
1 
 

Clustering-based Approach for Building Code Computability Analysis 1 

Ruichuan Zhang1; and Nora El-Gohary, A.M.ASCE2 2 

1 Graduate Student, Department of Civil and Environmental Engineering, University of Illinois at Urbana-3 
Champaign, 205 N. Mathews Ave., Urbana, IL 61801, United States. E-mail: rzhang65@illinois.edu. 4 

2 Associate Professor, Department of Civil and Environmental Engineering, University of Illinois at Urbana-5 
Champaign, 205 N. Mathews Ave., Urbana, IL 61801, United States (corresponding author). E-mail: 6 

gohary@illinois.edu; Tel: +1-217-333-6620. 7 
Abstract  8 

One common limitation of all automated code compliance checking methods and tools is their inability to deal with 9 

all types of building-code requirements. More research is needed to better identify the different types of 10 

requirements, in terms of their syntactic and semantic structures and complexities, to gain more insights about the 11 

capabilities and limitations of existing methods and tools (i.e., which requirements they can automatically process, 12 

represent, and/or check, and which not). To address this need, this paper proposes a new set of syntactic and 13 

semantic features and complexity and computability metrics for code computability analysis. A clustering-based 14 

approach was used to identify the different types of code sentences, in terms of their computability, using the 15 

proposed features and metrics. The approach was implemented and tested on a corpus of 6,608 sentences from the 16 

International Building Code and its amendments. The sentence clusters and identified sentence types were evaluated 17 

using intrinsic and extrinsic evaluation methods. The evaluation results indicated good clustering performance, 18 

perfect alignment between the human- and computer-identified types, and good agreement in the assignment of 19 

sentences to the types. 20 

Keywords: Buildings; Code checking; Computability; Text analytics; Hierarchical clustering. 21 

Introduction 22 

Existing automated compliance checking (ACC) systems in the architecture, engineering, and construction (AEC) 23 

domain have different coverage capabilities, in terms of what type of building-code requirements they can represent, 24 

process, or check. For example, the Solibri Model Checker (SMC) (Solibri 2018), an example of commercially-25 

available software, only covers simple, discrete, and property requirements (e.g., “risers shall be 4 inches high 26 

minimum”) and conditional requirements (e.g., “ceilings in corridors shall be not less than 2.34 meters in height”). It 27 

allows users to include or exclude building elements and adjust the properties and property values in a limited 28 
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number of rule templates. And, it requires manual effort to read the code text, identify the right rule templates to use, 29 

and enter the values of the parameters in the templates, lacking capabilities for automatically processing natural-30 

language requirements into computable representations. In the SMARTcodes project by AEC3 and International 31 

Code Council (ICC) (AEC3 2012), an example of approaches for semi-automated requirement processing, 32 

conditional, attributive requirements are manually annotated with requirement, applicability, selection, and 33 

exception (RASE) tags (Hjelseth and Nisbet 2010), and then the annotated text is converted into the IFC-compatible 34 

XML format (Weise et al. 2017). In the SNACC system by Zhang and El-Gohary (2017b), an example of 35 

approaches for fully-automated information extraction and requirement processing, semantic modeling and natural 36 

language processing (NLP) techniques are used to automatically extract quantitative requirements (excluding 37 

qualitative requirements) from building codes into a computable format. Collectively, existing systems are limited in 38 

dealing with highly complex requirements, especially those that have hierarchically complex syntactic and semantic 39 

structures or those that require human judgement by nature (Solihin and Eastman 2015; Zhou and El-Gohary 2017; 40 

Nawari 2019).  41 

Despite such relatively high variability in the approaches and capabilities of existing systems, there is a lack of 42 

research efforts to identify and characterize the different types of requirements or sentences in AEC regulations to 43 

better assess the coverage capabilities of existing ACC systems, identify the types of ACC systems required for 44 

different applications (Solihin and Eastman 2015), and inform future ACC efforts. For example, Solihin and 45 

Eastman (2015) identified four types of requirements based on what type of BIM data the rules require. Malsane et 46 

al. (2015) manually grouped regulations into declarative and informative clauses. These two types of classifications 47 

are useful in their intended scopes and applications, but cannot be used to assess the capabilities of existing ACC 48 

systems, in terms of what natural-language requirements they can automatically process, represent (into a 49 

computable representation), and/or check. Other research efforts that focused on developing computable 50 

representations of requirements (e.g., Eastman et al. 2009; Hjelseth and Nisbet 2010; Dimyadi and Amor 2013; 51 

Zhang and El-Gohary 2013; Dimyadi et al. 2016), by nature of their scope, did not devote efforts to analyze the 52 

different types of requirements or sentences. The knowledge of sentence types, and the syntactic and semantic 53 

features of these different types, is essential for assessing and comparing the actual and potential capabilities of 54 

ACC systems. It would help us gain insights about the capabilities and limitations of existing ACC systems (i.e., 55 

which requirements they can automatically process, represent, and/or check, and which not), in order to choose the 56 
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right system for the application at hand, improve or extend existing systems for enhanced coverage and 57 

performance, or develop new systems with increased capabilities.  58 

To address this need, this paper first proposes a set of new features to characterize requirement sentences in building 59 

codes, in terms of their syntactic and semantic structures, to capture their syntactic and semantic complexities. This 60 

paper then proposes a set of new complexity and computability metrics. Computability aims to measure the ability 61 

of sentences to be automatically processed, represented, and checked by ACC systems based on their syntactic and 62 

semantic complexities. Sentences with complex syntactic and semantic structures are difficult to be represented in a 63 

computable representation (e.g., mvdXML), processed automatically by computational tools and techniques (e.g., 64 

NLP techniques), and checked by semi- or fully-automated ACC systems; and vice versa. A clustering-based 65 

approach was adopted to discover sentence clusters in a large corpus of building-code sentences, from IBC and its 66 

variations/amendments, using the proposed features. Sentence types were then identified based on the sentence 67 

clusters and characterized, using the proposed features and metrics, both quantitively and qualitatively. 68 

The rest of the paper is organized as follows. The second section provides a brief review of existing ACC efforts and 69 

clustering and text mining techniques. The third section continues with an analysis of the knowledge gaps in 70 

building-code computability analysis and text clustering (in the context of our application). The fourth section 71 

presents the proposed syntactic and semantic features and complexity and computability metrics. The fifth section 72 

explains the research methodology for clustering, computability analysis, and evaluation. The sixth section presents 73 

the experimental results and discussion. Finally, the last two sections conclude the paper with contributions, 74 

conclusions, and future work.  75 

Background   76 

Automated Code Checking Systems 77 

Extensive research efforts have focused on automating the process of code compliance checking in the AEC domain. 78 

Many of the existing ACC systems are semi-automated, requiring manual effort to read the code and represent the 79 

requirements in computable forms. Semi-automated efforts have used different approaches and representations. For 80 

example, Garrett and Fenves (1987) proposed a design strategy, in which standard requirements are represented as 81 

computable constraints and knowledge-base relations. Garrett and Hakim (1992) developed an object-oriented 82 

model that offers different types of representation schemes for different types of requirements. Ozkaya and Akin 83 
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(2006) proposed a design approach that uses requirement-design coupling paths to query the design products and 84 

incorporate requirements into designs for supporting code checking. More recently, query languages have been used 85 

to represent requirements and industry foundation classes (IFC)-format design information [e.g., SPARQL Query 86 

Language for RDF (Yurchyshyna and Zarli 2009), regulatory knowledge query language (Dimyadi et al. 2016)]. 87 

Visual programming languages [e.g., conceptual graphs (Solihin and Eastman 2016), Visual Code Checking 88 

Language (Preidel and Borrmann 2016)] have also been used to represent requirements and visualize them in graph-89 

like structures. Fully-automated ACC systems, compared to semi-automated ones, aim to automate the process of 90 

extracting the information from the codes and representing the requirements in computable rule formats. For 91 

example, Zhang and El-Gohary (2013, 2015, 2016, 2017a, 2017b) and Zhou and El-Gohary (2017) proposed 92 

semantic rule-based ACC systems that use ontologies, NLP techniques, and pattern matching-based rules to extract 93 

regulatory information from the codes and represent these extracted information in the form of logic rules.  94 

Many ACC efforts have also been led by industry bodies and government organizations, which are mostly semi-95 

automated, such as CORENET ePlanCheck by the Singapore Building and Construction Authority, REScheck and 96 

COMcheck by the U.S. Department of Energy, and SMARTcodes by AEC3 and ICC. In most of these efforts, 97 

requirements are hard-coded by the software developers, such as in SMC, Compliance Audit Systems, Daima, 98 

Invicara, SmartReview, and UpCodes. A few other efforts rely on mechanisms such as semantic annotation to 99 

increase the system’s flexibility. For example, in the AEC3 and ICC’s SMARTcodes project, users first annotate the 100 

requirements with a set of semantic markups – including requirement, applicability, selection, and exception 101 

(Hjelseth and Nisbet 2010), which are then converted into mvdXML format. 102 

Clustering for Text Analytics 103 

Clustering is an unsupervised learning problem, which aims to find groups of similar objects in data (Aggarwal and 104 

Zhai 2012). In the context of text analytics, the clustering objects could be documents, sentences, or phrases and 105 

words. Clustering has been used in many applications such as document classification (e.g., Bekkerman et al. 2001), 106 

browsing (e.g., Cutting 2017), summarization (e.g., Yang et al. 2014), and visualization (Cadez et al. 2003). A 107 

limited number of research efforts in the construction domain have used text clustering for various purposes. For 108 

example, Ng et al. (2006) used text clustering to analyze deficiency descriptions for knowledge discovery in a 109 

facility condition assessment database. Al Qady and Kandil (2014) used a hybrid approach that included clustering 110 
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and text classification to group semantically-related project documents. And, Kifokeris and Xenidis (2017) used a 111 

notion clustering-based method to identify risk sources in technical projects.  112 

The application of clustering algorithms can benefit building-code analytics and sentence typing for ACC from two 113 

perspectives. First, clustering is naturally suitable for finding different groups of requirements or sentences that 114 

share similar characteristics (Aggarwal and Zhai 2012, Allahyari et al. 2017). Second, clustering-based methods 115 

require minimum level of manual effort for mining the underlying patterns of the text, compared to manual methods, 116 

where the patterns are interpreted and analyzed by humans, and supervised learning-based methods, where data are 117 

manually annotated to train computational models for analyzing the patterns. 118 

Hierarchical clustering aims to successively combine groups of data in a pairwise manner based on their pairwise 119 

similarities, until all the data are within one single group (Aggarwal and Zhai 2012). This process constructs a 120 

hierarchy of clusters, which can be intersected at a certain level to obtain a specific number of clusters. Hierarchical 121 

clustering has been widely used in the context of text analytics [e.g., Li et al. (2008), Shepitsen et al. (2008), and 122 

Lomakina et al. (2014)]. Hierarchical clustering has also been applied in solving a number of research problems in 123 

the construction domain such as assessment of social sustainability of construction projects (e.g., Valdes-Vasquez 124 

and Klotz 2012); but, to the best of the authors’ knowledge, no efforts focused on using hierarchical clustering for 125 

document analysis. 126 

State of the Art and Knowledge Gaps 127 

State of the art and knowledge gaps in building-code computability and typing analysis: A very limited number 128 

of research efforts have been undertaken to formally characterize the different types of requirements or sentences in 129 

building codes. Solihin and Eastman (2015) grouped requirements/rules based on what type of BIM data the rules 130 

require, and accordingly identified four general classes of rules: (1) rules that only need a small number of explicit 131 

data that exist in the BIM dataset; (2) rules that need simple derived attribute values; (3) rules that need extended 132 

data structures; and (4) rules that need a “proof of solution” (e.g., example cases/sentences and/or manual 133 

hypothetical checking processes). This effort is very useful in assessing the existence of BIM data for checking the 134 

requirements, but, by nature of its scope, does not address the classification of requirements by their computability 135 

(e.g., the ability of ACC systems to automatically process natural-language requirements into computable 136 

representations). Malsane et al. (2015) grouped the clauses in the England and Wales Fire Safety Building 137 
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Regulations (EWFSBR) Part B1 into two types: (1) declarative clauses: clauses that have obviously checkable 138 

information and thus are computer interpretable (e.g., simple geometrical rules); and (2) informative clauses: clauses 139 

that have information that is not obviously checkable or needs human interpretation and thus are not computer 140 

interpretable. This type of classification could be useful as a first-level binary (black-and-white) classification, but 141 

cannot be used for the purpose of computability analysis, because it does not identify the different subtypes of 142 

computer-interpretable requirements – some subtypes would be computer-interpretable by some systems but not the 143 

others. Also, the aforementioned criteria for classifying a clause into the first category versus the second requires 144 

human interpretation, lacking well-defined text features that could support the automation of the classification and 145 

the computability analysis process. 146 

State of the art and knowledge gaps in text clustering: In the computational linguistics domain, text clustering 147 

efforts have mainly focused on document and phrase/word clustering, both separately (e.g., topic model-based 148 

document clustering, WordNet-based phrase/word clustering) and simultaneously [e.g., word clustering and 149 

coclustering (Kilicoglu and Bergler 2009)], but rarely studied sentence clustering. Compared to document 150 

clustering, sentence clustering usually has a sparser feature space because a sentence has significantly fewer words 151 

than a document and thus requires effective feature selection. In terms of the purpose of clustering, existing sentence 152 

and/or text clustering efforts evaluated either the semantic similarity (Naughton et al. 2010, Fodeh et al. 2011, Yang 153 

et al. 2014) or the syntactic similarity of the text only (Massung et al. 2013), without combining both analyses in the 154 

clustering problem.  155 

State of the art and knowledge gaps in features and metrics for text analytics: Various features and metrics have 156 

been proposed or adopted for supporting text analytics. These features mainly included (1) syntactic features, such 157 

as part-of-speech (POS) tag frequency and parsing tree structural features (e.g., Massung et al. 2013), or (2) 158 

semantic features, such as bag of words, word frequency, and features based on WordNet (e.g., Naughton et al. 159 

2010, Fodeh et al. 2011) and document graph models (e.g., Yang et al. 2014). These features are effective in text 160 

analytics tasks such as text categorization (e.g., Massung et al. 2013) or topic-based text clustering (e.g., Naughton 161 

et al. 2010, Yang et al. 2014). However, their effectiveness is limited in requirement computability analysis because: 162 

(1) they are mostly lexical- or word-level features and cannot directly reflect requirement- and sentence-level 163 

complexity; and (2) they lack the ability to capture the semantic characteristics specific to building-code text such as 164 
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the essential and secondary semantic information elements. Some of these features were further used in the literature 165 

for calculating or deriving text complexity metrics. Existing metrics for text complexity analysis can be grouped into 166 

three categories: (1) lexical complexity metrics, such as number of infrequent words; (2) syntactic complexity 167 

metrics, such as the length of sentences, number of infrequent structural features, and number of constituents in the 168 

parsing trees (e.g., Ambati et al. 2016); and (3) semantic complexity metrics, such as knowledge graph-based 169 

measures like node degree, length of shortest path, and number of connected components (e.g., Štajner and Hulpuş 170 

2018). These metrics are useful for text complexity analysis in terms of readability (Ambati et al. 2016, Štajner and 171 

Hulpuş 2018) but cannot be used to analyze text computability, because they are based on the comprehensibility of 172 

the text by human readers, rather than the ability of the text to be automatically processed, represented, and checked 173 

by computational systems (e.g., ACC systems). Also, similar to existing features for text analytics, these metrics are 174 

limited in indicating the syntactic and semantic complexity of building-code requirements, because they do not 175 

capture the syntactic and semantic characteristics that are specific to building-code text (Zhou and El-Gohary 2017). 176 

Proposed Features and Metrics for Building-Code Computability Analysis and Typing 177 

Features for Building-Code Computability Analysis and Typing 178 

Syntactic Features 179 

Four syntactic features are proposed for representing the complexity of the syntactic structures of building-code 180 

requirement sentences. The features are capturing the syntactic lengths of the sentence fragments (i.e., phrases, 181 

clauses, or sentences) and the syntactic heights of the constituency trees corresponding to the sentence fragments, as 182 

shown in Fig. 1. The syntactic lengths and heights include: (1) the lengths of the sentence fragments for each 183 

fragment labeled with the following phrase- and clause-level tags in the sentence-level phrase structure rules: NP 184 

(noun phrase), VP (verb phrase), PP (preposition phrase), and SBAR (clause introduced by a subordinating 185 

conjunction such as that, where, and when); (2) the length of the whole sentence; (3) the heights of the constituency 186 

trees for each fragment labeled with NP, VP, PP, or SBAR; and (4) the height of the entire constituency tree. These 187 

features were chosen for two reasons. First, the constituency tree consists of nested linguistic constituents that 188 

represent the syntactic structure of a sentence fragment (Jurafsky and Martin 2014). The higher the constituency tree, 189 

the more nested the syntactic structures of the sentence fragment. Second, the longer the sentence and sentence 190 
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fragments, the more syntactic information contained in the sentence fragment. The more nested the structure of the 191 

sentence fragment and the more information it contains, the more complex the fragment. 192 

The four features are: (1) complexity of NP; (2) complexity of VP; (3) complexity of PP or SBAR, whichever is 193 

higher (because both have similar functions, i.e., to represent modification or adjunct meanings of the sentence); and 194 

(4) complexity of the whole sentence. The feature values are computed as per Eqs. (1) to (3), where SPC is NP, VP, 195 

PP, or SBAR; 𝑙𝑖 is the length of the phrase or clause 𝑖; ℎ𝑗 is the height of the constituency tree of the phrase or 196 

clause 𝑗; F is the set of all the phrases or clauses labeled with SPC; L is the length of the whole sentence S; and H is 197 

the height of the constituency tree of the whole sentence. 198 

𝐶𝑜𝑚𝑝𝑙𝑒𝑥𝑖𝑡𝑦 𝑜𝑓 𝑆𝑃𝐶 =  √max
𝑖 ∈ 𝐹

𝑙𝑖 × max
 𝑗 ∈ 𝐹

ℎ𝑗      (1) 199 

𝐶𝑜𝑚𝑝𝑙𝑒𝑥𝑖𝑡𝑦 𝑜𝑓 𝑃𝑃/𝑆𝐵𝐴𝑅 = max(𝐶𝑜𝑚𝑝𝑙𝑒𝑥𝑖𝑡𝑦 𝑜𝑓 𝑃𝑃, 𝐶𝑜𝑚𝑝𝑙𝑒𝑥𝑖𝑡𝑦 𝑜𝑓 𝑆𝐵𝐴𝑅)    (2) 200 

𝐶𝑜𝑚𝑝𝑙𝑒𝑥𝑖𝑡𝑦 𝑜𝑓 𝑆 =  √𝐿 × 𝐻     (3) 201 

Semantic Features 202 

Four semantic features are proposed for representing the complexity of the semantic structures of building-code 203 

requirement sentences. Three steps were used for feature identification: feature analysis, selection, and synthesis. 204 

First, the essential and secondary semantic information element (SIE) features were analyzed. Table 1 shows all the 205 

semantic information elements covered in this analysis. Essential SIEs are usually necessary for defining a 206 

quantitative requirement, such as subject, compliance checking attribute, deontic operator indicator, comparative 207 

relation, quantitative relation, quantity value, and quantity unit (Zhang and El-Gohary 2015). The more essential 208 

SIEs in a sentence, the higher the computability of the sentence, and vice versa. Secondary SIEs are not essential but 209 

may exist in defining a quantitative or qualitative requirement, usually adding complexity to the sentence, such as 210 

restrictions (e.g., a  subject restriction places a constraint on the definition of the subject) and references. The less 211 

secondary SIEs in a sentence, the higher the computability of the sentence, and vice versa. Second, low-variance 212 

features were removed because they are non-discriminative. The feature analysis showed that most of the 213 

requirement sentences (i.e., over 95%) have subjects and deontic operator indicators; and, thus, these two features 214 

were removed. Third, high-covariance features were synthesized into one feature to improve the sentence type 215 

characterization. Based on the feature analysis, the following four high co-variance features were synthesized into 216 

one (called quantitative semantic information): comparative relation, quantitative relation, quantity value, and 217 
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quantity unit. Accordingly, the final four semantic features are: presence (binary value) of compliance checking 218 

attribute, quantitative semantic information, restriction, and reference. 219 

Metrics for Building-Code Computability Analysis and Typing 220 

Syntactic Complexity 221 

The syntactic complexity metric aims to measure the complexity of the syntactic structures of sentences in a cluster 222 

of requirement sentences, in terms of the aforementioned syntactic features. The syntactic complexity is computed 223 

based on the average feature values of the complexity of NP, VP, PP/SBAR, and S (denoted as 𝑁𝑃̅̅ ̅̅ , 𝑉𝑃̅̅ ̅̅ , 𝑃𝑃/𝑆𝐵𝐴𝑅̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅, 224 

and 𝑆̅), as per Eqs. (4) and (5), where SCC is the syntactic cluster complexity before normalization, and minSCC 225 

and maxSCC are the minimum and maximum SCCs among all the clusters, respectively. Eq. (4) assigns more 226 

weight to the complexity of the whole sentence (i.e., the S feature). The complexity ranges from 0 to 1, where 0 227 

represents minimum syntactic complexity and 1 represents maximum syntactic complexity. The lower the syntactic 228 

complexity of a cluster, the less complex the syntactic structures of the sentences in the cluster, and vice versa.  229 

Syntactic cluster complexity (before normalization) = SCC =  
1

2
 (

𝑁𝑃̅̅ ̅̅ + 𝑉𝑃̅̅ ̅̅ + 𝑃𝑃/𝑆𝐵𝐴𝑅̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅

3
+ 𝑆̅)   (4) 230 

Syntactic cluster complexity =  
𝑆𝐶𝐶 − 𝑚𝑖𝑛𝑆𝐶𝐶

𝑚𝑎𝑥𝑆𝐶𝐶 − 𝑚𝑖𝑛𝑆𝐶𝐶
    (5) 231 

Semantic Complexity 232 

The semantic complexity metric aims to measure the complexity of the semantic structures of sentences in a cluster 233 

of requirement sentences, in terms of the aforementioned semantic features. The semantic complexity of a corpus is 234 

impacted by two factors, as per Eq. (6): the essential semantic information (ESI) absence factor and the secondary 235 

semantic information (SSI) presence factor. The absence of ESI (i.e., compliance checking attribute or quantitative 236 

semantic information) and the presence of SSI (i.e., restrictions or references) increase semantic complexity and 237 

decrease computability, as per Eq. (6). The ESI absence factor is calculated as per Eq. (7), where E is the percentage 238 

of sentences in the corpus that have missing ESI. The SSI presence factor is calculated as per Eq. (8), where RS is 239 

the percentage of sentences in the cluster that have restrictions and RF is the percentage of sentences in the cluster 240 

that have references. Eq. (6) assigns more weight to the SSI presence factor, because the presence of SSI creates 241 

more semantic complexity than the absence of ESI. Eq. (8) similarly assigns more weight to restrictions because 242 

they create more complexity compared to references. Semantic cluster complexity ranges from 0 to 1, where 0 243 
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represents minimum semantic complexity (i.e., all sentences in the cluster have no missing ESI and no SSI) and 1 244 

represents maximum semantic complexity (i.e., all sentences in the cluster have both types of SSI – restrictions and 245 

references – and miss at least one type of ESI). The semantic feature analysis was performed using the information 246 

extraction and transformation rules (Zhang and El-Gohary 2013). The lower the semantic complexity of a cluster, 247 

the less complex the semantic structures of the sentences in the cluster, and vice versa.  248 

Semantic cluster complexity =
1

3
× 𝐸𝑆𝐼 𝑎𝑏𝑠𝑒𝑛𝑐𝑒 𝑓𝑎𝑐𝑡𝑜𝑟 +

2

3
× 𝑆𝑆𝐼 𝑝𝑟𝑒𝑠𝑒𝑛𝑐𝑒 𝑓𝑎𝑐𝑡𝑜𝑟    (6) 249 

ESI absence factor = 𝐸    (7) 250 

SSI presence factor =
4

7
× 𝑅𝑆 +

3

7
× 𝑅𝐹    (8) 251 

Computability 252 

The computability metric aims to measure the ability of requirement sentences to be represented, processed, and 253 

checked by ACC methods and systems based on their syntactic and semantic structures. The computability was 254 

computed based on the syntactic and semantic complexity metrics, as per Eq. (9), where computability is 1 minus 255 

the average of the two metrics. It ranges from 0 to 1, where 0 represents minimum computability and 1 represents 256 

maximum computability.  257 

Cluster computabiliy = 1 − (
1

2
× 𝑆𝑦𝑛𝑡𝑎𝑐𝑡𝑖𝑐 𝑐𝑙𝑢𝑠𝑡𝑒𝑟 𝑐𝑜𝑚𝑝𝑙𝑒𝑥𝑖𝑡𝑦 +

1

2
× 𝑆𝑒𝑚𝑎𝑛𝑡𝑖𝑐 𝑐𝑙𝑢𝑠𝑡𝑒𝑟 𝑐𝑜𝑚𝑝𝑙𝑒𝑥𝑖𝑡𝑦)     (9) 258 

Methodology for Clustering-based Building-Code Computability Analysis and Typing 259 

 A methodology for analyzing the computability of building codes and identifying the types of sentences, using the 260 

proposed features and metrics, was proposed and implemented on a corpus of sentences. The methodology included 261 

five primary steps, as illustrated in Fig. 2: data preprocessing, first-level clustering, subclustering, computability 262 

analysis and sentence-typing, and evaluation. 263 

Data Preprocessing 264 

A total of 6,608 sentences were randomly selected from the IBC 2009 and the 2015 IBC Amendment of the City of 265 

Champaign. Three steps were conducted for data preparation. First, different formats (e.g., PDF and HTML) were 266 

converted into TXT format. Second, the text was split into sentences and non-sentence fragments (e.g., requirement 267 

titles) based on punctuations and requirement indices, using the Natural Language Processing Tool Kit (NLTK) 268 

(Bird et al. 2009), and the non-sentence fragments were removed. Third, the special symbols were removed. Three 269 
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NLP techniques were used for data preprocessing: tokenization, POS tagging, and constituency parsing. 270 

Tokenization aims to split a sentence into units (e.g., words and punctuations). POS tagging and constituency 271 

parsing aim to analyze the syntax of a sentence in multiple levels (e.g., sentence, phrase, and word levels) (Jurafsky 272 

and Martin 2014). The NLTK was used for tokenization. The Stanford CoreNLP (Manning et al. 2014), built in 273 

python, was used for POS tagging and parsing. The tokenized text, and the corresponding POS tags and 274 

constituency parsing trees, were further used to generate the syntactic and semantic features. 275 

First-level Clustering 276 

First-level clustering aimed to cluster the sentences according to their syntactic and semantic-structure similarities, 277 

using the proposed syntactic and semantic features. The hierarchical clustering consisted of three steps: distance 278 

calculation, hierarchical clustering, and determining the number of clusters. First, the pairwise Euclidean distances 279 

of the sentences were calculated using the feature values, in order to measure the syntactic and semantic similarities 280 

between pairs of sentences. Second, different methods for hierarchical clustering analysis were tested and compared, 281 

including simple, complete, average, McQuitty, median, centroid, and Ward’s (Aggarwal and Zhai 2012). They 282 

were also compared with two other commonly used distance-based clustering methods as baselines: k-means 283 

(Arthur and Vassilvitskii 2006) and partition around medians (PAM) (Kaufman and Rousseeuw 2009). Third, to 284 

determine the optimal number of clusters, the elbow rule was adopted, which means that a specific number of 285 

clusters is optimal when the addition of more clusters results in only marginal improvement – which can be seen as 286 

an elbow-like shape in the plot of percentage of variance explained by the clusters (Ketchen and Shook 1996).  287 

Subclustering 288 

Subclustering aimed to further decompose the clusters that have low average silhouette coefficients into granular 289 

clusters that are different from each other in terms of their constituent-level features such as the frequencies of 290 

phrase structure rules and POS tags. This is because the low coefficient values indicate that the clusters are not well 291 

represented by the features used in the first-level clustering and thus need additional features to better characterize 292 

them for the purpose of sentence typing. The following constituent-level features were used: (1) the frequency of 293 

each POS tag; (2) the frequency of each bigram of POS tags, which are pairs of two consecutive POS tags; and (3) 294 

the frequency of each phrase structure rule. To penalize the common features (which are not discriminative across 295 

different clusters) and to promote the discriminative features (which contribute to clustering), the raw features were 296 
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weighted using the TF–IDF weighting scheme. Eqs. (10) and (11) (Salton and Buckley 1988) were used, where 𝑓 is 297 

the frequency of bigrams of POS tags or phrase structure rules, 𝑁 is the total number of sentences, and 𝑛 is the 298 

number of sentences that contain a specific feature.  299 

Augmented normalized term frequency = 0.5 + 0.5
𝑓

𝑚𝑎𝑥𝑓
    (10) 300 

Inverse document frequency = 𝑙𝑜𝑔
𝑁

𝑛
    (11) 301 

Two feature analyses were conducted empirically to identify the discriminative features, including leave-one-out 302 

feature analysis and feature combination analysis. The local learning algorithm by Yao et al. (2015) was used for 303 

feature selection to deal with high dimensionality for finding meaningful clusters. This algorithm aims to find a 304 

subset of features that makes the sum of the distances between each datum and its nearest datum small, and 305 

maximizes the sum of the average distances of each datum to all other data (Yao et al. 2015). The output of the 306 

algorithm – the weights of features – was used to compute the weighted feature values. The hierarchical clustering 307 

steps were similar to those used in first-level clustering. 308 

Cluster Computability Analysis and Sentence Typing 309 

Three steps were conducted to analyze the computability of the sentence clusters: cluster representation, analysis of 310 

the syntactic and semantic complexities and computability of the clusters, and cluster characterization. First, each 311 

cluster was represented by the average feature values (the four syntactic and four semantic features) of the sentences 312 

in the clusters. Second, the complexity and computability metrics of the clusters were computed using the average 313 

feature values [as per Eqs. (4) to (9)]. Third, the clusters were characterized to better describe and compare the 314 

clusters – and thus the sentence types. The average feature values, syntactic and semantic complexity values, and 315 

cluster computability values were discretized based on their quartile and median values (Dougherty 1995). 316 

Discretization groups a number of continuous values into a smaller number of “bins”. A scale of 1 to 6 was then 317 

used to represent the level of complexity (very simple to very complex) and computability (very low to very high), 318 

as per Table 2. Subclusters were first characterized in the same way as their parent clusters, then additionally 319 

characterized using their constituent-level features. The level of computability of the children clusters was adjusted 320 

accordingly. 321 
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Sentence types were then identified and characterized based on the clusters – assuming each cluster (or subcluster) 322 

has only one sentence type. Each sentence type was described with a name, a description, and an example sentence. 323 

Three steps were conducted to identify and characterize the sentence types: (1) for each cluster, a name that reflects 324 

the characteristics of the sentence type was selected. For example, a type with high syntactic cluster complexity, one 325 

or more restrictions, one or more references, and no quantitative semantic information, was named “complex, 326 

qualitative, restricted, and with references”; (2) each identified sentence type was briefly described in terms of its 327 

syntactic and semantic characterization, computability level, and relation to other types, if any; and (3) for each 328 

cluster, an example sentence was selected to illustrate the sentence type and its characteristics. 329 

Evaluation of Clustering and Sentence Types 330 

Intrinsic Evaluation 331 

Intrinsic evaluation aims to evaluate the sentence clusters by calculating and comparing the quality metrics that 332 

describe intra-cluster and inter-cluster similarities (Manning et al. 2008). Two intrinsic metrics were used for both 333 

first-level clustering and subclustering: average silhouette coefficient and cophenetic coefficient. The average 334 

silhouette coefficient (Rousseeuw 1987) was used to measure the performance of all clustering algorithms. It is the 335 

average of the silhouette coefficients of all the sentences in a dataset or a cluster. The silhouette coefficient 𝑠(𝑖) of a 336 

sentence 𝑖 is defined as per Eq. (12), where 𝑎(𝑖) is the average difference between sentence 𝑖 and the other sentences 337 

in the same cluster and 𝑏(𝑖) is the lowest average difference between 𝑖 and the other clusters. The coefficient ranges 338 

from -1 to 1, where a value near 1 indicates that the sentence is far from the neighboring clusters, 0 indicates that the 339 

sentence lies on the boundary between two or more clusters, and a negative value indicates that the sentence might 340 

be assigned to a wrong cluster. A coefficient between 0 and 0.2 indicates poor clustering, between 0.2 and 0.5 fair 341 

clustering, and higher than 0.5 good clustering (Sarstedt and Mooi 2014). When all the sentences in a cluster have 342 

significantly below-average silhouette coefficients, this indicates that the cluster might need to be further 343 

subclustered. 344 

𝑠(𝑖) =
𝑏(𝑖) − 𝑎(𝑖)

𝑚𝑎𝑥 {𝑎(𝑖), 𝑏(𝑖)}
    (12) 345 

The cophenetic coefficient (Sneath and Sokal 1973) was calculated to justify the choice of the hierarchical clustering 346 

method. It shows how well a dendrogram generated by the hierarchical clustering process preserves the pairwise 347 

distances of the original data. It is defined as per Eq. (13), where 𝑌𝑖𝑗  is the difference between sentences i and j, 𝑍𝑖𝑗 348 
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is the height of the node in the dendrogram at which sentences i and j are first combined into one group, 𝑦̅ is the 349 

average of all 𝑌𝑖𝑗 , and 𝑧̅ is the average of all 𝑍𝑖𝑗. The cophenetic coefficient ranges from 0 to 1, with 1 indicating that 350 

the dendrogram perfectly reflects the pairwise distances of the original dataset and thus the dataset is suitable for 351 

hierarchical clustering, and 0 indicating the opposite (Sneath and Sokal 1973). 352 

𝑐 =
∑ (𝑌𝑖𝑗 − 𝑦̅)(𝑍𝑖𝑗 − 𝑧̅)𝑖<𝑗

√∑ (𝑌𝑖𝑗 − 𝑦̅)2
𝑖<𝑗 ∑ (𝑍𝑖𝑗 − 𝑧̅)2

𝑖<𝑗

     (13) 353 

Extrinsic Evaluation 354 

Extrinsic evaluation, here, aims to evaluate the identified sentence types using human expert judgement (Manning et 355 

al. 2008). Five participants – the first author and four experts including two from academia (faculty) and two from 356 

industry – conducted the extrinsic evaluation. The participants manually identified building-code sentence types 357 

from a set of testing sentences and assigned the testing sentences to these types; and the human-generated sentence 358 

types and assignments were compared to the computer-generated types and assignments. Purposive sampling 359 

strategy was adopted for selecting the participating experts. Purposive sampling aims to pinpoint a specific type of 360 

participants according to predefined selection criteria (Clark and Creswell 2008). Three main selection criteria were 361 

defined: (1) expertise in the AEC domain; (2) familiarity with building codes and compliance checking processes; 362 

and (3) awareness of natural language processing and text analytics techniques. The authors used purposive 363 

sampling because (1) it is suitable for small specialized populations (e.g., experts) (Etikan et al. 2016); and (2) it 364 

enables obtaining information from a concentrated, carefully selected sample (Clark and Creswell 2008). Expert 365 

evaluation of knowledge discovery processes has been commonly conducted with a small purposively sampled set 366 

of participants [e.g., seven (El-Diraby and Osman 2011), six (Salama and El-Gohary 2013), five (Jin 2010), and four 367 

(Alashwal and Abdul-Rahman 2014)].  368 

The evaluation process consisted of three stages: testing dataset preparation, testing sentence typing, and human-369 

computer agreement assessment. To develop a testing dataset, a sample of 160 sentences were randomly selected 370 

from the 6,608 sentences. The sentences were sampled from the whole dataset (excluding the example sentences 371 

selected to illustrate the identified sentence types) following a stratified sampling strategy (Särndal et al. 2003), i.e., 372 

the sentences were sampled from each of the clusters, where the sample sizes are proportional to the cluster sizes.  373 
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The manual typing aimed to group testing sentences using two steps: identifying building-code sentence types 374 

(based on computability and syntactic and semantic features) and assigning testing sentences to these types. Detailed 375 

guidelines for the typing were provided and explained, including (1) the definition of computability and the set of 376 

syntactic and semantic features; (2) example building-code sentences, with their computability and syntactic and 377 

semantic features explained; and (3) a template of how a type should be described (e.g., very simple, quantitative, 378 

unrestricted, with no references). The participants repeated the sentence type identification and assignment steps 379 

until the following two terminating criteria were met: (1) each testing sentence has been assigned to a human-380 

identified type; and (2) no new types are identified.  381 

The agreement between the human- and computer-identified types was assessed using Jaccard Index (Agresti 2003), 382 

as per Eq. (14), where H is the collection of types identified by the human evaluators and C is the collection of types 383 

identified by the computer. A Jaccard Index of 1 indicates that the human evaluators and the computer identify the 384 

same set of types. The agreement between the human- and computer-assignments of sentences to the types was 385 

assessed using percentage of agreement (Hallgren 2012). The percentage of agreement is defined as the percent 386 

value of the ratio of the number of testing sentences that were assigned to the same type by the human evaluators 387 

and the computer, to the total number of testing sentences. A percentage of agreement close to 1 indicates that there 388 

is a very good alignment between the human- and computer-assignment of sentences (Stemler 2004). Fig. 3 389 

illustrates the entire extrinsic evaluation process. 390 

Jaccard =
|𝐻 ∩ 𝐶| 

|𝐻 ∪ 𝐶| 
  (14)   391 

Application-oriented Evaluation 392 

This type of extrinsic evaluation aims to further evaluate the identified sentence types using an application-oriented 393 

way. The evaluation method uses a testing dataset (set of building-code sentences) in an ACC application (here 394 

regulatory information extraction) and then assess if the different types of sentences will be associated with different 395 

levels of computability. Regulatory information extraction aims to automatically extract computable information 396 

from natural-language building codes (Zhang and El-Gohary 2013, Li et al. 2016, Zhou and El-Gohary 2017, Zhong 397 

et al. 2020). The hypothesis is that sentence types with high computability will have significantly higher information 398 

extraction performance than those types with low computability (using existing ACC systems which are currently 399 

still limited in dealing with complex types).  400 
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The evaluation consisted of three stages: testing dataset preparation, information extraction from testing sentences, 401 

and information extraction performance assessment. To develop a testing dataset (different from the one used in 402 

prior evaluation), a sample of 60 sentences were selected from the 6,608 sentences; five sentences were randomly 403 

sampled from each of the twelve sentence types. The machine learning-based method by Zhang and El-Gohary 404 

(2020) was used for information extraction. Accordingly, the nine types of SIEs (see Table 1) were extracted from 405 

the testing sentences. To assess the information extraction performance, three metrics were used: precision, recall, 406 

and F1-measure, as shown in Eqs. (15) to (17), where for a specific type of SIE, TP is the number of true positives 407 

(i.e., number of SIE instances correctly extracted), FP is the number of false positives (i.e., number of SIE instances 408 

incorrectly extracted), and FN is the number of false negatives (i.e., number of SIE instances not extracted but 409 

should have been) (Zhai and Massung 2016).  410 

Precision =
𝑇𝑃 

𝑇𝑃 + 𝐹𝑃 
  (15)   411 

Recall =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
   (16) 412 

F1-measure = 2 ×
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 × 𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙
  (17) 413 

Experimental Results and Discussion 414 

Results of Cluster Computability Analysis and Sentence Types 415 

Table 3 summarizes the characteristics and computability analysis of all the clusters that resulted from the first-level 416 

clustering, including the syntactic features (i.e., complexity of NP, VP, PP/SBAR, and S), semantic features (i.e., 417 

presence of compliance checking attribute, quantitative semantic information, reference, and restriction), syntactic 418 

and semantic cluster complexity metrics, and cluster computability metric. Table 4 shows the features of the 419 

children clusters that resulted from the subclustering, the feature interpretations, and the computability comparison 420 

to their sibling clusters. 421 

Based on the clusters, a total of twelve types of sentences were identified. The following list shows the different 422 

types of sentences and their descriptions, which were identified based on the cluster characterization and 423 

computability analysis. Table 5 shows an example sentence for each type, as well as the sentence type frequencies 424 

(i.e., percentages of the sentence types in the experimental dataset) and their computability levels. Sentences that 425 

belong to the same type have similar – but not identical – levels of syntactic and semantic complexities and 426 
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computability. For example, although sentences that belong to the same type share similar NP, VP, PP/SBAR, and S 427 

complexities and similar semantic information elements, they are likely to have different sentence lengths. The 428 

identified types and their computability levels should thus be taken as a guide, and not as an exact measure. 429 

Sentence types that are more similar to each other in terms of their syntactic and semantic features compared to 430 

other types such as those that belong to the same parent cluster, were numbered as sibling types (e.g., Type 1.1 and 431 

Type 1.2).  432 

• Type 1.1 (very simple, quantitative, unrestricted, with no references): The sentences have very simple structures, 433 

with simple NP, VP, and very simple PP/SBAR. They have no missing ESI (i.e., compliance checking attribute 434 

and quantitative semantic information), and have no SSI (i.e., restriction and reference). They cover quantitative 435 

requirements. They can be represented/coded in many of the existing ACC systems. Type 1.1 corresponds to 436 

Cluster 1.1.  437 

• Type 1.2 (simple, quantitative, unrestricted, with no references): Similar to Type 1.1. But, compared to Type 1.1 438 

sentences, Type 1.2 sentences are more complex syntactically (e.g., including more preposition phrases and/or 439 

conjunctions) and semantically (e.g., including multiple requirements). Type 1.2 corresponds to Cluster 1.2. 440 

• Type 2 (very simple, qualitative, unrestricted, with no references): The sentences have very simple structures, 441 

with very simple NP, VP and PP/SBAR. They have missing ESI, from both types (i.e., compliance checking 442 

attribute and quantitative semantic information), but have no SSI (i.e., restriction and reference). They cover 443 

qualitative requirements. Type 2 corresponds to Cluster 2. 444 

• Type 3.1 (simple, descriptive, unrestricted, with references): The sentences have simple structures, with very 445 

simple NP and PP/SBAR, and simple VP. They have missing ESI, from both types (i.e., compliance checking 446 

attribute and quantitative semantic information), and have one type of SSI (i.e., reference). Most of the 447 

sentences function as general descriptions or references to other sections/codes. Type 3.1 corresponds to Cluster 448 

3. 449 

• Type 3.2 (moderately simple, descriptive, unrestricted, with references): The sentences have moderately simple 450 

structures, with very simple PP/SBAR, and moderately simple NP and VP. They have one type of ESI (i.e., 451 

quantitative semantic information) missing, and have one type of SSI (i.e., reference). Most of the sentences 452 

function similar to Type 3.1 sentences, as general descriptions or references to other sections/codes, but are 453 

more complex both syntactically and semantically. Type 3.2 corresponds to Cluster 4. 454 
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• Type 4.1 (moderately complex, quantitative, restricted, with no references): The sentences have moderately 455 

complex to complex structures, with moderately complex NP, and complex VP and PP/SBAR. The sentences 456 

are likely to have one or more clauses of different types (e.g., SBAR). The sentences have no missing ESI (i.e., 457 

compliance checking attribute and quantitative semantic information), but have one type of SSI (i.e., restriction), 458 

which might be in the VP and/or PP/SBAR. Most of the sentences are quantitative and function similar to Type 459 

1 sentences, but are much more complex both syntactically and semantically, mostly due to the restrictions. 460 

Type 4.1 corresponds to Cluster 5.1. 461 

• Type 4.2 (complex, quantitative, restricted, with no references): Similar to Type 4.1. But, compared to Type 4.1 462 

sentences, Type 4.2 sentences are more complex syntactically (e.g., including more noun phrases) and 463 

semantically (e.g., including both restrictions and multiple requirements). Type 4.2 corresponds to Cluster 5.2. 464 

• Type 5.1 (moderately complex, qualitative, restricted, with no references): The sentences have moderately 465 

complex structures, with simple PP/SBAR, moderately simple NP, but moderately complex VP. They have 466 

missing ESI, from both types (i.e., compliance checking attribute and quantitative semantic information), and 467 

have one type of SSI (i.e., restriction), which might be in the VP and/or PP/SBAR. Most of the sentences are 468 

qualitative and function similar to Type 2 sentences, but are more complex both syntactically and semantically, 469 

mostly due to restrictions. Type 5.1 corresponds to Cluster 6. 470 

• Type 5.2 (moderately complex, descriptive, restricted, with references): The sentences have moderately 471 

complex structures, with simple PP/SBAR, but moderately complex NP and VP. They have missing ESI, from 472 

both types (i.e., compliance checking attribute and quantitative semantic information), and have both types of 473 

SSI (i.e., reference and restriction), which might be in the NP, VP, and/or PP/SBAR. Most of the sentences 474 

function similar to Type 3.2 sentences, as descriptions/definitions, but are more complex both syntactically and 475 

semantically, mostly due to restrictions. Most of the sentences are syntactically similar to those in Type 5.1, but 476 

include references. Type 5.2 corresponds to Cluster 7. 477 

• Type 6.1 (complex, quantitative, restricted, with references): The sentences have very complex structures, with 478 

complex NP and very complex VP and PP/SBAR. They are likely to have one or more clauses of different types 479 

(e.g., SBAR). They have no missing ESI (i.e., compliance checking attribute and quantitative semantic 480 

information), but have both types of SSI (i.e., reference and restriction), which might be in the NP and 481 
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PP/SBAR. Most of the sentences are quantitative and function similar to Type 4 sentences, but are more 482 

complex both syntactically and semantically. Type 6.1 corresponds to Cluster 8.1. 483 

• Type 6.2 (very complex, quantitative, restricted, with references): Similar to Type 6.1. But, compared to Type 484 

6.1 sentences, Type 6.2 sentences are more complex syntactically (e.g., including long and nested noun phrases) 485 

and semantically (e.g., using complex, or even ambiguous, descriptions). Type 6.2 corresponds to Cluster 8.2. 486 

• Type 7 (complex, descriptive, restricted, with references): The sentences have complex structures, with 487 

moderately complex VP, and very complex NP and PP/SBAR. The sentences are likely to have one or more 488 

clauses of different types (e.g., SBAR). They have one type of ESI (i.e., quantitative semantic information) 489 

missing, and have both types of SSI (i.e., restriction and reference), which might be in the NP, VP, and/or 490 

PP/SBAR. Most of the sentences function similar to Type 5.2 sentences, as descriptions/definitions and 491 

references to other sections/codes, but are more complex syntactically. Type 7 corresponds to Cluster 9. 492 

The identified sentence types can be further used to characterize existing ACC methods/systems, in terms of which 493 

sentence types they can process and/or represent. For example, ACC methods/systems that can represent sentences 494 

of Types 1.1 and 1.2 and some of the sentences of Types 4.1 and 4.2 (e.g., Solibri Model Checker) are able to cover 495 

sentences (1) with very simple to moderately complex structures, and (2) with no missing ESI and with no or simple 496 

SSI. These methods/systems have medium levels of coverage capabilities because the types they can represent have 497 

a maximum level of medium computability. ACC methods/systems that can represent sentences of Types 1.1, 1.2, 498 

4.1, 4.2, and 6.1 and 6.2 [e.g., the SNACC system (Zhang and El-Gohary 2017b)] are able to cover sentences (1) 499 

with very complex structures, and (2) with no missing ESI, but with SSI. These methods/systems have higher levels 500 

of coverage capabilities because the types they can represent range from very high to very low level of 501 

computability.   502 

Results of Intrinsic Evaluation 503 

Table 6 summarizes the performance results for the tested clustering algorithms. For first-level clustering, the 504 

Ward’s hierarchical clustering analysis method performed the best in terms of average silhouette coefficient, and 505 

was therefore selected. Fig. 4 shows the plot of the percentage of variance explained by the clusters. Based on the 506 

plot, nine was chosen as the optimal number of clusters according to the elbow rule. The average silhouette 507 

coefficient is 0.742, which indicates good clustering performance. The cophenetic coefficient of the whole dataset is 508 
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0.852, which indicates that the dendrogram that is generated by the hierarchical clustering algorithm reflects the 509 

pairwise distances of the sentences well. According to the silhouette coefficient plot (Fig. 5), the coefficients of 510 

Clusters 5 and 8 are lower than the coefficient of the whole dataset; and, thus, the two clusters were subclustered. 511 

Cluster 1 was additionally subclustered for the purpose of finding the simplest quantitative sentence type, which can 512 

be represented and processed by all ACC systems.  513 

For subclustering, the centroid and McQuitty methods performed the best for Clusters 5 and 8, respectively; and the 514 

complete, McQuitty, and Ward’s methods, as well as the PAM, performed equally well for Cluster 1. It is likely that 515 

multiple clustering algorithms were optimal because of the small size of Cluster 1. The average silhouette 516 

coefficients of Clusters 1, 5, and 8 after subclustering are 0.674, 0.661, and 0.515, respectively, indicating good 517 

performance. The cophenetic coefficients of Clusters 1, 5, and 8 after subclustering are 0.747, 0.809, and 0.724, 518 

respectively, indicating that the dendrograms generated by the hierarchical clustering algorithms reflect the pairwise 519 

distances of the sentences in each of the three clusters well.  520 

Feature selection and synthesis improved the clustering performance, as shown in Table 7. For first-level clustering, 521 

feature selection and synthesis increased the average silhouette coefficient from 0.183 to 0.742, compared to the 522 

initial features. For subclustering, TF-IDF weighting and the local learning feature selection and weighting increased 523 

the average silhouette coefficient by an average of 0.376. 524 

Results of Extrinsic Evaluation 525 

The external evaluation results showed a Jaccard Index of 1, which indicates perfect alignment between the human- 526 

and computer-identified types. The results also showed a percentage of agreement of 80%, which indicates good 527 

alignment between the human- and computer-assignments of sentences to the types (Stemler 2004). An analysis of 528 

the results showed two main sources of disagreement in the assignments. First, like features used in any other text 529 

analytics or clustering task, the features used in the sentence clustering contained errors. No existing NLP 530 

algorithm/tool can achieve 100% performance, especially for relatively complex tasks such as constituency parsing. 531 

For example, PP is subject to attachment errors in constituency parsing (Jurafsky and Martin 2014), mistaking the 532 

sentence-level phrase structure rule “S→NP VP PP” as “S→NP VP” and thus causing wrong feature values for 533 

complexity of PP. Errors in constituency parsing may also cause errors in SIE extraction, and thus lead to wrong 534 
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semantic feature values. Second, some sentences that are far from the cluster centers, lying on the boundary between 535 

two or more adjacent clusters, were misclustered. 536 

Results of Application-oriented Evaluation 537 

Table 8 summarizes the results of the application-oriented evaluation. As shown, sentence types with very high or 538 

high computability (i.e., Types 1.1, 1.2, and 2) achieved relatively higher information extraction performance 539 

(i.e., >= 95% precision, recall, and F1-measure) than types with low or very low computability (i.e., Types 6.1, 6.2, 540 

and 7, which achieved <= 80% precision, recall, and F1-measure). This proves the stated hypothesis (see 541 

“Application-oriented Evaluation” subsection). 542 

Limitations 543 

Two limitations of the experiments are acknowledged. First, the testing corpus, although large in scale, is based on 544 

only IBC and IBC variations/amendments. In future work, the authors plan to analyze the computability of other 545 

building codes and standards that have been covered by existing ACC systems (e.g., International Energy 546 

Conservation Code) using the proposed features and metrics and following the clustering-based approach. Second, 547 

in the application-oriented evaluation, the proposed features and metrics, and the identified types, were only tested 548 

in one ACC task (i.e., regulatory information extraction) and using one method/tool. In future work, the authors plan 549 

to test the features and metrics in other ACC tasks (e.g., rule representation) and using different methods/tools (e.g., 550 

mvdXML, visual programming languages, and query languages).  551 

Contribution to the Body of Knowledge 552 

This paper contributes to the body of knowledge on three main levels. From the perspective of building-code 553 

analytics, first, the paper proposes a set of features that capture the syntactic and semantic structural complexity of 554 

requirement sentences. Second, it proposes a number of complexity and computability metrics to support the 555 

analysis of code computability. Third, it uses clustering to identify and characterize the different types of 556 

requirements based on these features and metrics. The experimental results show that the proposed features and 557 

metrics, along with the clustering-based methodology, were able to support the discovery of sentence types, the 558 

analysis of their characteristics, and the assessment of their computability. The proposed features and metrics could 559 

also be used to assess and compare the capabilities of different ACC systems and methods in a measurable and 560 

consistent manner.  561 
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Second, from a practical perspective, the paper identifies different types of sentences in the building code, in terms 562 

of their syntactic and semantic features and levels of computability. The knowledge of such sentence types could 563 

help guide the use and development of ACC methods/systems in three directions. First, it could help us better 564 

characterize existing ACC methods/systems, in terms of which sentence types they can process and/or represent. 565 

Second, it could help users select the right ACC system for the application at hand. Third, it could help us better 566 

understand the different types of sentences in the code and their characteristics as we embark on developing new 567 

ACC methods/systems or extending the capabilities of existing ones. For example, it could help us set the research 568 

agenda for smart code analytics and ACC, starting from the less complex and more computable sentences and 569 

moving up to the more complex and less computable ones.  570 

Third, from a clustering perspective, this paper provides a comparison of different clustering algorithms and analysis 571 

methods, in the context of building-code analytics and sentence-type identification. The experiment results show 572 

that hierarchical clustering algorithms outperformed other distance-based clustering algorithms. The best method for 573 

hierarchical clustering analysis varied for different clustering problems. For example, for first-level clustering, the 574 

Ward’s method outperformed the other methods. 575 

Conclusions and Future Work 576 

In this paper, a clustering-based approach for building-code computability analysis was used. A set of computability 577 

features, including both syntactic and semantic features, were proposed and used for characterizing and clustering 578 

the code sentences. The syntactic features represent the complexity of the syntactic structure of a sentence by 579 

capturing the syntactic lengths of the phrases, clauses, and sentence and the syntactic heights of the constituency 580 

trees corresponding to the sentence fragments. The semantic features are features indicating the semantic meaning, 581 

content, structure, and complexity of a requirement, including presence of compliance checking attribute, 582 

quantitative requirement descriptions, restrictions on concepts/requirements, references to other sections/codes, etc. 583 

A number of computability metrics were also proposed to analyze the syntactic and semantic complexities and 584 

computability of the sentence clusters: syntactic cluster complexity, semantic cluster complexity, essential semantic 585 

information (ESI) absence factor, secondary semantic information (SSI) presence factor, and cluster computability. 586 

Clusters with low average silhouette coefficients were subclustered using additional word-level features such as 587 

phrase structure rules and POS tags. The sentence clusters were evaluated intrinsically, based on the average 588 
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silhouette coefficient and cophenetic coefficient; and the identified sentence types were evaluated extrinsically, 589 

using both expert evaluation and application-oriented evaluation.  590 

A total of 6,608 sentences from IBC 2009 and Champaign IBC amendment 2015 were analyzed using the proposed 591 

approach. A total of twelve types and subtypes of sentences were identified, characterized in terms of their 592 

computability features and metrics, and classified into six complexity levels (very low to very high complexity) and 593 

computability levels (very high to very low computability). For example, Type 1.1, which has the lowest complexity 594 

and highest computability, has simple NP and VP, very simple PP/SBAR, has no missing essential semantic 595 

information (ESI), and has no restrictions or references. Type 7, which has the highest complexity and lowest 596 

computability, has moderately complex VP, very complex NP and PP/SBAR, has no quantitative information, and 597 

has both restrictions and references. The distribution of sentence types is nonuniform; and in total, more than 80% of 598 

the sentences are of moderately high to low computability. The intrinsic evaluation results showed an average 599 

silhouette coefficient of 0.742 and a cophenetic coefficient of 0.852 for the first-level clustering. The extrinsic 600 

evaluation indicated perfect (100%) alignment between the human- and computer-identified types and 80% 601 

agreement in the assignment of sentences to the types. It also indicated that sentence types with high computability 602 

showed significantly higher information extraction performance than those types with low computability. 603 

In their future work, the authors plan to improve the proposed approach and leverage the insights about sentence 604 

types in four directions. First, the feature analysis and selection methods could be improved to enhance the 605 

performance of clustering and the comprehensiveness of computability analysis. For example, additional features 606 

such coreferences, implicit meanings, and difficult-to-interpret concepts (e.g., “structural integrity” is more difficult 607 

to interpret than “height”) could be explored. Second, the analysis could be extended to multi-sentence requirements 608 

and to other types of codes or regulatory documents. One sentence could include multiple requirements, while 609 

multiple sentences could jointly express one requirement. The proposed computability features and indicators could 610 

be adapted to analyze multi-sentence requirements. They could also be adapted to analyze other types of codes or 611 

other types of regulatory documents such as contract specifications, which tend to be more complex in terms of 612 

length, sentence structures, exceptions, and conjunctive and alternative obligations, etc. Third, the proposed features 613 

and metrics, along with the identified sentence types, could be used to analyze the capabilities of existing ACC 614 

approaches and tools (e.g., the CORENET ePlanCheck, SMARTcodes, SNACC system), in terms of which types of 615 
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requirements can be processed, represented, and checked, and which not. This could provide a better understanding 616 

of what tools and methods exists and where the practical and knowledge gaps are. Fourth, and most importantly, the 617 

authors will explore how the knowledge of sentence types – and their features, complexities, and computability – 618 

can help pave the path toward smart and computable codes and eventually full automation in code checking and 619 

analysis. As we embark on this endeavor, understanding the types and characteristics of the text we are dealing with 620 

is essential to understanding the problem at hand, breaking it into manageable parts, and tackling each part one by 621 

one. Our ultimate goal is to leverage machine learning and other artificial intelligence approaches to reach a level 622 

where we can automatically process the entire building code and represent it in a computable manner – hopefully 623 

including all types of sentences in the code.   624 
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Tables 780 

Table 1. Semantic Information Elements for Representing Requirements for Compliance Checking Purposes (Zhang 781 
and El-Gohary 2015) 782 
Semantic information element Definition 

Subject An ontology concept representing a thing (e.g., building element) that is subject to a 
particular requirement 

Compliance checking attribute An ontology concept representing a specific characteristic of a “subject” that is checked for 
compliance  

Deontic operator indicator A term/phrase that indicates the deontic type of the requirement (i.e., obligation, permission, 
or prohibition) 

Quantitative relation A term/phrase that defines the type of relation for the quantity (e.g., extend) 

Comparative relation A term/phrase for comparing quantitative values, including “greater than or equal to,” 
“greater than,” “less than or equal to,” “less than,” and “equal to” 

Quantity value A numerical value that defines the quantity 
Quantity unit The unit of measure for a “quantity value” 

Restriction A term/phrase that places a constraint on the “subject,” “compliance checking attribute,” 
“quantity,” or the whole requirement 

Reference A term or phrase that denotes the mention or reference to a chapter, section, document, table, 
or equation in a building-code sentence (e.g., “Section 1312” in “the revolving door shall 
comply with Section 1312”) 

 783 
Table 2. Scales of Syntactic and Semantic Cluster Complexities and Computability 784 
Symbolic representation Scale of syntactic cluster complexity, semantic cluster 

complexity, and syntactic feature complexity Scale of cluster computability 

--- Very simple Very low 
-- Simple Low 
- Moderately simple Moderately low 
+ Moderately complex Moderately high 
++ Complex High 
+++ Very complex Very high 
 785 
Table 3. Cluster Characterization and Computability of First-level Clusters 786 

Cluster 
Syntactic features Syntactic cluster 

complexity 
Semantic features 

E Semantic cluster 
complexity Computability 

NP VP PP/SBAR S A Q Rf Rs 

1 0.11 
(--) 

0.19 
(--) 

0.00 
(---) 

0.12 
(--) 

0.09 
(--) 

1.00 
(+) 

0.98 
(+) 

0.00 
(-) 

0.00 
(-) 

0.00 
(-) 

0.00 
(---) 

0.96 
(+++) 

2 0.09 
(---) 

0.18 
(---) 

0.00 
(---) 

0.10 
(---) 

0.00 
(---) 

0.00 
(-) 

0.00 
(-) 

0.00 
(-) 

0.00 
(-) 

1.00 
(+) 

0.33 
(--) 

0.84 
(++) 

3 0.08 
(---) 

0.20 
(--) 

0.00 
(---) 

0.12 
(--) 

0.05 
(--) 

0.00 
(-) 

0.00 
(-) 

1.00 
(+) 

0.00 
(-) 

1.00 
(+) 

0.61 
(+) 

0.67 
(+) 

4 0.13 
(-) 

0.22 
(-) 

0.00 
(---) 

0.15 
(-) 

0.19 
(-) 

1.00 
(+) 

0.00 
(-) 

1.00 
(+) 

0.00 
(-) 

1.00 
(+) 

0.61 
(+) 

0.60 
(+) 

5 0.15 
(+) 

0.36 
(++) 

0.07 
(++) 

0.31 
(++) 

0.82 
(++) 

1.00 
(+) 

1.00 
(+) 

0.00 
(-) 

1.00 
(+) 

0.00 
(-) 

0.39 
(-) 

0.40 
(-) 

6 0.13 
(-) 

0.30 
(+) 

0.05 
(--) 

0.24 
(+) 

0.56 
(+) 

0.00 
(-) 

0.00 
(-) 

0.00 
(-) 

1.00 
(+) 

1.00 
(+) 

0.72 
(++) 

0.36 
(-) 

7 0.15 
(+) 

0.31 
(+) 

0.05 
(--) 

0.26 
(+) 

0.64 
(+) 

0.00 
(-) 

0.00 
(-) 

1.00 
(+) 

1.00 
(+) 

1.00 
(+) 

1.00 
(+++) 

0.18 
(--) 

8 0.17 
(++) 

0.39 
(+++) 

0.08 
(+++) 

0.35 
(+++) 

1.00 
(+++) 

1.00 
(+) 

1.00 
(+) 

1.00 
(+) 

0.96 
(+) 

0.00 
(-) 

0.65 
(+) 

0.17 
(--) 

9 0.19 
(+++) 

0.32 
(+) 

0.08 
(+++) 

0.29 
(++) 

0.79 
(++) 

1.00 
(+) 

0.00 
(-) 

1.00 
(+) 

1.00 
(+) 

1.00 
(+) 

1.00 
(+++) 

0.10 
(---) 

Note: 1. NP = noun phrase; VP = verb phrase; PP = preposition phrase; SBAR = clause introduced by a subordinating 787 
conjunction; S = whole sentence; A = compliance checking attribute; Q = quantitative semantic information; Rf = reference; Rs = 788 
restriction; E = percentage of sentences in the cluster that have missing essential semantic information. 789 
2. The scales of the syntactic feature complexity, syntactic and semantic cluster complexities, and computability are shown in 790 
Table 2. 791 
3. For the semantic feature complexity: + symbol = feature is present in most of the sentences in the cluster; - symbol = feature is 792 
absent from most of the sentences in the cluster.  793 
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Table 4. Cluster Characterization and Computability of Children Clusters 794 

Parent cluster Subclustering features Comparison of children clusters Computability of 
children clusters 

    
Cluster 1 IN 

CC 
(‘IN’, ‘DT’) 
Total number of phrase 
structure rules 

Compared to sentences in Cluster 1.1, Cluster 1.2 
sentences have more prepositions (IN) (e.g., “of”, 
“in”, “at”) and/or more conjunctions (CC), and have 
more phrase structure rules. Sentences in Cluster 1.2 
are likely to have multiple requirements (e.g., two 
requirements, one on width and one on height) in the 
form of preposition phrases and/or conjunctions and 
thus are more complex both syntactically and 
semantically. 
 

Cluster 1.1 (+++)  
Cluster 1.2 (++) 

Cluster 5 NP → NP PP 
(‘DT’ ‘NN’) 
(‘JJ’, ‘NN’) 
(‘DT’, ‘JJ’) 

Compared to sentences in Cluster 5.1, Cluster 5.2 
sentences have more noun phrases (NP), more pairs 
of determiner (DT) and noun (NN), and more pairs 
of adjective (JJ) and noun. Sentences in Cluster 5.2 
are likely to have multiple requirements in the form 
of long and nested noun phrases and thus are more 
complex both syntactically and semantically. 
 

Cluster 5.1 (+)  
Cluster 5.2 (-) 

Cluster 8 NP → NP PP 
NP → NNP CD 
('CD' 'NNS') 
('NNS' 'IN') 
('IN' 'NN') 
('NN' 'IN') 
('JJ' 'NN') 
('IN' 'NNP') 
('DT' 'NN') 
('JJR' 'IN') 
('IN' 'DT') 
('DT' 'JJ') 
('MD' 'VB') 
('CD' '.') 

Compared to sentences in Cluster 8.1, Cluster 8.2 
sentences have more pairs of determiner and noun, 
pairs of preposition and noun, and pairs of cardinal 
number (CD) and noun. Sentences in Cluster 8.2 are 
likely to have multiple requirements in the form of 
long and nested noun phrases and thus are more 
complex both syntactically and semantically. 
 

Cluster 8.1 (--) 
Cluster 8.2 (---) 

Note: NNP = proper noun, singular; NNS = noun, plural; JJR = adjective, comparative; MD = modal; VB = verb, base form. 795 
 796 
  797 
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Table 5. Sentence Types in the International Building Code 798 

Sentence type Example sentence 
Percentage of 

sentence types in 
the whole dataset 

Computability 

1.1 (Cluster 1.1) The height of door openings shall not be less than 80 inches 
(2032 mm). 

1.5% Very high (0.96) 

1.2 (Cluster 1.2) Occupiable spaces, habitable spaces and corridors shall have 
a ceiling height of not less than 7 feet 6 inches. 

1.3% High (0.96) 

2 (Cluster 2) Louvers shall be prohibited. 6.9% High (0.84) 
3.1 (Cluster 3) Shaft enclosures shall meet the requirements of Section 

703.2.1. 
7.8% Moderately high 

(0.67) 
3.2 (Cluster 4) The fire-resistance rating of building elements, components 

or assemblies shall be determined in accordance with the test 
procedures set forth in ASTM E 119 or UL 263 or in 
accordance with Section 703.3. 

3.0% Moderately high 
(0.60) 

4.1 (Cluster 5.1) Spacing of braced wall lines shall not exceed 35 feet on 
center in both the longitudinal and transverse directions in 
each story. 

12.1% Moderately high 
(0.40) 

4.2 (Cluster 5.2) Where an egress court serving a building or portion thereof 
is less than 10 feet in width, the egress court walls shall have 
not less than 1-hour fire-resistance-rated construction for a 
distance of 10 feet above the floor of the court. 

11.2% Moderately low 
(0.40)  

5.1 (Cluster 6) Openings between the Group S-2 enclosed parking garage 
and Group S-2 open parking garage, except exit openings, 
shall not be required to be protected. 

27.7% Moderately low 
(0.36) 

5.2 (Cluster 7) Where exterior walls serve as a part of a required fire-
resistance-rated shaft or exit enclosure, or separation, such 
walls shall comply with the requirements of Section 705 for 
exterior walls and the fire-resistance-rated enclosure or 
separation requirements shall not apply. 

19.2% Low (0.18) 

6.1 (Cluster 8.1) In occupancies in Groups B, E, F, I-1, M, R-l, R-2, R-4, 
Sand U, where the building is equipped throughout with an 
automatic sprinkler system in accordance with Section 
903.3.1.1, the length of the dead-end corridors shall not 
exceed 50 feet. 

3.8% Low (0.17) 

6.2 (Cluster 8.2) The aggregate floor area of the Group H occupancies located 
at the perimeter of the unlimited area building shall not 
exceed 10 percent of the area of the building nor the area 
limitations for the Group H occupancies as specified in 
Table 503 as modified by Section 506.2, based upon the 
percentage of the perimeter of each Group H floor area that 
fronts on a street or other unoccupied space. 

4.0% Very low (0.17) 

7 (Cluster 9) In determining the fire-resistance rating of exterior bearing 
walls, compliance with the ASTM E 119 or UL 263 criteria 
for unexposed surface temperature rise and ignition of cotton 
waste due to passage of flame or gases is required only for a 
period of time corresponding to the required fire-resistance 
rating of an exterior nonbearing wall with the same fire 
separation distance, and in a building of the same group. 

1.5% Very low (0.10) 
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Table 6. Average Silhouette Coefficients for the Tested Clustering Algorithms 801 

Clustering 
Hierarchical clustering 

K-means PAM 
Single Complete Average McQuitty Median Centroid Ward’s 

First-level clustering 0.464 0.647 0.678 0.701 0.129 0.478 0.742 0.488 0.485 

Subclustering 

Cluster 1 0.527 0.674 0.545 0.674 0.539 0.545 0.674 0.601 0.674 

Cluster 5 0.566 0.661 0.568 0.589 0.589 0.568 0.613 0.642 0.643 

Cluster 8 0.234 0.468 0.463 0.515 0.469 0.463 0.483 0.498 0.506 
Note: Bold font indicates the best performance(s); PAM = partition around medians. 802 
 803 
Table 7. Average Silhouette Coefficients Before and After Feature Selection and Synthesis 804 
Clustering Initial features Final features 

First-level clustering 0.183 0.742 

Subclustering 
Cluster 1 0.245 0.674 
Cluster 5 0.245 0.661 
Cluster 8 0.233 0.515 

 805 
Table 8. Experimental Results of Application-Oriented Evaluation  806 

Sentence types 
Sentences with very high or high computability Sentence types with low or very low computability 
Type 1.1 Type 1.2 Type 2 Type 6.1 Type 6.2 Type 7 

Precision 0.95 0.96 0.98 0.81 0.79 0.77 
Recall 0.98 0.95 0.97 0.79 0.78 0.75 
F1-measure 0.96 0.96 0.97 0.80 0.78 0.76 
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