O OIS Nk

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

A deep neural network-based method for deep information extraction using transfer

learning strategies to support automated compliance checking

Ruichuan Zhang?®; and Nora El-Gohary®

2 Graduate Student, Department of Civil and Environmental Engineering, University of Illinois at Urbana-
Champaign, 205 N. Mathews Ave., Urbana, IL 61801, United States. E-mail: rzhang65@illinois.edu.

b Associate Professor, Department of Civil and Environmental Engineering, University of Illinois at Urbana-
Champaign, 205 N. Mathews Ave., Urbana, IL 61801, United States (corresponding author). E-mail:
gohary@illinois.edu; Tel: +1-217-333-6620; Fax: +1-217- 265-8039.

Abstract

Existing automated compliance checking (ACC) systems require the extraction of requirements
from regulatory documents into computer-processable representations. These information
extraction (IE) processes are either fully manual, semi-automated, or automated. Semi-automated
and manual approaches typically use manual annotations or predefined IE rules, which lack
sufficient flexibility and scalability; the annotations and rules typically need adaptation if the
characteristics of the regulatory document change. There is, thus, a need for a fully automated IE
approach that can achieve high and consistent performance across different types of regulatory
documents for supporting ACC. To address this need, this paper proposes a deep neural network-
based method for deep information extraction — extracting semantic and syntactic information
elements — from regulatory documents in the architectural, engineering, and construction (AEC)
domain. The proposed method was evaluated in extracting information from multiple regulatory
documents in the AEC domain. It achieved average precision and recall of 93.1% and 92.9%,

respectively.

Keywords: Code checking; Information extraction; Deep learning; Transfer learning.

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

1 Introduction

Existing automated code checking (ACC) systems have achieved different levels of accuracy,
automation, and coverage. However, they all require the extraction of requirements from
regulatory documents, such as building codes, energy conservation codes, and specifications,
into computer-processable representations. The information extraction (IE) processes in many of
the existing ACC systems are still fully manual. For example, Solibri Model Checker requires
users to read the building code and then manually convert the building-code requirements into
computer-processable representations by filling in predefined templates. The IE processes in
other ACC systems are semi-automated or automated. However, these processes still rely on
manual annotations or manually defined IE rules. For example, SmartCode requires that code-
checking professionals annotate regulatory information using the requirement, application,
selection, and exception (RASE) markups [1] manually, and the annotated building-code text is
then converted into a computer-processable form using predefined rules. The state-of-the-art
rule-based ACC systems by Zhang and El-Gohary [2] and Zhou and El-Gohary [3] use IE rules
developed by experts based on the syntactic information of building-code sentences (e.g., part-
of-speech tags) and construction-domain ontologies to extract a defined set of semantic
information elements. Despite the high IE performance they have achieved, the annotation-based
or rule-based approaches, by nature, lack sufficient flexibility and scalability; the annotations and

rules typically need adaptation if the characteristics of the building-code text change.

Machine learning-based IE methods, instead of relying on manual annotation or hand-crafted
rules, use machine learning models to automatically capture the underlying syntactic and
semantic patterns of the text. A machine learning-based method is, thus, expected to be more

flexible and scalable compared to the annotation-based or rule-based IE methods — saving the

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

initial effort to develop the annotations or rules, as well as the maintenance effort that would be
required to adapt the annotations or rules across different types of regulatory documents or
extraction tasks. However, not any machine learning algorithm would be suitable for this
information extraction task. Using machine learning to extracting regulatory information from
building codes to support ACC is challenging from two perspectives. First, existing machine
learning-based IE methods in the AEC domain are only able to support shallow IE, where partial
information (e.g., bridge deficiency-related entities [4]) is extracted from the text. However,
ACC systems require deep IE, where the entire meaning of the text is captured for complete and
correct extraction of the requirements [2]. Defining all semantic entities (e.g., subject,
compliance checking attribute, reference) that can capture the full meaning of all types of
requirements, and extracting them using machine learning methods, helps achieve such level of
complete extraction. Second, building codes have hierarchically complex syntactic and semantic
structures. Compared to general domain text, building-code sentences typically have deeply
nested syntactic and semantic structures, including recursive clauses, conjunctive and alternative
obligations, and multiple exceptions [3]. Recent efforts (e.g, [5]) have shown that deep neural
networks are capable of learning the complex syntactics and semantics of the natural language.

Thus, there is a need to explore the use of deep neural networks in deep IE for supporting ACC.

To address this need, this paper proposes a deep neural network-based method for fully
automated extraction of semantic and syntactic information elements from regulatory documents
for supporting ACC in the architecture, engineering, and construction (AEC) domain. The deep
learning models, which have significantly more parameters compared to traditional machine
learning models, typically need a larger scale of data for training. However, there are no such

annotated training datasets in the AEC domain, and creating these datasets would be highly

71

72

73

74

75

76

77

78

79

80

81

82

&3

84

85

86

87

88

&9

90

91

expensive. To solve this problem, the proposed method uses transfer learning strategies to enable
the training of deep neural network models on both domain-general and AEC-specific annotated
data. On one hand, domain-general data (i.e., the source-domain data in the context of transfer
learning) are large in scale and rich in syntactic and semantic patterns, which helps train the
models to deal with various text patterns across different regulatory documents for increased IE
performance, flexibility, and scalability. However, the domain-general data are relatively
different from the AEC-specific data in terms of vocabularies, syntactics, and semantics. On the
other hand, AEC-domain data (i.e., the target-domain data in the context of transfer learning) are
the target data to be analyzed, but they are much smaller in scale and lack syntactic and semantic
richness, which would limit the flexibility and scalability of the models if they are solely used for

training. The proposed approach, thus, takes the best of both worlds.

The proposed deep neural network-based IE approach consists of four main steps: (1) prepare
training data from both outside of the AEC domain (i.e., the source-domain data) and within the
AEC domain (i.e., the target-domain data) and testing data; (2) develop a base deep IE model — a
deep neural network model that consists of long short term memory networks (LSTM) and
conditional random fields (CRF) for automatically extracting semantic and syntactic information
elements from regulatory documents; (3) train the deep IE model using different transfer learning
strategies including feature-based and model-based ones; and (4) evaluate the deep IE

performance using precision, recall, and F1 measure.

2 Background

2.1 Information extraction

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

Information extraction (IE) aims to automatically extract structured information (e.g., entities
and attributes that describe the entities) from text data, which are often unstructured and thus are
not processable and understandable by computers [6]. Existing IE methods can be classified into
two groups: rule-based and machine learning-based methods. Rule-based IE approaches rely on
pattern-matching rules that are developed based on semantic and syntactic knowledge. The IE
rules are often manually designed. For example, Fader et al. [7] developed IE rules based on the
syntactic and lexical features of the text to extract assertions from the Web for supporting
commonsense knowledge and question answering. The ClauslE by Del Corro and Gemulla [8]
consisted of IE rules built upon English grammar and dependency parsing of sentences to extract
arguments from text. The IE system by Gutierrez et al. [9] integrated IE rules and error detection
rules built upon biology-related ontologies to extract facts from text in the biological domain. A
few other research efforts explored a number of techniques to reduce the cost of creating IE
rules, such as learning IE rules from plain text using statistical learning algorithms [10],
designing simple programming languages and interactive environments for rules [11], and
integrating existing rule programming languages and natural language processing applications in

one rule development platform [12].

Machine learning-based methods, rather than relying on IE rules, employ machine learning
models to automatically learn the syntactic and semantic patterns from training text data — and
the trained IE models are then used to extract the target information from new, unseen text data.
The most commonly used machine learning-based methods formulate the IE problem as a
sequence labeling problem, where each word in a sentence is assigned a label using supervised
learning algorithms. Examples of IE approaches using traditional supervised learning algorithms,

together with handcrafted syntactic and semantic features, include a hidden Markov algorithm-

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

based named entity recognition (NER) method by Zhou and Su [13], a support vector machine-

based NER method by Li et al. [14], and a CRF-based IE method by Finkel et al. [15].

2.2 Deep learning in text analytics

Deep learning methods use computational models that consist of multiple layers to capture
different levels of information representations from large-scale data [16]. Deep learning methods
have drastically improved the state-of-the-art performance in automatically processing and
understanding different types of data, including image and text, and meanwhile reduced or
eliminated the manual effort in feature engineering compared to traditional machine learning
methods. Recurrent neural networks (RNN) and variants such as gated recurrent units (GRUs)
[17] and LSTM [18] are deep neural networks that use internal states to process sequences of
input data. They have been widely used in text analytics tasks including semantic and syntactic
analysis (e.g., bidirectional LSTM and multilayer perceptron for dependency parsing and part-of-
speech (POS) tagging [19]), and partial or shallow IE (e.g., bidirectional LSTM and CRF for
extracting named entities [20]). Examples of RNN-based IE efforts include a domain-specific
event detection method using convolutional neural networks [21], an NER method using LSTM

and CRF [20], and an entity and relation extraction system using bidirectional LSTM [22].

Most recently, the Transformer [23] and transformer-based models and methods have been
proposed, which allow training language models on large-scale text data much faster by
abandoning complex RNN and solely relying on the attention mechanisms. For example, the
OpenAI’s generative pre-trained transformer (GPT) [24] and Google’s bidirectional encoder
representations from transformers (BERT) [25], as well as many of their variants (e.g., XLNet

[26], DistilBERT [27], ALBERT [28]), which improve on either the performance or the training

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

speed, have achieved the state-of-the-art performance in various text analytics tasks (e.g.,

machine translation [29], question answering [30], and information retrieval [31]).

A limited number of research efforts have been focused on deep learning-based methods to solve
text analysis problems in the AEC domain. For example, Zhang and El-Gohary [32] used an
RNN-based approach to extract requirement hierarchies from building-code sentences for
supporting compliance checking. Pan and Zhang [33] developed RNN-based models to mine
information from building information modeling (BIM) log data to support design decision
making. Bang and Kim [34] developed models that consist of convolutional neural network
(CNN) and LSTM Ilayers to automatically generate time-spatial and visual context-based

descriptions given construction site images for supporting construction site management.

2.3 Transfer learning

One challenge for deep learning-based IE is that the models typically need large annotated text
data, which require significant time and effort to prepare. Such annotated data are scarce in many
domains, including the AEC domain, which hinders the use of deep learning for domain-specific
IE. Existing annotated datasets have mostly been developed for general natural language
processing (NLP) applications (e.g., the Penn Treebank datasets for multiple syntactic and
semantic analysis tasks [35], the CoNLL-2003 dataset for language-independent NER [36], and
the CoNLL-2005 for semantic role labeling [37]), which are not sufficient for many domain-
specific applications such as IE for ACC. To address this problem, various research efforts have

been undertaken to leverage labeled data from other domains using transfer learning strategies.

Transfer learning aims to transfer knowledge for solving certain domain-specific tasks by

leveraging existing labeled data of some related tasks or domains [38]. Transfer learning enables

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

the training of machine learning models using large-scale, pattern-rich, and annotated training
data that are from source domains that are different from the target domain (e.g., the AEC
domain). Thus, transfer learning improves both the performance and the flexibility and
scalability of the machine learning models, as well as reduces the cost of preparing annotated
training data for the target domain. Transfer learning strategies can be classified into three types
based on how the knowledge is transferred from the source domains to the target domain:

instance-based, feature-based, and model-based strategies.

Instance-based strategies reweight or resample the source-domain data to be similar to the target-
domain data (e.g., the boosting method for cross-domain text classification [39]), which are then
used for training the machine learning models. Feature or representation-based strategies
discover transferable features or representations that are discriminative for both the source and
the target domains through a new machine learning model (e.g., the global vectors for word
representation model [40] and the deep contextualized word representations [41]). Model-based
strategies reapply the partial deep neural networks — those layers trained on the source-domain
data — in the target domain by adapting the models using target-domain data. Examples of
methods for model adaptation include finetuning the pretrained CNN-based image classification
models (e.g., [42-43]), finetuning the pretrained Transformer-based models (e.g., GPT, BERT, or
their variants) for specific downstream text analytics tasks (e.g., [29-31]), and training the

sequence labeling model on source-domain and target-domain data alternatingly (e.g., [44]).

Transfer learning strategies have been used to solve computer vision and NLP problems such as
sequence labeling (e.g., [44]), text classification (e.g., [39]), and sequence-to-sequence learning
(e.g., [29-30]). In the AEC domain, transfer learning strategies have been mainly used to solve

computer vision problems (e.g., [42-43]).

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

3 State of the art and knowledge gaps in information extraction in the construction
domain
Rule-based methods have been developed for solving various IE problems in the AEC domain.
For example, Al Qady and Kandil [45] developed rules, which use syntactic features, for shallow
parsing to extract concept relations from construction contract documents for improving
electronic document management such as document categorization and retrieval. Zhang and El-
Gohary [2] and Zhou and El-Gohary [3] developed IE rules, which use semantic and syntactic
features, to extract semantic information elements from regulatory documents such as building
codes, energy conservation codes, and specifications for supporting ACC. Lee et al. [46]
developed rules, which use syntactic parsing and predefined lexicon features, to extract
poisonous clauses from construction contracts for supporting contract management. Despite the
state-of-the-art performance levels many of them have achieved (e.g., nearly 100% recall
reported by Zhang and El-Gohary [2] and Zhou and El-Gohary [3]), the rule-based approaches
are difficult to scale to a variety of documents due to the relatively limited and inflexible patterns
that are used to develop the rules. In general, when the type of regulatory document or the
characteristics of the text change, although some of the IE rules could be reused, most of these
rules will require significant retesting and possibly modification or addition. The lack of
sufficient flexibility and scalability becomes a potential obstacle for using ACC systems built on
rule-based IE, especially given the fact that building codes are updated frequently and vary

across different regions.

Recently, a limited number of machine learning-based methods have been developed for solving
IE problems in the AEC domain. For example, Liu and El-Gohary [4] developed a semi-

supervised machine learning-based method to extract entity information from bridge inspection

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

reports for supporting bridge deterioration prediction. Zhang and El-Gohary [47] developed a
supervised learning-based method to extract semantic roles including entities and relations from
regulatory documents for supporting ACC. Kim and Shi [48] developed a supervised learning-
based method to extract knowledge from construction accident cases. Despite the importance of
these efforts, there are three knowledge gaps that this paper aims to address. First, the
aforementioned methods can be classified as shallow because they only extract partial
information from the text, and thus they cannot be directly used for capturing the entire meaning
of the text, which is essential for IE for ACC. Second, they use traditional machine learning
algorithms such as CRF, which has been outperformed by deep neural networks such as RNN in
many text analytics tasks including partial or shallow IE. Thus, there is a need to explore the use
of deep neural networks in deep IE for supporting ACC. Third, there is generally a lack of
labeled training data in the AEC domain, which is especially a challenge for deep neural
networks because they require larger training datasets than those required for traditional
algorithms. Thus, there is a need for techniques to leverage the larger-size and pattern-rich data
that exist in other domains to help address this challenge while reducing the human-labeling

effort.

4 Proposed semantic and syntactic information elements for deep information extraction
for supporting ACC

In this study, two types of information elements, semantic and syntactic information elements,

are used to represent the building-code requirements. The semantic information elements define

the building-code requirements that are described in the natural language building-code

sentences. In this study, a subset of the semantic information elements proposed by Zhang and

El-Gohary [2] were utilized, including six of the essential semantic information elements (as

10

228

229

230

231

232

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249
250

shown in Table 1): subject, compliance checking attribute, deontic operator indicator,
comparative relation, quantity value, and quantity unit. Two new semantic information elements
were added: subject relation and reference. Subject relation extends the original quantity relation
to relations that apply to both quantitative and nonquantitative requirements. Reference extends
the scope of existing ACC efforts to cover cross references that commonly exist in requirements.
The secondary semantic information elements such as subject restrictions and quantity
restrictions [2] were not utilized, because compared to the study by Zhang and El-Gohary, this
study further granularizes the regulatory information represented by the secondary semantic
information elements using the proposed information elements, and thus there is no need to
include secondary elements. The syntactic information elements are used in the English sentence
to form grammatically correct building-code sentences but do not directly contribute to defining
the meaning of the building-code requirement. The syntactic information elements include three
types of logic operator indicators — conjunctions (e.g., “and”), disjunctions (e.g., “or”), and
negations (e.g., “not”) — and syntactic units such as some of the pronouns (e.g., “the”), adverbs
(e.g., “s0”), prepositions (e.g., “of”), and conjunctions that introduce a clause (e.g., “that”).
These syntactic information elements better capture the syntactic structures of requirements
(especially the deeply nested ones), which helps better understand the full meaning of the
requirements. Fig. 1 shows example sentences from the International Building Code (IBC),
International Energy Conservation Code (IECC), and Americans with Disabilities Act (ADA)
Standards, and how the sentences are annotated using the proposed semantic and syntactic

information elements.

Table 1. Semantic Information Elements for Representing Requirements for Compliance
Checking Purposes [2]

Semantic information element Definition

11

251
252

253

254

255

256

257

258

259

Subject

IAn ontology concept representing a thing (e.g., building element) that is
subject to a particular requirement

Compliance checking attribute

IAn ontology concept representing a specific characteristic of a “subject”
that is checked for compliance

Deontic operator indicator

IA term or phrase that indicates the deontic type of the requirement (i.e.,
obligation, permission, or prohibition)

Comparative relation

IA term or phrase for comparing quantitative values, including “greater
than or equal to,” “greater than,” “less than or equal to,” “less than,” and
“equal to”

Quantity value

IA numerical value that defines the quantity

Quantity unit

The unit of measure for a “quantity value”

Subject relation

IA term or phrase that defines the type of relation between two subjects, a
subject and an attribute, or a subject or an attribute and a quantity

IA term or phrase that denotes the mention or reference to a chapter,

Reference section, document, table, or equation in a building-code sentence (e.g.,
“Section 1312” in “the revolving door shall comply with Section 1312”)
. Door openings between a private garage and the dwelling unit shall
International S Rel SU s LO SU S D
Building J . . .
ullding Code be equipped with steel doors not less than 34.9 mm thick

Rel S CR QV QU A

International Slab-on-grade floors with a floor surface less than 12 inches below grade
Fncrgy S Rel SU S CR QV QU Rel S
Conservation Code Shall be insulated in accordance with Table R402.1.1
D Rel Ref

Americans with
Disabilities Act
Standards

Guardrails or other barriers shall be provided where the vertical clearance
S LO S D Rel SU su S

is less than 80 inches high
Rel CR QV QU A

A=compliance checking attribute; CR= comparative relation; D=deontic operator indicator; LO=logic operator indicator;
QV=quantity value; QU=quantity unit; Ref=reference; Rel=subject relation; S=subject; SU=syntactic unit

Fig. 1. Example building-code sentences annotated with the proposed syntactic and semantic

5 Proposed deep neural network-based method for deep IE from regulatory documents
The proposed deep learning-based method for deep IE from regulatory documents consists of
four primary steps, as illustrated in Fig. 2: data preparation, base deep IE model development,

model adaptation and training using transfer learning strategies, and deep IE performance

evaluation.

information elements.

Step 1: Data preparation

Step 2: Base deep information
extraction model development

Step 3: Model adaptation and Step 4: Deep information
training using transfer learning extraction performance
strategies evaluation

12

260
261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

Fig. 2. Proposed deep neural network-based method for deep information extraction from
regulatory documents.

5.1 Data preparation

5.1.1 Target-domain data preparation

The target-domain data — building-code sentences that are annotated with the proposed semantic
and syntactic information elements — were prepared for both training and testing the IE models.
The data were prepared following four steps: corpus development, data preprocessing, sentence
selection, and sentence annotation. First, a small building-code corpus was developed, which
consists of sentences from multiple regulatory documents, including the IBC, IECC, ADA
Standards, and IBC amendments (e.g., Champaign building code amendments). To construct the
corpus, all documents were converted to the text file format (i.e., .txt) and combined into a single
file. Second, the following four preprocessing techniques were used: data cleaning, sentence
segmentation, sentence tokenization, and sentence filtering. Data cleaning aims to remove the
noises created due to the conversion of the non-textual parts (e.g., figures) of the regulatory
documents. Sentence segmentation aims to detect the sentence boundaries (e.g., punctuations)
and segment the text into sentences. Sentence tokenization aims to further split the sentences into
tokens (e.g., words). Sentence filtering aims to remove the sentence or sentence fragments that
are not requirements (e.g., headings). The Natural Language Toolkit (NLTK) in Python was used
for sentence segmentation and tokenization. Third, a group of building-code sentences, which
consists of about 15,000 words, were randomly selected from the developed corpus. The selected
sentences have different levels of computability. Computability is defined as the ability of the
building-code sentence to be represented and processed by a computer in an effective manner
[49]. Fourth, a group of four participants with both domain knowledge (especially codes and

regulations) and NLP knowledge — the first author and three experts including two from

13

284

285

286

287

288

289

290

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

academia (faculty) and one from industry — manually annotated the selected sentences with the
proposed semantic and syntactic information elements. The beginning-inside (BI) labeling
scheme was adopted, where “B” indicates that the word is at the beginning of an information
element, and “I”” indicates that the word is inside of an information element. For example, the
“door openings”, which is a subject, is annotated as “B-Subject [-Subject”, meaning that the
word “door” is the beginning of a subject and the word “openings” is inside of a subject. The
inter-annotator agreement was 80% in F1 measure, which indicates the reliability of the
annotations [50]. The discrepancies among the annotations were then discussed and resolved to
reach consensus on the final annotations. After annotation, the target-domain data was split into
two sets using a 9:1 ratio: training and validation dataset and testing dataset. A ten-fold cross
validation was performed, further splitting the first dataset into a training set (for training the
model) and a validation set (for tuning the hyperparameters of the model). The testing dataset

was used for evaluation.

5.1.2 Source-domain data preparation

The source-domain data, English sentences that are not from the AEC domain and are already
annotated with different labels or markups (i.e., other than the proposed syntactic and semantic
information elements), were prepared for training the IE model. The Penn Treebank [35] were
used, which consist of over 100,000 English sentences that were collected from the Wall Street
Journal and are annotated with POS tags. The Penn Treebank data are suitable for training the IE
models for two reasons. First, the POS-tag annotations indicate the syntactic roles that words
play in a sentence, which can be used for the syntactic and semantic analysis of the text. Second,

compared to the target-domain data, the Penn Treebank data are large in scale and rich in

14

306

307

308

309

310

311

312

313

314
315

316

317

318

319

320

321

322

323

324

syntactic and semantic patterns. The entire source-domain data were used for training the IE

models using transfer learning strategies.

5.2 Base deep information extraction model development

The deep neural network model — bidirectional LSTM with CRF [51] — was selected and adapted
as the base IE model. The base model, thus, consists of three main components: the input layer,
encoding layer, and output layer, as depicted in Fig. 3. The selections of the layers were
conducted based on the scales and syntactic and semantic characteristics of the specific source

and target data used in the training of the model, as discussed in the following subsections.

S-B S CR-B CR-I QV-B QU-B A-B

Output layer

Tnendi AV Conditional random
Encoding layer ‘ . O field classifier

Long short term
memory unit

[Word embedding

Input layer
steel doors less than 349 mm thick

Semantic and syntactic information elements (before hyphen): A=compliance checking attribute; CR=comparative relation;
QV=quantity value; QU=quantity unit; S=subject
Tagging scheme (after hyphen): B=beginning of the information element; I=inside of the information element

Fig. 3. The architecture of the base deep information extraction model.

5.2.1 Input layer

The input layer aims to represent the semantics of each word in a vector representation for deep
neural network computation purposes. To better capture the semantic information of the words in
the target-domain training data, which are of relatively small scale, a word-embedding layer and
a character-embedding layer were added to the input layer. The word-embedding layer aims to
learn the vector representation of each token (e.g., word or punctuation). The character-
embedding layer aims to first learn the vector representation of each letter, digit, or symbol in the
training data, and then feed the vector representations of all letters, digits, and symbols contained

in a token into an LSTM layer to generate a second vector representation to represent this token.

15

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

For each token, the final output of the input layer is a vector representation formed by
concatenating the vector representation generated by the word-embedding layer and the vector

representation generated by the character-embedding layer.

5.2.2 Encoding layer

The encoding layer aims to further learn the contextual vector representation of each word that is
discriminative in terms of the IE task, using the vector representations of both the current word
and the context words generated by the input layer. To better capture the semantic information of
the words in the target-domain training data, which are of relatively small scale, two LSTM
layers were added to the encoding layer. To improve the ability of the IE model to deal with
long-term syntactic and semantic dependencies that exist in hierarchically complex building-
code sentences, the vector representations of both forward and backward context words were
used when encoding the contextual vector representation of the current word via the bidirectional
LSTM architecture — where one LSTM layer is forward and the other layer is backward. For
each input building-code sentence, the representations encoded by the forward LSTM layer are a
sequence of vectors [fy, f>, ..., fr], and the representations encoded by the backward LSTM layer
are another sequence of vectors [by, by, ..., by], based on which the representations generated by
the encoding layer are [hy, hy, ..., hy], where h; is the direct sum of f; and b, [20] and T is the

size of the LSTM layers.

To improve the model’s ability to reduce overfitting, a recurrent dropout layer was added to the
encoding layer. The recurrent dropout layer drops a random fraction of the LSTM units in the
encoding layer during the training of the IE model, according to a dropout probability d.

Typically, the dropout probability is set to be smaller than 0.5, which means that less than half of

16

347

348

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

the LSTM units are dropped and the rest of the LSTM units are retained. The recurrent dropout
layer is disabled during the testing and future use of the IE model (i.e., use in the ACC system),
which means all the LSTM units in the encoding layer are used for generating the contextual

vector representations of the tokens in the building-code sentences.

5.2.3 Qutput layer

The output layer aims to predict the type of syntactic and semantic information elements using
the BI labeling scheme for each token in the building-code sentence, given the contextual vector
representations of the tokens in the sentence generated by the encoding layer. To better capture
the semantic and syntactic dependencies that exist in hierarchical complex building-code
sentences, a CRF layer was added to the output layer. The cross-entropy loss was chosen as the
objective function and was minimized during the training of the IE model. The cross-entropy
loss L describes the difference between the labels (i.e., the type of semantic information elements
using the BI labeling scheme or the POS tags) in the training data, denoted as y, and the labels
predicted by the model 8, denoted as ¢, based on the input building-code sentence x, as shown in
Eq. (1), where D is a batch of the training data, C is the set of all the possible labels, and
pe(c|x;) is the conditional probability of ¢ given the input sentence x generated by the CRF layer
in the IE model with parameters 6, and 1,_. is the indicator function, which returns 1 when y

and c are equal, and returns 0 when y and c are not equal.

1
L©) =57 D D Ly=clogpatelx) (1)

x,YED ceC
Given a building-code sentence and a trained IE model, the corresponding sequence of labels
was predicted by searching the optimal sequence of labels that maximizes the sum of the

conditional log probabilities log pg(c|x;) computed by the CRF layer.

17

369

370

371

372

373

374

375
376

377

378

379

380

381

382

383

384

385

386

387

5.3 Model training using transfer learning strategies

To enable the training of the base IE model on both the source-domain and the target-domain
training data, the model was further adapted and trained using different transfer learning
strategies. Based on the structure of the base IE model, four transfer learning strategies,
belonging to two types — feature-based and model-based strategies — were selected for testing, as

summarized in Table 2.

Table 2. Transfer Learning Strategies Adopted for Training the Base Deep Information
Extraction Model

Transfer learning strategy | Type of strategy Modification of the base deep information extraction model

Fixed pretrained word Feature-based Initially replace the word-embedding layer with pretrained word
embeddings embeddings; fix the word-embedding layer

Trainabl.e pretrained word Feature-based Initially replaf:e the wording-embedding layer with pretrained
embeddings word embeddings

Replace the conditional random field (CRF) layer used in the first
stage of the training with a new layer

Alternating training Model-based |Attach two separate CRF layers to the encoding layer

Two-stage training Model-based

5.3.1 Feature-based transfer learning strategy

Feature-based transfer learning strategies were selected to directly transfer the semantic
information contained in the source-domain data to the target-domain data in the word-
embedding layer of the base IE model. Pretrained word embeddings are vector representations of
words learned on a large, cross-domain corpus by training a machine learning model on the
corpus. The most commonly used machine learning model to generate pretrained word
embeddings is the Global Vectors for Word Representation (GloVe) algorithm [40], where the
training is performed on aggregated global word-word co-occurrence statistics from a large
cross-domain corpus, and the resulting representations capture the contextual information of the
words in the corpus. The word embeddings that were learned by applying the GloVe algorithm

on a corpus consisting of Wikipedia 2014 and Gigaword 5 were adopted. The adopted word

18

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

407

408

409

410

representations consist of vector representations of 40,000 uncased English words, which have a

dimension of 50.

Two feature-based transfer learning strategies were adopted for training the deep IE model: the
fixed pretrained word-embedding strategy and the trainable pretrained word-embedding strategy.
The fixed pretrained word-embedding strategy aims to keep the weights in the input layer
corresponding to the pretrained word embeddings not updated during the training of the deep
neural networks. On the other hand, the trainable pretrained word-embedding strategy aims to
use the pretrained word embeddings to initialize the weights in the input layer and then update
the weights during the training. The performance of the two strategies depends on the
relativeness of the corpus that is used to learn the pretrained word embeddings to the domain-

specific text and the complexity of the syntactics and semantics in the domain-specific task.

5.3.2 Model-based transfer learning strategy

Model-based transfer learning strategies were selected to indirectly transfer the semantic
information contained in the source-domain data to the target-domain data in the input layer and
embedding layer of the base IE model. Two model-based transfer learning strategies were
adopted for training the IE model: a two-stage training strategy and an alternating training
strategy. In the two-stage training strategy (as illustrated in Fig. 4), the IE model was trained in
two separate stages. In the first stage, the model was trained on the source-domain data. The
first-stage training was stopped if the difference between the training losses of two consecutive
training epochs is smaller than the threshold (i.e., 0.01), or the training reaches 50 epochs, where
an epoch is defined as training the model on the entire source-domain data. In the second stage,
the output layer of the trained model (i.e., source output layer) was replaced by a new output
layer (i.e., target output layer), and the model was trained on the target-domain data. In the

19

411

412

413

414

415

416

417
418

419

420

421

422

423

second stage, only the output layer was trainable, and the other two layers (i.e., the input layer
and the encoding layer) were not — i.e., the parameters of these two layers were not updated
during the training. The second-stage training was stopped if the difference between the training
losses of two consecutive training epochs is smaller than the threshold (i.e., 0.01), or the training
reaches 50 epochs, where an epoch is defined as training the model on the entire target-domain

data.

Source-domain model

Source-domain R ; o
raining data *| Train the source- | - T| Source output layer
domain model el T |
T Encoding layer
Stop criteria met? k
' T Input layer i

Encoding and
input layers LTI LT IS
l Target-domain model

Target-domain [Train th
training data *| Trainthe target- | - T| Targe output layer !
domain model Tl f A
. NT Encoding layer
Stop criteria met? '
. NT Input layer i

T=Trainable; NT=Non-trainable
Fig. 4. Two-stage training strategy and model requirements.

In the alternating training strategy (as illustrated in Fig. 5), the IE model was trained on the

source-domain and the target-domain training data in an alternating manner. The model had two

separate output layers — one layer is used when the model is trained on the source-domain data

(i.e., source output layer) and the other layer is used when the model is trained on the target-

domain data (i.e., target output layer). In each training iteration, there is an alternating

20

424

425

426

427

428

429

430

431

432

433

434

435

436

437

probability p that the model is trained on a selected batch of source-domain data, and a
probability of (/-p) that it was trained on a selected batch of target-domain data, where the total
number of iterations is equal to the size of the training data divided by the size of a batch of
training data. Typically, the alternating probability p is close to 1, meaning the model is more
frequently trained on source-domain data rather than target-domain data, to capture as much
syntactic and semantic patterns from the relatively large-scale source-domain data, and to
prevent overfitting on the relatively small-scale target-domain data. The training was stopped if
the difference between the training losses of two consecutive epochs when the model is trained
on the target-domain data is smaller than the threshold (i.e., 0.01), or the training on the target-

domain data reaches 50 epochs, where an epoch is defined as training the model on the entire

target-domain training data.

Generate a

random number

Train the encoding
and input layers with
the target output layer

Source-domain
training data

Target-domain
training data

p=Alternating probability

between 0 and 1

Random number
<p?

Train the encoding
and input layers with
the target output layer

Yes
End

No

Source and target domain model

Source output layer Source output layer

T

Encoding layer

i

Input layer

Fig. 5. Alternating training strategy and model requirements.

5.4 Deep information extraction and evaluation

21

438

439

440

441

442

443
444

445

446

447

448

449

450

To test and evaluate the proposed model, the information was extracted following two simple
steps (Fig. 6). First, the building code was preprocessed into sentences, where each preprocessed
sentence consisted of a sequence of tokens (e.g., words, numbers, punctuation marks). Second,

the trained deep IE model automatically extracted the semantic and syntactic elements in the

sentences.
406.3 Private Garages and Carports. Private garages and carports shall comply
with Sections 406.3.1 through 406.3.6,
406.3.1 Classification. ... Each private garage shall be not greater than 1,000
square feet inarca. Multiple private garages are permitted in a building where
cach private garage is scparated from the other private garages by 1-hour fire
barriers in accordance with Section 707 ...,
ceing (e o p 406.3.2 Separation. ... Door openings between a private garage and the
PrcPrqcebbln!: {L‘!p" : dwelling unit shall be equipped with steel doors not less than 34.9 mm thick .
Clcamng. sentence
segmentation,
sentence tokenization) *: i o i e TR
[*Door”, “openings”, “between”, “a”, “private”,
“garage”, “and”, “the”, “dwelling”, “unit”, “shall”,
Preprocessed “be”, “equipped”, “with”, “steel”, “doors”, “not”,
building-code “less”, “than™, “34.9”, “mm”, “thick™]
sentence
Trained deep D > : 7+ Subjects: door openings, private garage,
. . eep information = :
information P : dwelling unit, steel doors
extraction model EAuReann * Subject relations: between, be equipped with

* Logic operator indicator: and
= Deontic operator indicator: shall
« Comparative relation: not less than
* Quantity value: 34.9
* Quantity unit: mm
.. * Compliance checking attribute: thick

Extracted
information
elements

Fig. 6. Deep information extraction using the proposed method.

Three metrics were used to evaluate the IE performance: precision, recall, and F1 measure, as
shown in Eq. (2) to (4), where for a specific type of syntactic and semantic information element
E, TP is the number of true positives (i.e., number of words correctly labeled as E), FP is the
number of false positives (i.e., number of words incorrectly labeled as E), and FN is the number

of false negatives (i.e., number of words not labeled as E but should have been) [52].

Precision = — 2
recision =5 TP (2)

22

451

452

453

454

455

456

457

458

459

460

461

462

463

464

465

466

467

Recall = — % 3
Y ®3)

Fo— 2 Precision X Recall 4
1= Precision + Recall)

6 Experimental results

6.1 Deep information extraction model hyperparameter optimization

The deep IE models and transfer learning strategies were implemented using Keras built in
Python 3 and run using the Tesla K80 GPU provided in the Google Colaboratory. A ten-fold
cross validation was conducted for optimizing the model hyperparameters. The optimized main

hyperparameters for the deep IE models are shown in Table 3.

Table 3. Optimized Main Hyperparameters for the Deep Information Extraction Models

Hyperparameter Value
Batch size for the source-domain training data 30
Batch size for the target-domain training data 30
Size of the word-embedding vector representation 50
Size of the character-embedding vector representation 20
Size of the long short term memory layer in the encoder layer 50
Type of activation functions rectified linear unit (ReLU)
Maximum length of input sentences 75
Maximum length of input words 20
Recurrent dropout rate 0.1
Alternating probability when training the deep information extraction| 90%
models using alternating training strategy

Training loss difference threshold 0.01

6.2 Comparison of the performances of the proposed method with different transfer learning
strategies

To determine the optimal transfer learning strategies for the proposed deep IE method, six

different combinations of strategies were implemented and tested for comparative evaluation, as

shown in Table 4: two-stage training with no feature-based strategy (SC1), alternating training

with no feature-based strategy (SC2), two-stage training with trainable pretrained word

embeddings (SC3), alternating training with trainable pretrained word embeddings (SC4), two-

stage training with fixed pretrained word embeddings (SCS), alternating training with fixed

23

468 pretrained word embeddings (SC6). During the training of the model, the hyperparameters were
469 set as per Table 3. The proposed deep IE method achieved the highest performance when the
470 strategy combination SC4 was adopted. The results indicate that, first, the differences between
471 the semantic and syntactic characteristics of the source-domain and target-domain data have a
472 significant impact on the choice of transfer learning strategies. Second, the two-stage training
473 strategy might cause the IE model to overfit to the source-domain data and underfit to the target-
474 domain data. Third, the pretrained word embeddings contribute to the model’s ability to capture
475 the semantic and syntactic patterns in both the source-domain and target-domain data; however,
476 they are still not able to bridge the gap between the two domains (i.e., the general domain and the

477 AEC domain).

478 According to the aforementioned results, the proposed IE method uses the optimized
479 hyperparameters in Section 6.1 (e.g., recurrent dropout rate as 0.1, alternating probability as 90%)
480 and the transfer learning strategy combination SC4. For the remaining experiments (Sections 6.3

481 to 6.5), this method was used.

482 Table 4. Performance of the Proposed IE Method with Different Transfer Learning Strategy
483 Combinations
Strqtegy Featureibased transfer Model-based transfer Precision! Recall! F1 measure!
combination learning strategy learning strategy
SC1 None Two-stage training 79.7% 80.5% 80.1%
SC2 None Alternating training 87.0% 87.5% 87.2%
SC3 Tra‘nazﬁgzzté‘;‘gd word Two-stage training 83.3% 84.0% 83.6%
SC4 Tra‘“”‘;‘;ﬁgg‘;{“‘:g:d word \iternating training 93.1% 92.9% 93.0%
SC5 leeiggg;‘(‘i?:gsword Two-stage training 83.4% 83.9% 83.7%
SC6 leeiggg;‘(‘i?:gsword Alternating training 90.0% 90.5% 90.2%
484 'Bolded font indicates the highest performance.

485 6.3 Comparison of the performances of the proposed and baseline methods

24

486

487

488

489

490

491

492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

To evaluate the effect of using deep neural networks and leveraging source-domain training data
through transfer learning strategies on the extraction performance, the proposed IE method was
compared to the linear CRF as a baseline. Linear CRF was selected because it has achieved the
state-of-the-art performance for shallow IE in the AEC domain (e.g., [4]). Two linear CRF
baseline models were constructed for performance comparison, one with word embeddings as
features (Baseline 1) and another with both word embeddings and POS tags (Baseline 2). As
shown in Table 5, compared to the baseline methods, the proposed IE method achieved higher
performance, with an average increase of 9.6% in precision (14.2% for Baseline 1 and 4.9% for
Baseline 2), 9.8% in recall (14.5% for Baseline 1 and 5.0% for Baseline 2), and 9.4% (14.4% for

Baseline 1 and 4.4% for Baseline 2) in F1 measure.

Table 5. Performance of the Proposed IE Method Compared to the Baseline

Deep information extraction method Precision’ Recall’ Fl 1
measure
Proposed IE method (using deep neural networks) 93.1% 92.9% 93.0%
Baseline 1 (using linear conditional random fields + word embeddings) 78.9% 78.4% 78.6%
Baseline 2 (using linear conditional random fields + word embeddings + part-

0 o 0,
of-speech tags) 87.9% 88.6% 88.2%

'Bolded font indicates the highest performance.

6.4 Performance of the proposed method on different types of regulatory documents

To evaluate the ability of the proposed IE method to extract syntactic and semantic information
elements from regulatory documents that have different syntactic and semantic characteristics,
the trained IE model was tested using building-code sentences from three different types of
regulatory documents: the IBC, IECC, and ADA Standards, as shown in Table 6. The proposed
IE method achieved consistent performance across the three types of documents, based on the
three metrics, indicating that the method has high flexibility and scalability. As shown in Fig. 7,
compared to the baseline methods, the proposed IE method achieved higher performance across

the three types of documents. For IBC, the average increase is 11.5% in precision (17.3% for

25

507 Baseline 1 and 5.6% for Baseline 2), 11.3% in recall (17.1% for Baseline 1 and 5.5% for
508 Baseline 2), and 11.1% (17.3% for Baseline 1 and 4.9% for Baseline 2) in F1 measure. For [IECC,
509 the average increase is 8.8% in precision (11.7% for Baseline 1 and 5.8% for Baseline 2), 8.2%
510 inrecall (12.6% for Baseline 1 and 3.7% for Baseline 2), and 8.5% (12.2% for Baseline 1 and 4.8%
511 for Baseline 2) in F1 measure. For ADA, the average increase is 8.1% in precision (12.2% for
512 Baseline 1 and 3.9% for Baseline 2), 8.3% in recall (12.6% for Baseline 1 and 3.9% for Baseline

513 2),and 8.2% (12.4% for Baseline 1 and 3.9% for Baseline 2) in F1 measure.

514 Table 6. Deep Information Extraction Performance Across Different Types of Regulatory
515 Documents
Deep information

fion] 1 1
Type of regulatory document extraction method Precision Recall F1 measure
Proposed method 94.9% 95.2% 95.1%
International Building Code Baseline 1 77.6% 78.1% 77.8%
Baseline 2 89.3% 89.7% 90.2%
International Ener Proposed method 87.3% 86.8% 87.1%
Comomoie oY Baseline 1 75.6% 74.2% 74.9%
Baseline 2 81.5% 83.1% 82.3%
() () o,
Americans with Disabilities Act Proposed' method 95°10/° 94°70/° 94'90&
Standards Basel¥ne 1 82.9% 82.1% 82.5%
Baseline 2 91.2% 90.8% 91.0%
516 Bolded font indicates the highest performance.
517
P R Fl
100%
95%
90% H
85% - =
30‘1 [} [| [| 1 11 1 1 11 1 - m
?Ot] 0

IBC IECC ADA IBC IECC ADA IBC IECC ADA
Proposedmethod ~ [] Baseline 1 [] Baseline 2

Evaluation metfrics: P=precision; R=recall; F1=F1 measure
Types of regulatory documents: IBC=International Building Code; IECC=International
Energy Conservation Code; ADA=Americans with Disabilities Act Standards

518
519 Fig. 7. Comparison of Deep Information Extraction Performance Across Different Types of
520 Regulatory Documents

26

521

522

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

540

541

542

6.5 Performance of the proposed method on building-code sentences of different levels of
computability
To evaluate the ability of the proposed IE method to extract syntactic and semantic information
elements from different types of sentences, the trained IE model was tested using building-code
sentences with different computability levels. Three different types of sentences were used for
comparative evaluation, as shown in Table 7: moderately high, moderately low, and low
computability, which are the top three types of sentences in terms of computability that appear
most frequently in building codes (e.g., they account for 22%, 39%, and 23% of a corpus of
sentences from IBC and its amendments, respectively) [49]. Sentences of moderately high
computability have relatively simple syntactic and semantic structures (e.g., consisting of
relatively short noun phrases, verb phrases, and preposition phrases at the sentence-level, or
having simple or no restrictions). For example, “spacing of braced wall lines shall not exceed 35
feet on center in both the longitudinal and transverse directions in each story” has moderately
high computability. Sentences of moderately low computability have relatively complex
syntactic and semantic structures (e.g., consisting of relatively long noun phrases, verb phrases,
and preposition phrases at the sentence-level, or having one recursive restriction). For example,
“openings between the Group S-2 enclosed parking garage and Group S-2 open parking garage,
except exit openings, shall not be required to be protected” has moderately high computability.
Sentences of low computability have very complex syntactic and semantic structures (e.g.,
consisting of very long noun phrases, verb phrases, and preposition phrases at the sentence-level,
or having multiple recursive restrictions). For example, “where exterior walls serve as a part of a

required fire-resistance-rated shaft or exit enclosure, or separation, such walls shall comply with

27

543 the requirements of Section 705 for exterior walls and the fire-resistance-rated enclosure or

544 separation requirements shall not apply” has low computability.

545 The proposed method achieved consistent performance across the three types of building-code
546 sentences, based on the three metrics, indicating that the method has high flexibility and
547 scalability. Also, all three selected types of sentences have hierarchical complex structures [3,49],
548 indicating that the method is able to deal with complex building-code syntactic and semantic
549 structures. As shown in Fig. 8, compared to the baseline methods, the proposed IE method
550 achieved higher performance across sentences with all three levels of computability. For
551 moderately high computability, the average increase is 5.3% in precision (7.5% for Baseline 1
552 and 3.1% for Baseline 2), 5.2% in recall (8.1% for Baseline 1 and 2.2% for Baseline 2), and 5.2%
553 (7.8% for Baseline 1 and 2.6% for Baseline 2) in F1 measure. For moderately low computability,
554 the average increase is 8.4% in precision (13.3% for Baseline 1 and 3.4% for Baseline 2), 7.3%
555 inrecall (12.4% for Baseline 1 and 2.2% for Baseline 2), and 7.9% (12.9% for Baseline 1 and 2.8%
556 for Baseline 2) in F1 measure. For low computability, the average increase is 12.6% in precision
557 (18.0% for Baseline 1 and 7.2% for Baseline 2), 12.8% in recall (18.9% for Baseline 1 and 6.6%
558 for Baseline 2), and 12.7% (18.5% for Baseline 1 and 6.9% for Baseline 2) in F1 measure. Both
559 the proposed method and the baseline methods achieved high performance on sentences with
560 moderately high computability, because they have relatively simple syntactic and semantic
561 structures that are relatively easy to be captured by the models used in both methods. However,
562 for sentences with low computability, the proposed method outperformed the baseline methods
563 significantly, because they have relatively complex syntactic and semantic structures, especially

564 long and recursive ones, which are better captured by the model used in the proposed method.

28

565
566

567
568

569
570

571

572

573

574

575

576

577

578

Table 7. Deep Information Extraction Performance for Building-Code Sentences with Different

Computability Levels
Computablllgl}l/tglt; (l:)euslldlng-code Deep 1nforrrnn(:lt’[fl(())l(l1 extraction Precision! Recall! F1 measure!
Proposed method 95.2% 93.8% 94.5%
Moderately high Baseline 1 87.7% 85.7% 86.7%
Baseline 2 92.1% 91.6% 91.9%
Proposed method 93.8% 93.5% 93.7%
Moderately low Baseline 1 80.5% 81.1% 80.8%
Baseline 2 90.4% 91.3% 90.9%
Proposed method 91.6% 92.1% 91.9%
Low Baseline 1 73.6% 73.2% 73.4%
Baseline 2 84.4% 85.5% 85.0%
Bolded font indicates the highest performance
P R Fl
100%
95%
0[]0 0 - 1 | 11 1 | 1 | . 1 1
8 50 o H _— —_— - _— — Lo ——
S[]O 0 - 1 1 1 1 1 = 1 1 -
75% H -] | -] || - _— -
70%

MH ML L MH ML L MH ML L
] Proposed method [] Baseline 1 [] Baseline 2

Evaluation metrics: P=precision; R=recall; F1=F1 measure
Level of computability: MH=moderately high; ML=moderately low; L=low

Fig. 8. Comparison of Deep Information Extraction Performance for Building-Code Sentences
with Different Computability Levels

6.6 Error analysis

An error analysis was conducted to investigate the sources of errors and identify potential
directions for performance enhancement in the future. To analyze the extraction errors, the
confusion matrix (Fig. 9) was generated. Three main types of errors were identified based on the
experimental results. First, the proposed approach had errors when dealing with multiword
expressions, which consist of multiple words and function as individual syntactic and semantic

units, especially those including prepositions. For example, the words in the multiword

29

579

580

581

582

583

584

585

586

587

588

589

590

591

592

593

594

595

596

expression “means of egress” should have been annotated with a single semantic information
element — a subject, but instead it was annotated with a subject, a syntactic unit, and another
subject. In future work, a multiword expression list for the AEC domain could be integrated into
the proposed method. Second, the proposed method performed relatively lower on extracting
compliance checking attributes and references compared to other types of semantic and syntactic
information elements, as shown in the confusion matrix. For example, the “required insulation”
in “the requirement insulation for roof or ceiling assemblies” should have been extracted as a
compliance checking attribute, but was misextracted as a subject. The “U-factor and SHGC
requirements” should have been extracted together as a reference, but the “U-factor” was
misextracted separately as a subject. Also, “Group R-1”, which means the first residential group
in the IBC use and occupancy classification, was mistakenly extracted as part of a subject instead
of a compliance checking attribute. In the future, additional input layers could be added to
capture syntactic and semantic patterns that are discriminative in distinguishing subjects from
compliance checking attributes and references. Third, the proposed method performed relatively
lower on the IECC compared to other types of regulatory documents. The lower performance
results from the relatively low amount of target-domain training data built using IECC sentences.
In the future, more experiments are needed to evaluate the ability of the proposed method to

scale to different types of regulatory documents when the amount of training data changes.

30

597
598

599

600

601

602

603

604

605

606

607

608

609

610

611

A B 0.00 0.00 000 0.2 010 0.00 0.00 1.00
» CR 0.00 0.00 000 008 001 0.0l 0.00
5D 0.00 0.00 0.00 000 0.00 0.00
S Qv 000 0.00 0.00 0.02 002 0.00 0.00
§ QU | 0.00 0.00 0.01 001 003 0.00 0.00
£ Ref| 000 0.00 000 0.00 0.00 0.06 0.00 0.00 030
€ Rel| 001 000 002 0.00 000 0.00 0.00 0.01
S S | 005 001 000 000 000 000 001 0.00
“ 10| 000 001 000 000 000 000 000 0.99
SU| 000 0.00 000 000 000 000 001 000 0.00

A CR D QV QU Ref Rel S LO SU
Extracted information elements

A=compliance checking attribute; CR=comparative relation; D=deontic operator indicator;
QV=quantity value; QU=quantity unit; Ref=reference; Rel=subject relation; S=subject; LO=logic
operator indicator; SU=syntactic unit

Fig. 9. Confusion matrix for semantic and syntactic information elements.

7 Contribution to the body of knowledge

This paper contributes to the body of knowledge on two levels. On a methodological level, the
paper offers a new method that integrates deep learning, transfer learning strategies, and both
target-domain and general-domain data to fully automatically extract semantic and syntactic
information elements from regulatory documents for supporting ACC in the AEC domain. The
proposed approach improves the methodology of information extraction in three primary ways.
First, it is the first effort to use a deep learning-based method to fully automatically extract
semantic and syntactic information elements from regulatory documents in the AEC domain for
supporting fully automated compliance checking. Second, it leverages both general-domain and
AEC-specific training data through transfer learning strategies to improve the performance,
flexibility, and scalability of the proposed deep IE method. The experimental results indicate that
the transfer learning strategies could greatly impact the IE performance. Third, the deep neural

network architectures and transfer learning strategies used in the proposed deep IE method are

31

612

613

614

615

616

617

618

619

620

621

622

623

624

625

626

627

628

629

630

631

632

633

634

adaptable to other types of text analytics tasks in the AEC domain such as requirement

classification and semantic parsing.

On a practical level, the paper contributes to the body of knowledge in two ways. First, the paper
proposes a set of semantic and syntactic information elements to facilitate the representation of
building-code requirements and the extraction of regulatory information for supporting building-
code analytics and compliance checking, which was effective for various types of regulatory
documents such as IBC, IECC, and ADA Standards. Second, the paper offers a trained, ready-to-
use deep IE model that offers high extraction performance, with consistency across different
types of building codes and across sentences with different levels of computability. Third, both
the information elements and the deep IE model would help achieve full automation in ACC
systems, including full automation in extraction and formalization of requirements/rules. Fully
automated ACC would reduce code compliance errors and the time and cost associated with
compliance checking, thereby bringing broad benefits to the construction industry such as

reduced violations, enhanced resource efficiency, and faster permitting.

8 Conclusions and future work

This paper proposed a deep learning-based method that uses transfer learning strategies for deep
information extraction from regulatory documents for supporting automated compliance
checking in the AEC domain. A set of semantic and syntactic information elements for
representing building-code requirements was proposed and used for deep IE from regulatory
documents in the AEC domain. Two types of training data, target-domain and general-domain
data, were prepared using text from multiple AEC regulatory documents and from the Penn
Treebank, respectively. The deep neural network model consists of bidirectional LSTM and CRF

layers, which were adopted as the base IE model. Four different feature-based and model-based

32

635

636

637

638

639

640

641

642

643

644

645

646

647

648

649

650

651

652

653

654

655

656

657

transfer learning strategies were used to adapt the base model and train the model on both

domain-specific and general-domain training data.

The proposed deep IE method was tested and evaluated using building-code sentences collected
from three types of regulatory documents (i.e., IBC, IECC, and ADA Standards). Different
combinations of transfer learning strategies were tested and compared, and the optimal
combination was to use pretrained word embeddings to initialize the transfer feature information
and use alternating training to transfer the model information. Average precision of 93.1%, recall
of 92.9%, and F1 measure of 93.0% were achieved under the optimal hyperparameters and
transfer learning strategies, indicating good extraction performance and outperforming the
baseline linear CRF-based method. Also, the trained deep IE model performed consistently
across different types of regulatory documents including IBC, IECC, and ADA Standards, and

different types of building-code sentences in terms of computability.

In their future work, the authors plan to improve the proposed method and leverage the deep IE
model in five directions. First, the deep neural network model could be improved to enhance the
extraction performance. For example, other model architectures, such as the Transformer-based
architectures (e.g., finetuning BERT and its variants), could be explored. Second, more transfer
learning and semi-supervised learning strategies could be explored for leveraging large-scale,
pattern-rich general-domain annotated data for solving IE problems in the AEC domain. Third,
the performance and flexibility of the IE model could be further improved by increasing the
diversity of both the domain-specific and general-domain data. For example, annotated data from
other sources could be used with data pruning techniques or instance-based transfer learning
strategies. Fourth, additional evaluation efforts could be conducted to further test the proposed

method on other types of regulatory documents and requirements. Reproducibility of the

33

658

659

660

661

662

663

664

665

666

667

668

669

670

671

672
673
674
675
676
677

678
679
680
681

682
683
684

performance results are expected. However, the results may show performance variations due to
possible differences in the syntactic and semantic characteristics of the documents or
requirements. More comparative evaluation could also be undertaken in the future, as publicly
available benchmark datasets become more available in the AEC domain. Fifth, and most
importantly, the authors will further implement the trained IE model in an ACC system. Our
ultimate goal is to leverage machine learning and other artificial intelligence approaches to reach
a level where we can automatically process the entire building code and represent it in a

computable manner for fully ACC with minimal manual effort.

9 Acknowledgements

The authors would like to thank the National Science Foundation (NSF). This material is based
on work supported by the NSF under Grant No. 1827733. Any opinions, findings, and
conclusions or recommendations expressed in this material are those of the authors and do not

necessarily reflect the views of the NSF.

10 References

[1] Hjelseth, E. and Nisbet, N., 2010, November. Exploring semantic based model checking.
In Proceedings of the 2010 27th CIB W78 international conference (Vol. 54).
https://www.researchgate.net/profile/Eilif-
Hjelseth/publication/265821429 EXPLORING SEMANTIC BASED MODEL CHEC
KING/links/550dbd2c0cf27526109¢293c¢/EXPLORING-SEMANTIC-BASED-MODEL-
CHECKING.pdf (Aug. 01, 2020).

[2] Zhang, J. and El-Gohary, N.M., 2013. Semantic NLP-based information extraction from
construction regulatory documents for automated compliance checking. Journal of
Computing in Civil Engineering, 30(2), p.04015014.
https://doi.org/10.1061/(ASCE)CP.1943-5487.0000346.

[3] Zhou, P. and EIl-Gohary, N., 2017. Ontology-based automated information extraction
from building energy conservation codes. Automation in Construction, 74, pp. 103-117.
https://doi.org/10.1016/j.autcon.2016.09.004.

34

685
686
687

688
689
690

691
692
693

694
695
696
697

698
699
700

701
702
703

704
705
706
707

708
709
710
711

712
713
714

715
716
717

718
719
720
721

722
723
724
725

[4]

[5]

[6]

[7]

[8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

Liu, K. and El-Gohary, N., 2017. Ontology-based semi-supervised conditional random
fields for automated information extraction from bridge inspection reports. Automation in
construction, 81, pp. 313-327. https://doi.org/10.1016/j.autcon.2017.02.003.

Liu, G. and Guo, J., 2019. Bidirectional LSTM with attention mechanism and

convolutional layer for text classification. Neurocomputing, 337, pp. 325-338.
https://doi.org/10.1016/j.neucom.2019.01.078.

Etzioni, O., Fader, A., Christensen, J., Soderland, S. and Mausam, M., 2011, July. Open
information extraction: The second generation. In IJCAIL, 11, pp. 3-10.
https://doi.org/10.5591/978-1-57735-516-8/1JCAI11-012.

Fader, A., Soderland, S. and Etzioni, O., 2011, July. Identifying relations for open
information extraction. In Proceedings of the 2011 conference on empirical methods in
natural language processing, pp. 1535-1545. https://www.aclweb.org/anthology/D11-
1142 (Aug 01, 2020).

Del Corro, L. and Gemulla, R., 2013, May. Clausie: clause-based open information
extraction. In Proceedings of the 22nd international conference on World Wide Web, pp.
355-366. https://doi.org/10.1145/2488388.2488420.

Gutierrez, F., Dou, D., Fickas, S., Wimalasuriya, D. and Zong, H., 2016. A hybrid
ontology-based information extraction system. Journal of Information Science, 42(6), pp.
798-820. https://doi.org/10.1177/0165551515610989.

Chambers, N. and Jurafsky, D., 2011, June. Template-based information extraction
without the templates. In Proceedings of the 49th annual meeting of the association for
computational linguistics: human language technologies, pp. 976-986.
https://www.aclweb.org/anthology/P11-1098 (Aug. 01, 2020).

Valenzuela-Escarcega, M.A., Hahn-Powell, G., Surdeanu, M. and Hicks, T., 2015, July.
A domain-independent rule-based framework for event extraction. In Proceedings of
ACL-1JCNLP 2015 System Demonstrations, pp- 127-132.
https://doi.org/10.3115/v1/P15-4022.

Kluegl, P., Toepfer, M., Beck, P.D., Fette, G. and Puppe, F., 2016. UIMA Ruta: Rapid
development of rule-based information extraction applications. Natural Language
Engineering, 22(1), pp. 1-40. https://doi.org/10.1017/S13513249140001 14.

Zhou, G. and Su, J., 2002. Named entity recognition using an HMM-based chunk tagger.
In proceedings of the 40th Annual Meeting on Association for Computational Linguistics,
pp- 473-480. https://doi.org/10.3115/1073083.1073163.

Li, Y., Bontcheva, K. and Cunningham, H., 2004, September. SVM based learning
system for information extraction. In International Workshop on Deterministic and
Statistical Methods in Machine Learning, pp. 319-339. Springer, Berlin, Heidelberg.
https://doi.org/10.1007/11559887 19.

Finkel, J.R., Grenager, T. and Manning, C., 2005. Incorporating non-local information
into information extraction systems by Gibbs sampling. In Proceedings of the 43rd
annual meeting on association for computational linguistics, pp. 363-370.
https://doi.org/10.3115/1219840.1219885.

35

726
727

728
729

730
731
732

733
734

735
736

737
738
739
740
741

742
743
744
745
746

747
748

749
750
751
752

753
754

755
756
757

758
759

760
761
762

763
764

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

LeCun, Y., Bengio, Y. and Hinton, G., 2015. Deep learning. Nature. 521(7553), pp. 436.
https://doi.org/10.1038/nature14539.

Chung, J., Gulcehre, C., Cho, K. and Bengio, Y., 2014. Empirical evaluation of gated
recurrent neural networks on sequence modeling. https://arxiv.org/abs/1412.3555.

Greff, K., Srivastava, R.K., Koutnik, J., Steunebrink, B.R. and Schmidhuber, J., 2016.
LSTM: A search space odyssey. IEEE transactions on neural networks and learning
systems, 28(10), pp. 2222-2232. https://doi.org/10.1109/TNNLS.2016.2582924.

Clark, K., Luong, M.T., Manning, C.D. and Le, Q.V., 2018. Semi-supervised sequence
modeling with cross-view training. https://arxiv.org/abs/1809.08370.

Lample, G., Ballesteros, M., Subramanian, S., Kawakami, K. and Dyer, C., 2016. Neural
architectures for named entity recognition. https://arxiv.org/abs/1603.01360.

Nguyen, T.H. and Grishman, R., 2015. Event detection and domain adaptation with
convolutional neural networks. In Proceedings of the 53rd Annual Meeting of the
Association for Computational Linguistics and the 7th International Joint Conference on
Natural Language Processing (Volume 2: Short Papers), pp. 365-371.
https://doi.org/10.3115/v1/P15-2060

Stanovsky, G., Michael, J., Zettlemoyer, L. and Dagan, 1., 2018. Supervised open
information extraction. In Proceedings of the 2018 Conference of the North American
Chapter of the Association for Computational Linguistics: Human Language
Technologies, Volume 1 (Long Papers), pp. 885-895. https://doi.org/10.18653/v1/N18-
1081.

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L.
and Polosukhin, 1., 2017. Attention is all you need. https://arxiv.org/abs/1706.03762.

Radford, A., Narasimhan, K., Salimans, T. and Sutskever, I., 2018. Improving language
understanding by generative pre-training.
https://www.cs.ubc.ca/~amuhamO01/LING530/papers/radford2018improving.pdf (Feb. 10,
2021).

Devlin, J., Chang, M.W., Lee, K. and Toutanova, K., 2018. Bert: Pre-training of deep
bidirectional transformers for language understanding. https://arxiv.org/abs/1810.04805.

Yang, Z., Dai, Z., Yang, Y., Carbonell, J., Salakhutdinov, R. and Le, Q.V., 2019. Xlnet:
Generalized autoregressive pretraining for language understanding.
https://arxiv.org/abs/1906.08237.

Sanh, V., Debut, L., Chaumond, J. and Wolf, T., 2019. DistilBERT, a distilled version of
BERT: smaller, faster, cheaper and lighter. https://arxiv.org/abs/1910.01108.

Lan, Z., Chen, M., Goodman, S., Gimpel, K., Sharma, P. and Soricut, R., 2019. Albert: A
lite bert for self-supervised learning of language representations.
https://arxiv.org/abs/1909.11942.

Zhu, J., Xia, Y., Wu, L., He, D., Qin, T., Zhou, W., Li, H. and Liu, T.Y., 2020.
Incorporating bert into neural machine translation. https://arxiv.org/abs/2002.06823.

36

765
766

767
768

769
770
771

772
773
774

775
776
777

778
779
780

781
782

783
784
785
786

787
788
789
790
791

792
793
794

795
796
797

798
799

800
801
802
803

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

Yang, W., Xie, Y., Lin, A., Li, X., Tan, L., Xiong, K., Li, M. and Lin, J., 2019. End-to-
end open-domain question answering with bertserini. https://arxiv.org/abs/1902.01718.

Nogueira, R. and Cho, K., 2019. Passage Re-ranking with BERT.
https://arxiv.org/abs/1901.04085.

Zhang, R. and El-Gohary, N., 2019. A machine learning-based approach for building
code requirement hierarchy extraction. In 2019 CSCE Annual Conference.
https://par.nsf.gov/servlets/purl/10110925 (Aug. 01, 2020).

Pan, Y. and Zhang, L., 2020. BIM log mining: Learning and predicting design commands.
Automation in Construction, 112, p.-103107.
https://doi.org/10.1016/j.autcon.2020.103107.

Bang, S. and Kim, H., 2020. Context-based information generation for managing UAV-
acquired data using image captioning. Automation in Construction, 112, p.103116.
https://doi.org/10.1016/j.autcon.2020.103116.

Marcus, M., Santorini, B. and Marcinkiewicz, M.A., 1993. Building a large annotated
corpus of English: The Penn Treebank. https://repository.upenn.edu/cis_reports/237/
(Aug. 01, 2020).

Sang, E.F. and De Meulder, F., 2003. Introduction to the CoNLL-2003 shared task:
Language-independent named entity recognition. https://arxiv.org/abs/cs/0306050.

Carreras, X. and Marquez, L., 2005, June. Introduction to the CoNLL-2005 shared task:
Semantic role labeling. In Proceedings of the ninth conference on computational natural
language learning (CoNLL-2005), pp. 152-164. https://www.aclweb.org/anthology/W05-
0620 (Aug. 01, 2020).

Tan C., Sun F., Kong T., Zhang W., Yang C., Liu C., 2018. A Survey on Deep Transfer
Learning. In: Kirkova V., Manolopoulos Y., Hammer B., Iliadis L., Maglogiannis I. (eds)
Artificial Neural Networks and Machine Learning — ICANN 2018. ICANN 2018. Lecture
Notes in Computer Science, vol 11141. Springer, Cham. https://doi.org/10.1007/978-3-
030-01424-7 27.

Dai, W., Yang, Q., Xue, G.R. and Yu, Y., 2007. Boosting for transfer learning. In
Proceedings of the 24th international conference on Machine learning, pp. 193-200.
https://doi.org/10.1145/1273496.1273521.

Pennington, J., Socher, R. and Manning, C.D., 2014. Glove: Global vectors for word
representation. In Proceedings of the 2014 conference on empirical methods in natural
language processing (EMNLP), pp. 1532-1543. https://doi.org/10.3115/v1/D14-1162.

Peters, M.E., Neumann, M., Iyyer, M., Gardner, M., Clark, C., Lee, K. and Zettlemoyer,
L., 2018. Deep contextualized word representations. https://arxiv.org/abs/1802.05365.

Kim, H., Kim, H., Hong, Y.W. and Byun, H., 2018. Detecting construction equipment
using a region-based fully convolutional network and transfer learning. Journal of
computing in Civil Engineering, 32(2), p.04017082.
https://doi.org/10.1061/(ASCE)CP.1943-5487.0000731.

37

804
805
806
807

808
809

810
811
812
813

814
815
816
817

818
819
820
821

822
823
824
825

826
827
828

829
830
831
832

833
834

835
836
837

838

[43]

[44]

[45]

[46]

[47]

[48]

[49]

[50]

[51]

[52]

Zhang, K., Cheng, H.D. and Zhang, B., 2018. Unified approach to pavement crack and
sealed crack detection using preclassification based on transfer learning. Journal of
Computing in Civil Engineering, 32(2), p.04018001.
https://doi.org/10.1061/(ASCE)CP.1943-5487.0000736.

Yang, Z., Salakhutdinov, R., and Cohen, W. W., 2017. Transfer learning for sequence
tagging with hierarchical recurrent networks. https://arxiv.org/abs/1703.06345.

Al Qady, M. and Kandil, A., 2010. Concept relation extraction from construction
documents using natural language processing. Journal of construction engineering and
management, 136(3), pp. 294-302. https://doi.org/10.1061/(ASCE)CO.1943-
7862.0000131.

Lee, J., Yi, J.S. and Son, J., 2019. Development of automatic-extraction model of
poisonous clauses in international construction contracts using rule-based NLP. Journal
of Computing in Civil Engineering, 33(3), p.04019003.
https://doi.org/10.1061/(ASCE)CP.1943-5487.0000807.

Zhang, R. and El-Gohary, N., 2019. A machine learning approach for compliance
checking-specific semantic role labeling of building code sentences. In Advances in
informatics and computing in civil and construction engineering, pp. 561-568. Springer,
Cham. https://doi.org/10.1007/978-3-030-00220-6_67.

Kim, T. and Chi, S., 2019. Accident case retrieval and analyses: Using natural language
processing in the construction industry. Journal of Construction Engineering and
Management, 145(3), p.04019004. https://doi.org/10.1061/(ASCE)CO.1943-
7862.0001625.

Zhang, R., and El-Gohary, N., 2020. Clustering-based Approach for Building Code
Computability Analysis. Journal of Computing in Civil Engineering.
https://doi.org/10.1061/(ASCE)CP.1943-5487.0000967.

J.P. Pestian, L. Deleger, G.K. Savova, J.W. Dexheimer, I. Solti, Natural language
processing—the basics, Pediatric Biomedical Informatics: Computer Applications in
Pediatric Research, Springer, Netherlands, Dordrecht, 2012, pp. 149-172,
http://dx.doi.org/10.1007/978-94-007-5149-1_9. ISBN 978-94-007-5149-1.

Huang, Z., Xu, W., and Yu, K., 2015. Bidirectional LSTM-CRF models for sequence
tagging. https://arxiv.org/abs/1508.01991.

Zhai, C., and Massung, S., 2016. Text data management and analysis: a practical
introduction to information retrieval and text mining, ACM, New York, USA.
https://doi.org/10.1145/2915031. ISBN: 978-1-970001-17-4.

38

