
1

A deep neural network-based method for deep information extraction using transfer 1

learning strategies to support automated compliance checking 2

Ruichuan Zhanga; and Nora El-Goharyb 3

a Graduate Student, Department of Civil and Environmental Engineering, University of Illinois at Urbana-4
Champaign, 205 N. Mathews Ave., Urbana, IL 61801, United States. E-mail: rzhang65@illinois.edu. 5

b Associate Professor, Department of Civil and Environmental Engineering, University of Illinois at Urbana-6
Champaign, 205 N. Mathews Ave., Urbana, IL 61801, United States (corresponding author). E-mail: 7

gohary@illinois.edu; Tel: +1-217-333-6620; Fax: +1-217- 265-8039. 8

Abstract 9

Existing automated compliance checking (ACC) systems require the extraction of requirements 10

from regulatory documents into computer-processable representations. These information 11

extraction (IE) processes are either fully manual, semi-automated, or automated. Semi-automated 12

and manual approaches typically use manual annotations or predefined IE rules, which lack 13

sufficient flexibility and scalability; the annotations and rules typically need adaptation if the 14

characteristics of the regulatory document change. There is, thus, a need for a fully automated IE 15

approach that can achieve high and consistent performance across different types of regulatory 16

documents for supporting ACC. To address this need, this paper proposes a deep neural network-17

based method for deep information extraction – extracting semantic and syntactic information 18

elements – from regulatory documents in the architectural, engineering, and construction (AEC) 19

domain. The proposed method was evaluated in extracting information from multiple regulatory 20

documents in the AEC domain. It achieved average precision and recall of 93.1% and 92.9%, 21

respectively. 22

Keywords: Code checking; Information extraction; Deep learning; Transfer learning. 23

 24

2

1 Introduction 25

Existing automated code checking (ACC) systems have achieved different levels of accuracy, 26

automation, and coverage. However, they all require the extraction of requirements from 27

regulatory documents, such as building codes, energy conservation codes, and specifications, 28

into computer-processable representations. The information extraction (IE) processes in many of 29

the existing ACC systems are still fully manual. For example, Solibri Model Checker requires 30

users to read the building code and then manually convert the building-code requirements into 31

computer-processable representations by filling in predefined templates. The IE processes in 32

other ACC systems are semi-automated or automated. However, these processes still rely on 33

manual annotations or manually defined IE rules. For example, SmartCode requires that code-34

checking professionals annotate regulatory information using the requirement, application, 35

selection, and exception (RASE) markups [1] manually, and the annotated building-code text is 36

then converted into a computer-processable form using predefined rules. The state-of-the-art 37

rule-based ACC systems by Zhang and El-Gohary [2] and Zhou and El-Gohary [3] use IE rules 38

developed by experts based on the syntactic information of building-code sentences (e.g., part-39

of-speech tags) and construction-domain ontologies to extract a defined set of semantic 40

information elements. Despite the high IE performance they have achieved, the annotation-based 41

or rule-based approaches, by nature, lack sufficient flexibility and scalability; the annotations and 42

rules typically need adaptation if the characteristics of the building-code text change. 43

Machine learning-based IE methods, instead of relying on manual annotation or hand-crafted 44

rules, use machine learning models to automatically capture the underlying syntactic and 45

semantic patterns of the text. A machine learning-based method is, thus, expected to be more 46

flexible and scalable compared to the annotation-based or rule-based IE methods – saving the 47

3

initial effort to develop the annotations or rules, as well as the maintenance effort that would be 48

required to adapt the annotations or rules across different types of regulatory documents or 49

extraction tasks. However, not any machine learning algorithm would be suitable for this 50

information extraction task. Using machine learning to extracting regulatory information from 51

building codes to support ACC is challenging from two perspectives. First, existing machine 52

learning-based IE methods in the AEC domain are only able to support shallow IE, where partial 53

information (e.g., bridge deficiency-related entities [4]) is extracted from the text. However, 54

ACC systems require deep IE, where the entire meaning of the text is captured for complete and 55

correct extraction of the requirements [2]. Defining all semantic entities (e.g., subject, 56

compliance checking attribute, reference) that can capture the full meaning of all types of 57

requirements, and extracting them using machine learning methods, helps achieve such level of 58

complete extraction. Second, building codes have hierarchically complex syntactic and semantic 59

structures. Compared to general domain text, building-code sentences typically have deeply 60

nested syntactic and semantic structures, including recursive clauses, conjunctive and alternative 61

obligations, and multiple exceptions [3]. Recent efforts (e.g, [5]) have shown that deep neural 62

networks are capable of learning the complex syntactics and semantics of the natural language. 63

Thus, there is a need to explore the use of deep neural networks in deep IE for supporting ACC. 64

To address this need, this paper proposes a deep neural network-based method for fully 65

automated extraction of semantic and syntactic information elements from regulatory documents 66

for supporting ACC in the architecture, engineering, and construction (AEC) domain. The deep 67

learning models, which have significantly more parameters compared to traditional machine 68

learning models, typically need a larger scale of data for training. However, there are no such 69

annotated training datasets in the AEC domain, and creating these datasets would be highly 70

4

expensive. To solve this problem, the proposed method uses transfer learning strategies to enable 71

the training of deep neural network models on both domain-general and AEC-specific annotated 72

data. On one hand, domain-general data (i.e., the source-domain data in the context of transfer 73

learning) are large in scale and rich in syntactic and semantic patterns, which helps train the 74

models to deal with various text patterns across different regulatory documents for increased IE 75

performance, flexibility, and scalability. However, the domain-general data are relatively 76

different from the AEC-specific data in terms of vocabularies, syntactics, and semantics. On the 77

other hand, AEC-domain data (i.e., the target-domain data in the context of transfer learning) are 78

the target data to be analyzed, but they are much smaller in scale and lack syntactic and semantic 79

richness, which would limit the flexibility and scalability of the models if they are solely used for 80

training. The proposed approach, thus, takes the best of both worlds. 81

The proposed deep neural network-based IE approach consists of four main steps: (1) prepare 82

training data from both outside of the AEC domain (i.e., the source-domain data) and within the 83

AEC domain (i.e., the target-domain data) and testing data; (2) develop a base deep IE model – a 84

deep neural network model that consists of long short term memory networks (LSTM) and 85

conditional random fields (CRF) for automatically extracting semantic and syntactic information 86

elements from regulatory documents; (3) train the deep IE model using different transfer learning 87

strategies including feature-based and model-based ones; and (4) evaluate the deep IE 88

performance using precision, recall, and F1 measure. 89

2 Background 90

2.1 Information extraction 91

5

Information extraction (IE) aims to automatically extract structured information (e.g., entities 92

and attributes that describe the entities) from text data, which are often unstructured and thus are 93

not processable and understandable by computers [6]. Existing IE methods can be classified into 94

two groups: rule-based and machine learning-based methods. Rule-based IE approaches rely on 95

pattern-matching rules that are developed based on semantic and syntactic knowledge. The IE 96

rules are often manually designed. For example, Fader et al. [7] developed IE rules based on the 97

syntactic and lexical features of the text to extract assertions from the Web for supporting 98

commonsense knowledge and question answering. The ClausIE by Del Corro and Gemulla [8] 99

consisted of IE rules built upon English grammar and dependency parsing of sentences to extract 100

arguments from text. The IE system by Gutierrez et al. [9] integrated IE rules and error detection 101

rules built upon biology-related ontologies to extract facts from text in the biological domain. A 102

few other research efforts explored a number of techniques to reduce the cost of creating IE 103

rules, such as learning IE rules from plain text using statistical learning algorithms [10], 104

designing simple programming languages and interactive environments for rules [11], and 105

integrating existing rule programming languages and natural language processing applications in 106

one rule development platform [12]. 107

Machine learning-based methods, rather than relying on IE rules, employ machine learning 108

models to automatically learn the syntactic and semantic patterns from training text data – and 109

the trained IE models are then used to extract the target information from new, unseen text data. 110

The most commonly used machine learning-based methods formulate the IE problem as a 111

sequence labeling problem, where each word in a sentence is assigned a label using supervised 112

learning algorithms. Examples of IE approaches using traditional supervised learning algorithms, 113

together with handcrafted syntactic and semantic features, include a hidden Markov algorithm-114

6

based named entity recognition (NER) method by Zhou and Su [13], a support vector machine-115

based NER method by Li et al. [14], and a CRF-based IE method by Finkel et al. [15]. 116

2.2 Deep learning in text analytics 117

Deep learning methods use computational models that consist of multiple layers to capture 118

different levels of information representations from large-scale data [16]. Deep learning methods 119

have drastically improved the state-of-the-art performance in automatically processing and 120

understanding different types of data, including image and text, and meanwhile reduced or 121

eliminated the manual effort in feature engineering compared to traditional machine learning 122

methods. Recurrent neural networks (RNN) and variants such as gated recurrent units (GRUs) 123

[17] and LSTM [18] are deep neural networks that use internal states to process sequences of 124

input data. They have been widely used in text analytics tasks including semantic and syntactic 125

analysis (e.g., bidirectional LSTM and multilayer perceptron for dependency parsing and part-of-126

speech (POS) tagging [19]), and partial or shallow IE (e.g., bidirectional LSTM and CRF for 127

extracting named entities [20]). Examples of RNN-based IE efforts include a domain-specific 128

event detection method using convolutional neural networks [21], an NER method using LSTM 129

and CRF [20], and an entity and relation extraction system using bidirectional LSTM [22]. 130

Most recently, the Transformer [23] and transformer-based models and methods have been 131

proposed, which allow training language models on large-scale text data much faster by 132

abandoning complex RNN and solely relying on the attention mechanisms. For example, the 133

OpenAI’s generative pre-trained transformer (GPT) [24] and Google’s bidirectional encoder 134

representations from transformers (BERT) [25], as well as many of their variants (e.g., XLNet 135

[26], DistilBERT [27], ALBERT [28]), which improve on either the performance or the training 136

7

speed, have achieved the state-of-the-art performance in various text analytics tasks (e.g., 137

machine translation [29], question answering [30], and information retrieval [31]). 138

A limited number of research efforts have been focused on deep learning-based methods to solve 139

text analysis problems in the AEC domain. For example, Zhang and El-Gohary [32] used an 140

RNN-based approach to extract requirement hierarchies from building-code sentences for 141

supporting compliance checking. Pan and Zhang [33] developed RNN-based models to mine 142

information from building information modeling (BIM) log data to support design decision 143

making. Bang and Kim [34] developed models that consist of convolutional neural network 144

(CNN) and LSTM layers to automatically generate time-spatial and visual context-based 145

descriptions given construction site images for supporting construction site management. 146

2.3 Transfer learning 147

One challenge for deep learning-based IE is that the models typically need large annotated text 148

data, which require significant time and effort to prepare. Such annotated data are scarce in many 149

domains, including the AEC domain, which hinders the use of deep learning for domain-specific 150

IE. Existing annotated datasets have mostly been developed for general natural language 151

processing (NLP) applications (e.g., the Penn Treebank datasets for multiple syntactic and 152

semantic analysis tasks [35], the CoNLL-2003 dataset for language-independent NER [36], and 153

the CoNLL-2005 for semantic role labeling [37]), which are not sufficient for many domain-154

specific applications such as IE for ACC. To address this problem, various research efforts have 155

been undertaken to leverage labeled data from other domains using transfer learning strategies. 156

Transfer learning aims to transfer knowledge for solving certain domain-specific tasks by 157

leveraging existing labeled data of some related tasks or domains [38]. Transfer learning enables 158

8

the training of machine learning models using large-scale, pattern-rich, and annotated training 159

data that are from source domains that are different from the target domain (e.g., the AEC 160

domain). Thus, transfer learning improves both the performance and the flexibility and 161

scalability of the machine learning models, as well as reduces the cost of preparing annotated 162

training data for the target domain. Transfer learning strategies can be classified into three types 163

based on how the knowledge is transferred from the source domains to the target domain: 164

instance-based, feature-based, and model-based strategies. 165

Instance-based strategies reweight or resample the source-domain data to be similar to the target-166

domain data (e.g., the boosting method for cross-domain text classification [39]), which are then 167

used for training the machine learning models. Feature or representation-based strategies 168

discover transferable features or representations that are discriminative for both the source and 169

the target domains through a new machine learning model (e.g., the global vectors for word 170

representation model [40] and the deep contextualized word representations [41]). Model-based 171

strategies reapply the partial deep neural networks – those layers trained on the source-domain 172

data – in the target domain by adapting the models using target-domain data. Examples of 173

methods for model adaptation include finetuning the pretrained CNN-based image classification 174

models (e.g., [42-43]), finetuning the pretrained Transformer-based models (e.g., GPT, BERT, or 175

their variants) for specific downstream text analytics tasks (e.g., [29-31]), and training the 176

sequence labeling model on source-domain and target-domain data alternatingly (e.g., [44]). 177

Transfer learning strategies have been used to solve computer vision and NLP problems such as 178

sequence labeling (e.g., [44]), text classification (e.g., [39]), and sequence-to-sequence learning 179

(e.g., [29-30]). In the AEC domain, transfer learning strategies have been mainly used to solve 180

computer vision problems (e.g., [42-43]). 181

9

3 State of the art and knowledge gaps in information extraction in the construction 182

domain 183

Rule-based methods have been developed for solving various IE problems in the AEC domain. 184

For example, Al Qady and Kandil [45] developed rules, which use syntactic features, for shallow 185

parsing to extract concept relations from construction contract documents for improving 186

electronic document management such as document categorization and retrieval. Zhang and El-187

Gohary [2] and Zhou and El-Gohary [3] developed IE rules, which use semantic and syntactic 188

features, to extract semantic information elements from regulatory documents such as building 189

codes, energy conservation codes, and specifications for supporting ACC. Lee et al. [46] 190

developed rules, which use syntactic parsing and predefined lexicon features, to extract 191

poisonous clauses from construction contracts for supporting contract management. Despite the 192

state-of-the-art performance levels many of them have achieved (e.g., nearly 100% recall 193

reported by Zhang and El-Gohary [2] and Zhou and El-Gohary [3]), the rule-based approaches 194

are difficult to scale to a variety of documents due to the relatively limited and inflexible patterns 195

that are used to develop the rules. In general, when the type of regulatory document or the 196

characteristics of the text change, although some of the IE rules could be reused, most of these 197

rules will require significant retesting and possibly modification or addition. The lack of 198

sufficient flexibility and scalability becomes a potential obstacle for using ACC systems built on 199

rule-based IE, especially given the fact that building codes are updated frequently and vary 200

across different regions. 201

Recently, a limited number of machine learning-based methods have been developed for solving 202

IE problems in the AEC domain. For example, Liu and El-Gohary [4] developed a semi-203

supervised machine learning-based method to extract entity information from bridge inspection 204

10

reports for supporting bridge deterioration prediction. Zhang and El-Gohary [47] developed a 205

supervised learning-based method to extract semantic roles including entities and relations from 206

regulatory documents for supporting ACC. Kim and Shi [48] developed a supervised learning-207

based method to extract knowledge from construction accident cases. Despite the importance of 208

these efforts, there are three knowledge gaps that this paper aims to address. First, the 209

aforementioned methods can be classified as shallow because they only extract partial 210

information from the text, and thus they cannot be directly used for capturing the entire meaning 211

of the text, which is essential for IE for ACC. Second, they use traditional machine learning 212

algorithms such as CRF, which has been outperformed by deep neural networks such as RNN in 213

many text analytics tasks including partial or shallow IE. Thus, there is a need to explore the use 214

of deep neural networks in deep IE for supporting ACC. Third, there is generally a lack of 215

labeled training data in the AEC domain, which is especially a challenge for deep neural 216

networks because they require larger training datasets than those required for traditional 217

algorithms. Thus, there is a need for techniques to leverage the larger-size and pattern-rich data 218

that exist in other domains to help address this challenge while reducing the human-labeling 219

effort. 220

4 Proposed semantic and syntactic information elements for deep information extraction 221

for supporting ACC 222

In this study, two types of information elements, semantic and syntactic information elements, 223

are used to represent the building-code requirements. The semantic information elements define 224

the building-code requirements that are described in the natural language building-code 225

sentences. In this study, a subset of the semantic information elements proposed by Zhang and 226

El-Gohary [2] were utilized, including six of the essential semantic information elements (as 227

11

shown in Table 1): subject, compliance checking attribute, deontic operator indicator, 228

comparative relation, quantity value, and quantity unit. Two new semantic information elements 229

were added: subject relation and reference. Subject relation extends the original quantity relation 230

to relations that apply to both quantitative and nonquantitative requirements. Reference extends 231

the scope of existing ACC efforts to cover cross references that commonly exist in requirements. 232

The secondary semantic information elements such as subject restrictions and quantity 233

restrictions [2] were not utilized, because compared to the study by Zhang and El-Gohary, this 234

study further granularizes the regulatory information represented by the secondary semantic 235

information elements using the proposed information elements, and thus there is no need to 236

include secondary elements. The syntactic information elements are used in the English sentence 237

to form grammatically correct building-code sentences but do not directly contribute to defining 238

the meaning of the building-code requirement. The syntactic information elements include three 239

types of logic operator indicators – conjunctions (e.g., “and”), disjunctions (e.g., “or”), and 240

negations (e.g., “not”) – and syntactic units such as some of the pronouns (e.g., “the”), adverbs 241

(e.g., “so”), prepositions (e.g., “of”), and conjunctions that introduce a clause (e.g., “that”). 242

These syntactic information elements better capture the syntactic structures of requirements 243

(especially the deeply nested ones), which helps better understand the full meaning of the 244

requirements. Fig. 1 shows example sentences from the International Building Code (IBC), 245

International Energy Conservation Code (IECC), and Americans with Disabilities Act (ADA) 246

Standards, and how the sentences are annotated using the proposed semantic and syntactic 247

information elements. 248

Table 1. Semantic Information Elements for Representing Requirements for Compliance 249
Checking Purposes [2] 250

Semantic information element Definition

12

Subject An ontology concept representing a thing (e.g., building element) that is
subject to a particular requirement

Compliance checking attribute An ontology concept representing a specific characteristic of a “subject”
that is checked for compliance

Deontic operator indicator A term or phrase that indicates the deontic type of the requirement (i.e.,
obligation, permission, or prohibition)

Comparative relation
A term or phrase for comparing quantitative values, including “greater
than or equal to,” “greater than,” “less than or equal to,” “less than,” and
“equal to”

Quantity value A numerical value that defines the quantity
Quantity unit The unit of measure for a “quantity value”

Subject relation A term or phrase that defines the type of relation between two subjects, a
subject and an attribute, or a subject or an attribute and a quantity

Reference
A term or phrase that denotes the mention or reference to a chapter,
section, document, table, or equation in a building-code sentence (e.g.,
“Section 1312” in “the revolving door shall comply with Section 1312”)

 251
Fig. 1. Example building-code sentences annotated with the proposed syntactic and semantic 252

information elements. 253

5 Proposed deep neural network-based method for deep IE from regulatory documents 254

The proposed deep learning-based method for deep IE from regulatory documents consists of 255

four primary steps, as illustrated in Fig. 2: data preparation, base deep IE model development, 256

model adaptation and training using transfer learning strategies, and deep IE performance 257

evaluation. 258

 259

13

Fig. 2. Proposed deep neural network-based method for deep information extraction from 260
regulatory documents. 261

5.1 Data preparation 262

5.1.1 Target-domain data preparation 263

The target-domain data – building-code sentences that are annotated with the proposed semantic 264

and syntactic information elements – were prepared for both training and testing the IE models. 265

The data were prepared following four steps: corpus development, data preprocessing, sentence 266

selection, and sentence annotation. First, a small building-code corpus was developed, which 267

consists of sentences from multiple regulatory documents, including the IBC, IECC, ADA 268

Standards, and IBC amendments (e.g., Champaign building code amendments). To construct the 269

corpus, all documents were converted to the text file format (i.e., .txt) and combined into a single 270

file. Second, the following four preprocessing techniques were used: data cleaning, sentence 271

segmentation, sentence tokenization, and sentence filtering. Data cleaning aims to remove the 272

noises created due to the conversion of the non-textual parts (e.g., figures) of the regulatory 273

documents. Sentence segmentation aims to detect the sentence boundaries (e.g., punctuations) 274

and segment the text into sentences. Sentence tokenization aims to further split the sentences into 275

tokens (e.g., words). Sentence filtering aims to remove the sentence or sentence fragments that 276

are not requirements (e.g., headings). The Natural Language Toolkit (NLTK) in Python was used 277

for sentence segmentation and tokenization. Third, a group of building-code sentences, which 278

consists of about 15,000 words, were randomly selected from the developed corpus. The selected 279

sentences have different levels of computability. Computability is defined as the ability of the 280

building-code sentence to be represented and processed by a computer in an effective manner 281

[49]. Fourth, a group of four participants with both domain knowledge (especially codes and 282

regulations) and NLP knowledge – the first author and three experts including two from 283

14

academia (faculty) and one from industry – manually annotated the selected sentences with the 284

proposed semantic and syntactic information elements. The beginning-inside (BI) labeling 285

scheme was adopted, where “B” indicates that the word is at the beginning of an information 286

element, and “I” indicates that the word is inside of an information element. For example, the 287

“door openings”, which is a subject, is annotated as “B-Subject I-Subject”, meaning that the 288

word “door” is the beginning of a subject and the word “openings” is inside of a subject. The 289

inter-annotator agreement was 80% in F1 measure, which indicates the reliability of the 290

annotations [50]. The discrepancies among the annotations were then discussed and resolved to 291

reach consensus on the final annotations. After annotation, the target-domain data was split into 292

two sets using a 9:1 ratio: training and validation dataset and testing dataset. A ten-fold cross 293

validation was performed, further splitting the first dataset into a training set (for training the 294

model) and a validation set (for tuning the hyperparameters of the model). The testing dataset 295

was used for evaluation. 296

5.1.2 Source-domain data preparation 297

The source-domain data, English sentences that are not from the AEC domain and are already 298

annotated with different labels or markups (i.e., other than the proposed syntactic and semantic 299

information elements), were prepared for training the IE model. The Penn Treebank [35] were 300

used, which consist of over 100,000 English sentences that were collected from the Wall Street 301

Journal and are annotated with POS tags. The Penn Treebank data are suitable for training the IE 302

models for two reasons. First, the POS-tag annotations indicate the syntactic roles that words 303

play in a sentence, which can be used for the syntactic and semantic analysis of the text. Second, 304

compared to the target-domain data, the Penn Treebank data are large in scale and rich in 305

15

syntactic and semantic patterns. The entire source-domain data were used for training the IE 306

models using transfer learning strategies. 307

5.2 Base deep information extraction model development 308

The deep neural network model – bidirectional LSTM with CRF [51] – was selected and adapted 309

as the base IE model. The base model, thus, consists of three main components: the input layer, 310

encoding layer, and output layer, as depicted in Fig. 3. The selections of the layers were 311

conducted based on the scales and syntactic and semantic characteristics of the specific source 312

and target data used in the training of the model, as discussed in the following subsections. 313

 314
Fig. 3. The architecture of the base deep information extraction model. 315

5.2.1 Input layer 316

The input layer aims to represent the semantics of each word in a vector representation for deep 317

neural network computation purposes. To better capture the semantic information of the words in 318

the target-domain training data, which are of relatively small scale, a word-embedding layer and 319

a character-embedding layer were added to the input layer. The word-embedding layer aims to 320

learn the vector representation of each token (e.g., word or punctuation). The character-321

embedding layer aims to first learn the vector representation of each letter, digit, or symbol in the 322

training data, and then feed the vector representations of all letters, digits, and symbols contained 323

in a token into an LSTM layer to generate a second vector representation to represent this token. 324

16

For each token, the final output of the input layer is a vector representation formed by 325

concatenating the vector representation generated by the word-embedding layer and the vector 326

representation generated by the character-embedding layer. 327

5.2.2 Encoding layer 328

The encoding layer aims to further learn the contextual vector representation of each word that is 329

discriminative in terms of the IE task, using the vector representations of both the current word 330

and the context words generated by the input layer. To better capture the semantic information of 331

the words in the target-domain training data, which are of relatively small scale, two LSTM 332

layers were added to the encoding layer. To improve the ability of the IE model to deal with 333

long-term syntactic and semantic dependencies that exist in hierarchically complex building-334

code sentences, the vector representations of both forward and backward context words were 335

used when encoding the contextual vector representation of the current word via the bidirectional 336

LSTM architecture – where one LSTM layer is forward and the other layer is backward. For 337

each input building-code sentence, the representations encoded by the forward LSTM layer are a 338

sequence of vectors [𝑓1, 𝑓2, … , 𝑓𝑇], and the representations encoded by the backward LSTM layer 339

are another sequence of vectors [𝑏1, 𝑏2, … , 𝑏𝑇], based on which the representations generated by 340

the encoding layer are [ℎ1, ℎ2, … , ℎ𝑇], where ℎ𝑡 is the direct sum of 𝑓𝑡 and 𝑏𝑡 [20] and T is the 341

size of the LSTM layers. 342

To improve the model’s ability to reduce overfitting, a recurrent dropout layer was added to the 343

encoding layer. The recurrent dropout layer drops a random fraction of the LSTM units in the 344

encoding layer during the training of the IE model, according to a dropout probability d. 345

Typically, the dropout probability is set to be smaller than 0.5, which means that less than half of 346

17

the LSTM units are dropped and the rest of the LSTM units are retained. The recurrent dropout 347

layer is disabled during the testing and future use of the IE model (i.e., use in the ACC system), 348

which means all the LSTM units in the encoding layer are used for generating the contextual 349

vector representations of the tokens in the building-code sentences. 350

5.2.3 Output layer 351

The output layer aims to predict the type of syntactic and semantic information elements using 352

the BI labeling scheme for each token in the building-code sentence, given the contextual vector 353

representations of the tokens in the sentence generated by the encoding layer. To better capture 354

the semantic and syntactic dependencies that exist in hierarchical complex building-code 355

sentences, a CRF layer was added to the output layer. The cross-entropy loss was chosen as the 356

objective function and was minimized during the training of the IE model. The cross-entropy 357

loss L describes the difference between the labels (i.e., the type of semantic information elements 358

using the BI labeling scheme or the POS tags) in the training data, denoted as 𝑦, and the labels 359

predicted by the model 𝜃, denoted as c, based on the input building-code sentence x, as shown in 360

Eq. (1), where D is a batch of the training data, C is the set of all the possible labels, and 361

𝑝𝜃(𝑐|𝑥𝑖) is the conditional probability of c given the input sentence x generated by the CRF layer 362

in the IE model with parameters 𝜃, and 1𝑦=𝑐 is the indicator function, which returns 1 when y 363

and c are equal, and returns 0 when y and c are not equal. 364

𝐿(𝜃) =
1

|𝐷|
∑ ∑ 1𝑦=𝑐 log 𝑝𝜃(𝑐|𝑥𝑖)

𝑐∈𝐶𝑥,𝑦∈𝐷

 (1) 365

Given a building-code sentence and a trained IE model, the corresponding sequence of labels 366

was predicted by searching the optimal sequence of labels that maximizes the sum of the 367

conditional log probabilities log 𝑝𝜃(𝑐|𝑥𝑖) computed by the CRF layer. 368

18

5.3 Model training using transfer learning strategies 369

To enable the training of the base IE model on both the source-domain and the target-domain 370

training data, the model was further adapted and trained using different transfer learning 371

strategies. Based on the structure of the base IE model, four transfer learning strategies, 372

belonging to two types – feature-based and model-based strategies – were selected for testing, as 373

summarized in Table 2. 374

Table 2. Transfer Learning Strategies Adopted for Training the Base Deep Information 375
Extraction Model 376

Transfer learning strategy Type of strategy Modification of the base deep information extraction model

Fixed pretrained word
embeddings Feature-based Initially replace the word-embedding layer with pretrained word

embeddings; fix the word-embedding layer
Trainable pretrained word
embeddings Feature-based Initially replace the wording-embedding layer with pretrained

word embeddings

Two-stage training Model-based Replace the conditional random field (CRF) layer used in the first
stage of the training with a new layer

Alternating training Model-based Attach two separate CRF layers to the encoding layer

5.3.1 Feature-based transfer learning strategy 377

Feature-based transfer learning strategies were selected to directly transfer the semantic 378

information contained in the source-domain data to the target-domain data in the word-379

embedding layer of the base IE model. Pretrained word embeddings are vector representations of 380

words learned on a large, cross-domain corpus by training a machine learning model on the 381

corpus. The most commonly used machine learning model to generate pretrained word 382

embeddings is the Global Vectors for Word Representation (GloVe) algorithm [40], where the 383

training is performed on aggregated global word-word co-occurrence statistics from a large 384

cross-domain corpus, and the resulting representations capture the contextual information of the 385

words in the corpus. The word embeddings that were learned by applying the GloVe algorithm 386

on a corpus consisting of Wikipedia 2014 and Gigaword 5 were adopted. The adopted word 387

19

representations consist of vector representations of 40,000 uncased English words, which have a 388

dimension of 50. 389

Two feature-based transfer learning strategies were adopted for training the deep IE model: the 390

fixed pretrained word-embedding strategy and the trainable pretrained word-embedding strategy. 391

The fixed pretrained word-embedding strategy aims to keep the weights in the input layer 392

corresponding to the pretrained word embeddings not updated during the training of the deep 393

neural networks. On the other hand, the trainable pretrained word-embedding strategy aims to 394

use the pretrained word embeddings to initialize the weights in the input layer and then update 395

the weights during the training. The performance of the two strategies depends on the 396

relativeness of the corpus that is used to learn the pretrained word embeddings to the domain-397

specific text and the complexity of the syntactics and semantics in the domain-specific task. 398

5.3.2 Model-based transfer learning strategy 399

Model-based transfer learning strategies were selected to indirectly transfer the semantic 400

information contained in the source-domain data to the target-domain data in the input layer and 401

embedding layer of the base IE model. Two model-based transfer learning strategies were 402

adopted for training the IE model: a two-stage training strategy and an alternating training 403

strategy. In the two-stage training strategy (as illustrated in Fig. 4), the IE model was trained in 404

two separate stages. In the first stage, the model was trained on the source-domain data. The 405

first-stage training was stopped if the difference between the training losses of two consecutive 406

training epochs is smaller than the threshold (i.e., 0.01), or the training reaches 50 epochs, where 407

an epoch is defined as training the model on the entire source-domain data. In the second stage, 408

the output layer of the trained model (i.e., source output layer) was replaced by a new output 409

layer (i.e., target output layer), and the model was trained on the target-domain data. In the 410

20

second stage, only the output layer was trainable, and the other two layers (i.e., the input layer 411

and the encoding layer) were not – i.e., the parameters of these two layers were not updated 412

during the training. The second-stage training was stopped if the difference between the training 413

losses of two consecutive training epochs is smaller than the threshold (i.e., 0.01), or the training 414

reaches 50 epochs, where an epoch is defined as training the model on the entire target-domain 415

data. 416

 417
Fig. 4. Two-stage training strategy and model requirements. 418

In the alternating training strategy (as illustrated in Fig. 5), the IE model was trained on the 419

source-domain and the target-domain training data in an alternating manner. The model had two 420

separate output layers – one layer is used when the model is trained on the source-domain data 421

(i.e., source output layer) and the other layer is used when the model is trained on the target-422

domain data (i.e., target output layer). In each training iteration, there is an alternating 423

21

probability p that the model is trained on a selected batch of source-domain data, and a 424

probability of (1-p) that it was trained on a selected batch of target-domain data, where the total 425

number of iterations is equal to the size of the training data divided by the size of a batch of 426

training data. Typically, the alternating probability p is close to 1, meaning the model is more 427

frequently trained on source-domain data rather than target-domain data, to capture as much 428

syntactic and semantic patterns from the relatively large-scale source-domain data, and to 429

prevent overfitting on the relatively small-scale target-domain data. The training was stopped if 430

the difference between the training losses of two consecutive epochs when the model is trained 431

on the target-domain data is smaller than the threshold (i.e., 0.01), or the training on the target-432

domain data reaches 50 epochs, where an epoch is defined as training the model on the entire 433

target-domain training data. 434

 435

Fig. 5. Alternating training strategy and model requirements. 436

5.4 Deep information extraction and evaluation 437

22

To test and evaluate the proposed model, the information was extracted following two simple 438

steps (Fig. 6). First, the building code was preprocessed into sentences, where each preprocessed 439

sentence consisted of a sequence of tokens (e.g., words, numbers, punctuation marks). Second, 440

the trained deep IE model automatically extracted the semantic and syntactic elements in the 441

sentences. 442

 443
Fig. 6. Deep information extraction using the proposed method. 444

Three metrics were used to evaluate the IE performance: precision, recall, and F1 measure, as 445

shown in Eq. (2) to (4), where for a specific type of syntactic and semantic information element 446

E, TP is the number of true positives (i.e., number of words correctly labeled as E), FP is the 447

number of false positives (i.e., number of words incorrectly labeled as E), and FN is the number 448

of false negatives (i.e., number of words not labeled as E but should have been) [52]. 449

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 (2) 450

23

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 (3) 451

𝐹1 = 2 ×
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 × 𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙
 (4) 452

6 Experimental results 453

6.1 Deep information extraction model hyperparameter optimization 454

The deep IE models and transfer learning strategies were implemented using Keras built in 455

Python 3 and run using the Tesla K80 GPU provided in the Google Colaboratory. A ten-fold 456

cross validation was conducted for optimizing the model hyperparameters. The optimized main 457

hyperparameters for the deep IE models are shown in Table 3. 458

Table 3. Optimized Main Hyperparameters for the Deep Information Extraction Models 459
Hyperparameter Value
Batch size for the source-domain training data 30
Batch size for the target-domain training data 30
Size of the word-embedding vector representation 50
Size of the character-embedding vector representation 20
Size of the long short term memory layer in the encoder layer 50
Type of activation functions rectified linear unit (ReLU)
Maximum length of input sentences 75
Maximum length of input words 20
Recurrent dropout rate 0.1
Alternating probability when training the deep information extraction
models using alternating training strategy

90%

Training loss difference threshold 0.01

6.2 Comparison of the performances of the proposed method with different transfer learning 460

strategies 461

To determine the optimal transfer learning strategies for the proposed deep IE method, six 462

different combinations of strategies were implemented and tested for comparative evaluation, as 463

shown in Table 4: two-stage training with no feature-based strategy (SC1), alternating training 464

with no feature-based strategy (SC2), two-stage training with trainable pretrained word 465

embeddings (SC3), alternating training with trainable pretrained word embeddings (SC4), two-466

stage training with fixed pretrained word embeddings (SC5), alternating training with fixed 467

24

pretrained word embeddings (SC6). During the training of the model, the hyperparameters were 468

set as per Table 3. The proposed deep IE method achieved the highest performance when the 469

strategy combination SC4 was adopted. The results indicate that, first, the differences between 470

the semantic and syntactic characteristics of the source-domain and target-domain data have a 471

significant impact on the choice of transfer learning strategies. Second, the two-stage training 472

strategy might cause the IE model to overfit to the source-domain data and underfit to the target-473

domain data. Third, the pretrained word embeddings contribute to the model’s ability to capture 474

the semantic and syntactic patterns in both the source-domain and target-domain data; however, 475

they are still not able to bridge the gap between the two domains (i.e., the general domain and the 476

AEC domain). 477

According to the aforementioned results, the proposed IE method uses the optimized 478

hyperparameters in Section 6.1 (e.g., recurrent dropout rate as 0.1, alternating probability as 90%) 479

and the transfer learning strategy combination SC4. For the remaining experiments (Sections 6.3 480

to 6.5), this method was used. 481

Table 4. Performance of the Proposed IE Method with Different Transfer Learning Strategy 482
Combinations 483

Strategy
combination

Feature-based transfer
learning strategy

Model-based transfer
learning strategy Precision1 Recall1 F1 measure1

SC1 None Two-stage training 79.7% 80.5% 80.1%
SC2 None Alternating training 87.0% 87.5% 87.2%

SC3 Trainable pretrained word
embeddings Two-stage training 83.3% 84.0% 83.6%

SC4 Trainable pretrained word
embeddings Alternating training 93.1% 92.9% 93.0%

SC5 Fixed pretrained word
embeddings Two-stage training 83.4% 83.9% 83.7%

SC6 Fixed pretrained word
embeddings Alternating training 90.0% 90.5% 90.2%

 1Bolded font indicates the highest performance. 484

6.3 Comparison of the performances of the proposed and baseline methods 485

25

To evaluate the effect of using deep neural networks and leveraging source-domain training data 486

through transfer learning strategies on the extraction performance, the proposed IE method was 487

compared to the linear CRF as a baseline. Linear CRF was selected because it has achieved the 488

state-of-the-art performance for shallow IE in the AEC domain (e.g., [4]). Two linear CRF 489

baseline models were constructed for performance comparison, one with word embeddings as 490

features (Baseline 1) and another with both word embeddings and POS tags (Baseline 2). As 491

shown in Table 5, compared to the baseline methods, the proposed IE method achieved higher 492

performance, with an average increase of 9.6% in precision (14.2% for Baseline 1 and 4.9% for 493

Baseline 2), 9.8% in recall (14.5% for Baseline 1 and 5.0% for Baseline 2), and 9.4% (14.4% for 494

Baseline 1 and 4.4% for Baseline 2) in F1 measure. 495

Table 5. Performance of the Proposed IE Method Compared to the Baseline 496
Deep information extraction method Precision1 Recall1 F1

measure1
Proposed IE method (using deep neural networks) 93.1% 92.9% 93.0%
Baseline 1 (using linear conditional random fields + word embeddings) 78.9% 78.4% 78.6%
Baseline 2 (using linear conditional random fields + word embeddings + part-
of-speech tags) 87.9% 88.6% 88.2%

 1Bolded font indicates the highest performance. 497

6.4 Performance of the proposed method on different types of regulatory documents 498

To evaluate the ability of the proposed IE method to extract syntactic and semantic information 499

elements from regulatory documents that have different syntactic and semantic characteristics, 500

the trained IE model was tested using building-code sentences from three different types of 501

regulatory documents: the IBC, IECC, and ADA Standards, as shown in Table 6. The proposed 502

IE method achieved consistent performance across the three types of documents, based on the 503

three metrics, indicating that the method has high flexibility and scalability. As shown in Fig. 7, 504

compared to the baseline methods, the proposed IE method achieved higher performance across 505

the three types of documents. For IBC, the average increase is 11.5% in precision (17.3% for 506

26

Baseline 1 and 5.6% for Baseline 2), 11.3% in recall (17.1% for Baseline 1 and 5.5% for 507

Baseline 2), and 11.1% (17.3% for Baseline 1 and 4.9% for Baseline 2) in F1 measure. For IECC, 508

the average increase is 8.8% in precision (11.7% for Baseline 1 and 5.8% for Baseline 2), 8.2% 509

in recall (12.6% for Baseline 1 and 3.7% for Baseline 2), and 8.5% (12.2% for Baseline 1 and 4.8% 510

for Baseline 2) in F1 measure. For ADA, the average increase is 8.1% in precision (12.2% for 511

Baseline 1 and 3.9% for Baseline 2), 8.3% in recall (12.6% for Baseline 1 and 3.9% for Baseline 512

2), and 8.2% (12.4% for Baseline 1 and 3.9% for Baseline 2) in F1 measure. 513

Table 6. Deep Information Extraction Performance Across Different Types of Regulatory 514
Documents 515

Type of regulatory document Deep information
extraction method Precision1 Recall1 F1 measure1

International Building Code
Proposed method 94.9% 95.2% 95.1%

Baseline 1 77.6% 78.1% 77.8%
Baseline 2 89.3% 89.7% 90.2%

International Energy
Conservation Code

Proposed method 87.3% 86.8% 87.1%
Baseline 1 75.6% 74.2% 74.9%
Baseline 2 81.5% 83.1% 82.3%

Americans with Disabilities Act
Standards

Proposed method 95.1% 94.7% 94.9%
Baseline 1 82.9% 82.1% 82.5%
Baseline 2 91.2% 90.8% 91.0%

 1Bolded font indicates the highest performance. 516
 517

 518
Fig. 7. Comparison of Deep Information Extraction Performance Across Different Types of 519

Regulatory Documents 520

27

6.5 Performance of the proposed method on building-code sentences of different levels of 521

computability 522

To evaluate the ability of the proposed IE method to extract syntactic and semantic information 523

elements from different types of sentences, the trained IE model was tested using building-code 524

sentences with different computability levels. Three different types of sentences were used for 525

comparative evaluation, as shown in Table 7: moderately high, moderately low, and low 526

computability, which are the top three types of sentences in terms of computability that appear 527

most frequently in building codes (e.g., they account for 22%, 39%, and 23% of a corpus of 528

sentences from IBC and its amendments, respectively) [49]. Sentences of moderately high 529

computability have relatively simple syntactic and semantic structures (e.g., consisting of 530

relatively short noun phrases, verb phrases, and preposition phrases at the sentence-level, or 531

having simple or no restrictions). For example, “spacing of braced wall lines shall not exceed 35 532

feet on center in both the longitudinal and transverse directions in each story” has moderately 533

high computability. Sentences of moderately low computability have relatively complex 534

syntactic and semantic structures (e.g., consisting of relatively long noun phrases, verb phrases, 535

and preposition phrases at the sentence-level, or having one recursive restriction). For example, 536

“openings between the Group S-2 enclosed parking garage and Group S-2 open parking garage, 537

except exit openings, shall not be required to be protected” has moderately high computability. 538

Sentences of low computability have very complex syntactic and semantic structures (e.g., 539

consisting of very long noun phrases, verb phrases, and preposition phrases at the sentence-level, 540

or having multiple recursive restrictions). For example, “where exterior walls serve as a part of a 541

required fire-resistance-rated shaft or exit enclosure, or separation, such walls shall comply with 542

28

the requirements of Section 705 for exterior walls and the fire-resistance-rated enclosure or 543

separation requirements shall not apply” has low computability. 544

The proposed method achieved consistent performance across the three types of building-code 545

sentences, based on the three metrics, indicating that the method has high flexibility and 546

scalability. Also, all three selected types of sentences have hierarchical complex structures [3,49], 547

indicating that the method is able to deal with complex building-code syntactic and semantic 548

structures. As shown in Fig. 8, compared to the baseline methods, the proposed IE method 549

achieved higher performance across sentences with all three levels of computability. For 550

moderately high computability, the average increase is 5.3% in precision (7.5% for Baseline 1 551

and 3.1% for Baseline 2), 5.2% in recall (8.1% for Baseline 1 and 2.2% for Baseline 2), and 5.2% 552

(7.8% for Baseline 1 and 2.6% for Baseline 2) in F1 measure. For moderately low computability, 553

the average increase is 8.4% in precision (13.3% for Baseline 1 and 3.4% for Baseline 2), 7.3% 554

in recall (12.4% for Baseline 1 and 2.2% for Baseline 2), and 7.9% (12.9% for Baseline 1 and 2.8% 555

for Baseline 2) in F1 measure. For low computability, the average increase is 12.6% in precision 556

(18.0% for Baseline 1 and 7.2% for Baseline 2), 12.8% in recall (18.9% for Baseline 1 and 6.6% 557

for Baseline 2), and 12.7% (18.5% for Baseline 1 and 6.9% for Baseline 2) in F1 measure. Both 558

the proposed method and the baseline methods achieved high performance on sentences with 559

moderately high computability, because they have relatively simple syntactic and semantic 560

structures that are relatively easy to be captured by the models used in both methods. However, 561

for sentences with low computability, the proposed method outperformed the baseline methods 562

significantly, because they have relatively complex syntactic and semantic structures, especially 563

long and recursive ones, which are better captured by the model used in the proposed method. 564

29

Table 7. Deep Information Extraction Performance for Building-Code Sentences with Different 565
Computability Levels 566

Computability of building-code
sentences

Deep information extraction
method Precision1 Recall1 F1 measure1

Moderately high
Proposed method 95.2% 93.8% 94.5%

Baseline 1 87.7% 85.7% 86.7%
Baseline 2 92.1% 91.6% 91.9%

Moderately low
Proposed method 93.8% 93.5% 93.7%

Baseline 1 80.5% 81.1% 80.8%
Baseline 2 90.4% 91.3% 90.9%

Low
Proposed method 91.6% 92.1% 91.9%

Baseline 1 73.6% 73.2% 73.4%
Baseline 2 84.4% 85.5% 85.0%

1Bolded font indicates the highest performance 567
 568

 569
Fig. 8. Comparison of Deep Information Extraction Performance for Building-Code Sentences 570

with Different Computability Levels 571

6.6 Error analysis 572

An error analysis was conducted to investigate the sources of errors and identify potential 573

directions for performance enhancement in the future. To analyze the extraction errors, the 574

confusion matrix (Fig. 9) was generated. Three main types of errors were identified based on the 575

experimental results. First, the proposed approach had errors when dealing with multiword 576

expressions, which consist of multiple words and function as individual syntactic and semantic 577

units, especially those including prepositions. For example, the words in the multiword 578

30

expression “means of egress” should have been annotated with a single semantic information 579

element – a subject, but instead it was annotated with a subject, a syntactic unit, and another 580

subject. In future work, a multiword expression list for the AEC domain could be integrated into 581

the proposed method. Second, the proposed method performed relatively lower on extracting 582

compliance checking attributes and references compared to other types of semantic and syntactic 583

information elements, as shown in the confusion matrix. For example, the “required insulation” 584

in “the requirement insulation for roof or ceiling assemblies” should have been extracted as a 585

compliance checking attribute, but was misextracted as a subject. The “U-factor and SHGC 586

requirements” should have been extracted together as a reference, but the “U-factor” was 587

misextracted separately as a subject. Also, “Group R-1”, which means the first residential group 588

in the IBC use and occupancy classification, was mistakenly extracted as part of a subject instead 589

of a compliance checking attribute. In the future, additional input layers could be added to 590

capture syntactic and semantic patterns that are discriminative in distinguishing subjects from 591

compliance checking attributes and references. Third, the proposed method performed relatively 592

lower on the IECC compared to other types of regulatory documents. The lower performance 593

results from the relatively low amount of target-domain training data built using IECC sentences. 594

In the future, more experiments are needed to evaluate the ability of the proposed method to 595

scale to different types of regulatory documents when the amount of training data changes. 596

31

 597
Fig. 9. Confusion matrix for semantic and syntactic information elements. 598

7 Contribution to the body of knowledge 599

This paper contributes to the body of knowledge on two levels. On a methodological level, the 600

paper offers a new method that integrates deep learning, transfer learning strategies, and both 601

target-domain and general-domain data to fully automatically extract semantic and syntactic 602

information elements from regulatory documents for supporting ACC in the AEC domain. The 603

proposed approach improves the methodology of information extraction in three primary ways. 604

First, it is the first effort to use a deep learning-based method to fully automatically extract 605

semantic and syntactic information elements from regulatory documents in the AEC domain for 606

supporting fully automated compliance checking. Second, it leverages both general-domain and 607

AEC-specific training data through transfer learning strategies to improve the performance, 608

flexibility, and scalability of the proposed deep IE method. The experimental results indicate that 609

the transfer learning strategies could greatly impact the IE performance. Third, the deep neural 610

network architectures and transfer learning strategies used in the proposed deep IE method are 611

32

adaptable to other types of text analytics tasks in the AEC domain such as requirement 612

classification and semantic parsing. 613

On a practical level, the paper contributes to the body of knowledge in two ways. First, the paper 614

proposes a set of semantic and syntactic information elements to facilitate the representation of 615

building-code requirements and the extraction of regulatory information for supporting building-616

code analytics and compliance checking, which was effective for various types of regulatory 617

documents such as IBC, IECC, and ADA Standards. Second, the paper offers a trained, ready-to-618

use deep IE model that offers high extraction performance, with consistency across different 619

types of building codes and across sentences with different levels of computability. Third, both 620

the information elements and the deep IE model would help achieve full automation in ACC 621

systems, including full automation in extraction and formalization of requirements/rules. Fully 622

automated ACC would reduce code compliance errors and the time and cost associated with 623

compliance checking, thereby bringing broad benefits to the construction industry such as 624

reduced violations, enhanced resource efficiency, and faster permitting. 625

8 Conclusions and future work 626

This paper proposed a deep learning-based method that uses transfer learning strategies for deep 627

information extraction from regulatory documents for supporting automated compliance 628

checking in the AEC domain. A set of semantic and syntactic information elements for 629

representing building-code requirements was proposed and used for deep IE from regulatory 630

documents in the AEC domain. Two types of training data, target-domain and general-domain 631

data, were prepared using text from multiple AEC regulatory documents and from the Penn 632

Treebank, respectively. The deep neural network model consists of bidirectional LSTM and CRF 633

layers, which were adopted as the base IE model. Four different feature-based and model-based 634

33

transfer learning strategies were used to adapt the base model and train the model on both 635

domain-specific and general-domain training data. 636

The proposed deep IE method was tested and evaluated using building-code sentences collected 637

from three types of regulatory documents (i.e., IBC, IECC, and ADA Standards). Different 638

combinations of transfer learning strategies were tested and compared, and the optimal 639

combination was to use pretrained word embeddings to initialize the transfer feature information 640

and use alternating training to transfer the model information. Average precision of 93.1%, recall 641

of 92.9%, and F1 measure of 93.0% were achieved under the optimal hyperparameters and 642

transfer learning strategies, indicating good extraction performance and outperforming the 643

baseline linear CRF-based method. Also, the trained deep IE model performed consistently 644

across different types of regulatory documents including IBC, IECC, and ADA Standards, and 645

different types of building-code sentences in terms of computability. 646

In their future work, the authors plan to improve the proposed method and leverage the deep IE 647

model in five directions. First, the deep neural network model could be improved to enhance the 648

extraction performance. For example, other model architectures, such as the Transformer-based 649

architectures (e.g., finetuning BERT and its variants), could be explored. Second, more transfer 650

learning and semi-supervised learning strategies could be explored for leveraging large-scale, 651

pattern-rich general-domain annotated data for solving IE problems in the AEC domain. Third, 652

the performance and flexibility of the IE model could be further improved by increasing the 653

diversity of both the domain-specific and general-domain data. For example, annotated data from 654

other sources could be used with data pruning techniques or instance-based transfer learning 655

strategies. Fourth, additional evaluation efforts could be conducted to further test the proposed 656

method on other types of regulatory documents and requirements. Reproducibility of the 657

34

performance results are expected. However, the results may show performance variations due to 658

possible differences in the syntactic and semantic characteristics of the documents or 659

requirements. More comparative evaluation could also be undertaken in the future, as publicly 660

available benchmark datasets become more available in the AEC domain. Fifth, and most 661

importantly, the authors will further implement the trained IE model in an ACC system. Our 662

ultimate goal is to leverage machine learning and other artificial intelligence approaches to reach 663

a level where we can automatically process the entire building code and represent it in a 664

computable manner for fully ACC with minimal manual effort. 665

9 Acknowledgements 666

The authors would like to thank the National Science Foundation (NSF). This material is based 667

on work supported by the NSF under Grant No. 1827733. Any opinions, findings, and 668

conclusions or recommendations expressed in this material are those of the authors and do not 669

necessarily reflect the views of the NSF. 670

10 References 671

[1] Hjelseth, E. and Nisbet, N., 2010, November. Exploring semantic based model checking. 672
In Proceedings of the 2010 27th CIB W78 international conference (Vol. 54). 673
https://www.researchgate.net/profile/Eilif-674
Hjelseth/publication/265821429_EXPLORING_SEMANTIC_BASED_MODEL_CHEC675
KING/links/550dbd2c0cf27526109c293c/EXPLORING-SEMANTIC-BASED-MODEL-676
CHECKING.pdf (Aug. 01, 2020). 677

[2] Zhang, J. and El-Gohary, N.M., 2013. Semantic NLP-based information extraction from 678
construction regulatory documents for automated compliance checking. Journal of 679
Computing in Civil Engineering, 30(2), p.04015014. 680
https://doi.org/10.1061/(ASCE)CP.1943-5487.0000346. 681

[3] Zhou, P. and El-Gohary, N., 2017. Ontology-based automated information extraction 682
from building energy conservation codes. Automation in Construction, 74, pp. 103-117. 683
https://doi.org/10.1016/j.autcon.2016.09.004. 684

35

[4] Liu, K. and El-Gohary, N., 2017. Ontology-based semi-supervised conditional random 685
fields for automated information extraction from bridge inspection reports. Automation in 686
construction, 81, pp. 313-327. https://doi.org/10.1016/j.autcon.2017.02.003. 687

[5] Liu, G. and Guo, J., 2019. Bidirectional LSTM with attention mechanism and 688
convolutional layer for text classification. Neurocomputing, 337, pp. 325-338. 689
https://doi.org/10.1016/j.neucom.2019.01.078. 690

[6] Etzioni, O., Fader, A., Christensen, J., Soderland, S. and Mausam, M., 2011, July. Open 691
information extraction: The second generation. In IJCAI, 11, pp. 3-10. 692
https://doi.org/10.5591/978-1-57735-516-8/IJCAI11-012. 693

[7] Fader, A., Soderland, S. and Etzioni, O., 2011, July. Identifying relations for open 694
information extraction. In Proceedings of the 2011 conference on empirical methods in 695
natural language processing, pp. 1535-1545. https://www.aclweb.org/anthology/D11-696
1142 (Aug 01, 2020). 697

[8] Del Corro, L. and Gemulla, R., 2013, May. Clausie: clause-based open information 698
extraction. In Proceedings of the 22nd international conference on World Wide Web, pp. 699
355-366. https://doi.org/10.1145/2488388.2488420. 700

[9] Gutierrez, F., Dou, D., Fickas, S., Wimalasuriya, D. and Zong, H., 2016. A hybrid 701
ontology-based information extraction system. Journal of Information Science, 42(6), pp. 702
798-820. https://doi.org/10.1177/0165551515610989. 703

[10] Chambers, N. and Jurafsky, D., 2011, June. Template-based information extraction 704
without the templates. In Proceedings of the 49th annual meeting of the association for 705
computational linguistics: human language technologies, pp. 976-986. 706
https://www.aclweb.org/anthology/P11-1098 (Aug. 01, 2020). 707

[11] Valenzuela-Escárcega, M.A., Hahn-Powell, G., Surdeanu, M. and Hicks, T., 2015, July. 708
A domain-independent rule-based framework for event extraction. In Proceedings of 709
ACL-IJCNLP 2015 System Demonstrations, pp. 127-132. 710
https://doi.org/10.3115/v1/P15-4022. 711

[12] Kluegl, P., Toepfer, M., Beck, P.D., Fette, G. and Puppe, F., 2016. UIMA Ruta: Rapid 712
development of rule-based information extraction applications. Natural Language 713
Engineering, 22(1), pp. 1-40. https://doi.org/10.1017/S1351324914000114. 714

[13] Zhou, G. and Su, J., 2002. Named entity recognition using an HMM-based chunk tagger. 715
In proceedings of the 40th Annual Meeting on Association for Computational Linguistics, 716
pp. 473-480. https://doi.org/10.3115/1073083.1073163. 717

[14] Li, Y., Bontcheva, K. and Cunningham, H., 2004, September. SVM based learning 718
system for information extraction. In International Workshop on Deterministic and 719
Statistical Methods in Machine Learning, pp. 319-339. Springer, Berlin, Heidelberg. 720
https://doi.org/10.1007/11559887_19. 721

[15] Finkel, J.R., Grenager, T. and Manning, C., 2005. Incorporating non-local information 722
into information extraction systems by Gibbs sampling. In Proceedings of the 43rd 723
annual meeting on association for computational linguistics, pp. 363-370. 724
https://doi.org/10.3115/1219840.1219885. 725

36

[16] LeCun, Y., Bengio, Y. and Hinton, G., 2015. Deep learning. Nature. 521(7553), pp. 436. 726
https://doi.org/10.1038/nature14539. 727

[17] Chung, J., Gulcehre, C., Cho, K. and Bengio, Y., 2014. Empirical evaluation of gated 728
recurrent neural networks on sequence modeling. https://arxiv.org/abs/1412.3555. 729

[18] Greff, K., Srivastava, R.K., Koutník, J., Steunebrink, B.R. and Schmidhuber, J., 2016. 730
LSTM: A search space odyssey. IEEE transactions on neural networks and learning 731
systems, 28(10), pp. 2222-2232. https://doi.org/10.1109/TNNLS.2016.2582924. 732

[19] Clark, K., Luong, M.T., Manning, C.D. and Le, Q.V., 2018. Semi-supervised sequence 733
modeling with cross-view training. https://arxiv.org/abs/1809.08370. 734

[20] Lample, G., Ballesteros, M., Subramanian, S., Kawakami, K. and Dyer, C., 2016. Neural 735
architectures for named entity recognition. https://arxiv.org/abs/1603.01360. 736

[21] Nguyen, T.H. and Grishman, R., 2015. Event detection and domain adaptation with 737
convolutional neural networks. In Proceedings of the 53rd Annual Meeting of the 738
Association for Computational Linguistics and the 7th International Joint Conference on 739
Natural Language Processing (Volume 2: Short Papers), pp. 365-371. 740
https://doi.org/10.3115/v1/P15-2060 741

[22] Stanovsky, G., Michael, J., Zettlemoyer, L. and Dagan, I., 2018. Supervised open 742
information extraction. In Proceedings of the 2018 Conference of the North American 743
Chapter of the Association for Computational Linguistics: Human Language 744
Technologies, Volume 1 (Long Papers), pp. 885-895. https://doi.org/10.18653/v1/N18-745
1081. 746

[23] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L. 747
and Polosukhin, I., 2017. Attention is all you need. https://arxiv.org/abs/1706.03762. 748

[24] Radford, A., Narasimhan, K., Salimans, T. and Sutskever, I., 2018. Improving language 749
understanding by generative pre-training. 750
https://www.cs.ubc.ca/~amuham01/LING530/papers/radford2018improving.pdf (Feb. 10, 751
2021). 752

[25] Devlin, J., Chang, M.W., Lee, K. and Toutanova, K., 2018. Bert: Pre-training of deep 753
bidirectional transformers for language understanding. https://arxiv.org/abs/1810.04805. 754

[26] Yang, Z., Dai, Z., Yang, Y., Carbonell, J., Salakhutdinov, R. and Le, Q.V., 2019. Xlnet: 755
Generalized autoregressive pretraining for language understanding. 756
https://arxiv.org/abs/1906.08237. 757

[27] Sanh, V., Debut, L., Chaumond, J. and Wolf, T., 2019. DistilBERT, a distilled version of 758
BERT: smaller, faster, cheaper and lighter. https://arxiv.org/abs/1910.01108. 759

[28] Lan, Z., Chen, M., Goodman, S., Gimpel, K., Sharma, P. and Soricut, R., 2019. Albert: A 760
lite bert for self-supervised learning of language representations. 761
https://arxiv.org/abs/1909.11942. 762

[29] Zhu, J., Xia, Y., Wu, L., He, D., Qin, T., Zhou, W., Li, H. and Liu, T.Y., 2020. 763
Incorporating bert into neural machine translation. https://arxiv.org/abs/2002.06823. 764

37

[30] Yang, W., Xie, Y., Lin, A., Li, X., Tan, L., Xiong, K., Li, M. and Lin, J., 2019. End-to-765
end open-domain question answering with bertserini. https://arxiv.org/abs/1902.01718. 766

[31] Nogueira, R. and Cho, K., 2019. Passage Re-ranking with BERT. 767
https://arxiv.org/abs/1901.04085. 768

[32] Zhang, R. and El-Gohary, N., 2019. A machine learning-based approach for building 769
code requirement hierarchy extraction. In 2019 CSCE Annual Conference. 770
https://par.nsf.gov/servlets/purl/10110925 (Aug. 01, 2020). 771

[33] Pan, Y. and Zhang, L., 2020. BIM log mining: Learning and predicting design commands. 772
Automation in Construction, 112, p.103107. 773
https://doi.org/10.1016/j.autcon.2020.103107. 774

[34] Bang, S. and Kim, H., 2020. Context-based information generation for managing UAV-775
acquired data using image captioning. Automation in Construction, 112, p.103116. 776
https://doi.org/10.1016/j.autcon.2020.103116. 777

[35] Marcus, M., Santorini, B. and Marcinkiewicz, M.A., 1993. Building a large annotated 778
corpus of English: The Penn Treebank. https://repository.upenn.edu/cis_reports/237/ 779
(Aug. 01, 2020). 780

[36] Sang, E.F. and De Meulder, F., 2003. Introduction to the CoNLL-2003 shared task: 781
Language-independent named entity recognition. https://arxiv.org/abs/cs/0306050. 782

[37] Carreras, X. and Màrquez, L., 2005, June. Introduction to the CoNLL-2005 shared task: 783
Semantic role labeling. In Proceedings of the ninth conference on computational natural 784
language learning (CoNLL-2005), pp. 152-164. https://www.aclweb.org/anthology/W05-785
0620 (Aug. 01, 2020). 786

[38] Tan C., Sun F., Kong T., Zhang W., Yang C., Liu C., 2018. A Survey on Deep Transfer 787
Learning. In: Kůrková V., Manolopoulos Y., Hammer B., Iliadis L., Maglogiannis I. (eds) 788
Artificial Neural Networks and Machine Learning – ICANN 2018. ICANN 2018. Lecture 789
Notes in Computer Science, vol 11141. Springer, Cham. https://doi.org/10.1007/978-3-790
030-01424-7_27. 791

[39] Dai, W., Yang, Q., Xue, G.R. and Yu, Y., 2007. Boosting for transfer learning. In 792
Proceedings of the 24th international conference on Machine learning, pp. 193-200. 793
https://doi.org/10.1145/1273496.1273521. 794

[40] Pennington, J., Socher, R. and Manning, C.D., 2014. Glove: Global vectors for word 795
representation. In Proceedings of the 2014 conference on empirical methods in natural 796
language processing (EMNLP), pp. 1532-1543. https://doi.org/10.3115/v1/D14-1162. 797

[41] Peters, M.E., Neumann, M., Iyyer, M., Gardner, M., Clark, C., Lee, K. and Zettlemoyer, 798
L., 2018. Deep contextualized word representations. https://arxiv.org/abs/1802.05365. 799

[42] Kim, H., Kim, H., Hong, Y.W. and Byun, H., 2018. Detecting construction equipment 800
using a region-based fully convolutional network and transfer learning. Journal of 801
computing in Civil Engineering, 32(2), p.04017082. 802
https://doi.org/10.1061/(ASCE)CP.1943-5487.0000731. 803

38

[43] Zhang, K., Cheng, H.D. and Zhang, B., 2018. Unified approach to pavement crack and 804
sealed crack detection using preclassification based on transfer learning. Journal of 805
Computing in Civil Engineering, 32(2), p.04018001. 806
https://doi.org/10.1061/(ASCE)CP.1943-5487.0000736. 807

[44] Yang, Z., Salakhutdinov, R., and Cohen, W. W., 2017. Transfer learning for sequence 808
tagging with hierarchical recurrent networks. https://arxiv.org/abs/1703.06345. 809

[45] Al Qady, M. and Kandil, A., 2010. Concept relation extraction from construction 810
documents using natural language processing. Journal of construction engineering and 811
management, 136(3), pp. 294-302. https://doi.org/10.1061/(ASCE)CO.1943-812
7862.0000131. 813

[46] Lee, J., Yi, J.S. and Son, J., 2019. Development of automatic-extraction model of 814
poisonous clauses in international construction contracts using rule-based NLP. Journal 815
of Computing in Civil Engineering, 33(3), p.04019003. 816
https://doi.org/10.1061/(ASCE)CP.1943-5487.0000807. 817

[47] Zhang, R. and El-Gohary, N., 2019. A machine learning approach for compliance 818
checking-specific semantic role labeling of building code sentences. In Advances in 819
informatics and computing in civil and construction engineering, pp. 561-568. Springer, 820
Cham. https://doi.org/10.1007/978-3-030-00220-6_67. 821

[48] Kim, T. and Chi, S., 2019. Accident case retrieval and analyses: Using natural language 822
processing in the construction industry. Journal of Construction Engineering and 823
Management, 145(3), p.04019004. https://doi.org/10.1061/(ASCE)CO.1943-824
7862.0001625. 825

[49] Zhang, R., and El-Gohary, N., 2020. Clustering-based Approach for Building Code 826
Computability Analysis. Journal of Computing in Civil Engineering. 827
https://doi.org/10.1061/(ASCE)CP.1943-5487.0000967. 828

[50] J.P. Pestian, L. Deleger, G.K. Savova, J.W. Dexheimer, I. Solti, Natural language 829
processing—the basics, Pediatric Biomedical Informatics: Computer Applications in 830
Pediatric Research, Springer, Netherlands, Dordrecht, 2012, pp. 149–172, 831
http://dx.doi.org/10.1007/978-94-007-5149-1_9. ISBN 978-94-007-5149-1. 832

[51] Huang, Z., Xu, W., and Yu, K., 2015. Bidirectional LSTM-CRF models for sequence 833
tagging. https://arxiv.org/abs/1508.01991. 834

[52] Zhai, C., and Massung, S., 2016. Text data management and analysis: a practical 835
introduction to information retrieval and text mining, ACM, New York, USA. 836
https://doi.org/10.1145/2915031. ISBN: 978-1-970001-17-4. 837

 838

