further learn the contextual vector representation of each word that is
330 discriminative in terms of the IE task, using the vector representations of both the current word
331 and the context words generated by the input layer. To better capture the semantic information of
332 the words in the target-domain training data, which are of relatively small scale, two LSTM
333 layers were added to the encoding layer. To improve the ability of the IE model to deal with
334 long-term syntactic and semantic dependencies that exist in hierarchically complex building-
335 code sentences, the vector representations of both forward and backward context words were
336 used when encoding the contextual vector representation of the current word via the bidirectional
337 LSTM architecture – where one LSTM layer is forward and the other layer is backward. For
338 each input building-code sentence, the representations encoded by the forward LSTM layer are a
339 sequence of vectors $[f_1, f_2, \dots, f_T]$, and the representations encoded by the backward LSTM layer
340 are another sequence of vectors $[b_1, b_2, \dots, b_T]$, based on which the representations generated by
341 the encoding layer are $[h_1, h_2, \dots, h_T]$, where h_t is the direct sum of f_t and b_t [20] and T is the
342 size of the LSTM layers.

343 To improve the model’s ability to reduce overfitting, a recurrent dropout layer was added to the
344 encoding layer. The recurrent dropout layer drops a random fraction of the LSTM units in the
345 encoding layer during the training of the IE model, according to a dropout probability d .
346 Typically, the dropout probability is set to be smaller than 0.5, which means that less than half of

347 the LSTM units are dropped and the rest of the LSTM units are retained. The recurrent dropout
348 layer is disabled during the testing and future use of the IE model (i.e., use in the ACC system),
349 which means all the LSTM units in the encoding layer are used for generating the contextual
350 vector representations of the tokens in the building-code sentences.

351 5.2.3 Output layer

352 The output layer aims to predict the type of syntactic and semantic information elements using
353 the BI labeling scheme for each token in the building-code sentence, given the contextual vector
354 representations of the tokens in the sentence generated by the encoding layer. To better capture
355 the semantic and syntactic dependencies that exist in hierarchical complex building-code
356 sentences, a CRF layer was added to the output layer. The cross-entropy loss was chosen as the
357 objective function and was minimized during the training of the IE model. The cross-entropy
358 loss L describes the difference between the labels (i.e., the type of semantic information elements
359 using the BI labeling scheme or the POS tags) in the training data, denoted as y , and the labels
360 predicted by the model θ , denoted as c , based on the input building-code sentence x , as shown in
361 Eq. (1), where D is a batch of the training data, C is the set of all the possible labels, and
362 $p_\theta(c|x_i)$ is the conditional probability of c given the input sentence x generated by the CRF layer
363 in the IE model with parameters θ , and $1_{y=c}$ is the indicator function, which returns 1 when y
364 and c are equal, and returns 0 when y and c are not equal.

$$365 \quad L(\theta) = \frac{1}{|D|} \sum_{x,y \in D} \sum_{c \in C} 1_{y=c} \log p_\theta(c|x_i) \quad (1)$$

366 Given a building-code sentence and a trained IE model, the corresponding sequence of labels
367 was predicted by searching the optimal sequence of labels that maximizes the sum of the
368 conditional log probabilities $\log p_\theta(c|x_i)$ computed by the CRF layer.

369 **5.3 Model training using transfer learning strategies**

370 To enable the training of the base IE model on both the source-domain and the target-domain
371 training data, the model was further adapted and trained using different transfer learning
372 strategies. Based on the structure of the base IE model, four transfer learning strategies,
373 belonging to two types – feature-based and model-based strategies – were selected for testing, as
374 summarized in Table 2.

375 **Table 2.** Transfer Learning Strategies Adopted for Training the Base Deep Information
376 Extraction Model

Transfer learning strategy	Type of strategy	Modification of the base deep information extraction model
Fixed pretrained word embeddings	Feature-based	Initially replace the word-embedding layer with pretrained word embeddings; fix the word-embedding layer
Trainable pretrained word embeddings	Feature-based	Initially replace the wording-embedding layer with pretrained word embeddings
Two-stage training	Model-based	Replace the conditional random field (CRF) layer used in the first stage of the training with a new layer
Alternating training	Model-based	Attach two separate CRF layers to the encoding layer

377 **5.3.1 Feature-based transfer learning strategy**

378 Feature-based transfer learning strategies were selected to directly transfer the semantic
379 information contained in the source-domain data to the target-domain data in the word-
380 embedding layer of the base IE model. Pretrained word embeddings are vector representations of
381 words learned on a large, cross-domain corpus by training a machine learning model on the
382 corpus. The most commonly used machine learning model to generate pretrained word
383 embeddings is the Global Vectors for Word Representation (GloVe) algorithm [40], where the
384 training is performed on aggregated global word-word co-occurrence statistics from a large
385 cross-domain corpus, and the resulting representations capture the contextual information of the
386 words in the corpus. The word embeddings that were learned by applying the GloVe algorithm
387 on a corpus consisting of Wikipedia 2014 and Gigaword 5 were adopted. The adopted word

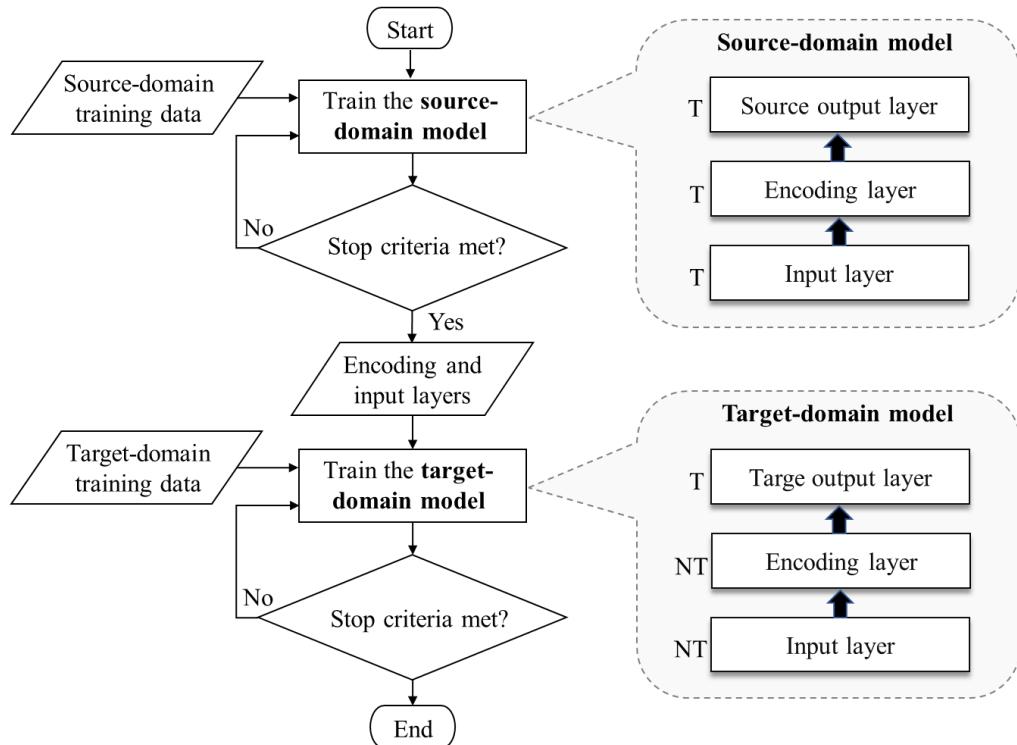
388 representations consist of vector representations of 40,000 uncased English words, which have a
389 dimension of 50.

390 Two feature-based transfer learning strategies were adopted for training the deep IE model: the
391 fixed pretrained word-embedding strategy and the trainable pretrained word-embedding strategy.
392 The fixed pretrained word-embedding strategy aims to keep the weights in the input layer
393 corresponding to the pretrained word embeddings not updated during the training of the deep
394 neural networks. On the other hand, the trainable pretrained word-embedding strategy aims to
395 use the pretrained word embeddings to initialize the weights in the input layer and then update
396 the weights during the training. The performance of the two strategies depends on the
397 relativity of the corpus that is used to learn the pretrained word embeddings to the domain-
398 specific text and the complexity of the syntax and semantics in the domain-specific task.

399 5.3.2 Model-based transfer learning strategy

400 Model-based transfer learning strategies were selected to indirectly transfer the semantic
401 information contained in the source-domain data to the target-domain data in the input layer and
402 embedding layer of the base IE model. Two model-based transfer learning strategies were
403 adopted for training the IE model: a two-stage training strategy and an alternating training
404 strategy. In the two-stage training strategy (as illustrated in Fig. 4), the IE model was trained in
405 two separate stages. In the first stage, the model was trained on the source-domain data. The
406 first-stage training was stopped if the difference between the training losses of two consecutive
407 training epochs is smaller than the threshold (i.e., 0.01), or the training reaches 50 epochs, where
408 an epoch is defined as training the model on the entire source-domain data. In the second stage,
409 the output layer of the trained model (i.e., source output layer) was replaced by a new output
410 layer (i.e., target output layer), and the model was trained on the target-domain data. In the

411 second stage, only the output layer was trainable, and the other two layers (i.e., the input layer
 412 and the encoding layer) were not – i.e., the parameters of these two layers were not updated
 413 during the training. The second-stage training was stopped if the difference between the training
 414 losses of two consecutive training epochs is smaller than the threshold (i.e., 0.01), or the training
 415 reaches 50 epochs, where an epoch is defined as training the model on the entire target-domain
 416 data.



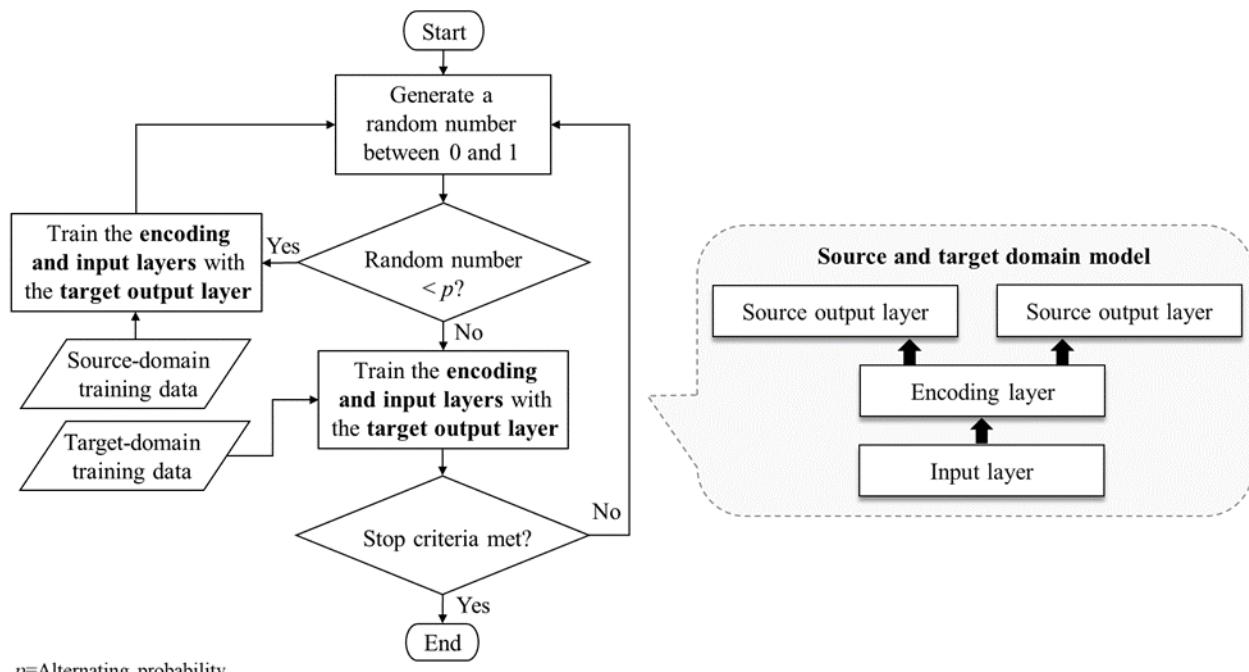
417
 418

T=Trainable; NT=Non-trainable

Fig. 4. Two-stage training strategy and model requirements.

419 In the alternating training strategy (as illustrated in Fig. 5), the IE model was trained on the
 420 source-domain and the target-domain training data in an alternating manner. The model had two
 421 separate output layers – one layer is used when the model is trained on the source-domain data
 422 (i.e., source output layer) and the other layer is used when the model is trained on the target-
 423 domain data (i.e., target output layer). In each training iteration, there is an alternating

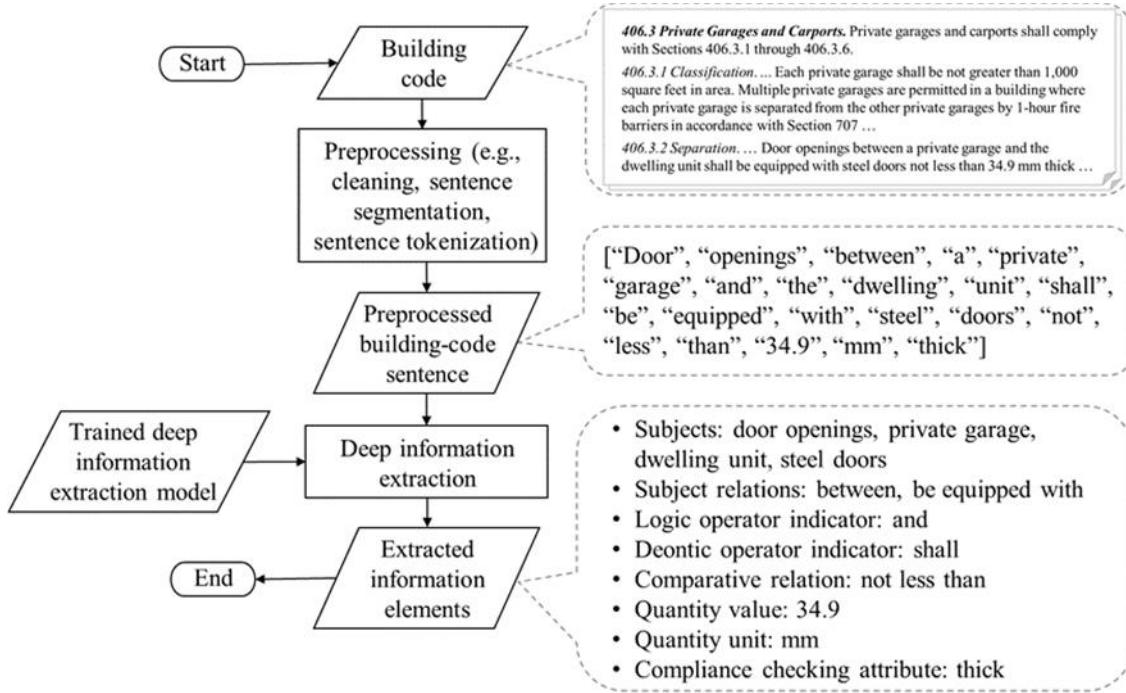
424 probability p that the model is trained on a selected batch of source-domain data, and a
 425 probability of $(1-p)$ that it was trained on a selected batch of target-domain data, where the total
 426 number of iterations is equal to the size of the training data divided by the size of a batch of
 427 training data. Typically, the alternating probability p is close to 1, meaning the model is more
 428 frequently trained on source-domain data rather than target-domain data, to capture as much
 429 syntactic and semantic patterns from the relatively large-scale source-domain data, and to
 430 prevent overfitting on the relatively small-scale target-domain data. The training was stopped if
 431 the difference between the training losses of two consecutive epochs when the model is trained
 432 on the target-domain data is smaller than the threshold (i.e., 0.01), or the training on the target-
 433 domain data reaches 50 epochs, where an epoch is defined as training the model on the entire
 434 target-domain training data.



436 Fig. 5. Alternating training strategy and model requirements.

437 **5.4 Deep information extraction and evaluation**

438 To test and evaluate the proposed model, the information was extracted following two simple
 439 steps (Fig. 6). First, the building code was preprocessed into sentences, where each preprocessed
 440 sentence consisted of a sequence of tokens (e.g., words, numbers, punctuation marks). Second,
 441 the trained deep IE model automatically extracted the semantic and syntactic elements in the
 442 sentences.



443
 444 Fig. 6. Deep information extraction using the proposed method.

445 Three metrics were used to evaluate the IE performance: precision, recall, and F1 measure, as
 446 shown in Eq. (2) to (4), where for a specific type of syntactic and semantic information element
 447 E, TP is the number of true positives (i.e., number of words correctly labeled as E), FP is the
 448 number of false positives (i.e., number of words incorrectly labeled as E), and FN is the number
 449 of false negatives (i.e., number of words not labeled as E but should have been) [52].

450
$$Precision = \frac{TP}{TP + FP} \quad (2)$$

451
$$Recall = \frac{TP}{TP + FN} \quad (3)$$

452
$$F_1 = 2 \times \frac{Precision \times Recall}{Precision + Recall} \quad (4)$$

453 **6 Experimental results**

454 **6.1 Deep information extraction model hyperparameter optimization**

455 The deep IE models and transfer learning strategies were implemented using Keras built in
 456 Python 3 and run using the Tesla K80 GPU provided in the Google Colaboratory. A ten-fold
 457 cross validation was conducted for optimizing the model hyperparameters. The optimized main
 458 hyperparameters for the deep IE models are shown in Table 3.

459 **Table 3.** Optimized Main Hyperparameters for the Deep Information Extraction Models

Hyperparameter	Value
Batch size for the source-domain training data	30
Batch size for the target-domain training data	30
Size of the word-embedding vector representation	50
Size of the character-embedding vector representation	20
Size of the long short term memory layer in the encoder layer	50
Type of activation functions	rectified linear unit (ReLU)
Maximum length of input sentences	75
Maximum length of input words	20
Recurrent dropout rate	0.1
Alternating probability when training the deep information extraction models using alternating training strategy	90%
Training loss difference threshold	0.01

460 **6.2 Comparison of the performances of the proposed method with different transfer learning
 461 strategies**

462 To determine the optimal transfer learning strategies for the proposed deep IE method, six
 463 different combinations of strategies were implemented and tested for comparative evaluation, as
 464 shown in Table 4: two-stage training with no feature-based strategy (SC1), alternating training
 465 with no feature-based strategy (SC2), two-stage training with trainable pretrained word
 466 embeddings (SC3), alternating training with trainable pretrained word embeddings (SC4), two-
 467 stage training with fixed pretrained word embeddings (SC5), alternating training with fixed

468 pretrained word embeddings (SC6). During the training of the model, the hyperparameters were
 469 set as per Table 3. The proposed deep IE method achieved the highest performance when the
 470 strategy combination SC4 was adopted. The results indicate that, first, the differences between
 471 the semantic and syntactic characteristics of the source-domain and target-domain data have a
 472 significant impact on the choice of transfer learning strategies. Second, the two-stage training
 473 strategy might cause the IE model to overfit to the source-domain data and underfit to the target-
 474 domain data. Third, the pretrained word embeddings contribute to the model’s ability to capture
 475 the semantic and syntactic patterns in both the source-domain and target-domain data; however,
 476 they are still not able to bridge the gap between the two domains (i.e., the general domain and the
 477 AEC domain).

478 According to the aforementioned results, the proposed IE method uses the optimized
 479 hyperparameters in Section 6.1 (e.g., recurrent dropout rate as 0.1, alternating probability as 90%)
 480 and the transfer learning strategy combination SC4. For the remaining experiments (Sections 6.3
 481 to 6.5), this method was used.

482 **Table 4.** Performance of the Proposed IE Method with Different Transfer Learning Strategy
 483 Combinations

Strategy combination	Feature-based transfer learning strategy	Model-based transfer learning strategy	Precision ¹	Recall ¹	F1 measure ¹
SC1	None	Two-stage training	79.7%	80.5%	80.1%
SC2	None	Alternating training	87.0%	87.5%	87.2%
SC3	Trainable pretrained word embeddings	Two-stage training	83.3%	84.0%	83.6%
SC4	Trainable pretrained word embeddings	Alternating training	93.1%	92.9%	93.0%
SC5	Fixed pretrained word embeddings	Two-stage training	83.4%	83.9%	83.7%
SC6	Fixed pretrained word embeddings	Alternating training	90.0%	90.5%	90.2%

484 ¹Bolded font indicates the highest performance.

485 **6.3 Comparison of the performances of the proposed and baseline methods**

486 To evaluate the effect of using deep neural networks and leveraging source-domain training data
 487 through transfer learning strategies on the extraction performance, the proposed IE method was
 488 compared to the linear CRF as a baseline. Linear CRF was selected because it has achieved the
 489 state-of-the-art performance for shallow IE in the AEC domain (e.g., [4]). Two linear CRF
 490 baseline models were constructed for performance comparison, one with word embeddings as
 491 features (Baseline 1) and another with both word embeddings and POS tags (Baseline 2). As
 492 shown in Table 5, compared to the baseline methods, the proposed IE method achieved higher
 493 performance, with an average increase of 9.6% in precision (14.2% for Baseline 1 and 4.9% for
 494 Baseline 2), 9.8% in recall (14.5% for Baseline 1 and 5.0% for Baseline 2), and 9.4% (14.4% for
 495 Baseline 1 and 4.4% for Baseline 2) in F1 measure.

496 **Table 5. Performance of the Proposed IE Method Compared to the Baseline**

Deep information extraction method	Precision ¹	Recall ¹	F1 measure ¹
Proposed IE method (using deep neural networks)	93.1%	92.9%	93.0%
Baseline 1 (using linear conditional random fields + word embeddings)	78.9%	78.4%	78.6%
Baseline 2 (using linear conditional random fields + word embeddings + part-of-speech tags)	87.9%	88.6%	88.2%

497 ¹Bolded font indicates the highest performance.

498 **6.4 Performance of the proposed method on different types of regulatory documents**

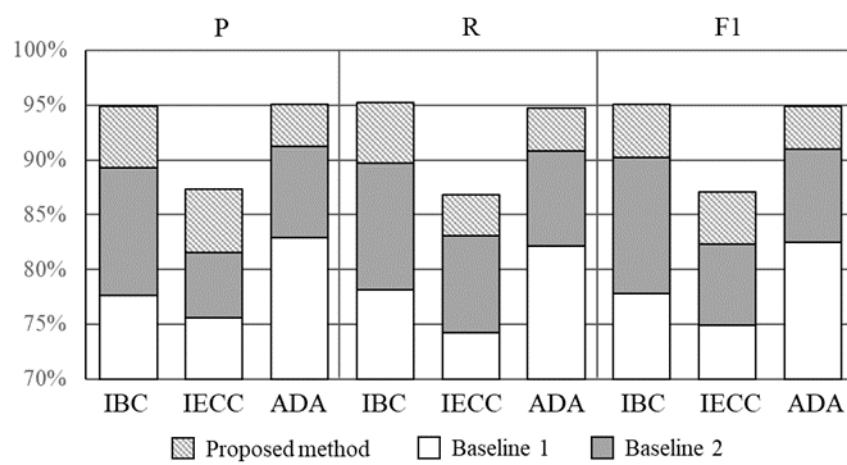
499 To evaluate the ability of the proposed IE method to extract syntactic and semantic information
 500 elements from regulatory documents that have different syntactic and semantic characteristics,
 501 the trained IE model was tested using building-code sentences from three different types of
 502 regulatory documents: the IBC, IECC, and ADA Standards, as shown in Table 6. The proposed
 503 IE method achieved consistent performance across the three types of documents, based on the
 504 three metrics, indicating that the method has high flexibility and scalability. As shown in Fig. 7,
 505 compared to the baseline methods, the proposed IE method achieved higher performance across
 506 the three types of documents. For IBC, the average increase is 11.5% in precision (17.3% for

507 Baseline 1 and 5.6% for Baseline 2), 11.3% in recall (17.1% for Baseline 1 and 5.5% for
 508 Baseline 2), and 11.1% (17.3% for Baseline 1 and 4.9% for Baseline 2) in F1 measure. For IECC,
 509 the average increase is 8.8% in precision (11.7% for Baseline 1 and 5.8% for Baseline 2), 8.2%
 510 in recall (12.6% for Baseline 1 and 3.7% for Baseline 2), and 8.5% (12.2% for Baseline 1 and 4.8%
 511 for Baseline 2) in F1 measure. For ADA, the average increase is 8.1% in precision (12.2% for
 512 Baseline 1 and 3.9% for Baseline 2), 8.3% in recall (12.6% for Baseline 1 and 3.9% for Baseline
 513 2), and 8.2% (12.4% for Baseline 1 and 3.9% for Baseline 2) in F1 measure.

514 **Table 6.** Deep Information Extraction Performance Across Different Types of Regulatory
 515 Documents

Type of regulatory document	Deep information extraction method	Precision ¹	Recall ¹	F1 measure ¹
International Building Code	Proposed method	94.9%	95.2%	95.1%
	Baseline 1	77.6%	78.1%	77.8%
International Energy Conservation Code	Baseline 2	89.3%	89.7%	90.2%
	Proposed method	87.3%	86.8%	87.1%
Americans with Disabilities Act Standards	Baseline 1	75.6%	74.2%	74.9%
	Baseline 2	81.5%	83.1%	82.3%
Proposed method	95.1%	94.7%	94.9%	
	Baseline 1	82.9%	82.1%	82.5%
	Baseline 2	91.2%	90.8%	91.0%

516 ¹Bolded font indicates the highest performance.
 517



Evaluation metrics: P=precision; R=recall; F1=F1 measure
 Types of regulatory documents: IBC=International Building Code; IECC=International Energy Conservation Code; ADA=Americans with Disabilities Act Standards

518
 519 **Fig. 7.** Comparison of Deep Information Extraction Performance Across Different Types of
 520 Regulatory Documents

521 6.5 *Performance of the proposed method on building-code sentences of different levels of*
522 *computability*

523 To evaluate the ability of the proposed IE method to extract syntactic and semantic information
524 elements from different types of sentences, the trained IE model was tested using building-code
525 sentences with different computability levels. Three different types of sentences were used for
526 comparative evaluation, as shown in Table 7: moderately high, moderately low, and low
527 computability, which are the top three types of sentences in terms of computability that appear
528 most frequently in building codes (e.g., they account for 22%, 39%, and 23% of a corpus of
529 sentences from IBC and its amendments, respectively) [49]. Sentences of moderately high
530 computability have relatively simple syntactic and semantic structures (e.g., consisting of
531 relatively short noun phrases, verb phrases, and preposition phrases at the sentence-level, or
532 having simple or no restrictions). For example, “spacing of braced wall lines shall not exceed 35
533 feet on center in both the longitudinal and transverse directions in each story” has moderately
534 high computability. Sentences of moderately low computability have relatively complex
535 syntactic and semantic structures (e.g., consisting of relatively long noun phrases, verb phrases,
536 and preposition phrases at the sentence-level, or having one recursive restriction). For example,
537 “openings between the Group S-2 enclosed parking garage and Group S-2 open parking garage,
538 except exit openings, shall not be required to be protected” has moderately high computability.
539 Sentences of low computability have very complex syntactic and semantic structures (e.g.,
540 consisting of very long noun phrases, verb phrases, and preposition phrases at the sentence-level,
541 or having multiple recursive restrictions). For example, “where exterior walls serve as a part of a
542 required fire-resistance-rated shaft or exit enclosure, or separation, such walls shall comply with

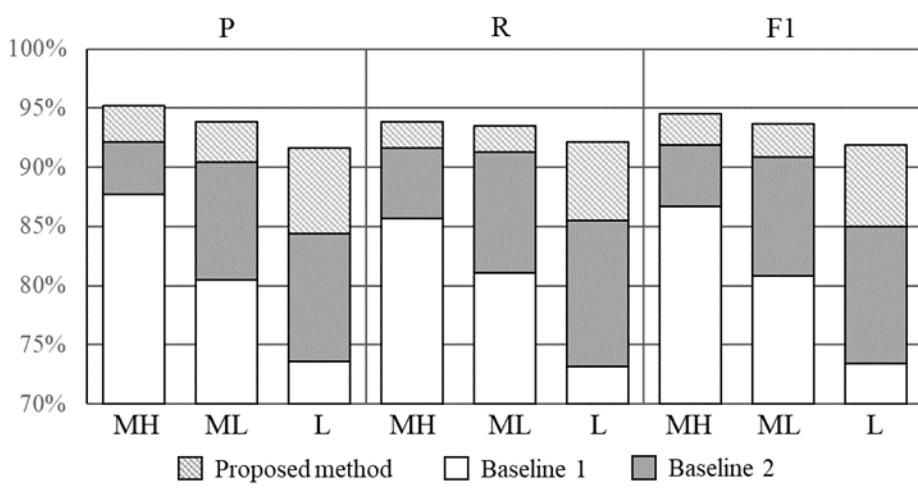
543 the requirements of Section 705 for exterior walls and the fire-resistance-rated enclosure or
544 separation requirements shall not apply" has low computability.

545 The proposed method achieved consistent performance across the three types of building-code
546 sentences, based on the three metrics, indicating that the method has high flexibility and
547 scalability. Also, all three selected types of sentences have hierarchical complex structures [3,49],
548 indicating that the method is able to deal with complex building-code syntactic and semantic
549 structures. As shown in Fig. 8, compared to the baseline methods, the proposed IE method
550 achieved higher performance across sentences with all three levels of computability. For
551 moderately high computability, the average increase is 5.3% in precision (7.5% for Baseline 1
552 and 3.1% for Baseline 2), 5.2% in recall (8.1% for Baseline 1 and 2.2% for Baseline 2), and 5.2%
553 (7.8% for Baseline 1 and 2.6% for Baseline 2) in F1 measure. For moderately low computability,
554 the average increase is 8.4% in precision (13.3% for Baseline 1 and 3.4% for Baseline 2), 7.3%
555 in recall (12.4% for Baseline 1 and 2.2% for Baseline 2), and 7.9% (12.9% for Baseline 1 and 2.8%
556 for Baseline 2) in F1 measure. For low computability, the average increase is 12.6% in precision
557 (18.0% for Baseline 1 and 7.2% for Baseline 2), 12.8% in recall (18.9% for Baseline 1 and 6.6%
558 for Baseline 2), and 12.7% (18.5% for Baseline 1 and 6.9% for Baseline 2) in F1 measure. Both
559 the proposed method and the baseline methods achieved high performance on sentences with
560 moderately high computability, because they have relatively simple syntactic and semantic
561 structures that are relatively easy to be captured by the models used in both methods. However,
562 for sentences with low computability, the proposed method outperformed the baseline methods
563 significantly, because they have relatively complex syntactic and semantic structures, especially
564 long and recursive ones, which are better captured by the model used in the proposed method.

565 **Table 7.** Deep Information Extraction Performance for Building-Code Sentences with Different
 566 Computability Levels

Computability of building-code sentences	Deep information extraction method	Precision ¹	Recall ¹	F1 measure ¹
	Proposed method	95.2%	93.8%	94.5%
Moderately high	Baseline 1	87.7%	85.7%	86.7%
	Baseline 2	92.1%	91.6%	91.9%
Moderately low	Proposed method	93.8%	93.5%	93.7%
	Baseline 1	80.5%	81.1%	80.8%
Low	Baseline 2	90.4%	91.3%	90.9%
	Proposed method	91.6%	92.1%	91.9%
Low	Baseline 1	73.6%	73.2%	73.4%
	Baseline 2	84.4%	85.5%	85.0%

567 ¹Bolded font indicates the highest performance
 568



Evaluation metrics: P=precision; R=recall; F1=F1 measure

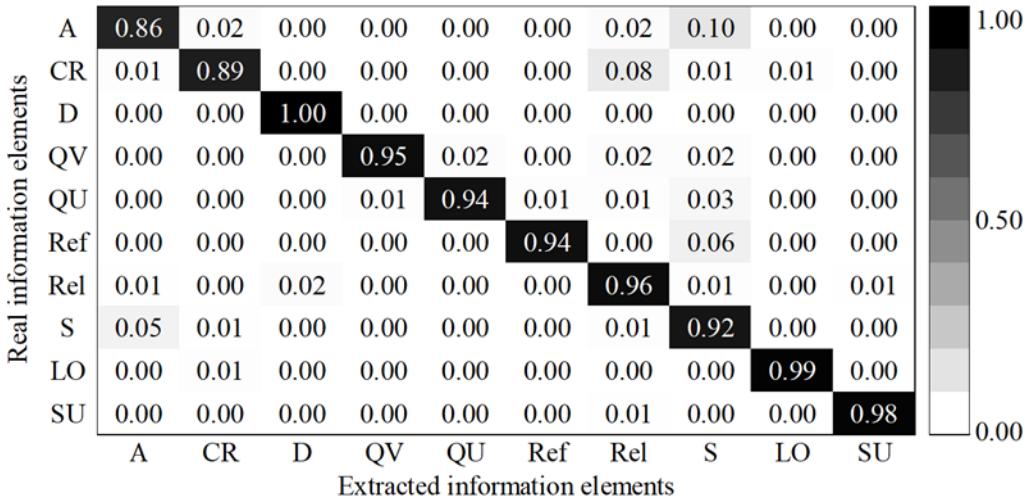
Level of computability: MH=moderately high; ML=moderately low; L=low

569
 570 **Fig. 8. Comparison of Deep Information Extraction Performance for Building-Code Sentences
 571 with Different Computability Levels**

572 **6.6 Error analysis**

573 An error analysis was conducted to investigate the sources of errors and identify potential
 574 directions for performance enhancement in the future. To analyze the extraction errors, the
 575 confusion matrix (Fig. 9) was generated. Three main types of errors were identified based on the
 576 experimental results. First, the proposed approach had errors when dealing with multiword
 577 expressions, which consist of multiple words and function as individual syntactic and semantic
 578 units, especially those including prepositions. For example, the words in the multiword

579 expression “means of egress” should have been annotated with a single semantic information
580 element – a subject, but instead it was annotated with a subject, a syntactic unit, and another
581 subject. In future work, a multiword expression list for the AEC domain could be integrated into
582 the proposed method. Second, the proposed method performed relatively lower on extracting
583 compliance checking attributes and references compared to other types of semantic and syntactic
584 information elements, as shown in the confusion matrix. For example, the “required insulation”
585 in “the requirement insulation for roof or ceiling assemblies” should have been extracted as a
586 compliance checking attribute, but was misextracted as a subject. The “U-factor and SHGC
587 requirements” should have been extracted together as a reference, but the “U-factor” was
588 misextracted separately as a subject. Also, “Group R-1”, which means the first residential group
589 in the IBC use and occupancy classification, was mistakenly extracted as part of a subject instead
590 of a compliance checking attribute. In the future, additional input layers could be added to
591 capture syntactic and semantic patterns that are discriminative in distinguishing subjects from
592 compliance checking attributes and references. Third, the proposed method performed relatively
593 lower on the IECC compared to other types of regulatory documents. The lower performance
594 results from the relatively low amount of target-domain training data built using IECC sentences.
595 In the future, more experiments are needed to evaluate the ability of the proposed method to
596 scale to different types of regulatory documents when the amount of training data changes.



A=compliance checking attribute; CR=comparative relation; D=deontic operator indicator; QV=quantity value; QU=quantity unit; Ref=reference; Rel=subject relation; S=subject; LO=logic operator indicator; SU=syntactic unit

597
598

Fig. 9. Confusion matrix for semantic and syntactic information elements.

599 7 Contribution to the body of knowledge

600 This paper contributes to the body of knowledge on two levels. On a methodological level, the
 601 paper offers a new method that integrates deep learning, transfer learning strategies, and both
 602 target-domain and general-domain data to fully automatically extract semantic and syntactic
 603 information elements from regulatory documents for supporting ACC in the AEC domain. The
 604 proposed approach improves the methodology of information extraction in three primary ways.
 605 First, it is the first effort to use a deep learning-based method to fully automatically extract
 606 semantic and syntactic information elements from regulatory documents in the AEC domain for
 607 supporting fully automated compliance checking. Second, it leverages both general-domain and
 608 AEC-specific training data through transfer learning strategies to improve the performance,
 609 flexibility, and scalability of the proposed deep IE method. The experimental results indicate that
 610 the transfer learning strategies could greatly impact the IE performance. Third, the deep neural
 611 network architectures and transfer learning strategies used in the proposed deep IE method are

612 adaptable to other types of text analytics tasks in the AEC domain such as requirement
613 classification and semantic parsing.

614 On a practical level, the paper contributes to the body of knowledge in two ways. First, the paper
615 proposes a set of semantic and syntactic information elements to facilitate the representation of
616 building-code requirements and the extraction of regulatory information for supporting building-
617 code analytics and compliance checking, which was effective for various types of regulatory
618 documents such as IBC, IECC, and ADA Standards. Second, the paper offers a trained, ready-to-
619 use deep IE model that offers high extraction performance, with consistency across different
620 types of building codes and across sentences with different levels of computability. Third, both
621 the information elements and the deep IE model would help achieve full automation in ACC
622 systems, including full automation in extraction and formalization of requirements/rules. Fully
623 automated ACC would reduce code compliance errors and the time and cost associated with
624 compliance checking, thereby bringing broad benefits to the construction industry such as
625 reduced violations, enhanced resource efficiency, and faster permitting.

626 **8 Conclusions and future work**

627 This paper proposed a deep learning-based method that uses transfer learning strategies for deep
628 information extraction from regulatory documents for supporting automated compliance
629 checking in the AEC domain. A set of semantic and syntactic information elements for
630 representing building-code requirements was proposed and used for deep IE from regulatory
631 documents in the AEC domain. Two types of training data, target-domain and general-domain
632 data, were prepared using text from multiple AEC regulatory documents and from the Penn
633 Treebank, respectively. The deep neural network model consists of bidirectional LSTM and CRF
634 layers, which were adopted as the base IE model. Four different feature-based and model-based

635 transfer learning strategies were used to adapt the base model and train the model on both
636 domain-specific and general-domain training data.

637 The proposed deep IE method was tested and evaluated using building-code sentences collected
638 from three types of regulatory documents (i.e., IBC, IECC, and ADA Standards). Different
639 combinations of transfer learning strategies were tested and compared, and the optimal
640 combination was to use pretrained word embeddings to initialize the transfer feature information
641 and use alternating training to transfer the model information. Average precision of 93.1%, recall
642 of 92.9%, and F1 measure of 93.0% were achieved under the optimal hyperparameters and
643 transfer learning strategies, indicating good extraction performance and outperforming the
644 baseline linear CRF-based method. Also, the trained deep IE model performed consistently
645 across different types of regulatory documents including IBC, IECC, and ADA Standards, and
646 different types of building-code sentences in terms of computability.

647 In their future work, the authors plan to improve the proposed method and leverage the deep IE
648 model in five directions. First, the deep neural network model could be improved to enhance the
649 extraction performance. For example, other model architectures, such as the Transformer-based
650 architectures (e.g., finetuning BERT and its variants), could be explored. Second, more transfer
651 learning and semi-supervised learning strategies could be explored for leveraging large-scale,
652 pattern-rich general-domain annotated data for solving IE problems in the AEC domain. Third,
653 the performance and flexibility of the IE model could be further improved by increasing the
654 diversity of both the domain-specific and general-domain data. For example, annotated data from
655 other sources could be used with data pruning techniques or instance-based transfer learning
656 strategies. Fourth, additional evaluation efforts could be conducted to further test the proposed
657 method on other types of regulatory documents and requirements. Reproducibility of the

658 performance results are expected. However, the results may show performance variations due to
659 possible differences in the syntactic and semantic characteristics of the documents or
660 requirements. More comparative evaluation could also be undertaken in the future, as publicly
661 available benchmark datasets become more available in the AEC domain. Fifth, and most
662 importantly, the authors will further implement the trained IE model in an ACC system. Our
663 ultimate goal is to leverage machine learning and other artificial intelligence approaches to reach
664 a level where we can automatically process the entire building code and represent it in a
665 computable manner for fully ACC with minimal manual effort.

666 **9 Acknowledgements**

667 The authors would like to thank the National Science Foundation (NSF). This material is based
668 on work supported by the NSF under Grant No. 1827733. Any opinions, findings, and
669 conclusions or recommendations expressed in this material are those of the authors and do not
670 necessarily reflect the views of the NSF.

671 **10 References**

672 [1] Hjelseth, E. and Nisbet, N., 2010, November. Exploring semantic based model checking.
673 In Proceedings of the 2010 27th CIB W78 international conference (Vol. 54).
674 https://www.researchgate.net/profile/Eilif-Hjelseth/publication/265821429_EXPLORING_SEMANTIC_BASED_MODEL_CHECKING/links/550dbd2c0cf27526109c293c/EXPLORING-SEMANTIC-BASED-MODEL-CHECKING.pdf (Aug. 01, 2020).

678 [2] Zhang, J. and El-Gohary, N.M., 2013. Semantic NLP-based information extraction from
679 construction regulatory documents for automated compliance checking. *Journal of
680 Computing in Civil Engineering*, 30(2), p.04015014.
681 [https://doi.org/10.1061/\(ASCE\)CP.1943-5487.0000346](https://doi.org/10.1061/(ASCE)CP.1943-5487.0000346).

682 [3] Zhou, P. and El-Gohary, N., 2017. Ontology-based automated information extraction
683 from building energy conservation codes. *Automation in Construction*, 74, pp. 103-117.
684 <https://doi.org/10.1016/j.autcon.2016.09.004>.

685 [4] Liu, K. and El-Gohary, N., 2017. Ontology-based semi-supervised conditional random
686 fields for automated information extraction from bridge inspection reports. *Automation in*
687 *construction*, 81, pp. 313-327. <https://doi.org/10.1016/j.autcon.2017.02.003>.

688 [5] Liu, G. and Guo, J., 2019. Bidirectional LSTM with attention mechanism and
689 convolutional layer for text classification. *Neurocomputing*, 337, pp. 325-338.
690 <https://doi.org/10.1016/j.neucom.2019.01.078>.

691 [6] Etzioni, O., Fader, A., Christensen, J., Soderland, S. and Mausam, M., 2011, July. Open
692 information extraction: The second generation. In *IJCAI*, 11, pp. 3-10.
693 <https://doi.org/10.5591/978-1-57735-516-8/IJCAI11-012>.

694 [7] Fader, A., Soderland, S. and Etzioni, O., 2011, July. Identifying relations for open
695 information extraction. In *Proceedings of the 2011 conference on empirical methods in*
696 *natural language processing*, pp. 1535-1545. <https://www.aclweb.org/anthology/D11-1142> (Aug 01, 2020).

697 698 [8] Del Corro, L. and Gemulla, R., 2013, May. Clausie: clause-based open information
699 extraction. In *Proceedings of the 22nd international conference on World Wide Web*, pp.
700 355-366. <https://doi.org/10.1145/2488388.2488420>.

701 [9] Gutierrez, F., Dou, D., Fickas, S., Wimalasuriya, D. and Zong, H., 2016. A hybrid
702 ontology-based information extraction system. *Journal of Information Science*, 42(6), pp.
703 798-820. <https://doi.org/10.1177/0165551515610989>.

704 [10] Chambers, N. and Jurafsky, D., 2011, June. Template-based information extraction
705 without the templates. In *Proceedings of the 49th annual meeting of the association for*
706 *computational linguistics: human language technologies*, pp. 976-986.
707 <https://www.aclweb.org/anthology/P11-1098> (Aug. 01, 2020).

708 [11] Valenzuela-Escárcega, M.A., Hahn-Powell, G., Surdeanu, M. and Hicks, T., 2015, July.
709 A domain-independent rule-based framework for event extraction. In *Proceedings of*
710 *ACL-IJCNLP 2015 System Demonstrations*, pp. 127-132.
711 <https://doi.org/10.3115/v1/P15-4022>.

712 [12] Kluegl, P., Toepfer, M., Beck, P.D., Fette, G. and Puppe, F., 2016. UIMA Ruta: Rapid
713 development of rule-based information extraction applications. *Natural Language*
714 *Engineering*, 22(1), pp. 1-40. <https://doi.org/10.1017/S1351324914000114>.

715 [13] Zhou, G. and Su, J., 2002. Named entity recognition using an HMM-based chunk tagger.
716 In *proceedings of the 40th Annual Meeting on Association for Computational Linguistics*,
717 pp. 473-480. <https://doi.org/10.3115/1073083.1073163>.

718 [14] Li, Y., Bontcheva, K. and Cunningham, H., 2004, September. SVM based learning
719 system for information extraction. In *International Workshop on Deterministic and*
720 *Statistical Methods in Machine Learning*, pp. 319-339. Springer, Berlin, Heidelberg.
721 https://doi.org/10.1007/11559887_19.

722 [15] Finkel, J.R., Grenager, T. and Manning, C., 2005. Incorporating non-local information
723 into information extraction systems by Gibbs sampling. In *Proceedings of the 43rd*
724 *annual meeting on association for computational linguistics*, pp. 363-370.
725 <https://doi.org/10.3115/1219840.1219885>.

726 [16] LeCun, Y., Bengio, Y. and Hinton, G., 2015. Deep learning. *Nature*. 521(7553), pp. 436.
727 <https://doi.org/10.1038/nature14539>.

728 [17] Chung, J., Gulcehre, C., Cho, K. and Bengio, Y., 2014. Empirical evaluation of gated
729 recurrent neural networks on sequence modeling. <https://arxiv.org/abs/1412.3555>.

730 [18] Greff, K., Srivastava, R.K., Koutník, J., Steunebrink, B.R. and Schmidhuber, J., 2016.
731 LSTM: A search space odyssey. *IEEE transactions on neural networks and learning
732 systems*, 28(10), pp. 2222-2232. <https://doi.org/10.1109/TNNLS.2016.2582924>.

733 [19] Clark, K., Luong, M.T., Manning, C.D. and Le, Q.V., 2018. Semi-supervised sequence
734 modeling with cross-view training. <https://arxiv.org/abs/1809.08370>.

735 [20] Lample, G., Ballesteros, M., Subramanian, S., Kawakami, K. and Dyer, C., 2016. Neural
736 architectures for named entity recognition. <https://arxiv.org/abs/1603.01360>.

737 [21] Nguyen, T.H. and Grishman, R., 2015. Event detection and domain adaptation with
738 convolutional neural networks. In *Proceedings of the 53rd Annual Meeting of the
739 Association for Computational Linguistics and the 7th International Joint Conference on
740 Natural Language Processing (Volume 2: Short Papers)*, pp. 365-371.
741 <https://doi.org/10.3115/v1/P15-2060>

742 [22] Stanovsky, G., Michael, J., Zettlemoyer, L. and Dagan, I., 2018. Supervised open
743 information extraction. In *Proceedings of the 2018 Conference of the North American
744 Chapter of the Association for Computational Linguistics: Human Language
745 Technologies, Volume 1 (Long Papers)*, pp. 885-895. <https://doi.org/10.18653/v1/N18-1081>.

747 [23] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L.
748 and Polosukhin, I., 2017. Attention is all you need. <https://arxiv.org/abs/1706.03762>.

749 [24] Radford, A., Narasimhan, K., Salimans, T. and Sutskever, I., 2018. Improving language
750 understanding by generative pre-training.
751 <https://www.cs.ubc.ca/~amuhamed/LING530/papers/radford2018improving.pdf> (Feb. 10,
752 2021).

753 [25] Devlin, J., Chang, M.W., Lee, K. and Toutanova, K., 2018. Bert: Pre-training of deep
754 bidirectional transformers for language understanding. <https://arxiv.org/abs/1810.04805>.

755 [26] Yang, Z., Dai, Z., Yang, Y., Carbonell, J., Salakhutdinov, R. and Le, Q.V., 2019. Xlnet:
756 Generalized autoregressive pretraining for language understanding.
757 <https://arxiv.org/abs/1906.08237>.

758 [27] Sanh, V., Debut, L., Chaumond, J. and Wolf, T., 2019. DistilBERT, a distilled version of
759 BERT: smaller, faster, cheaper and lighter. <https://arxiv.org/abs/1910.01108>.

760 [28] Lan, Z., Chen, M., Goodman, S., Gimpel, K., Sharma, P. and Soricut, R., 2019. Albert: A
761 lite bert for self-supervised learning of language representations.
762 <https://arxiv.org/abs/1909.11942>.

763 [29] Zhu, J., Xia, Y., Wu, L., He, D., Qin, T., Zhou, W., Li, H. and Liu, T.Y., 2020.
764 Incorporating bert into neural machine translation. <https://arxiv.org/abs/2002.06823>.

765 [30] Yang, W., Xie, Y., Lin, A., Li, X., Tan, L., Xiong, K., Li, M. and Lin, J., 2019. End-to-
766 end open-domain question answering with bertserini. <https://arxiv.org/abs/1902.01718>.

767 [31] Nogueira, R. and Cho, K., 2019. Passage Re-ranking with BERT. <https://arxiv.org/abs/1901.04085>.

769 [32] Zhang, R. and El-Gohary, N., 2019. A machine learning-based approach for building
770 code requirement hierarchy extraction. In 2019 CSCE Annual Conference.
771 <https://par.nsf.gov/servlets/purl/10110925> (Aug. 01, 2020).

772 [33] Pan, Y. and Zhang, L., 2020. BIM log mining: Learning and predicting design commands.
773 Automation in Construction, 112, p.103107.
774 <https://doi.org/10.1016/j.autcon.2020.103107>.

775 [34] Bang, S. and Kim, H., 2020. Context-based information generation for managing UAV-
776 acquired data using image captioning. Automation in Construction, 112, p.103116.
777 <https://doi.org/10.1016/j.autcon.2020.103116>.

778 [35] Marcus, M., Santorini, B. and Marcinkiewicz, M.A., 1993. Building a large annotated
779 corpus of English: The Penn Treebank. https://repository.upenn.edu/cis_reports/237/
780 (Aug. 01, 2020).

781 [36] Sang, E.F. and De Meulder, F., 2003. Introduction to the CoNLL-2003 shared task:
782 Language-independent named entity recognition. <https://arxiv.org/abs/cs/0306050>.

783 [37] Carreras, X. and Màrquez, L., 2005, June. Introduction to the CoNLL-2005 shared task:
784 Semantic role labeling. In Proceedings of the ninth conference on computational natural
785 language learning (CoNLL-2005), pp. 152-164. <https://www.aclweb.org/anthology/W05-0620> (Aug. 01, 2020).

787 [38] Tan C., Sun F., Kong T., Zhang W., Yang C., Liu C., 2018. A Survey on Deep Transfer
788 Learning. In: Kůrková V., Manolopoulos Y., Hammer B., Iliadis L., Maglogiannis I. (eds)
789 Artificial Neural Networks and Machine Learning – ICANN 2018. ICANN 2018. Lecture
790 Notes in Computer Science, vol 11141. Springer, Cham. https://doi.org/10.1007/978-3-030-01424-7_27.

792 [39] Dai, W., Yang, Q., Xue, G.R. and Yu, Y., 2007. Boosting for transfer learning. In
793 Proceedings of the 24th international conference on Machine learning, pp. 193-200.
794 <https://doi.org/10.1145/1273496.1273521>.

795 [40] Pennington, J., Socher, R. and Manning, C.D., 2014. Glove: Global vectors for word
796 representation. In Proceedings of the 2014 conference on empirical methods in natural
797 language processing (EMNLP), pp. 1532-1543. <https://doi.org/10.3115/v1/D14-1162>.

798 [41] Peters, M.E., Neumann, M., Iyyer, M., Gardner, M., Clark, C., Lee, K. and Zettlemoyer,
799 L., 2018. Deep contextualized word representations. <https://arxiv.org/abs/1802.05365>.

800 [42] Kim, H., Kim, H., Hong, Y.W. and Byun, H., 2018. Detecting construction equipment
801 using a region-based fully convolutional network and transfer learning. Journal of
802 computing in Civil Engineering, 32(2), p.04017082.
803 [https://doi.org/10.1061/\(ASCE\)CP.1943-5487.0000731](https://doi.org/10.1061/(ASCE)CP.1943-5487.0000731).

804 [43] Zhang, K., Cheng, H.D. and Zhang, B., 2018. Unified approach to pavement crack and
805 sealed crack detection using preclassification based on transfer learning. *Journal of*
806 *Computing in Civil Engineering*, 32(2), p.04018001.
807 [https://doi.org/10.1061/\(ASCE\)CP.1943-5487.0000736](https://doi.org/10.1061/(ASCE)CP.1943-5487.0000736).

808 [44] Yang, Z., Salakhutdinov, R., and Cohen, W. W., 2017. Transfer learning for sequence
809 tagging with hierarchical recurrent networks. <https://arxiv.org/abs/1703.06345>.

810 [45] Al Qady, M. and Kandil, A., 2010. Concept relation extraction from construction
811 documents using natural language processing. *Journal of construction engineering and*
812 *management*, 136(3), pp. 294-302. [https://doi.org/10.1061/\(ASCE\)CO.1943-7862.0000131](https://doi.org/10.1061/(ASCE)CO.1943-7862.0000131).

814 [46] Lee, J., Yi, J.S. and Son, J., 2019. Development of automatic-extraction model of
815 poisonous clauses in international construction contracts using rule-based NLP. *Journal*
816 *of Computing in Civil Engineering*, 33(3), p.04019003.
817 [https://doi.org/10.1061/\(ASCE\)CP.1943-5487.0000807](https://doi.org/10.1061/(ASCE)CP.1943-5487.0000807).

818 [47] Zhang, R. and El-Gohary, N., 2019. A machine learning approach for compliance
819 checking-specific semantic role labeling of building code sentences. In *Advances in*
820 *informatics and computing in civil and construction engineering*, pp. 561-568. Springer,
821 Cham. https://doi.org/10.1007/978-3-030-00220-6_67.

822 [48] Kim, T. and Chi, S., 2019. Accident case retrieval and analyses: Using natural language
823 processing in the construction industry. *Journal of Construction Engineering and*
824 *Management*, 145(3), p.04019004. [https://doi.org/10.1061/\(ASCE\)CO.1943-7862.0001625](https://doi.org/10.1061/(ASCE)CO.1943-7862.0001625).

826 [49] Zhang, R., and El-Gohary, N., 2020. Clustering-based Approach for Building Code
827 Computability Analysis. *Journal of Computing in Civil Engineering*.
828 [https://doi.org/10.1061/\(ASCE\)CP.1943-5487.0000967](https://doi.org/10.1061/(ASCE)CP.1943-5487.0000967).

829 [50] J.P. Pestian, L. Deleger, G.K. Savova, J.W. Dexheimer, I. Solti, Natural language
830 processing—the basics, *Pediatric Biomedical Informatics: Computer Applications in*
831 *Pediatric Research*, Springer, Netherlands, Dordrecht, 2012, pp. 149–172,
832 http://dx.doi.org/10.1007/978-94-007-5149-1_9. ISBN 978-94-007-5149-1.

833 [51] Huang, Z., Xu, W., and Yu, K., 2015. Bidirectional LSTM-CRF models for sequence
834 tagging. <https://arxiv.org/abs/1508.01991>.

835 [52] Zhai, C., and Massung, S., 2016. Text data management and analysis: a practical
836 introduction to information retrieval and text mining, ACM, New York, USA.
837 <https://doi.org/10.1145/2915031>. ISBN: 978-1-970001-17-4.

838