
1

Clustering-based Approach for Building Code Computability Analysis 1

Ruichuan Zhang1; and Nora El-Gohary, A.M.ASCE2 2

1 Graduate Student, Department of Civil and Environmental Engineering, University of Illinois at Urbana-3
Champaign, 205 N. Mathews Ave., Urbana, IL 61801, United States. E-mail: rzhang65@illinois.edu. 4

2 Associate Professor, Department of Civil and Environmental Engineering, University of Illinois at Urbana-5
Champaign, 205 N. Mathews Ave., Urbana, IL 61801, United States (corresponding author). E-mail: 6

gohary@illinois.edu; Tel: +1-217-333-6620. 7
Abstract 8

One common limitation of all automated code compliance checking methods and tools is their inability to deal with 9

all types of building-code requirements. More research is needed to better identify the different types of 10

requirements, in terms of their syntactic and semantic structures and complexities, to gain more insights about the 11

capabilities and limitations of existing methods and tools (i.e., which requirements they can automatically process, 12

represent, and/or check, and which not). To address this need, this paper proposes a new set of syntactic and 13

semantic features and complexity and computability metrics for code computability analysis. A clustering-based 14

approach was used to identify the different types of code sentences, in terms of their computability, using the 15

proposed features and metrics. The approach was implemented and tested on a corpus of 6,608 sentences from the 16

International Building Code and its amendments. The sentence clusters and identified sentence types were evaluated 17

using intrinsic and extrinsic evaluation methods. The evaluation results indicated good clustering performance, 18

perfect alignment between the human- and computer-identified types, and good agreement in the assignment of 19

sentences to the types. 20

Keywords: Buildings; Code checking; Computability; Text analytics; Hierarchical clustering. 21

Introduction 22

Existing automated compliance checking (ACC) systems in the architecture, engineering, and construction (AEC) 23

domain have different coverage capabilities, in terms of what type of building-code requirements they can represent, 24

process, or check. For example, the Solibri Model Checker (SMC) (Solibri 2018), an example of commercially-25

available software, only covers simple, discrete, and property requirements (e.g., “risers shall be 4 inches high 26

minimum”) and conditional requirements (e.g., “ceilings in corridors shall be not less than 2.34 meters in height”). It 27

allows users to include or exclude building elements and adjust the properties and property values in a limited 28

2

number of rule templates. And, it requires manual effort to read the code text, identify the right rule templates to use, 29

and enter the values of the parameters in the templates, lacking capabilities for automatically processing natural-30

language requirements into computable representations. In the SMARTcodes project by AEC3 and International 31

Code Council (ICC) (AEC3 2012), an example of approaches for semi-automated requirement processing, 32

conditional, attributive requirements are manually annotated with requirement, applicability, selection, and 33

exception (RASE) tags (Hjelseth and Nisbet 2010), and then the annotated text is converted into the IFC-compatible 34

XML format (Weise et al. 2017). In the SNACC system by Zhang and El-Gohary (2017b), an example of 35

approaches for fully-automated information extraction and requirement processing, semantic modeling and natural 36

language processing (NLP) techniques are used to automatically extract quantitative requirements (excluding 37

qualitative requirements) from building codes into a computable format. Collectively, existing systems are limited in 38

dealing with highly complex requirements, especially those that have hierarchically complex syntactic and semantic 39

structures or those that require human judgement by nature (Solihin and Eastman 2015; Zhou and El-Gohary 2017; 40

Nawari 2019). 41

Despite such relatively high variability in the approaches and capabilities of existing systems, there is a lack of 42

research efforts to identify and characterize the different types of requirements or sentences in AEC regulations to 43

better assess the coverage capabilities of existing ACC systems, identify the types of ACC systems required for 44

different applications (Solihin and Eastman 2015), and inform future ACC efforts. For example, Solihin and 45

Eastman (2015) identified four types of requirements based on what type of BIM data the rules require. Malsane et 46

al. (2015) manually grouped regulations into declarative and informative clauses. These two types of classifications 47

are useful in their intended scopes and applications, but cannot be used to assess the capabilities of existing ACC 48

systems, in terms of what natural-language requirements they can automatically process, represent (into a 49

computable representation), and/or check. Other research efforts that focused on developing computable 50

representations of requirements (e.g., Eastman et al. 2009; Hjelseth and Nisbet 2010; Dimyadi and Amor 2013; 51

Zhang and El-Gohary 2013; Dimyadi et al. 2016), by nature of their scope, did not devote efforts to analyze the 52

different types of requirements or sentences. The knowledge of sentence types, and the syntactic and semantic 53

features of these different types, is essential for assessing and comparing the actual and potential capabilities of 54

ACC systems. It would help us gain insights about the capabilities and limitations of existing ACC systems (i.e., 55

which requirements they can automatically process, represent, and/or check, and which not), in order to choose the 56

3

right system for the application at hand, improve or extend existing systems for enhanced coverage and 57

performance, or develop new systems with increased capabilities. 58

To address this need, this paper first proposes a set of new features to characterize requirement sentences in building 59

codes, in terms of their syntactic and semantic structures, to capture their syntactic and semantic complexities. This 60

paper then proposes a set of new complexity and computability metrics. Computability aims to measure the ability 61

of sentences to be automatically processed, represented, and checked by ACC systems based on their syntactic and 62

semantic complexities. Sentences with complex syntactic and semantic structures are difficult to be represented in a 63

computable representation (e.g., mvdXML), processed automatically by computational tools and techniques (e.g., 64

NLP techniques), and checked by semi- or fully-automated ACC systems; and vice versa. A clustering-based 65

approach was adopted to discover sentence clusters in a large corpus of building-code sentences, from IBC and its 66

variations/amendments, using the proposed features. Sentence types were then identified based on the sentence 67

clusters and characterized, using the proposed features and metrics, both quantitively and qualitatively. 68

The rest of the paper is organized as follows. The second section provides a brief review of existing ACC efforts and 69

clustering and text mining techniques. The third section continues with an analysis of the knowledge gaps in 70

building-code computability analysis and text clustering (in the context of our application). The fourth section 71

presents the proposed syntactic and semantic features and complexity and computability metrics. The fifth section 72

explains the research methodology for clustering, computability analysis, and evaluation. The sixth section presents 73

the experimental results and discussion. Finally, the last two sections conclude the paper with contributions, 74

conclusions, and future work. 75

Background 76

Automated Code Checking Systems 77

Extensive research efforts have focused on automating the process of code compliance checking in the AEC domain. 78

Many of the existing ACC systems are semi-automated, requiring manual effort to read the code and represent the 79

requirements in computable forms. Semi-automated efforts have used different approaches and representations. For 80

example, Garrett and Fenves (1987) proposed a design strategy, in which standard requirements are represented as 81

computable constraints and knowledge-base relations. Garrett and Hakim (1992) developed an object-oriented 82

model that offers different types of representation schemes for different types of requirements. Ozkaya and Akin 83

4

(2006) proposed a design approach that uses requirement-design coupling paths to query the design products and 84

incorporate requirements into designs for supporting code checking. More recently, query languages have been used 85

to represent requirements and industry foundation classes (IFC)-format design information [e.g., SPARQL Query 86

Language for RDF (Yurchyshyna and Zarli 2009), regulatory knowledge query language (Dimyadi et al. 2016)]. 87

Visual programming languages [e.g., conceptual graphs (Solihin and Eastman 2016), Visual Code Checking 88

Language (Preidel and Borrmann 2016)] have also been used to represent requirements and visualize them in graph-89

like structures. Fully-automated ACC systems, compared to semi-automated ones, aim to automate the process of 90

extracting the information from the codes and representing the requirements in computable rule formats. For 91

example, Zhang and El-Gohary (2013, 2015, 2016, 2017a, 2017b) and Zhou and El-Gohary (2017) proposed 92

semantic rule-based ACC systems that use ontologies, NLP techniques, and pattern matching-based rules to extract 93

regulatory information from the codes and represent these extracted information in the form of logic rules. 94

Many ACC efforts have also been led by industry bodies and government organizations, which are mostly semi-95

automated, such as CORENET ePlanCheck by the Singapore Building and Construction Authority, REScheck and 96

COMcheck by the U.S. Department of Energy, and SMARTcodes by AEC3 and ICC. In most of these efforts, 97

requirements are hard-coded by the software developers, such as in SMC, Compliance Audit Systems, Daima, 98

Invicara, SmartReview, and UpCodes. A few other efforts rely on mechanisms such as semantic annotation to 99

increase the system’s flexibility. For example, in the AEC3 and ICC’s SMARTcodes project, users first annotate the 100

requirements with a set of semantic markups – including requirement, applicability, selection, and exception 101

(Hjelseth and Nisbet 2010), which are then converted into mvdXML format. 102

Clustering for Text Analytics 103

Clustering is an unsupervised learning problem, which aims to find groups of similar objects in data (Aggarwal and 104

Zhai 2012). In the context of text analytics, the clustering objects could be documents, sentences, or phrases and 105

words. Clustering has been used in many applications such as document classification (e.g., Bekkerman et al. 2001), 106

browsing (e.g., Cutting 2017), summarization (e.g., Yang et al. 2014), and visualization (Cadez et al. 2003). A 107

limited number of research efforts in the construction domain have used text clustering for various purposes. For 108

example, Ng et al. (2006) used text clustering to analyze deficiency descriptions for knowledge discovery in a 109

facility condition assessment database. Al Qady and Kandil (2014) used a hybrid approach that included clustering 110

5

and text classification to group semantically-related project documents. And, Kifokeris and Xenidis (2017) used a 111

notion clustering-based method to identify risk sources in technical projects. 112

The application of clustering algorithms can benefit building-code analytics and sentence typing for ACC from two 113

perspectives. First, clustering is naturally suitable for finding different groups of requirements or sentences that 114

share similar characteristics (Aggarwal and Zhai 2012, Allahyari et al. 2017). Second, clustering-based methods 115

require minimum level of manual effort for mining the underlying patterns of the text, compared to manual methods, 116

where the patterns are interpreted and analyzed by humans, and supervised learning-based methods, where data are 117

manually annotated to train computational models for analyzing the patterns. 118

Hierarchical clustering aims to successively combine groups of data in a pairwise manner based on their pairwise 119

similarities, until all the data are within one single group (Aggarwal and Zhai 2012). This process constructs a 120

hierarchy of clusters, which can be intersected at a certain level to obtain a specific number of clusters. Hierarchical 121

clustering has been widely used in the context of text analytics [e.g., Li et al. (2008), Shepitsen et al. (2008), and 122

Lomakina et al. (2014)]. Hierarchical clustering has also been applied in solving a number of research problems in 123

the construction domain such as assessment of social sustainability of construction projects (e.g., Valdes-Vasquez 124

and Klotz 2012); but, to the best of the authors’ knowledge, no efforts focused on using hierarchical clustering for 125

document analysis. 126

State of the Art and Knowledge Gaps 127

State of the art and knowledge gaps in building-code computability and typing analysis: A very limited number 128

of research efforts have been undertaken to formally characterize the different types of requirements or sentences in 129

building codes. Solihin and Eastman (2015) grouped requirements/rules based on what type of BIM data the rules 130

require, and accordingly identified four general classes of rules: (1) rules that only need a small number of explicit 131

data that exist in the BIM dataset; (2) rules that need simple derived attribute values; (3) rules that need extended 132

data structures; and (4) rules that need a “proof of solution” (e.g., example cases/sentences and/or manual 133

hypothetical checking processes). This effort is very useful in assessing the existence of BIM data for checking the 134

requirements, but, by nature of its scope, does not address the classification of requirements by their computability 135

(e.g., the ability of ACC systems to automatically process natural-language requirements into computable 136

representations). Malsane et al. (2015) grouped the clauses in the England and Wales Fire Safety Building 137

6

Regulations (EWFSBR) Part B1 into two types: (1) declarative clauses: clauses that have obviously checkable 138

information and thus are computer interpretable (e.g., simple geometrical rules); and (2) informative clauses: clauses 139

that have information that is not obviously checkable or needs human interpretation and thus are not computer 140

interpretable. This type of classification could be useful as a first-level binary (black-and-white) classification, but 141

cannot be used for the purpose of computability analysis, because it does not identify the different subtypes of 142

computer-interpretable requirements – some subtypes would be computer-interpretable by some systems but not the 143

others. Also, the aforementioned criteria for classifying a clause into the first category versus the second requires 144

human interpretation, lacking well-defined text features that could support the automation of the classification and 145

the computability analysis process. 146

State of the art and knowledge gaps in text clustering: In the computational linguistics domain, text clustering 147

efforts have mainly focused on document and phrase/word clustering, both separately (e.g., topic model-based 148

document clustering, WordNet-based phrase/word clustering) and simultaneously [e.g., word clustering and 149

coclustering (Kilicoglu and Bergler 2009)], but rarely studied sentence clustering. Compared to document 150

clustering, sentence clustering usually has a sparser feature space because a sentence has significantly fewer words 151

than a document and thus requires effective feature selection. In terms of the purpose of clustering, existing sentence 152

and/or text clustering efforts evaluated either the semantic similarity (Naughton et al. 2010, Fodeh et al. 2011, Yang 153

et al. 2014) or the syntactic similarity of the text only (Massung et al. 2013), without combining both analyses in the 154

clustering problem. 155

State of the art and knowledge gaps in features and metrics for text analytics: Various features and metrics have 156

been proposed or adopted for supporting text analytics. These features mainly included (1) syntactic features, such 157

as part-of-speech (POS) tag frequency and parsing tree structural features (e.g., Massung et al. 2013), or (2) 158

semantic features, such as bag of words, word frequency, and features based on WordNet (e.g., Naughton et al. 159

2010, Fodeh et al. 2011) and document graph models (e.g., Yang et al. 2014). These features are effective in text 160

analytics tasks such as text categorization (e.g., Massung et al. 2013) or topic-based text clustering (e.g., Naughton 161

et al. 2010, Yang et al. 2014). However, their effectiveness is limited in requirement computability analysis because: 162

(1) they are mostly lexical- or word-level features and cannot directly reflect requirement- and sentence-level 163

complexity; and (2) they lack the ability to capture the semantic characteristics specific to building-code text such as 164

7

the essential and secondary semantic information elements. Some of these features were further used in the literature 165

for calculating or deriving text complexity metrics. Existing metrics for text complexity analysis can be grouped into 166

three categories: (1) lexical complexity metrics, such as number of infrequent words; (2) syntactic complexity 167

metrics, such as the length of sentences, number of infrequent structural features, and number of constituents in the 168

parsing trees (e.g., Ambati et al. 2016); and (3) semantic complexity metrics, such as knowledge graph-based 169

measures like node degree, length of shortest path, and number of connected components (e.g., Štajner and Hulpuş 170

2018). These metrics are useful for text complexity analysis in terms of readability (Ambati et al. 2016, Štajner and 171

Hulpuş 2018) but cannot be used to analyze text computability, because they are based on the comprehensibility of 172

the text by human readers, rather than the ability of the text to be automatically processed, represented, and checked 173

by computational systems (e.g., ACC systems). Also, similar to existing features for text analytics, these metrics are 174

limited in indicating the syntactic and semantic complexity of building-code requirements, because they do not 175

capture the syntactic and semantic characteristics that are specific to building-code text (Zhou and El-Gohary 2017). 176

Proposed Features and Metrics for Building-Code Computability Analysis and Typing 177

Features for Building-Code Computability Analysis and Typing 178

Syntactic Features 179

Four syntactic features are proposed for representing the complexity of the syntactic structures of building-code 180

requirement sentences. The features are capturing the syntactic lengths of the sentence fragments (i.e., phrases, 181

clauses, or sentences) and the syntactic heights of the constituency trees corresponding to the sentence fragments, as 182

shown in Fig. 1. The syntactic lengths and heights include: (1) the lengths of the sentence fragments for each 183

fragment labeled with the following phrase- and clause-level tags in the sentence-level phrase structure rules: NP 184

(noun phrase), VP (verb phrase), PP (preposition phrase), and SBAR (clause introduced by a subordinating 185

conjunction such as that, where, and when); (2) the length of the whole sentence; (3) the heights of the constituency 186

trees for each fragment labeled with NP, VP, PP, or SBAR; and (4) the height of the entire constituency tree. These 187

features were chosen for two reasons. First, the constituency tree consists of nested linguistic constituents that 188

represent the syntactic structure of a sentence fragment (Jurafsky and Martin 2014). The higher the constituency tree, 189

the more nested the syntactic structures of the sentence fragment. Second, the longer the sentence and sentence 190

8

fragments, the more syntactic information contained in the sentence fragment. The more nested the structure of the 191

sentence fragment and the more information it contains, the more complex the fragment. 192

The four features are: (1) complexity of NP; (2) complexity of VP; (3) complexity of PP or SBAR, whichever is 193

higher (because both have similar functions, i.e., to represent modification or adjunct meanings of the sentence); and 194

(4) complexity of the whole sentence. The feature values are computed as per Eqs. (1) to (3), where SPC is NP, VP, 195

PP, or SBAR; 𝑙𝑖 is the length of the phrase or clause 𝑖; ℎ𝑗 is the height of the constituency tree of the phrase or 196

clause 𝑗; F is the set of all the phrases or clauses labeled with SPC; L is the length of the whole sentence S; and H is 197

the height of the constituency tree of the whole sentence. 198

𝐶𝑜𝑚𝑝𝑙𝑒𝑥𝑖𝑡𝑦 𝑜𝑓 𝑆𝑃𝐶 = √max
𝑖 ∈ 𝐹

𝑙𝑖 × max
 𝑗 ∈ 𝐹

ℎ𝑗 (1) 199

𝐶𝑜𝑚𝑝𝑙𝑒𝑥𝑖𝑡𝑦 𝑜𝑓 𝑃𝑃/𝑆𝐵𝐴𝑅 = max(𝐶𝑜𝑚𝑝𝑙𝑒𝑥𝑖𝑡𝑦 𝑜𝑓 𝑃𝑃, 𝐶𝑜𝑚𝑝𝑙𝑒𝑥𝑖𝑡𝑦 𝑜𝑓 𝑆𝐵𝐴𝑅) (2) 200

𝐶𝑜𝑚𝑝𝑙𝑒𝑥𝑖𝑡𝑦 𝑜𝑓 𝑆 = √𝐿 × 𝐻 (3) 201

Semantic Features 202

Four semantic features are proposed for representing the complexity of the semantic structures of building-code 203

requirement sentences. Three steps were used for feature identification: feature analysis, selection, and synthesis. 204

First, the essential and secondary semantic information element (SIE) features were analyzed. Table 1 shows all the 205

semantic information elements covered in this analysis. Essential SIEs are usually necessary for defining a 206

quantitative requirement, such as subject, compliance checking attribute, deontic operator indicator, comparative 207

relation, quantitative relation, quantity value, and quantity unit (Zhang and El-Gohary 2015). The more essential 208

SIEs in a sentence, the higher the computability of the sentence, and vice versa. Secondary SIEs are not essential but 209

may exist in defining a quantitative or qualitative requirement, usually adding complexity to the sentence, such as 210

restrictions (e.g., a subject restriction places a constraint on the definition of the subject) and references. The less 211

secondary SIEs in a sentence, the higher the computability of the sentence, and vice versa. Second, low-variance 212

features were removed because they are non-discriminative. The feature analysis showed that most of the 213

requirement sentences (i.e., over 95%) have subjects and deontic operator indicators; and, thus, these two features 214

were removed. Third, high-covariance features were synthesized into one feature to improve the sentence type 215

characterization. Based on the feature analysis, the following four high co-variance features were synthesized into 216

one (called quantitative semantic information): comparative relation, quantitative relation, quantity value, and 217

9

quantity unit. Accordingly, the final four semantic features are: presence (binary value) of compliance checking 218

attribute, quantitative semantic information, restriction, and reference. 219

Metrics for Building-Code Computability Analysis and Typing 220

Syntactic Complexity 221

The syntactic complexity metric aims to measure the complexity of the syntactic structures of sentences in a cluster 222

of requirement sentences, in terms of the aforementioned syntactic features. The syntactic complexity is computed 223

based on the average feature values of the complexity of NP, VP, PP/SBAR, and S (denoted as 𝑁𝑃̅̅ ̅̅ , 𝑉𝑃̅̅ ̅̅ , 𝑃𝑃/𝑆𝐵𝐴𝑅̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅, 224

and 𝑆̅), as per Eqs. (4) and (5), where SCC is the syntactic cluster complexity before normalization, and minSCC 225

and maxSCC are the minimum and maximum SCCs among all the clusters, respectively. Eq. (4) assigns more 226

weight to the complexity of the whole sentence (i.e., the S feature). The complexity ranges from 0 to 1, where 0 227

represents minimum syntactic complexity and 1 represents maximum syntactic complexity. The lower the syntactic 228

complexity of a cluster, the less complex the syntactic structures of the sentences in the cluster, and vice versa. 229

Syntactic cluster complexity (before normalization) = SCC =
1

2
 (

𝑁𝑃̅̅ ̅̅ + 𝑉𝑃̅̅ ̅̅ + 𝑃𝑃/𝑆𝐵𝐴𝑅̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅

3
+ 𝑆̅) (4) 230

Syntactic cluster complexity =
𝑆𝐶𝐶 − 𝑚𝑖𝑛𝑆𝐶𝐶

𝑚𝑎𝑥𝑆𝐶𝐶 − 𝑚𝑖𝑛𝑆𝐶𝐶
 (5) 231

Semantic Complexity 232

The semantic complexity metric aims to measure the complexity of the semantic structures of sentences in a cluster 233

of requirement sentences, in terms of the aforementioned semantic features. The semantic complexity of a corpus is 234

impacted by two factors, as per Eq. (6): the essential semantic information (ESI) absence factor and the secondary 235

semantic information (SSI) presence factor. The absence of ESI (i.e., compliance checking attribute or quantitative 236

semantic information) and the presence of SSI (i.e., restrictions or references) increase semantic complexity and 237

decrease computability, as per Eq. (6). The ESI absence factor is calculated as per Eq. (7), where E is the percentage 238

of sentences in the corpus that have missing ESI. The SSI presence factor is calculated as per Eq. (8), where RS is 239

the percentage of sentences in the cluster that have restrictions and RF is the percentage of sentences in the cluster 240

that have references. Eq. (6) assigns more weight to the SSI presence factor, because the presence of SSI creates 241

more semantic complexity than the absence of ESI. Eq. (8) similarly assigns more weight to restrictions because 242

they create more complexity compared to references. Semantic cluster complexity ranges from 0 to 1, where 0 243

10

represents minimum semantic complexity (i.e., all sentences in the cluster have no missing ESI and no SSI) and 1 244

represents maximum semantic complexity (i.e., all sentences in the cluster have both types of SSI – restrictions and 245

references – and miss at least one type of ESI). The semantic feature analysis was performed using the information 246

extraction and transformation rules (Zhang and El-Gohary 2013). The lower the semantic complexity of a cluster, 247

the less complex the semantic structures of the sentences in the cluster, and vice versa. 248

Semantic cluster complexity =
1

3
× 𝐸𝑆𝐼 𝑎𝑏𝑠𝑒𝑛𝑐𝑒 𝑓𝑎𝑐𝑡𝑜𝑟 +

2

3
× 𝑆𝑆𝐼 𝑝𝑟𝑒𝑠𝑒𝑛𝑐𝑒 𝑓𝑎𝑐𝑡𝑜𝑟 (6) 249

ESI absence factor = 𝐸 (7) 250

SSI presence factor =
4

7
× 𝑅𝑆 +

3

7
× 𝑅𝐹 (8) 251

Computability 252

The computability metric aims to measure the ability of requirement sentences to be represented, processed, and 253

checked by ACC methods and systems based on their syntactic and semantic structures. The computability was 254

computed based on the syntactic and semantic complexity metrics, as per Eq. (9), where computability is 1 minus 255

the average of the two metrics. It ranges from 0 to 1, where 0 represents minimum computability and 1 represents 256

maximum computability. 257

Cluster computabiliy = 1 − (
1

2
× 𝑆𝑦𝑛𝑡𝑎𝑐𝑡𝑖𝑐 𝑐𝑙𝑢𝑠𝑡𝑒𝑟 𝑐𝑜𝑚𝑝𝑙𝑒𝑥𝑖𝑡𝑦 +

1

2
× 𝑆𝑒𝑚𝑎𝑛𝑡𝑖𝑐 𝑐𝑙𝑢𝑠𝑡𝑒𝑟 𝑐𝑜𝑚𝑝𝑙𝑒𝑥𝑖𝑡𝑦) (9) 258

Methodology for Clustering-based Building-Code Computability Analysis and Typing 259

 A methodology for analyzing the computability of building codes and identifying the types of sentences, using the 260

proposed features and metrics, was proposed and implemented on a corpus of sentences. The methodology included 261

five primary steps, as illustrated in Fig. 2: data preprocessing, first-level clustering, subclustering, computability 262

analysis and sentence-typing, and evaluation. 263

Data Preprocessing 264

A total of 6,608 sentences were randomly selected from the IBC 2009 and the 2015 IBC Amendment of the City of 265

Champaign. Three steps were conducted for data preparation. First, different formats (e.g., PDF and HTML) were 266

converted into TXT format. Second, the text was split into sentences and non-sentence fragments (e.g., requirement 267

titles) based on punctuations and requirement indices, using the Natural Language Processing Tool Kit (NLTK) 268

(Bird et al. 2009), and the non-sentence fragments were removed. Third, the special symbols were removed. Three 269

11

NLP techniques were used for data preprocessing: tokenization, POS tagging, and constituency parsing. 270

Tokenization aims to split a sentence into units (e.g., words and punctuations). POS tagging and constituency 271

parsing aim to analyze the syntax of a sentence in multiple levels (e.g., sentence, phrase, and word levels) (Jurafsky 272

and Martin 2014). The NLTK was used for tokenization. The Stanford CoreNLP (Manning et al. 2014), built in 273

python, was used for POS tagging and parsing. The tokenized text, and the corresponding POS tags and 274

constituency parsing trees, were further used to generate the syntactic and semantic features. 275

First-level Clustering 276

First-level clustering aimed to cluster the sentences according to their syntactic and semantic-structure similarities, 277

using the proposed syntactic and semantic features. The hierarchical clustering consisted of three steps: distance 278

calculation, hierarchical clustering, and determining the number of clusters. First, the pairwise Euclidean distances 279

of the sentences were calculated using the feature values, in order to measure the syntactic and semantic similarities 280

between pairs of sentences. Second, different methods for hierarchical clustering analysis were tested and compared, 281

including simple, complete, average, McQuitty, median, centroid, and Ward’s (Aggarwal and Zhai 2012). They 282

were also compared with two other commonly used distance-based clustering methods as baselines: k-means 283

(Arthur and Vassilvitskii 2006) and partition around medians (PAM) (Kaufman and Rousseeuw 2009). Third, to 284

determine the optimal number of clusters, the elbow rule was adopted, which means that a specific number of 285

clusters is optimal when the addition of more clusters results in only marginal improvement – which can be seen as 286

an elbow-like shape in the plot of percentage of variance explained by the clusters (Ketchen and Shook 1996). 287

Subclustering 288

Subclustering aimed to further decompose the clusters that have low average silhouette coefficients into granular 289

clusters that are different from each other in terms of their constituent-level features such as the frequencies of 290

phrase structure rules and POS tags. This is because the low coefficient values indicate that the clusters are not well 291

represented by the features used in the first-level clustering and thus need additional features to better characterize 292

them for the purpose of sentence typing. The following constituent-level features were used: (1) the frequency of 293

each POS tag; (2) the frequency of each bigram of POS tags, which are pairs of two consecutive POS tags; and (3) 294

the frequency of each phrase structure rule. To penalize the common features (which are not discriminative across 295

different clusters) and to promote the discriminative features (which contribute to clustering), the raw features were 296

12

weighted using the TF–IDF weighting scheme. Eqs. (10) and (11) (Salton and Buckley 1988) were used, where 𝑓 is 297

the frequency of bigrams of POS tags or phrase structure rules, 𝑁 is the total number of sentences, and 𝑛 is the 298

number of sentences that contain a specific feature. 299

Augmented normalized term frequency = 0.5 + 0.5
𝑓

𝑚𝑎𝑥𝑓
 (10) 300

Inverse document frequency = 𝑙𝑜𝑔
𝑁

𝑛
 (11) 301

Two feature analyses were conducted empirically to identify the discriminative features, including leave-one-out 302

feature analysis and feature combination analysis. The local learning algorithm by Yao et al. (2015) was used for 303

feature selection to deal with high dimensionality for finding meaningful clusters. This algorithm aims to find a 304

subset of features that makes the sum of the distances between each datum and its nearest datum small, and 305

maximizes the sum of the average distances of each datum to all other data (Yao et al. 2015). The output of the 306

algorithm – the weights of features – was used to compute the weighted feature values. The hierarchical clustering 307

steps were similar to those used in first-level clustering. 308

Cluster Computability Analysis and Sentence Typing 309

Three steps were conducted to analyze the computability of the sentence clusters: cluster representation, analysis of 310

the syntactic and semantic complexities and computability of the clusters, and cluster characterization. First, each 311

cluster was represented by the average feature values (the four syntactic and four semantic features) of the sentences 312

in the clusters. Second, the complexity and computability metrics of the clusters were computed using the average 313

feature values [as per Eqs. (4) to (9)]. Third, the clusters were characterized to better describe and compare the 314

clusters – and thus the sentence types. The average feature values, syntactic and semantic complexity values, and 315

cluster computability values were discretized based on their quartile and median values (Dougherty 1995). 316

Discretization groups a number of continuous values into a smaller number of “bins”. A scale of 1 to 6 was then 317

used to represent the level of complexity (very simple to very complex) and computability (very low to very high), 318

as per Table 2. Subclusters were first characterized in the same way as their parent clusters, then additionally 319

characterized using their constituent-level features. The level of computability of the children clusters was adjusted 320

accordingly. 321

13

Sentence types were then identified and characterized based on the clusters – assuming each cluster (or subcluster) 322

has only one sentence type. Each sentence type was described with a name, a description, and an example sentence. 323

Three steps were conducted to identify and characterize the sentence types: (1) for each cluster, a name that reflects 324

the characteristics of the sentence type was selected. For example, a type with high syntactic cluster complexity, one 325

or more restrictions, one or more references, and no quantitative semantic information, was named “complex, 326

qualitative, restricted, and with references”; (2) each identified sentence type was briefly described in terms of its 327

syntactic and semantic characterization, computability level, and relation to other types, if any; and (3) for each 328

cluster, an example sentence was selected to illustrate the sentence type and its characteristics. 329

Evaluation of Clustering and Sentence Types 330

Intrinsic Evaluation 331

Intrinsic evaluation aims to evaluate the sentence clusters by calculating and comparing the quality metrics that 332

describe intra-cluster and inter-cluster similarities (Manning et al. 2008). Two intrinsic metrics were used for both 333

first-level clustering and subclustering: average silhouette coefficient and cophenetic coefficient. The average 334

silhouette coefficient (Rousseeuw 1987) was used to measure the performance of all clustering algorithms. It is the 335

average of the silhouette coefficients of all the sentences in a dataset or a cluster. The silhouette coefficient 𝑠(𝑖) of a 336

sentence 𝑖 is defined as per Eq. (12), where 𝑎(𝑖) is the average difference between sentence 𝑖 and the other sentences 337

in the same cluster and 𝑏(𝑖) is the lowest average difference between 𝑖 and the other clusters. The coefficient ranges 338

from -1 to 1, where a value near 1 indicates that the sentence is far from the neighboring clusters, 0 indicates that the 339

sentence lies on the boundary between two or more clusters, and a negative value indicates that the sentence might 340

be assigned to a wrong cluster. A coefficient between 0 and 0.2 indicates poor clustering, between 0.2 and 0.5 fair 341

clustering, and higher than 0.5 good clustering (Sarstedt and Mooi 2014). When all the sentences in a cluster have 342

significantly below-average silhouette coefficients, this indicates that the cluster might need to be further 343

subclustered. 344

𝑠(𝑖) =
𝑏(𝑖) − 𝑎(𝑖)

𝑚𝑎𝑥 {𝑎(𝑖), 𝑏(𝑖)}
 (12) 345

The cophenetic coefficient (Sneath and Sokal 1973) was calculated to justify the choice of the hierarchical clustering 346

method. It shows how well a dendrogram generated by the hierarchical clustering process preserves the pairwise 347

distances of the original data. It is defined as per Eq. (13), where 𝑌𝑖𝑗 is the difference between sentences i and j, 𝑍𝑖𝑗 348

14

is the height of the node in the dendrogram at which sentences i and j are first combined into one group, 𝑦̅ is the 349

average of all 𝑌𝑖𝑗 , and 𝑧̅ is the average of all 𝑍𝑖𝑗. The cophenetic coefficient ranges from 0 to 1, with 1 indicating that 350

the dendrogram perfectly reflects the pairwise distances of the original dataset and thus the dataset is suitable for 351

hierarchical clustering, and 0 indicating the opposite (Sneath and Sokal 1973). 352

𝑐 =
∑ (𝑌𝑖𝑗 − 𝑦̅)(𝑍𝑖𝑗 − 𝑧̅)𝑖<𝑗

√∑ (𝑌𝑖𝑗 − 𝑦̅)2
𝑖<𝑗 ∑ (𝑍𝑖𝑗 − 𝑧̅)2

𝑖<𝑗

 (13) 353

Extrinsic Evaluation 354

Extrinsic evaluation, here, aims to evaluate the identified sentence types using human expert judgement (Manning et 355

al. 2008). Five participants – the first author and four experts including two from academia (faculty) and two from 356

industry – conducted the extrinsic evaluation. The participants manually identified building-code sentence types 357

from a set of testing sentences and assigned the testing sentences to these types; and the human-generated sentence 358

types and assignments were compared to the computer-generated types and assignments. Purposive sampling 359

strategy was adopted for selecting the participating experts. Purposive sampling aims to pinpoint a specific type of 360

participants according to predefined selection criteria (Clark and Creswell 2008). Three main selection criteria were 361

defined: (1) expertise in the AEC domain; (2) familiarity with building codes and compliance checking processes; 362

and (3) awareness of natural language processing and text analytics techniques. The authors used purposive 363

sampling because (1) it is suitable for small specialized populations (e.g., experts) (Etikan et al. 2016); and (2) it 364

enables obtaining information from a concentrated, carefully selected sample (Clark and Creswell 2008). Expert 365

evaluation of knowledge discovery processes has been commonly conducted with a small purposively sampled set 366

of participants [e.g., seven (El-Diraby and Osman 2011), six (Salama and El-Gohary 2013), five (Jin 2010), and four 367

(Alashwal and Abdul-Rahman 2014)]. 368

The evaluation process consisted of three stages: testing dataset preparation, testing sentence typing, and human-369

computer agreement assessment. To develop a testing dataset, a sample of 160 sentences were randomly selected 370

from the 6,608 sentences. The sentences were sampled from the whole dataset (excluding the example sentences 371

selected to illustrate the identified sentence types) following a stratified sampling strategy (Särndal et al. 2003), i.e., 372

the sentences were sampled from each of the clusters, where the sample sizes are proportional to the cluster sizes. 373

15

The manual typing aimed to group testing sentences using two steps: identifying building-code sentence types 374

(based on computability and syntactic and semantic features) and assigning testing sentences to these types. Detailed 375

guidelines for the typing were provided and explained, including (1) the definition of computability and the set of 376

syntactic and semantic features; (2) example building-code sentences, with their computability and syntactic and 377

semantic features explained; and (3) a template of how a type should be described (e.g., very simple, quantitative, 378

unrestricted, with no references). The participants repeated the sentence type identification and assignment steps 379

until the following two terminating criteria were met: (1) each testing sentence has been assigned to a human-380

identified type; and (2) no new types are identified. 381

The agreement between the human- and computer-identified types was assessed using Jaccard Index (Agresti 2003), 382

as per Eq. (14), where H is the collection of types identified by the human evaluators and C is the collection of types 383

identified by the computer. A Jaccard Index of 1 indicates that the human evaluators and the computer identify the 384

same set of types. The agreement between the human- and computer-assignments of sentences to the types was 385

assessed using percentage of agreement (Hallgren 2012). The percentage of agreement is defined as the percent 386

value of the ratio of the number of testing sentences that were assigned to the same type by the human evaluators 387

and the computer, to the total number of testing sentences. A percentage of agreement close to 1 indicates that there 388

is a very good alignment between the human- and computer-assignment of sentences (Stemler 2004). Fig. 3 389

illustrates the entire extrinsic evaluation process. 390

Jaccard =
|𝐻 ∩ 𝐶|

|𝐻 ∪ 𝐶|
 (14) 391

Application-oriented Evaluation 392

This type of extrinsic evaluation aims to further evaluate the identified sentence types using an application-oriented 393

way. The evaluation method uses a testing dataset (set of building-code sentences) in an ACC application (here 394

regulatory information extraction) and then assess if the different types of sentences will be associated with different 395

levels of computability. Regulatory information extraction aims to automatically extract computable information 396

from natural-language building codes (Zhang and El-Gohary 2013, Li et al. 2016, Zhou and El-Gohary 2017, Zhong 397

et al. 2020). The hypothesis is that sentence types with high computability will have significantly higher information 398

extraction performance than those types with low computability (using existing ACC systems which are currently 399

still limited in dealing with complex types). 400

16

The evaluation consisted of three stages: testing dataset preparation, information extraction from testing sentences, 401

and information extraction performance assessment. To develop a testing dataset (different from the one used in 402

prior evaluation), a sample of 60 sentences were selected from the 6,608 sentences; five sentences were randomly 403

sampled from each of the twelve sentence types. The machine learning-based method by Zhang and El-Gohary 404

(2020) was used for information extraction. Accordingly, the nine types of SIEs (see Table 1) were extracted from 405

the testing sentences. To assess the information extraction performance, three metrics were used: precision, recall, 406

and F1-measure, as shown in Eqs. (15) to (17), where for a specific type of SIE, TP is the number of true positives 407

(i.e., number of SIE instances correctly extracted), FP is the number of false positives (i.e., number of SIE instances 408

incorrectly extracted), and FN is the number of false negatives (i.e., number of SIE instances not extracted but 409

should have been) (Zhai and Massung 2016). 410

Precision =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 (15) 411

Recall =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 (16) 412

F1-measure = 2 ×
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 × 𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙
 (17) 413

Experimental Results and Discussion 414

Results of Cluster Computability Analysis and Sentence Types 415

Table 3 summarizes the characteristics and computability analysis of all the clusters that resulted from the first-level 416

clustering, including the syntactic features (i.e., complexity of NP, VP, PP/SBAR, and S), semantic features (i.e., 417

presence of compliance checking attribute, quantitative semantic information, reference, and restriction), syntactic 418

and semantic cluster complexity metrics, and cluster computability metric. Table 4 shows the features of the 419

children clusters that resulted from the subclustering, the feature interpretations, and the computability comparison 420

to their sibling clusters. 421

Based on the clusters, a total of twelve types of sentences were identified. The following list shows the different 422

types of sentences and their descriptions, which were identified based on the cluster characterization and 423

computability analysis. Table 5 shows an example sentence for each type, as well as the sentence type frequencies 424

(i.e., percentages of the sentence types in the experimental dataset) and their computability levels. Sentences that 425

belong to the same type have similar – but not identical – levels of syntactic and semantic complexities and 426

17

computability. For example, although sentences that belong to the same type share similar NP, VP, PP/SBAR, and S 427

complexities and similar semantic information elements, they are likely to have different sentence lengths. The 428

identified types and their computability levels should thus be taken as a guide, and not as an exact measure. 429

Sentence types that are more similar to each other in terms of their syntactic and semantic features compared to 430

other types such as those that belong to the same parent cluster, were numbered as sibling types (e.g., Type 1.1 and 431

Type 1.2). 432

• Type 1.1 (very simple, quantitative, unrestricted, with no references): The sentences have very simple structures, 433

with simple NP, VP, and very simple PP/SBAR. They have no missing ESI (i.e., compliance checking attribute 434

and quantitative semantic information), and have no SSI (i.e., restriction and reference). They cover quantitative 435

requirements. They can be represented/coded in many of the existing ACC systems. Type 1.1 corresponds to 436

Cluster 1.1. 437

• Type 1.2 (simple, quantitative, unrestricted, with no references): Similar to Type 1.1. But, compared to Type 1.1 438

sentences, Type 1.2 sentences are more complex syntactically (e.g., including more preposition phrases and/or 439

conjunctions) and semantically (e.g., including multiple requirements). Type 1.2 corresponds to Cluster 1.2. 440

• Type 2 (very simple, qualitative, unrestricted, with no references): The sentences have very simple structures, 441

with very simple NP, VP and PP/SBAR. They have missing ESI, from both types (i.e., compliance checking 442

attribute and quantitative semantic information), but have no SSI (i.e., restriction and reference). They cover 443

qualitative requirements. Type 2 corresponds to Cluster 2. 444

• Type 3.1 (simple, descriptive, unrestricted, with references): The sentences have simple structures, with very 445

simple NP and PP/SBAR, and simple VP. They have missing ESI, from both types (i.e., compliance checking 446

attribute and quantitative semantic information), and have one type of SSI (i.e., reference). Most of the 447

sentences function as general descriptions or references to other sections/codes. Type 3.1 corresponds to Cluster 448

3. 449

• Type 3.2 (moderately simple, descriptive, unrestricted, with references): The sentences have moderately simple 450

structures, with very simple PP/SBAR, and moderately simple NP and VP. They have one type of ESI (i.e., 451

quantitative semantic information) missing, and have one type of SSI (i.e., reference). Most of the sentences 452

function similar to Type 3.1 sentences, as general descriptions or references to other sections/codes, but are 453

more complex both syntactically and semantically. Type 3.2 corresponds to Cluster 4. 454

18

• Type 4.1 (moderately complex, quantitative, restricted, with no references): The sentences have moderately 455

complex to complex structures, with moderately complex NP, and complex VP and PP/SBAR. The sentences 456

are likely to have one or more clauses of different types (e.g., SBAR). The sentences have no missing ESI (i.e., 457

compliance checking attribute and quantitative semantic information), but have one type of SSI (i.e., restriction), 458

which might be in the VP and/or PP/SBAR. Most of the sentences are quantitative and function similar to Type 459

1 sentences, but are much more complex both syntactically and semantically, mostly due to the restrictions. 460

Type 4.1 corresponds to Cluster 5.1. 461

• Type 4.2 (complex, quantitative, restricted, with no references): Similar to Type 4.1. But, compared to Type 4.1 462

sentences, Type 4.2 sentences are more complex syntactically (e.g., including more noun phrases) and 463

semantically (e.g., including both restrictions and multiple requirements). Type 4.2 corresponds to Cluster 5.2. 464

• Type 5.1 (moderately complex, qualitative, restricted, with no references): The sentences have moderately 465

complex structures, with simple PP/SBAR, moderately simple NP, but moderately complex VP. They have 466

missing ESI, from both types (i.e., compliance checking attribute and quantitative semantic information), and 467

have one type of SSI (i.e., restriction), which might be in the VP and/or PP/SBAR. Most of the sentences are 468

qualitative and function similar to Type 2 sentences, but are more complex both syntactically and semantically, 469

mostly due to restrictions. Type 5.1 corresponds to Cluster 6. 470

• Type 5.2 (moderately complex, descriptive, restricted, with references): The sentences have moderately 471

complex structures, with simple PP/SBAR, but moderately complex NP and VP. They have missing ESI, from 472

both types (i.e., compliance checking attribute and quantitative semantic information), and have both types of 473

SSI (i.e., reference and restriction), which might be in the NP, VP, and/or PP/SBAR. Most of the sentences 474

function similar to Type 3.2 sentences, as descriptions/definitions, but are more complex both syntactically and 475

semantically, mostly due to restrictions. Most of the sentences are syntactically similar to those in Type 5.1, but 476

include references. Type 5.2 corresponds to Cluster 7. 477

• Type 6.1 (complex, quantitative, restricted, with references): The sentences have very complex structures, with 478

complex NP and very complex VP and PP/SBAR. They are likely to have one or more clauses of different types 479

(e.g., SBAR). They have no missing ESI (i.e., compliance checking attribute and quantitative semantic 480

information), but have both types of SSI (i.e., reference and restriction), which might be in the NP and 481

19

PP/SBAR. Most of the sentences are quantitative and function similar to Type 4 sentences, but are more 482

complex both syntactically and semantically. Type 6.1 corresponds to Cluster 8.1. 483

• Type 6.2 (very complex, quantitative, restricted, with references): Similar to Type 6.1. But, compared to Type 484

6.1 sentences, Type 6.2 sentences are more complex syntactically (e.g., including long and nested noun phrases) 485

and semantically (e.g., using complex, or even ambiguous, descriptions). Type 6.2 corresponds to Cluster 8.2. 486

• Type 7 (complex, descriptive, restricted, with references): The sentences have complex structures, with 487

moderately complex VP, and very complex NP and PP/SBAR. The sentences are likely to have one or more 488

clauses of different types (e.g., SBAR). They have one type of ESI (i.e., quantitative semantic information) 489

missing, and have both types of SSI (i.e., restriction and reference), which might be in the NP, VP, and/or 490

PP/SBAR. Most of the sentences function similar to Type 5.2 sentences, as descriptions/definitions and 491

references to other sections/codes, but are more complex syntactically. Type 7 corresponds to Cluster 9. 492

The identified sentence types can be further used to characterize existing ACC methods/systems, in terms of which 493

sentence types they can process and/or represent. For example, ACC methods/systems that can represent sentences 494

of Types 1.1 and 1.2 and some of the sentences of Types 4.1 and 4.2 (e.g., Solibri Model Checker) are able to cover 495

sentences (1) with very simple to moderately complex structures, and (2) with no missing ESI and with no or simple 496

SSI. These methods/systems have medium levels of coverage capabilities because the types they can represent have 497

a maximum level of medium computability. ACC methods/systems that can represent sentences of Types 1.1, 1.2, 498

4.1, 4.2, and 6.1 and 6.2 [e.g., the SNACC system (Zhang and El-Gohary 2017b)] are able to cover sentences (1) 499

with very complex structures, and (2) with no missing ESI, but with SSI. These methods/systems have higher levels 500

of coverage capabilities because the types they can represent range from very high to very low level of 501

computability. 502

Results of Intrinsic Evaluation 503

Table 6 summarizes the performance results for the tested clustering algorithms. For first-level clustering, the 504

Ward’s hierarchical clustering analysis method performed the best in terms of average silhouette coefficient, and 505

was therefore selected. Fig. 4 shows the plot of the percentage of variance explained by the clusters. Based on the 506

plot, nine was chosen as the optimal number of clusters according to the elbow rule. The average silhouette 507

coefficient is 0.742, which indicates good clustering performance. The cophenetic coefficient of the whole dataset is 508

20

0.852, which indicates that the dendrogram that is generated by the hierarchical clustering algorithm reflects the 509

pairwise distances of the sentences well. According to the silhouette coefficient plot (Fig. 5), the coefficients of 510

Clusters 5 and 8 are lower than the coefficient of the whole dataset; and, thus, the two clusters were subclustered. 511

Cluster 1 was additionally subclustered for the purpose of finding the simplest quantitative sentence type, which can 512

be represented and processed by all ACC systems. 513

For subclustering, the centroid and McQuitty methods performed the best for Clusters 5 and 8, respectively; and the 514

complete, McQuitty, and Ward’s methods, as well as the PAM, performed equally well for Cluster 1. It is likely that 515

multiple clustering algorithms were optimal because of the small size of Cluster 1. The average silhouette 516

coefficients of Clusters 1, 5, and 8 after subclustering are 0.674, 0.661, and 0.515, respectively, indicating good 517

performance. The cophenetic coefficients of Clusters 1, 5, and 8 after subclustering are 0.747, 0.809, and 0.724, 518

respectively, indicating that the dendrograms generated by the hierarchical clustering algorithms reflect the pairwise 519

distances of the sentences in each of the three clusters well. 520

Feature selection and synthesis improved the clustering performance, as shown in Table 7. For first-level clustering, 521

feature selection and synthesis increased the average silhouette coefficient from 0.183 to 0.742, compared to the 522

initial features. For subclustering, TF-IDF weighting and the local learning feature selection and weighting increased 523

the average silhouette coefficient by an average of 0.376. 524

Results of Extrinsic Evaluation 525

The external evaluation results showed a Jaccard Index of 1, which indicates perfect alignment between the human- 526

and computer-identified types. The results also showed a percentage of agreement of 80%, which indicates good 527

alignment between the human- and computer-assignments of sentences to the types (Stemler 2004). An analysis of 528

the results showed two main sources of disagreement in the assignments. First, like features used in any other text 529

analytics or clustering task, the features used in the sentence clustering contained errors. No existing NLP 530

algorithm/tool can achieve 100% performance, especially for relatively complex tasks such as constituency parsing. 531

For example, PP is subject to attachment errors in constituency parsing (Jurafsky and Martin 2014), mistaking the 532

sentence-level phrase structure rule “S→NP VP PP” as “S→NP VP” and thus causing wrong feature values for 533

complexity of PP. Errors in constituency parsing may also cause errors in SIE extraction, and thus lead to wrong 534

21

semantic feature values. Second, some sentences that are far from the cluster centers, lying on the boundary between 535

two or more adjacent clusters, were misclustered. 536

Results of Application-oriented Evaluation 537

Table 8 summarizes the results of the application-oriented evaluation. As shown, sentence types with very high or 538

high computability (i.e., Types 1.1, 1.2, and 2) achieved relatively higher information extraction performance 539

(i.e., >= 95% precision, recall, and F1-measure) than types with low or very low computability (i.e., Types 6.1, 6.2, 540

and 7, which achieved <= 80% precision, recall, and F1-measure). This proves the stated hypothesis (see 541

“Application-oriented Evaluation” subsection). 542

Limitations 543

Two limitations of the experiments are acknowledged. First, the testing corpus, although large in scale, is based on 544

only IBC and IBC variations/amendments. In future work, the authors plan to analyze the computability of other 545

building codes and standards that have been covered by existing ACC systems (e.g., International Energy 546

Conservation Code) using the proposed features and metrics and following the clustering-based approach. Second, 547

in the application-oriented evaluation, the proposed features and metrics, and the identified types, were only tested 548

in one ACC task (i.e., regulatory information extraction) and using one method/tool. In future work, the authors plan 549

to test the features and metrics in other ACC tasks (e.g., rule representation) and using different methods/tools (e.g., 550

mvdXML, visual programming languages, and query languages). 551

Contribution to the Body of Knowledge 552

This paper contributes to the body of knowledge on three main levels. From the perspective of building-code 553

analytics, first, the paper proposes a set of features that capture the syntactic and semantic structural complexity of 554

requirement sentences. Second, it proposes a number of complexity and computability metrics to support the 555

analysis of code computability. Third, it uses clustering to identify and characterize the different types of 556

requirements based on these features and metrics. The experimental results show that the proposed features and 557

metrics, along with the clustering-based methodology, were able to support the discovery of sentence types, the 558

analysis of their characteristics, and the assessment of their computability. The proposed features and metrics could 559

also be used to assess and compare the capabilities of different ACC systems and methods in a measurable and 560

consistent manner. 561

22

Second, from a practical perspective, the paper identifies different types of sentences in the building code, in terms 562

of their syntactic and semantic features and levels of computability. The knowledge of such sentence types could 563

help guide the use and development of ACC methods/systems in three directions. First, it could help us better 564

characterize existing ACC methods/systems, in terms of which sentence types they can process and/or represent. 565

Second, it could help users select the right ACC system for the application at hand. Third, it could help us better 566

understand the different types of sentences in the code and their characteristics as we embark on developing new 567

ACC methods/systems or extending the capabilities of existing ones. For example, it could help us set the research 568

agenda for smart code analytics and ACC, starting from the less complex and more computable sentences and 569

moving up to the more complex and less computable ones. 570

Third, from a clustering perspective, this paper provides a comparison of different clustering algorithms and analysis 571

methods, in the context of building-code analytics and sentence-type identification. The experiment results show 572

that hierarchical clustering algorithms outperformed other distance-based clustering algorithms. The best method for 573

hierarchical clustering analysis varied for different clustering problems. For example, for first-level clustering, the 574

Ward’s method outperformed the other methods. 575

Conclusions and Future Work 576

In this paper, a clustering-based approach for building-code computability analysis was used. A set of computability 577

features, including both syntactic and semantic features, were proposed and used for characterizing and clustering 578

the code sentences. The syntactic features represent the complexity of the syntactic structure of a sentence by 579

capturing the syntactic lengths of the phrases, clauses, and sentence and the syntactic heights of the constituency 580

trees corresponding to the sentence fragments. The semantic features are features indicating the semantic meaning, 581

content, structure, and complexity of a requirement, including presence of compliance checking attribute, 582

quantitative requirement descriptions, restrictions on concepts/requirements, references to other sections/codes, etc. 583

A number of computability metrics were also proposed to analyze the syntactic and semantic complexities and 584

computability of the sentence clusters: syntactic cluster complexity, semantic cluster complexity, essential semantic 585

information (ESI) absence factor, secondary semantic information (SSI) presence factor, and cluster computability. 586

Clusters with low average silhouette coefficients were subclustered using additional word-level features such as 587

phrase structure rules and POS tags. The sentence clusters were evaluated intrinsically, based on the average 588

23

silhouette coefficient and cophenetic coefficient; and the identified sentence types were evaluated extrinsically, 589

using both expert evaluation and application-oriented evaluation. 590

A total of 6,608 sentences from IBC 2009 and Champaign IBC amendment 2015 were analyzed using the proposed 591

approach. A total of twelve types and subtypes of sentences were identified, characterized in terms of their 592

computability features and metrics, and classified into six complexity levels (very low to very high complexity) and 593

computability levels (very high to very low computability). For example, Type 1.1, which has the lowest complexity 594

and highest computability, has simple NP and VP, very simple PP/SBAR, has no missing essential semantic 595

information (ESI), and has no restrictions or references. Type 7, which has the highest complexity and lowest 596

computability, has moderately complex VP, very complex NP and PP/SBAR, has no quantitative information, and 597

has both restrictions and references. The distribution of sentence types is nonuniform; and in total, more than 80% of 598

the sentences are of moderately high to low computability. The intrinsic evaluation results showed an average 599

silhouette coefficient of 0.742 and a cophenetic coefficient of 0.852 for the first-level clustering. The extrinsic 600

evaluation indicated perfect (100%) alignment between the human- and computer-identified types and 80% 601

agreement in the assignment of sentences to the types. It also indicated that sentence types with high computability 602

showed significantly higher information extraction performance than those types with low computability. 603

In their future work, the authors plan to improve the proposed approach and leverage the insights about sentence 604

types in four directions. First, the feature analysis and selection methods could be improved to enhance the 605

performance of clustering and the comprehensiveness of computability analysis. For example, additional features 606

such coreferences, implicit meanings, and difficult-to-interpret concepts (e.g., “structural integrity” is more difficult 607

to interpret than “height”) could be explored. Second, the analysis could be extended to multi-sentence requirements 608

and to other types of codes or regulatory documents. One sentence could include multiple requirements, while 609

multiple sentences could jointly express one requirement. The proposed computability features and indicators could 610

be adapted to analyze multi-sentence requirements. They could also be adapted to analyze other types of codes or 611

other types of regulatory documents such as contract specifications, which tend to be more complex in terms of 612

length, sentence structures, exceptions, and conjunctive and alternative obligations, etc. Third, the proposed features 613

and metrics, along with the identified sentence types, could be used to analyze the capabilities of existing ACC 614

approaches and tools (e.g., the CORENET ePlanCheck, SMARTcodes, SNACC system), in terms of which types of 615

24

requirements can be processed, represented, and checked, and which not. This could provide a better understanding 616

of what tools and methods exists and where the practical and knowledge gaps are. Fourth, and most importantly, the 617

authors will explore how the knowledge of sentence types – and their features, complexities, and computability – 618

can help pave the path toward smart and computable codes and eventually full automation in code checking and 619

analysis. As we embark on this endeavor, understanding the types and characteristics of the text we are dealing with 620

is essential to understanding the problem at hand, breaking it into manageable parts, and tackling each part one by 621

one. Our ultimate goal is to leverage machine learning and other artificial intelligence approaches to reach a level 622

where we can automatically process the entire building code and represent it in a computable manner – hopefully 623

including all types of sentences in the code. 624

Data Availability Statement 625

Some or all data, models, or code that support the findings of this study are available from the corresponding author 626

upon reasonable request (building-code sentence data and computational code for the clustering-based computability 627

analysis). 628

Acknowledgements 629

The authors would like to thank the National Science Foundation (NSF). This material is based on work supported 630

by the NSF under Grant No. 1827733. Any opinions, findings, and conclusions or recommendations expressed in 631

this material are those of the authors and do not necessarily reflect the views of the NSF. 632

References 633

[1] AEC3. (2012). International Code Council. http://aec3.homepage.t-online.de/en/5/5_013_ICC.htm. 634
(September 15, 2020). 635

[2] Aggarwal, C. C., and Zhai, C. (2012). Mining Text Data, Springer Science & Business Media, U.S. 636
[3] Agresti, A. (2003). Categorical data analysis. John Wiley & Sons, Hoboken. 637
[4] Al Qady, M., and Kandil, A. (2014). "Automatic clustering of construction project documents based on 638

textual similarity." Autom. Construct., 42, 36-49. 639
[5] Alashwal, A.M., and Abdul-Rahman, H. (2014). “Using PLS-PM to model the process of inter-project 640

learning in construction projects.” Autom. Construct., 44, 176-182. 641
[6] Allahyari, M., Pouriyeh, S., Assefi, M., Safaei, S., Trippe, E.D., Gutierrez, J.B., and Kochut, K. (2017). “A 642

brief survey of text mining: Classification, clustering and extraction techniques.” arXiv preprint 643
arXiv:1707.02919. 644

[7] Ambati, B.R., Reddy, S., and Steedman, M. (2016). “Assessing relative sentence complexity using an 645
incremental CCG parser.” Proc. 2016 Conf. of the North American Chapter of the Association for 646
Computational Linguistics (NAACL): Human Language Technologies, ACL, Stroudsburg, 1051-1057. 647

25

[8] Arthur, D., and Vassilvitskii, S. (2006). k-means++: The advantages of careful seeding, Stanford. 648
[9] Bekkerman, R., El-Yaniv, R., Tishby, N., and Winter, Y. (2001). “On feature distributional clustering for 649

text categorization.” Proc., 24th Annual Int. ACM SIGIR Conf. on Research and Development in 650
Information Retrieval, Association for Computing Machinery (ACM), New York, 146-153. 651

[10] Bird, S., Klein, E., and Loper, E. (2009). “Natural language processing with Python: analyzing text with the 652
natural language toolkit.” O'Reilly Media, Inc. 653

[11] Cadez, I., Heckerman, D., Meek, C., Smyth, P., and White, S. (2003). “Model-based clustering and 654
visualization of navigation patterns on a web site.” Data Min. Knowl. Discov., 7(4), 399-424. 655

[12] Clark, V., and Creswell, J. (2008). The mixed methods readers, Sage Publications, Thousand Oaks. 656
[13] Cutting, D. R., Karger, D. R., Pedersen, J. O., and Tukey, J. W. (2017). “Scatter/gather: A cluster-based 657

approach to browsing large document collections.” ACM SIGIR Forum, 51(2), 148-159. 658
[14] Dimyadi, J., and Amor, R. (2013). “Regulatory knowledge representation for automated compliance audit 659

of BIM-based models.” Proc., 30th CIB W78 Int. Conf., Conseil International du Bâtiment (CIB), 660
Rotterdam, Netherlands, 68-78. 661

[15] Dimyadi, J., Clifton, C., Spearpoint, M., and Amor, R. (2016). “Computerizing regulatory knowledge for 662
building engineering design.” J. Comput. Civil. Eng., 30(5), 10.1061/(ASCE)CP.1943-5487.0000572, 663
C4016001. 664

[16] Dougherty, J., Kohavi, R. and Sahami, M. (1995). “Supervised and unsupervised discretization of 665
continuous features.” Mach. Learn Proc. 1995, Morgan Kaufmann, Burlington, 194-202. 666

[17] Eastman, C., Lee, J., Jeong, Y., and Lee, J. (2009). “Automatic rule-based checking of building designs.” 667
Autom. Construct., 18(8), 1011-1033. 668

[18] Etikan, I., Musa, S.A., and Alkassim, R.S. (2016). “Comparison of convenience sampling and purposive 669
sampling.” Am. J. Theor. Appl. Stat., 5(1), 1-4. 670

[19] El-Diraby, T.E., and Osman, H. (2011). “A domain ontology for construction concepts in urban 671
infrastructure products.” Autom. Construct., 20(8), 1120-1132. 672

[20] Fodeh, S., Punch, B. and Tan, P. N. (2011). “On ontology-driven document clustering using core semantic 673
features.” Knowl. Inform. Syst., 28(2), 395-421. 674

[21] Garrett, J.H., and Fenves, S.J. (1987). “A knowledge-based standards processor for structural component 675
design.” Engineering with Computers, 2(4), 219-238. 676

[22] Garrett Jr, J.H. and Hakim, M.M. (1992). “Object-oriented model of engineering design standards.” J. 677
Comput. Civil. Eng., 6(3), 323-347. 678

[23] Hallgren, K. A. (2012). “Computing inter-rater reliability for observational data: an overview and tutorial.” 679
Tutorials in Quant. Methods for Psychol., 8(1), 23. 680

[24] Hjelseth, E., and Nisbet, N. (2010). “Exploring semantic based model checking.” Proc. 27th CIB W78 Int. 681
Conf. <http://itc.scix.net/data/works/att/w78-2010-54.pdf> (May 15, 2018). 682

[25] Jin, X.H. (2010). “Neurofuzzy decision support system for efficient risk allocation in public-private 683
partnership infrastructure projects.” J. Comput. Civ. Eng., 24(6), 525-538. 684

[26] Jurafsky, D., and Martin, J. (2014). Speech and language processing. 3rd edn. Pearson, London. 685
[27] Kaufman, L., and Rousseeuw, P.J. (2009). Finding groups in data: an introduction to cluster analysis. John 686

Wiley & Sons, Hoboken. 687
[28] Ketchen, D.J., and Shook, C.L. (1996). “The application of cluster analysis in strategic management 688

research: an analysis and critique.” Strateg. Manage. J., 17(6), 441-458. 689
[29] Kifokeris, D., and Xenidis, Y. (2017). “Constructability: Outline of past, present, and future research.” J. 690

Construct. Eng. Manag., 143(8), 04017035. 691

26

[30] Kilicoglu, H., and S. Bergler. (2009). “Syntactic dependency based heuristics for biological event 692
extraction.” Proc., 2009 Workshop on Current Trends in Biomedical Natural Language Processing: Shared 693
Task, Boulder, Colorado, U.S., 119-127. 694

[31] Li, S., Cai, H., and Kamat, V.R. (2016). “Integrating natural language processing and spatial reasoning for 695
utility compliance checking.” J. Constr. Eng. Manage., 142(12), p.04016074. 696

[32] Li, Y., Chung, S. M., and Holt, J. D. (2008). “Text document clustering based on frequent word meaning 697
sequences.” Data Knowl. Eng., 64(1), 381-404. 698

[33] Lomakina, L. S., Rodionov, V. B., and Surkova, A. S. (2014). “Hierarchical clustering of text documents.” 699
Autom. Rem. Contr., 75(7), 1309-1315. 700

[34] Malsane, S., Matthews, J., Lockley, S., Love, P. E., and Greenwood, D. (2015). “Development of an object 701
model for automated compliance checking.” Autom. Construct., 49, 51-58. 702

[35] Manning, C.D., Schütze, H., and Raghavan, P. (2008). Introduction to information retrieval. Cambridge 703
university press, Cambridge, United Kingdom. 704

[36] Manning, C.D., Surdeanu, M., Bauer, J., Finkel, J.R., Bethard, S., and McClosky, D. (2014). “The Stanford 705
CoreNLP natural language processing toolkit.” Proc. ACL 2014: system demonstrations, ACL, Stroudsburg, 706
55-60. 707

[37] Massung, S., Zhai, C., and Hockenmaier, J. (2013) “Structural parse tree features for text representation.” 708
2013 IEEE 7th International Conference on Semantic Computing, IEEE, New York, 9-16. 709

[38] Naughton, M., Stokes, N., and Carthy, J. (2010). “Sentence-level event classification in unstructured texts.” 710
Information retrieval, 13(2), 132-156. 711

[39] Nawari, N.O. (2019). “A Generalized Adaptive Framework (GAF) for Automating Code Compliance 712
Checking.” Buildings, 9(4), 86. 713

[40] Ng, H. S., Toukourou, A. and Soibelman, L. (2006). “Knowledge discovery in a facility condition 714
assessment database using text clustering.” J. Infrastruct. Syst., 12(1), 50-59. 715

[41] Ozkaya, I., and Akin, Ö. (2006). “Requirement-driven design: assistance for information traceability in 716
design computing.” Design Studies, 27(3), 381-398. 717

[42] Preidel, C., and Borrmann, A. (2016). “Towards code compliance checking on the basis of a visual 718
programming language.” ITcon. 21(25), 402–421. 719

[43] Rousseeuw, P. J. (1987). “Silhouettes: a graphical aid to the interpretation and validation of cluster 720
analysis.” J. Comput. Appl. Math., 20, 53-65. 721

[44] Salama, D.A., and El-Gohary, N.M. (2013). “Automated compliance checking of construction operation 722
plans using a deontology for the construction domain.” J. Comput. Civ. Eng., 27(6), 681-698. 723

[45] Salton, G., and Buckley, C. (1988). “Term-weighting approaches in automatic text retrieval.” Inf. Process. 724
Mgmt., 24(5), 513-523. 725

[46] Särndal, C. E., Swensson, B., and Wretman, J. (2003). Model Assisted Survey Sampling. Springer Science 726
& Business Media, New York, 100-109. 727

[47] Sarstedt, M., and Mooi, E. (2014). A Concise Guide to Market Research. Springer, Berlin. 728
[48] Shepitsen, A., Gemmell, J., Mobasher, B., and Burke, R. (2008). “Personalized recommendation in social 729

tagging systems using hierarchical clustering.” Proc., 2008 ACM conf. on Recommender Systems, 730
Association for Computing Machinery (ACM), New York, 259-266. 731

[49] Sneath, P.H., and Sokal, R.R. (1973). Numerical taxonomy. The principles and practice of numerical 732
classification. W.H. Freeman and Company, San Francisco. 733

[50] Štajner, S., and Hulpuş, I. (2018). “Automatic assessment of conceptual text complexity using knowledge 734
graphs.” Proc. 27th International Conference on Computational Linguistics, ACL, Stroudsburg, 318-330. 735

27

[51] Stemler, S.E. (2004). “A comparison of consensus, consistency, and measurement approaches to estimating 736
interrater reliability.” Pract. Assess. Res. Eval., 9(1), 4. 737

[52] Solibri. (2018). “Solibri Model Checker.” https://www.solibri.com/products/solibri-model-checker. (May 738
15, 2018) 739

[53] Solihin, W., and Eastman, C. (2015). “Classification of rules for automated BIM rule checking 740
development.” Autom. Construct., 53, 69-82. 741

[54] Valdes-Vasquez, R., and Klotz, L. E. (2012). “Social sustainability considerations during planning and 742
design: framework of processes for construction projects.” J. Construct. Eng. Manag., 139(1), 80-89. 743

[55] Weise, M., Liebich, T., Nisbet, N. and Benghi, C. (2017). “IFC model checking based on mvdXML 1.1.” 744
eWork and eBusiness in Architecture, Engineering and Construction: ECPPM 2016, 19-26. 745

[56] Yang, L., Cai, X., Zhang, Y., and Shi, P. (2014). “Enhancing sentence-level clustering with ranking-based 746
clustering framework for theme-based summarization.” Inform. Sci., 260, 37-50. 747

[57] Yao, J., Mao, Q., Goodison, S., Mai, V., and Sun, Y. (2015). “Feature selection for unsupervised learning 748
through local learning.” Pattern Recognit. Lett., 53, 100-107. 749

[58] Yurchyshyna, A., and Zarli, A. (2009). “An ontology-based approach for formalisation and semantic 750
organisation of conformance requirements in construction.” Autom. Construct., 18(8), 1084-1098. 751

[59] Zhai, C., and Massung, S. (2016). Text data management and analysis: a practical introduction to 752
information retrieval and text mining, ACM, New York, USA. 753

[60] Zhang, J., and El-Gohary, N. (2013). “Semantic NLP-based information extraction from construction 754
regulatory documents for automated compliance checking.” J. Comput. Civ. Eng., 755
10.1061/(ASCE)CP.1943-5487.0000346, 04015014. 756

[61] Zhang, J., and El-Gohary, N. (2015). “Automated information transformation for automated regulatory 757
compliance checking in construction.” J. Comput. Civ. Eng., 10.1061/(ASCE)CP.1943-5487.0000427, 758
B4015001. 759

[62] Zhang, J., and El-Gohary, N. (2016). “Extending building information models semiautomatically using 760
semantic natural language processing techniques.” J. Comput. Civ. Eng., 10.1061/(ASCE)CP.1943-761
5487.0000536, C4016004. 762

[63] Zhang, J., and El-Gohary, N. (2017a). “Semantic-based logic representation and reasoning for automated 763
regulatory compliance checking.” J. Comput. Civ. Eng., 31(1), 10.1061/(ASCE)CP.1943-5487.0000583. 764

[64] Zhang, J., and El-Gohary, N. (2017b). “Integrating semantic NLP and logic reasoning into a unified system 765
for fully-automated code checking.” Autom. Construct., 73, 45-57. 766

[65] Zhang, R., and El-Gohary, N. (2020). “A machine-learning approach for building-code sentence generation 767
for automatic semantic analysis.” Proc. 2020 ASCE CRC, ASCE. 768

[66] Zhong, B., Xing, X., Luo, H., Zhou, Q., Li, H., Rose, T., and Fang, W. (2020). “Deep learning-based 769
extraction of construction procedural constraints from construction regulations.” Adv. Eng. Inform., 43, 770
p.101003. 771

[67] Zhou, P., and El-Gohary, N. (2017). “Ontology-based automated information extraction from building 772
energy conservation codes.” Autom. Construct., 74, 103-117. 773

28

List of Figure Captions 774

Fig. 1. Constituency parsing tree of an example sentence. 775

Fig. 2. Methodology for building-code computability analysis and typing. 776

Fig. 3. Extrinsic evaluation process. 777

Fig. 4. Plot of the percentage of variance explained by the clusters. 778

Fig. 5. Plot of the silhouette coefficient of each sentence and cluster. 779

29

Tables 780

Table 1. Semantic Information Elements for Representing Requirements for Compliance Checking Purposes (Zhang 781
and El-Gohary 2015) 782
Semantic information element Definition

Subject An ontology concept representing a thing (e.g., building element) that is subject to a
particular requirement

Compliance checking attribute An ontology concept representing a specific characteristic of a “subject” that is checked for
compliance

Deontic operator indicator A term/phrase that indicates the deontic type of the requirement (i.e., obligation, permission,
or prohibition)

Quantitative relation A term/phrase that defines the type of relation for the quantity (e.g., extend)

Comparative relation A term/phrase for comparing quantitative values, including “greater than or equal to,”
“greater than,” “less than or equal to,” “less than,” and “equal to”

Quantity value A numerical value that defines the quantity
Quantity unit The unit of measure for a “quantity value”

Restriction A term/phrase that places a constraint on the “subject,” “compliance checking attribute,”
“quantity,” or the whole requirement

Reference A term or phrase that denotes the mention or reference to a chapter, section, document, table,
or equation in a building-code sentence (e.g., “Section 1312” in “the revolving door shall
comply with Section 1312”)

 783
Table 2. Scales of Syntactic and Semantic Cluster Complexities and Computability 784
Symbolic representation Scale of syntactic cluster complexity, semantic cluster

complexity, and syntactic feature complexity Scale of cluster computability

--- Very simple Very low
-- Simple Low
- Moderately simple Moderately low
+ Moderately complex Moderately high
++ Complex High
+++ Very complex Very high
 785
Table 3. Cluster Characterization and Computability of First-level Clusters 786

Cluster
Syntactic features Syntactic cluster

complexity
Semantic features

E Semantic cluster
complexity Computability

NP VP PP/SBAR S A Q Rf Rs

1 0.11
(--)

0.19
(--)

0.00
(---)

0.12
(--)

0.09
(--)

1.00
(+)

0.98
(+)

0.00
(-)

0.00
(-)

0.00
(-)

0.00
(---)

0.96
(+++)

2 0.09
(---)

0.18
(---)

0.00
(---)

0.10
(---)

0.00
(---)

0.00
(-)

0.00
(-)

0.00
(-)

0.00
(-)

1.00
(+)

0.33
(--)

0.84
(++)

3 0.08
(---)

0.20
(--)

0.00
(---)

0.12
(--)

0.05
(--)

0.00
(-)

0.00
(-)

1.00
(+)

0.00
(-)

1.00
(+)

0.61
(+)

0.67
(+)

4 0.13
(-)

0.22
(-)

0.00
(---)

0.15
(-)

0.19
(-)

1.00
(+)

0.00
(-)

1.00
(+)

0.00
(-)

1.00
(+)

0.61
(+)

0.60
(+)

5 0.15
(+)

0.36
(++)

0.07
(++)

0.31
(++)

0.82
(++)

1.00
(+)

1.00
(+)

0.00
(-)

1.00
(+)

0.00
(-)

0.39
(-)

0.40
(-)

6 0.13
(-)

0.30
(+)

0.05
(--)

0.24
(+)

0.56
(+)

0.00
(-)

0.00
(-)

0.00
(-)

1.00
(+)

1.00
(+)

0.72
(++)

0.36
(-)

7 0.15
(+)

0.31
(+)

0.05
(--)

0.26
(+)

0.64
(+)

0.00
(-)

0.00
(-)

1.00
(+)

1.00
(+)

1.00
(+)

1.00
(+++)

0.18
(--)

8 0.17
(++)

0.39
(+++)

0.08
(+++)

0.35
(+++)

1.00
(+++)

1.00
(+)

1.00
(+)

1.00
(+)

0.96
(+)

0.00
(-)

0.65
(+)

0.17
(--)

9 0.19
(+++)

0.32
(+)

0.08
(+++)

0.29
(++)

0.79
(++)

1.00
(+)

0.00
(-)

1.00
(+)

1.00
(+)

1.00
(+)

1.00
(+++)

0.10
(---)

Note: 1. NP = noun phrase; VP = verb phrase; PP = preposition phrase; SBAR = clause introduced by a subordinating 787
conjunction; S = whole sentence; A = compliance checking attribute; Q = quantitative semantic information; Rf = reference; Rs = 788
restriction; E = percentage of sentences in the cluster that have missing essential semantic information. 789
2. The scales of the syntactic feature complexity, syntactic and semantic cluster complexities, and computability are shown in 790
Table 2. 791
3. For the semantic feature complexity: + symbol = feature is present in most of the sentences in the cluster; - symbol = feature is 792
absent from most of the sentences in the cluster. 793

30

Table 4. Cluster Characterization and Computability of Children Clusters 794

Parent cluster Subclustering features Comparison of children clusters Computability of
children clusters

Cluster 1 IN

CC
(‘IN’, ‘DT’)
Total number of phrase
structure rules

Compared to sentences in Cluster 1.1, Cluster 1.2
sentences have more prepositions (IN) (e.g., “of”,
“in”, “at”) and/or more conjunctions (CC), and have
more phrase structure rules. Sentences in Cluster 1.2
are likely to have multiple requirements (e.g., two
requirements, one on width and one on height) in the
form of preposition phrases and/or conjunctions and
thus are more complex both syntactically and
semantically.

Cluster 1.1 (+++)
Cluster 1.2 (++)

Cluster 5 NP → NP PP
(‘DT’ ‘NN’)
(‘JJ’, ‘NN’)
(‘DT’, ‘JJ’)

Compared to sentences in Cluster 5.1, Cluster 5.2
sentences have more noun phrases (NP), more pairs
of determiner (DT) and noun (NN), and more pairs
of adjective (JJ) and noun. Sentences in Cluster 5.2
are likely to have multiple requirements in the form
of long and nested noun phrases and thus are more
complex both syntactically and semantically.

Cluster 5.1 (+)
Cluster 5.2 (-)

Cluster 8 NP → NP PP
NP → NNP CD
('CD' 'NNS')
('NNS' 'IN')
('IN' 'NN')
('NN' 'IN')
('JJ' 'NN')
('IN' 'NNP')
('DT' 'NN')
('JJR' 'IN')
('IN' 'DT')
('DT' 'JJ')
('MD' 'VB')
('CD' '.')

Compared to sentences in Cluster 8.1, Cluster 8.2
sentences have more pairs of determiner and noun,
pairs of preposition and noun, and pairs of cardinal
number (CD) and noun. Sentences in Cluster 8.2 are
likely to have multiple requirements in the form of
long and nested noun phrases and thus are more
complex both syntactically and semantically.

Cluster 8.1 (--)
Cluster 8.2 (---)

Note: NNP = proper noun, singular; NNS = noun, plural; JJR = adjective, comparative; MD = modal; VB = verb, base form. 795
 796
 797

31

Table 5. Sentence Types in the International Building Code 798

Sentence type Example sentence
Percentage of

sentence types in
the whole dataset

Computability

1.1 (Cluster 1.1) The height of door openings shall not be less than 80 inches
(2032 mm).

1.5% Very high (0.96)

1.2 (Cluster 1.2) Occupiable spaces, habitable spaces and corridors shall have
a ceiling height of not less than 7 feet 6 inches.

1.3% High (0.96)

2 (Cluster 2) Louvers shall be prohibited. 6.9% High (0.84)
3.1 (Cluster 3) Shaft enclosures shall meet the requirements of Section

703.2.1.
7.8% Moderately high

(0.67)
3.2 (Cluster 4) The fire-resistance rating of building elements, components

or assemblies shall be determined in accordance with the test
procedures set forth in ASTM E 119 or UL 263 or in
accordance with Section 703.3.

3.0% Moderately high
(0.60)

4.1 (Cluster 5.1) Spacing of braced wall lines shall not exceed 35 feet on
center in both the longitudinal and transverse directions in
each story.

12.1% Moderately high
(0.40)

4.2 (Cluster 5.2) Where an egress court serving a building or portion thereof
is less than 10 feet in width, the egress court walls shall have
not less than 1-hour fire-resistance-rated construction for a
distance of 10 feet above the floor of the court.

11.2% Moderately low
(0.40)

5.1 (Cluster 6) Openings between the Group S-2 enclosed parking garage
and Group S-2 open parking garage, except exit openings,
shall not be required to be protected.

27.7% Moderately low
(0.36)

5.2 (Cluster 7) Where exterior walls serve as a part of a required fire-
resistance-rated shaft or exit enclosure, or separation, such
walls shall comply with the requirements of Section 705 for
exterior walls and the fire-resistance-rated enclosure or
separation requirements shall not apply.

19.2% Low (0.18)

6.1 (Cluster 8.1) In occupancies in Groups B, E, F, I-1, M, R-l, R-2, R-4,
Sand U, where the building is equipped throughout with an
automatic sprinkler system in accordance with Section
903.3.1.1, the length of the dead-end corridors shall not
exceed 50 feet.

3.8% Low (0.17)

6.2 (Cluster 8.2) The aggregate floor area of the Group H occupancies located
at the perimeter of the unlimited area building shall not
exceed 10 percent of the area of the building nor the area
limitations for the Group H occupancies as specified in
Table 503 as modified by Section 506.2, based upon the
percentage of the perimeter of each Group H floor area that
fronts on a street or other unoccupied space.

4.0% Very low (0.17)

7 (Cluster 9) In determining the fire-resistance rating of exterior bearing
walls, compliance with the ASTM E 119 or UL 263 criteria
for unexposed surface temperature rise and ignition of cotton
waste due to passage of flame or gases is required only for a
period of time corresponding to the required fire-resistance
rating of an exterior nonbearing wall with the same fire
separation distance, and in a building of the same group.

1.5% Very low (0.10)

 799

 800

32

Table 6. Average Silhouette Coefficients for the Tested Clustering Algorithms 801

Clustering
Hierarchical clustering

K-means PAM
Single Complete Average McQuitty Median Centroid Ward’s

First-level clustering 0.464 0.647 0.678 0.701 0.129 0.478 0.742 0.488 0.485

Subclustering

Cluster 1 0.527 0.674 0.545 0.674 0.539 0.545 0.674 0.601 0.674

Cluster 5 0.566 0.661 0.568 0.589 0.589 0.568 0.613 0.642 0.643

Cluster 8 0.234 0.468 0.463 0.515 0.469 0.463 0.483 0.498 0.506
Note: Bold font indicates the best performance(s); PAM = partition around medians. 802
 803
Table 7. Average Silhouette Coefficients Before and After Feature Selection and Synthesis 804
Clustering Initial features Final features

First-level clustering 0.183 0.742

Subclustering
Cluster 1 0.245 0.674
Cluster 5 0.245 0.661
Cluster 8 0.233 0.515

 805
Table 8. Experimental Results of Application-Oriented Evaluation 806

Sentence types
Sentences with very high or high computability Sentence types with low or very low computability
Type 1.1 Type 1.2 Type 2 Type 6.1 Type 6.2 Type 7

Precision 0.95 0.96 0.98 0.81 0.79 0.77
Recall 0.98 0.95 0.97 0.79 0.78 0.75
F1-measure 0.96 0.96 0.97 0.80 0.78 0.76

 807

 808

