\S]

0 NN Wn bR~ W

10
11
12
13
14
15
16
17
18
19

20

21

22

23

24

25

26

27
28

Clustering-based Approach for Building Code Computability Analysis

Ruichuan Zhang'; and Nora El-Gohary, A.M.ASCE?

! Graduate Student, Department of Civil and Environmental Engineering, University of Illinois at Urbana-
Champaign, 205 N. Mathews Ave., Urbana, IL 61801, United States. E-mail: rzhang65@illinois.edu.

2 Associate Professor, Department of Civil and Environmental Engineering, University of Illinois at Urbana-
Champaign, 205 N. Mathews Ave., Urbana, IL 61801, United States (corresponding author). E-mail:
gohary@illinois.edu; Tel: +1-217-333-6620.

Abstract

One common limitation of all automated code compliance checking methods and tools is their inability to deal with
all types of building-code requirements. More research is needed to better identify the different types of
requirements, in terms of their syntactic and semantic structures and complexities, to gain more insights about the
capabilities and limitations of existing methods and tools (i.e., which requirements they can automatically process,
represent, and/or check, and which not). To address this need, this paper proposes a new set of syntactic and
semantic features and complexity and computability metrics for code computability analysis. A clustering-based
approach was used to identify the different types of code sentences, in terms of their computability, using the
proposed features and metrics. The approach was implemented and tested on a corpus of 6,608 sentences from the
International Building Code and its amendments. The sentence clusters and identified sentence types were evaluated
using intrinsic and extrinsic evaluation methods. The evaluation results indicated good clustering performance,
perfect alignment between the human- and computer-identified types, and good agreement in the assignment of

sentences to the types.

Keywords: Buildings; Code checking; Computability; Text analytics; Hierarchical clustering.

Introduction

Existing automated compliance checking (ACC) systems in the architecture, engineering, and construction (AEC)
domain have different coverage capabilities, in terms of what type of building-code requirements they can represent,
process, or check. For example, the Solibri Model Checker (SMC) (Solibri 2018), an example of commercially-
available software, only covers simple, discrete, and property requirements (e.g., “risers shall be 4 inches high
minimum”) and conditional requirements (e.g., “ceilings in corridors shall be not less than 2.34 meters in height”). It

allows users to include or exclude building elements and adjust the properties and property values in a limited

29
30
31
32
33
34
35
36
37
38
39
40

41

42
43
44
45
46
47
48
49
50
51
52
53
54
55

56

number of rule templates. And, it requires manual effort to read the code text, identify the right rule templates to use,
and enter the values of the parameters in the templates, lacking capabilities for automatically processing natural-
language requirements into computable representations. In the SMARTcodes project by AEC3 and International
Code Council (ICC) (AEC3 2012), an example of approaches for semi-automated requirement processing,
conditional, attributive requirements are manually annotated with requirement, applicability, selection, and
exception (RASE) tags (Hjelseth and Nisbet 2010), and then the annotated text is converted into the IFC-compatible
XML format (Weise et al. 2017). In the SNACC system by Zhang and El-Gohary (2017b), an example of
approaches for fully-automated information extraction and requirement processing, semantic modeling and natural
language processing (NLP) techniques are used to automatically extract quantitative requirements (excluding
qualitative requirements) from building codes into a computable format. Collectively, existing systems are limited in
dealing with highly complex requirements, especially those that have hierarchically complex syntactic and semantic
structures or those that require human judgement by nature (Solihin and Eastman 2015; Zhou and El-Gohary 2017,

Nawari 2019).

Despite such relatively high variability in the approaches and capabilities of existing systems, there is a lack of
research efforts to identify and characterize the different types of requirements or sentences in AEC regulations to
better assess the coverage capabilities of existing ACC systems, identify the types of ACC systems required for
different applications (Solihin and Eastman 2015), and inform future ACC efforts. For example, Solihin and
Eastman (2015) identified four types of requirements based on what type of BIM data the rules require. Malsane et
al. (2015) manually grouped regulations into declarative and informative clauses. These two types of classifications
are useful in their intended scopes and applications, but cannot be used to assess the capabilities of existing ACC
systems, in terms of what natural-language requirements they can automatically process, represent (into a
computable representation), and/or check. Other research efforts that focused on developing computable
representations of requirements (e.g., Eastman et al. 2009; Hjelseth and Nisbet 2010; Dimyadi and Amor 2013;
Zhang and El-Gohary 2013; Dimyadi et al. 2016), by nature of their scope, did not devote efforts to analyze the
different types of requirements or sentences. The knowledge of sentence types, and the syntactic and semantic
features of these different types, is essential for assessing and comparing the actual and potential capabilities of
ACC systems. It would help us gain insights about the capabilities and limitations of existing ACC systems (i.e.,

which requirements they can automatically process, represent, and/or check, and which not), in order to choose the

57

58

59
60
61
62
63
64
65
66
67
68

69
70
71
72
73
74

75

76

77

78
79
80
81
82

83

right system for the application at hand, improve or extend existing systems for enhanced coverage and

performance, or develop new systems with increased capabilities.

To address this need, this paper first proposes a set of new features to characterize requirement sentences in building
codes, in terms of their syntactic and semantic structures, to capture their syntactic and semantic complexities. This
paper then proposes a set of new complexity and computability metrics. Computability aims to measure the ability
of sentences to be automatically processed, represented, and checked by ACC systems based on their syntactic and
semantic complexities. Sentences with complex syntactic and semantic structures are difficult to be represented in a
computable representation (e.g., mvdXML), processed automatically by computational tools and techniques (e.g.,
NLP techniques), and checked by semi- or fully-automated ACC systems; and vice versa. A clustering-based
approach was adopted to discover sentence clusters in a large corpus of building-code sentences, from IBC and its
variations/amendments, using the proposed features. Sentence types were then identified based on the sentence

clusters and characterized, using the proposed features and metrics, both quantitively and qualitatively.

The rest of the paper is organized as follows. The second section provides a brief review of existing ACC efforts and
clustering and text mining techniques. The third section continues with an analysis of the knowledge gaps in
building-code computability analysis and text clustering (in the context of our application). The fourth section
presents the proposed syntactic and semantic features and complexity and computability metrics. The fifth section
explains the research methodology for clustering, computability analysis, and evaluation. The sixth section presents
the experimental results and discussion. Finally, the last two sections conclude the paper with contributions,

conclusions, and future work.

Background

Automated Code Checking Systems

Extensive research efforts have focused on automating the process of code compliance checking in the AEC domain.
Many of the existing ACC systems are semi-automated, requiring manual effort to read the code and represent the
requirements in computable forms. Semi-automated efforts have used different approaches and representations. For
example, Garrett and Fenves (1987) proposed a design strategy, in which standard requirements are represented as
computable constraints and knowledge-base relations. Garrett and Hakim (1992) developed an object-oriented

model that offers different types of representation schemes for different types of requirements. Ozkaya and Akin

84
85
86
87
88
89
90
91
92
93

94

95
96
97
98
99
100
101

102

103

104
105
106
107
108
109

110

(2006) proposed a design approach that uses requirement-design coupling paths to query the design products and
incorporate requirements into designs for supporting code checking. More recently, query languages have been used
to represent requirements and industry foundation classes (IFC)-format design information [e.g., SPARQL Query
Language for RDF (Yurchyshyna and Zarli 2009), regulatory knowledge query language (Dimyadi et al. 2016)].
Visual programming languages [e.g., conceptual graphs (Solihin and Eastman 2016), Visual Code Checking
Language (Preidel and Borrmann 2016)] have also been used to represent requirements and visualize them in graph-
like structures. Fully-automated ACC systems, compared to semi-automated ones, aim to automate the process of
extracting the information from the codes and representing the requirements in computable rule formats. For
example, Zhang and El-Gohary (2013, 2015, 2016, 2017a, 2017b) and Zhou and El-Gohary (2017) proposed
semantic rule-based ACC systems that use ontologies, NLP techniques, and pattern matching-based rules to extract

regulatory information from the codes and represent these extracted information in the form of logic rules.

Many ACC efforts have also been led by industry bodies and government organizations, which are mostly semi-
automated, such as CORENET ePlanCheck by the Singapore Building and Construction Authority, REScheck and
COMcheck by the U.S. Department of Energy, and SMARTcodes by AEC3 and ICC. In most of these efforts,
requirements are hard-coded by the software developers, such as in SMC, Compliance Audit Systems, Daima,
Invicara, SmartReview, and UpCodes. A few other efforts rely on mechanisms such as semantic annotation to
increase the system’s flexibility. For example, in the AEC3 and ICC’s SMARTcodes project, users first annotate the
requirements with a set of semantic markups — including requirement, applicability, selection, and exception

(Hjelseth and Nisbet 2010), which are then converted into mvdXML format.

Clustering for Text Analytics

Clustering is an unsupervised learning problem, which aims to find groups of similar objects in data (Aggarwal and
Zhai 2012). In the context of text analytics, the clustering objects could be documents, sentences, or phrases and
words. Clustering has been used in many applications such as document classification (e.g., Bekkerman et al. 2001),
browsing (e.g., Cutting 2017), summarization (e.g., Yang et al. 2014), and visualization (Cadez et al. 2003). A
limited number of research efforts in the construction domain have used text clustering for various purposes. For
example, Ng et al. (2006) used text clustering to analyze deficiency descriptions for knowledge discovery in a

facility condition assessment database. Al Qady and Kandil (2014) used a hybrid approach that included clustering

111

112

113
114
115
116
117

118

119
120
121
122
123
124
125
126

127
128
129
130
131
132
133
134
135
136

137

and text classification to group semantically-related project documents. And, Kifokeris and Xenidis (2017) used a

notion clustering-based method to identify risk sources in technical projects.

The application of clustering algorithms can benefit building-code analytics and sentence typing for ACC from two
perspectives. First, clustering is naturally suitable for finding different groups of requirements or sentences that
share similar characteristics (Aggarwal and Zhai 2012, Allahyari et al. 2017). Second, clustering-based methods
require minimum level of manual effort for mining the underlying patterns of the text, compared to manual methods,
where the patterns are interpreted and analyzed by humans, and supervised learning-based methods, where data are

manually annotated to train computational models for analyzing the patterns.

Hierarchical clustering aims to successively combine groups of data in a pairwise manner based on their pairwise
similarities, until all the data are within one single group (Aggarwal and Zhai 2012). This process constructs a
hierarchy of clusters, which can be intersected at a certain level to obtain a specific number of clusters. Hierarchical
clustering has been widely used in the context of text analytics [e.g., Li et al. (2008), Shepitsen et al. (2008), and
Lomakina et al. (2014)]. Hierarchical clustering has also been applied in solving a number of research problems in
the construction domain such as assessment of social sustainability of construction projects (e.g., Valdes-Vasquez
and Klotz 2012); but, to the best of the authors’ knowledge, no efforts focused on using hierarchical clustering for

document analysis.

State of the Art and Knowledge Gaps

State of the art and knowledge gaps in building-code computability and typing analysis: A very limited number
of research efforts have been undertaken to formally characterize the different types of requirements or sentences in
building codes. Solihin and Eastman (2015) grouped requirements/rules based on what type of BIM data the rules
require, and accordingly identified four general classes of rules: (1) rules that only need a small number of explicit
data that exist in the BIM dataset; (2) rules that need simple derived attribute values; (3) rules that need extended
data structures; and (4) rules that need a “proof of solution” (e.g., example cases/sentences and/or manual
hypothetical checking processes). This effort is very useful in assessing the existence of BIM data for checking the
requirements, but, by nature of its scope, does not address the classification of requirements by their computability
(e.g., the ability of ACC systems to automatically process natural-language requirements into computable

representations). Malsane et al. (2015) grouped the clauses in the England and Wales Fire Safety Building

138
139
140
141
142
143
144
145
146

147
148
149
150
151
152
153
154
155

156
157
158
159
160
161
162
163

164

Regulations (EWFSBR) Part Bl into two types: (1) declarative clauses: clauses that have obviously checkable
information and thus are computer interpretable (e.g., simple geometrical rules); and (2) informative clauses: clauses
that have information that is not obviously checkable or needs human interpretation and thus are not computer
interpretable. This type of classification could be useful as a first-level binary (black-and-white) classification, but
cannot be used for the purpose of computability analysis, because it does not identify the different subtypes of
computer-interpretable requirements — some subtypes would be computer-interpretable by some systems but not the
others. Also, the aforementioned criteria for classifying a clause into the first category versus the second requires
human interpretation, lacking well-defined text features that could support the automation of the classification and

the computability analysis process.

State of the art and knowledge gaps in text clustering: In the computational linguistics domain, text clustering
efforts have mainly focused on document and phrase/word clustering, both separately (e.g., topic model-based
document clustering, WordNet-based phrase/word clustering) and simultaneously [e.g., word clustering and
coclustering (Kilicoglu and Bergler 2009)], but rarely studied sentence clustering. Compared to document
clustering, sentence clustering usually has a sparser feature space because a sentence has significantly fewer words
than a document and thus requires effective feature selection. In terms of the purpose of clustering, existing sentence
and/or text clustering efforts evaluated either the semantic similarity (Naughton et al. 2010, Fodeh et al. 2011, Yang
et al. 2014) or the syntactic similarity of the text only (Massung et al. 2013), without combining both analyses in the

clustering problem.

State of the art and knowledge gaps in features and metrics for text analytics: Various features and metrics have
been proposed or adopted for supporting text analytics. These features mainly included (1) syntactic features, such
as part-of-speech (POS) tag frequency and parsing tree structural features (e.g., Massung et al. 2013), or (2)
semantic features, such as bag of words, word frequency, and features based on WordNet (e.g., Naughton et al.
2010, Fodeh et al. 2011) and document graph models (e.g., Yang et al. 2014). These features are effective in text
analytics tasks such as text categorization (e.g., Massung et al. 2013) or topic-based text clustering (e.g., Naughton
et al. 2010, Yang et al. 2014). However, their effectiveness is limited in requirement computability analysis because:
(1) they are mostly lexical- or word-level features and cannot directly reflect requirement- and sentence-level

complexity; and (2) they lack the ability to capture the semantic characteristics specific to building-code text such as

165
166
167
168
169
170
171
172
173
174
175

176

177

178

179

180
181
182
183
184
185
186
187
188
189

190

the essential and secondary semantic information elements. Some of these features were further used in the literature
for calculating or deriving text complexity metrics. Existing metrics for text complexity analysis can be grouped into
three categories: (1) lexical complexity metrics, such as number of infrequent words; (2) syntactic complexity
metrics, such as the length of sentences, number of infrequent structural features, and number of constituents in the
parsing trees (e.g., Ambati et al. 2016); and (3) semantic complexity metrics, such as knowledge graph-based
measures like node degree, length of shortest path, and number of connected components (e.g., Stajner and Hulpus
2018). These metrics are useful for text complexity analysis in terms of readability (Ambati et al. 2016, Stajner and
Hulpus 2018) but cannot be used to analyze text computability, because they are based on the comprehensibility of
the text by human readers, rather than the ability of the text to be automatically processed, represented, and checked
by computational systems (e.g., ACC systems). Also, similar to existing features for text analytics, these metrics are
limited in indicating the syntactic and semantic complexity of building-code requirements, because they do not

capture the syntactic and semantic characteristics that are specific to building-code text (Zhou and El-Gohary 2017).
Proposed Features and Metrics for Building-Code Computability Analysis and Typing
Features for Building-Code Computability Analysis and Typing

Syntactic Features

Four syntactic features are proposed for representing the complexity of the syntactic structures of building-code
requirement sentences. The features are capturing the syntactic lengths of the sentence fragments (i.e., phrases,
clauses, or sentences) and the syntactic heights of the constituency trees corresponding to the sentence fragments, as
shown in Fig. 1. The syntactic lengths and heights include: (1) the lengths of the sentence fragments for each
fragment labeled with the following phrase- and clause-level tags in the sentence-level phrase structure rules: NP
(noun phrase), VP (verb phrase), PP (preposition phrase), and SBAR (clause introduced by a subordinating
conjunction such as that, where, and when); (2) the length of the whole sentence; (3) the heights of the constituency
trees for each fragment labeled with NP, VP, PP, or SBAR; and (4) the height of the entire constituency tree. These
features were chosen for two reasons. First, the constituency tree consists of nested linguistic constituents that
represent the syntactic structure of a sentence fragment (Jurafsky and Martin 2014). The higher the constituency tree,

the more nested the syntactic structures of the sentence fragment. Second, the longer the sentence and sentence

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

fragments, the more syntactic information contained in the sentence fragment. The more nested the structure of the

sentence fragment and the more information it contains, the more complex the fragment.

The four features are: (1) complexity of NP; (2) complexity of VP; (3) complexity of PP or SBAR, whichever is
higher (because both have similar functions, i.e., to represent modification or adjunct meanings of the sentence); and
(4) complexity of the whole sentence. The feature values are computed as per Egs. (1) to (3), where SPC is NP, VP,
PP, or SBAR; [; is the length of the phrase or clause i; h; is the height of the constituency tree of the phrase or
clause j; F is the set of all the phrases or clauses labeled with SPC; L is the length of the whole sentence S; and H is

the height of the constituency tree of the whole sentence.

Complexity of SPC = /rl]rleag l; x]-Ea}(hf @Y

Complexity of PP/SBAR = max(Complexity of PP,Complexity of SBAR) (2)
Complexity of S= VvLxH (3)

Semantic Features

Four semantic features are proposed for representing the complexity of the semantic structures of building-code
requirement sentences. Three steps were used for feature identification: feature analysis, selection, and synthesis.
First, the essential and secondary semantic information element (SIE) features were analyzed. Table 1 shows all the
semantic information elements covered in this analysis. Essential SIEs are usually necessary for defining a
quantitative requirement, such as subject, compliance checking attribute, deontic operator indicator, comparative
relation, quantitative relation, quantity value, and quantity unit (Zhang and El-Gohary 2015). The more essential
SIEs in a sentence, the higher the computability of the sentence, and vice versa. Secondary SIEs are not essential but
may exist in defining a quantitative or qualitative requirement, usually adding complexity to the sentence, such as
restrictions (e.g., a subject restriction places a constraint on the definition of the subject) and references. The less
secondary SIEs in a sentence, the higher the computability of the sentence, and vice versa. Second, low-variance
features were removed because they are non-discriminative. The feature analysis showed that most of the
requirement sentences (i.e., over 95%) have subjects and deontic operator indicators; and, thus, these two features
were removed. Third, high-covariance features were synthesized into one feature to improve the sentence type
characterization. Based on the feature analysis, the following four high co-variance features were synthesized into

one (called quantitative semantic information): comparative relation, quantitative relation, quantity value, and

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

233
234
235
236
237
238
239
240
241
242

243

quantity unit. Accordingly, the final four semantic features are: presence (binary value) of compliance checking

attribute, quantitative semantic information, restriction, and reference.

Metrics for Building-Code Computability Analysis and Typing

Syntactic Complexity

The syntactic complexity metric aims to measure the complexity of the syntactic structures of sentences in a cluster
of requirement sentences, in terms of the aforementioned syntactic features. The syntactic complexity is computed
based on the average feature values of the complexity of NP, VP, PP/SBAR, and S (denoted as NP, VP, PP /SBAR,
and S), as per Egs. (4) and (5), where SCC is the syntactic cluster complexity before normalization, and minSCC
and maxSCC are the minimum and maximum SCCs among all the clusters, respectively. Eq. (4) assigns more
weight to the complexity of the whole sentence (i.e., the S feature). The complexity ranges from 0 to 1, where 0
represents minimum syntactic complexity and 1 represents maximum syntactic complexity. The lower the syntactic

complexity of a cluster, the less complex the syntactic structures of the sentences in the cluster, and vice versa.

Syntactic cluster complexity (before normalization) = SCC = — 3 +S

1 (NP +VP + PP/SBAR _
: O]

SCC —minSCC
maxSCC — minSCC

Syntactic cluster complexity =

)

Semantic Complexity

The semantic complexity metric aims to measure the complexity of the semantic structures of sentences in a cluster
of requirement sentences, in terms of the aforementioned semantic features. The semantic complexity of a corpus is
impacted by two factors, as per Eq. (6): the essential semantic information (ESI) absence factor and the secondary
semantic information (SSI) presence factor. The absence of ESI (i.e., compliance checking attribute or quantitative
semantic information) and the presence of SSI (i.e., restrictions or references) increase semantic complexity and
decrease computability, as per Eq. (6). The ESI absence factor is calculated as per Eq. (7), where E is the percentage
of sentences in the corpus that have missing ESI. The SSI presence factor is calculated as per Eq. (8), where RS is
the percentage of sentences in the cluster that have restrictions and RF is the percentage of sentences in the cluster
that have references. Eq. (6) assigns more weight to the SSI presence factor, because the presence of SSI creates
more semantic complexity than the absence of ESI. Eq. (8) similarly assigns more weight to restrictions because

they create more complexity compared to references. Semantic cluster complexity ranges from 0 to 1, where 0

244
245
246
247
248

249

250

251

252

253
254
255
256

257

258

259

260

261

262

263

264

265
266
267
268

269

represents minimum semantic complexity (i.e., all sentences in the cluster have no missing ESI and no SSI) and 1
represents maximum semantic complexity (i.e., all sentences in the cluster have both types of SSI — restrictions and
references — and miss at least one type of ESI). The semantic feature analysis was performed using the information
extraction and transformation rules (Zhang and El-Gohary 2013). The lower the semantic complexity of a cluster,

the less complex the semantic structures of the sentences in the cluster, and vice versa.

1 2
Semantic cluster complexity = 3 X ESI absence factor + 3 X SSI presence factor (6)

ESI absence factor = E (7)

4 3
SSI presence factor = = X RS + = X RF (8)

Computability

The computability metric aims to measure the ability of requirement sentences to be represented, processed, and
checked by ACC methods and systems based on their syntactic and semantic structures. The computability was
computed based on the syntactic and semantic complexity metrics, as per Eq. (9), where computability is 1 minus
the average of the two metrics. It ranges from 0 to 1, where 0 represents minimum computability and 1 represents

maximum computability.

1 1
Cluster computabiliy = 1 — (E X Syntactic cluster complexity + > X Semantic cluster complexity) 9

Methodology for Clustering-based Building-Code Computability Analysis and Typing

A methodology for analyzing the computability of building codes and identifying the types of sentences, using the
proposed features and metrics, was proposed and implemented on a corpus of sentences. The methodology included
five primary steps, as illustrated in Fig. 2: data preprocessing, first-level clustering, subclustering, computability

analysis and sentence-typing, and evaluation.

Data Preprocessing

A total of 6,608 sentences were randomly selected from the IBC 2009 and the 2015 IBC Amendment of the City of
Champaign. Three steps were conducted for data preparation. First, different formats (e.g., PDF and HTML) were
converted into TXT format. Second, the text was split into sentences and non-sentence fragments (e.g., requirement
titles) based on punctuations and requirement indices, using the Natural Language Processing Tool Kit (NLTK)

(Bird et al. 2009), and the non-sentence fragments were removed. Third, the special symbols were removed. Three

10

270
271
272
273
274

275

276

277
278
279
280
281
282
283
284
285
286

287

288

289
290
291
292
293
294
295
296

NLP techniques were used for data preprocessing: tokenization, POS tagging, and constituency parsing.
Tokenization aims to split a sentence into units (e.g., words and punctuations). POS tagging and constituency
parsing aim to analyze the syntax of a sentence in multiple levels (e.g., sentence, phrase, and word levels) (Jurafsky
and Martin 2014). The NLTK was used for tokenization. The Stanford CoreNLP (Manning et al. 2014), built in
python, was used for POS tagging and parsing. The tokenized text, and the corresponding POS tags and

constituency parsing trees, were further used to generate the syntactic and semantic features.

First-level Clustering

First-level clustering aimed to cluster the sentences according to their syntactic and semantic-structure similarities,
using the proposed syntactic and semantic features. The hierarchical clustering consisted of three steps: distance
calculation, hierarchical clustering, and determining the number of clusters. First, the pairwise Euclidean distances
of the sentences were calculated using the feature values, in order to measure the syntactic and semantic similarities
between pairs of sentences. Second, different methods for hierarchical clustering analysis were tested and compared,
including simple, complete, average, McQuitty, median, centroid, and Ward’s (Aggarwal and Zhai 2012). They
were also compared with two other commonly used distance-based clustering methods as baselines: k-means
(Arthur and Vassilvitskii 2006) and partition around medians (PAM) (Kaufman and Rousseeuw 2009). Third, to
determine the optimal number of clusters, the elbow rule was adopted, which means that a specific number of
clusters is optimal when the addition of more clusters results in only marginal improvement — which can be seen as

an elbow-like shape in the plot of percentage of variance explained by the clusters (Ketchen and Shook 1996).

Subclustering

Subclustering aimed to further decompose the clusters that have low average silhouette coefficients into granular
clusters that are different from each other in terms of their constituent-level features such as the frequencies of
phrase structure rules and POS tags. This is because the low coefficient values indicate that the clusters are not well
represented by the features used in the first-level clustering and thus need additional features to better characterize
them for the purpose of sentence typing. The following constituent-level features were used: (1) the frequency of
each POS tag; (2) the frequency of each bigram of POS tags, which are pairs of two consecutive POS tags; and (3)
the frequency of each phrase structure rule. To penalize the common features (which are not discriminative across

different clusters) and to promote the discriminative features (which contribute to clustering), the raw features were

11

297

298

299

300

301

302
303
304
305
306
307
308

309

310
311
312
313
314
315
316
317
318
319
320

321

weighted using the TF—IDF weighting scheme. Egs. (10) and (11) (Salton and Buckley 1988) were used, where f is
the frequency of bigrams of POS tags or phrase structure rules, N is the total number of sentences, and n is the

number of sentences that contain a specific feature.

f

A ted lized t f =054+05—— (10
ugmented normalized term frequency + maxf (10)

N
Inverse document frequency = log Py a1y

Two feature analyses were conducted empirically to identify the discriminative features, including leave-one-out
feature analysis and feature combination analysis. The local learning algorithm by Yao et al. (2015) was used for
feature selection to deal with high dimensionality for finding meaningful clusters. This algorithm aims to find a
subset of features that makes the sum of the distances between each datum and its nearest datum small, and
maximizes the sum of the average distances of each datum to all other data (Yao et al. 2015). The output of the
algorithm — the weights of features — was used to compute the weighted feature values. The hierarchical clustering

steps were similar to those used in first-level clustering.

Cluster Computability Analysis and Sentence Typing

Three steps were conducted to analyze the computability of the sentence clusters: cluster representation, analysis of
the syntactic and semantic complexities and computability of the clusters, and cluster characterization. First, each
cluster was represented by the average feature values (the four syntactic and four semantic features) of the sentences
in the clusters. Second, the complexity and computability metrics of the clusters were computed using the average
feature values [as per Egs. (4) to (9)]. Third, the clusters were characterized to better describe and compare the
clusters — and thus the sentence types. The average feature values, syntactic and semantic complexity values, and
cluster computability values were discretized based on their quartile and median values (Dougherty 1995).
Discretization groups a number of continuous values into a smaller number of “bins”. A scale of 1 to 6 was then
used to represent the level of complexity (very simple to very complex) and computability (very low to very high),
as per Table 2. Subclusters were first characterized in the same way as their parent clusters, then additionally
characterized using their constituent-level features. The level of computability of the children clusters was adjusted

accordingly.

12

322
323
324
325
326
327
328

329

330

331

332
333
334
335
336
337
338
339
340
341
342
343

344

345

346
347

348

Sentence types were then identified and characterized based on the clusters — assuming each cluster (or subcluster)
has only one sentence type. Each sentence type was described with a name, a description, and an example sentence.
Three steps were conducted to identify and characterize the sentence types: (1) for each cluster, a name that reflects
the characteristics of the sentence type was selected. For example, a type with high syntactic cluster complexity, one
or more restrictions, one or more references, and no quantitative semantic information, was named “complex,
qualitative, restricted, and with references”; (2) each identified sentence type was briefly described in terms of its
syntactic and semantic characterization, computability level, and relation to other types, if any; and (3) for each

cluster, an example sentence was selected to illustrate the sentence type and its characteristics.

Evaluation of Clustering and Sentence Types

Intrinsic Evaluation

Intrinsic evaluation aims to evaluate the sentence clusters by calculating and comparing the quality metrics that
describe intra-cluster and inter-cluster similarities (Manning et al. 2008). Two intrinsic metrics were used for both
first-level clustering and subclustering: average silhouette coefficient and cophenetic coefficient. The average
silhouette coefficient (Rousseeuw 1987) was used to measure the performance of all clustering algorithms. It is the
average of the silhouette coefficients of all the sentences in a dataset or a cluster. The silhouette coefficient s(i) of a
sentence i is defined as per Eq. (12), where a(i) is the average difference between sentence i and the other sentences
in the same cluster and b (i) is the lowest average difference between i and the other clusters. The coefficient ranges
from -1 to 1, where a value near 1 indicates that the sentence is far from the neighboring clusters, 0 indicates that the
sentence lies on the boundary between two or more clusters, and a negative value indicates that the sentence might
be assigned to a wrong cluster. A coefficient between 0 and 0.2 indicates poor clustering, between 0.2 and 0.5 fair
clustering, and higher than 0.5 good clustering (Sarstedt and Mooi 2014). When all the sentences in a cluster have
significantly below-average silhouette coefficients, this indicates that the cluster might need to be further

subclustered.

b(i) — a(i)

SO = e @, 6]

(12)

The cophenetic coefficient (Sneath and Sokal 1973) was calculated to justify the choice of the hierarchical clustering
method. It shows how well a dendrogram generated by the hierarchical clustering process preserves the pairwise

distances of the original data. It is defined as per Eq. (13), where Y;; is the difference between sentences i and j, Z;;

13

349

350

351

352

353

354

355
356
357
358
359
360
361
362
363
364
365
366
367
368

369
370
371
372
373

is the height of the node in the dendrogram at which sentences i and j are first combined into one group, y is the

average of all Y;;, and Z is the average of all Z;;. The cophenetic coefficient ranges from 0 to 1, with 1 indicating that

)
the dendrogram perfectly reflects the pairwise distances of the original dataset and thus the dataset is suitable for

hierarchical clustering, and 0 indicating the opposite (Sneath and Sokal 1973).

o Yi<j(Yij = ¥)(Zij — 2)
Vi<V = 9?2 Nicj(Zi; — 2)?

(13)

Extrinsic Evaluation

Extrinsic evaluation, here, aims to evaluate the identified sentence types using human expert judgement (Manning et
al. 2008). Five participants — the first author and four experts including two from academia (faculty) and two from
industry — conducted the extrinsic evaluation. The participants manually identified building-code sentence types
from a set of testing sentences and assigned the testing sentences to these types; and the human-generated sentence
types and assignments were compared to the computer-generated types and assignments. Purposive sampling
strategy was adopted for selecting the participating experts. Purposive sampling aims to pinpoint a specific type of
participants according to predefined selection criteria (Clark and Creswell 2008). Three main selection criteria were
defined: (1) expertise in the AEC domain; (2) familiarity with building codes and compliance checking processes;
and (3) awareness of natural language processing and text analytics techniques. The authors used purposive
sampling because (1) it is suitable for small specialized populations (e.g., experts) (Etikan et al. 2016); and (2) it
enables obtaining information from a concentrated, carefully selected sample (Clark and Creswell 2008). Expert
evaluation of knowledge discovery processes has been commonly conducted with a small purposively sampled set
of participants [e.g., seven (El-Diraby and Osman 2011), six (Salama and El-Gohary 2013), five (Jin 2010), and four

(Alashwal and Abdul-Rahman 2014)].

The evaluation process consisted of three stages: testing dataset preparation, testing sentence typing, and human-
computer agreement assessment. To develop a testing dataset, a sample of 160 sentences were randomly selected
from the 6,608 sentences. The sentences were sampled from the whole dataset (excluding the example sentences
selected to illustrate the identified sentence types) following a stratified sampling strategy (Sarndal et al. 2003), i.e.,

the sentences were sampled from each of the clusters, where the sample sizes are proportional to the cluster sizes.

14

374
375
376
377
378
379
380

381

382
383
384
385
386
387
388
389
390

391

392

393

394

395

396

397

398

399
400

The manual typing aimed to group testing sentences using two steps: identifying building-code sentence types
(based on computability and syntactic and semantic features) and assigning testing sentences to these types. Detailed
guidelines for the typing were provided and explained, including (1) the definition of computability and the set of
syntactic and semantic features; (2) example building-code sentences, with their computability and syntactic and
semantic features explained; and (3) a template of how a type should be described (e.g., very simple, quantitative,
unrestricted, with no references). The participants repeated the sentence type identification and assignment steps
until the following two terminating criteria were met: (1) each testing sentence has been assigned to a human-

identified type; and (2) no new types are identified.

The agreement between the human- and computer-identified types was assessed using Jaccard Index (Agresti 2003),
as per Eq. (14), where H is the collection of types identified by the human evaluators and C is the collection of types
identified by the computer. A Jaccard Index of 1 indicates that the human evaluators and the computer identify the
same set of types. The agreement between the human- and computer-assignments of sentences to the types was
assessed using percentage of agreement (Hallgren 2012). The percentage of agreement is defined as the percent
value of the ratio of the number of testing sentences that were assigned to the same type by the human evaluators
and the computer, to the total number of testing sentences. A percentage of agreement close to 1 indicates that there
is a very good alignment between the human- and computer-assignment of sentences (Stemler 2004). Fig. 3

illustrates the entire extrinsic evaluation process.

|[HnC|

]accard = m

(14)

Application-oriented Evaluation

This type of extrinsic evaluation aims to further evaluate the identified sentence types using an application-oriented
way. The evaluation method uses a testing dataset (set of building-code sentences) in an ACC application (here
regulatory information extraction) and then assess if the different types of sentences will be associated with different
levels of computability. Regulatory information extraction aims to automatically extract computable information
from natural-language building codes (Zhang and El-Gohary 2013, Li et al. 2016, Zhou and El-Gohary 2017, Zhong
et al. 2020). The hypothesis is that sentence types with high computability will have significantly higher information
extraction performance than those types with low computability (using existing ACC systems which are currently

still limited in dealing with complex types).

15

401
402
403
404
405
406
407
408
409

410

411

412

413

414

415

416
417
418
419
420

421

422
423
424
425
426

The evaluation consisted of three stages: testing dataset preparation, information extraction from testing sentences,
and information extraction performance assessment. To develop a testing dataset (different from the one used in
prior evaluation), a sample of 60 sentences were selected from the 6,608 sentences; five sentences were randomly
sampled from each of the twelve sentence types. The machine learning-based method by Zhang and El-Gohary
(2020) was used for information extraction. Accordingly, the nine types of SIEs (see Table 1) were extracted from
the testing sentences. To assess the information extraction performance, three metrics were used: precision, recall,
and F1-measure, as shown in Egs. (15) to (17), where for a specific type of SIE, 7P is the number of true positives
(i.e., number of SIE instances correctly extracted), FP is the number of false positives (i.e., number of SIE instances
incorrectly extracted), and FN is the number of false negatives (i.e., number of SIE instances not extracted but

should have been) (Zhai and Massung 2016).

Precisi e 15
recision —W ()

Recall = — % 16
ecall = 75— 7n (19

F1 5 Precision X Recall -
- = X
fheasure Precision + Recall 17)

Experimental Results and Discussion

Results of Cluster Computability Analysis and Sentence Types

Table 3 summarizes the characteristics and computability analysis of all the clusters that resulted from the first-level
clustering, including the syntactic features (i.e., complexity of NP, VP, PP/SBAR, and S), semantic features (i.c.,
presence of compliance checking attribute, quantitative semantic information, reference, and restriction), syntactic
and semantic cluster complexity metrics, and cluster computability metric. Table 4 shows the features of the
children clusters that resulted from the subclustering, the feature interpretations, and the computability comparison

to their sibling clusters.

Based on the clusters, a total of twelve types of sentences were identified. The following list shows the different
types of sentences and their descriptions, which were identified based on the cluster characterization and
computability analysis. Table 5 shows an example sentence for each type, as well as the sentence type frequencies
(i.e., percentages of the sentence types in the experimental dataset) and their computability levels. Sentences that

belong to the same type have similar — but not identical — levels of syntactic and semantic complexities and

16

427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453

454

computability. For example, although sentences that belong to the same type share similar NP, VP, PP/SBAR, and S
complexities and similar semantic information elements, they are likely to have different sentence lengths. The
identified types and their computability levels should thus be taken as a guide, and not as an exact measure.
Sentence types that are more similar to each other in terms of their syntactic and semantic features compared to
other types such as those that belong to the same parent cluster, were numbered as sibling types (e.g., Type 1.1 and

Type 1.2).

Type 1.1 (very simple, quantitative, unrestricted, with no references): The sentences have very simple structures,
with simple NP, VP, and very simple PP/SBAR. They have no missing ESI (i.e., compliance checking attribute
and quantitative semantic information), and have no SSI (i.e., restriction and reference). They cover quantitative
requirements. They can be represented/coded in many of the existing ACC systems. Type 1.1 corresponds to
Cluster 1.1.

Type 1.2 (simple, quantitative, unrestricted, with no references): Similar to Type 1.1. But, compared to Type 1.1
sentences, Type 1.2 sentences are more complex syntactically (e.g., including more preposition phrases and/or
conjunctions) and semantically (e.g., including multiple requirements). Type 1.2 corresponds to Cluster 1.2.
Type 2 (very simple, qualitative, unrestricted, with no references): The sentences have very simple structures,
with very simple NP, VP and PP/SBAR. They have missing ESI, from both types (i.e., compliance checking
attribute and quantitative semantic information), but have no SSI (i.e., restriction and reference). They cover
qualitative requirements. Type 2 corresponds to Cluster 2.

Type 3.1 (simple, descriptive, unrestricted, with references): The sentences have simple structures, with very
simple NP and PP/SBAR, and simple VP. They have missing ESI, from both types (i.e., compliance checking
attribute and quantitative semantic information), and have one type of SSI (i.e., reference). Most of the
sentences function as general descriptions or references to other sections/codes. Type 3.1 corresponds to Cluster
3.

Type 3.2 (moderately simple, descriptive, unrestricted, with references): The sentences have moderately simple
structures, with very simple PP/SBAR, and moderately simple NP and VP. They have one type of ESI (i.e.,
quantitative semantic information) missing, and have one type of SSI (i.e., reference). Most of the sentences
function similar to Type 3.1 sentences, as general descriptions or references to other sections/codes, but are

more complex both syntactically and semantically. Type 3.2 corresponds to Cluster 4.

17

455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
430

481

Type 4.1 (moderately complex, quantitative, restricted, with no references): The sentences have moderately
complex to complex structures, with moderately complex NP, and complex VP and PP/SBAR. The sentences
are likely to have one or more clauses of different types (e.g., SBAR). The sentences have no missing ESI (i.e.,
compliance checking attribute and quantitative semantic information), but have one type of SSI (i.e., restriction),
which might be in the VP and/or PP/SBAR. Most of the sentences are quantitative and function similar to Type
1 sentences, but are much more complex both syntactically and semantically, mostly due to the restrictions.
Type 4.1 corresponds to Cluster 5.1.

Type 4.2 (complex, quantitative, restricted, with no references): Similar to Type 4.1. But, compared to Type 4.1
sentences, Type 4.2 sentences are more complex syntactically (e.g., including more noun phrases) and
semantically (e.g., including both restrictions and multiple requirements). Type 4.2 corresponds to Cluster 5.2.
Type 5.1 (moderately complex, qualitative, restricted, with no references): The sentences have moderately
complex structures, with simple PP/SBAR, moderately simple NP, but moderately complex VP. They have
missing ESI, from both types (i.e., compliance checking attribute and quantitative semantic information), and
have one type of SSI (i.e., restriction), which might be in the VP and/or PP/SBAR. Most of the sentences are
qualitative and function similar to Type 2 sentences, but are more complex both syntactically and semantically,
mostly due to restrictions. Type 5.1 corresponds to Cluster 6.

Type 5.2 (moderately complex, descriptive, restricted, with references): The sentences have moderately
complex structures, with simple PP/SBAR, but moderately complex NP and VP. They have missing ESI, from
both types (i.e., compliance checking attribute and quantitative semantic information), and have both types of
SSI (i.e., reference and restriction), which might be in the NP, VP, and/or PP/SBAR. Most of the sentences
function similar to Type 3.2 sentences, as descriptions/definitions, but are more complex both syntactically and
semantically, mostly due to restrictions. Most of the sentences are syntactically similar to those in Type 5.1, but
include references. Type 5.2 corresponds to Cluster 7.

Type 6.1 (complex, quantitative, restricted, with references): The sentences have very complex structures, with
complex NP and very complex VP and PP/SBAR. They are likely to have one or more clauses of different types
(e.g., SBAR). They have no missing ESI (i.e., compliance checking attribute and quantitative semantic

information), but have both types of SSI (i.e., reference and restriction), which might be in the NP and

18

482
483
484
485
486
487
488
489
490
491

492

493
494
495
496
497
498
499
500
501

502

503

504
505
506
507
508

PP/SBAR. Most of the sentences are quantitative and function similar to Type 4 sentences, but are more
complex both syntactically and semantically. Type 6.1 corresponds to Cluster 8.1.

e Type 6.2 (very complex, quantitative, restricted, with references): Similar to Type 6.1. But, compared to Type
6.1 sentences, Type 6.2 sentences are more complex syntactically (e.g., including long and nested noun phrases)
and semantically (e.g., using complex, or even ambiguous, descriptions). Type 6.2 corresponds to Cluster 8.2.

o Type 7 (complex, descriptive, restricted, with references): The sentences have complex structures, with
moderately complex VP, and very complex NP and PP/SBAR. The sentences are likely to have one or more
clauses of different types (e.g., SBAR). They have one type of ESI (i.e., quantitative semantic information)
missing, and have both types of SSI (i.e., restriction and reference), which might be in the NP, VP, and/or
PP/SBAR. Most of the sentences function similar to Type 5.2 sentences, as descriptions/definitions and

references to other sections/codes, but are more complex syntactically. Type 7 corresponds to Cluster 9.

The identified sentence types can be further used to characterize existing ACC methods/systems, in terms of which
sentence types they can process and/or represent. For example, ACC methods/systems that can represent sentences
of Types 1.1 and 1.2 and some of the sentences of Types 4.1 and 4.2 (e.g., Solibri Model Checker) are able to cover
sentences (1) with very simple to moderately complex structures, and (2) with no missing ESI and with no or simple
SSI. These methods/systems have medium levels of coverage capabilities because the types they can represent have
a maximum level of medium computability. ACC methods/systems that can represent sentences of Types 1.1, 1.2,
4.1,4.2, and 6.1 and 6.2 [e.g., the SNACC system (Zhang and El-Gohary 2017b)] are able to cover sentences (1)
with very complex structures, and (2) with no missing ESI, but with SSI. These methods/systems have higher levels
of coverage capabilities because the types they can represent range from very high to very low level of

computability.

Results of Intrinsic Evaluation

Table 6 summarizes the performance results for the tested clustering algorithms. For first-level clustering, the
Ward’s hierarchical clustering analysis method performed the best in terms of average silhouette coefficient, and
was therefore selected. Fig. 4 shows the plot of the percentage of variance explained by the clusters. Based on the
plot, nine was chosen as the optimal number of clusters according to the elbow rule. The average silhouette

coefficient is 0.742, which indicates good clustering performance. The cophenetic coefficient of the whole dataset is

19

509
510
511
512

513

514
515
516
517
518
519
520
521
522
523

524

525

526
527
528
529
530
531
532
533

534

0.852, which indicates that the dendrogram that is generated by the hierarchical clustering algorithm reflects the
pairwise distances of the sentences well. According to the silhouette coefficient plot (Fig. 5), the coefficients of
Clusters 5 and 8 are lower than the coefficient of the whole dataset; and, thus, the two clusters were subclustered.
Cluster 1 was additionally subclustered for the purpose of finding the simplest quantitative sentence type, which can

be represented and processed by all ACC systems.

For subclustering, the centroid and McQuitty methods performed the best for Clusters 5 and 8, respectively; and the
complete, McQuitty, and Ward’s methods, as well as the PAM, performed equally well for Cluster 1. It is likely that
multiple clustering algorithms were optimal because of the small size of Cluster 1. The average silhouette
coefficients of Clusters 1, 5, and 8 after subclustering are 0.674, 0.661, and 0.515, respectively, indicating good
performance. The cophenetic coefficients of Clusters 1, 5, and 8 after subclustering are 0.747, 0.809, and 0.724,
respectively, indicating that the dendrograms generated by the hierarchical clustering algorithms reflect the pairwise
distances of the sentences in each of the three clusters well.

Feature selection and synthesis improved the clustering performance, as shown in Table 7. For first-level clustering,
feature selection and synthesis increased the average silhouette coefficient from 0.183 to 0.742, compared to the
initial features. For subclustering, TF-IDF weighting and the local learning feature selection and weighting increased

the average silhouette coefficient by an average of 0.376.

Results of Extrinsic Evaluation

The external evaluation results showed a Jaccard Index of 1, which indicates perfect alignment between the human-
and computer-identified types. The results also showed a percentage of agreement of 80%, which indicates good
alignment between the human- and computer-assignments of sentences to the types (Stemler 2004). An analysis of
the results showed two main sources of disagreement in the assignments. First, like features used in any other text
analytics or clustering task, the features used in the sentence clustering contained errors. No existing NLP
algorithm/tool can achieve 100% performance, especially for relatively complex tasks such as constituency parsing.
For example, PP is subject to attachment errors in constituency parsing (Jurafsky and Martin 2014), mistaking the
sentence-level phrase structure rule “S>NP VP PP” as “S>NP VP” and thus causing wrong feature values for

complexity of PP. Errors in constituency parsing may also cause errors in SIE extraction, and thus lead to wrong

20

535

536

537

538
539
540
541

542

543

544
545
546
547
548
549
550

551

552
553
554
555
556
557
558
559
560

561

semantic feature values. Second, some sentences that are far from the cluster centers, lying on the boundary between

two or more adjacent clusters, were misclustered.

Results of Application-oriented Evaluation

Table 8 summarizes the results of the application-oriented evaluation. As shown, sentence types with very high or
high computability (i.e., Types 1.1, 1.2, and 2) achieved relatively higher information extraction performance
(i.e., >= 95% precision, recall, and F1-measure) than types with low or very low computability (i.e., Types 6.1, 6.2,
and 7, which achieved <= 80% precision, recall, and Fl-measure). This proves the stated hypothesis (see

“Application-oriented Evaluation” subsection).

Limitations

Two limitations of the experiments are acknowledged. First, the testing corpus, although large in scale, is based on
only IBC and IBC variations/amendments. In future work, the authors plan to analyze the computability of other
building codes and standards that have been covered by existing ACC systems (e.g., International Energy
Conservation Code) using the proposed features and metrics and following the clustering-based approach. Second,
in the application-oriented evaluation, the proposed features and metrics, and the identified types, were only tested
in one ACC task (i.e., regulatory information extraction) and using one method/tool. In future work, the authors plan
to test the features and metrics in other ACC tasks (e.g., rule representation) and using different methods/tools (e.g.,

mvdXML, visual programming languages, and query languages).

Contribution to the Body of Knowledge

This paper contributes to the body of knowledge on three main levels. From the perspective of building-code
analytics, first, the paper proposes a set of features that capture the syntactic and semantic structural complexity of
requirement sentences. Second, it proposes a number of complexity and computability metrics to support the
analysis of code computability. Third, it uses clustering to identify and characterize the different types of
requirements based on these features and metrics. The experimental results show that the proposed features and
metrics, along with the clustering-based methodology, were able to support the discovery of sentence types, the
analysis of their characteristics, and the assessment of their computability. The proposed features and metrics could
also be used to assess and compare the capabilities of different ACC systems and methods in a measurable and

consistent manner.

21

562
563
564
565
566
567
568
569
570

571
572
573
574

575

576
577
578
579
580
581
582
583
584
585
586
587
588

Second, from a practical perspective, the paper identifies different types of sentences in the building code, in terms
of their syntactic and semantic features and levels of computability. The knowledge of such sentence types could
help guide the use and development of ACC methods/systems in three directions. First, it could help us better
characterize existing ACC methods/systems, in terms of which sentence types they can process and/or represent.
Second, it could help users select the right ACC system for the application at hand. Third, it could help us better
understand the different types of sentences in the code and their characteristics as we embark on developing new
ACC methods/systems or extending the capabilities of existing ones. For example, it could help us set the research
agenda for smart code analytics and ACC, starting from the less complex and more computable sentences and

moving up to the more complex and less computable ones.

Third, from a clustering perspective, this paper provides a comparison of different clustering algorithms and analysis
methods, in the context of building-code analytics and sentence-type identification. The experiment results show
that hierarchical clustering algorithms outperformed other distance-based clustering algorithms. The best method for
hierarchical clustering analysis varied for different clustering problems. For example, for first-level clustering, the

Ward’s method outperformed the other methods.

Conclusions and Future Work

In this paper, a clustering-based approach for building-code computability analysis was used. A set of computability
features, including both syntactic and semantic features, were proposed and used for characterizing and clustering
the code sentences. The syntactic features represent the complexity of the syntactic structure of a sentence by
capturing the syntactic lengths of the phrases, clauses, and sentence and the syntactic heights of the constituency
trees corresponding to the sentence fragments. The semantic features are features indicating the semantic meaning,
content, structure, and complexity of a requirement, including presence of compliance checking attribute,
quantitative requirement descriptions, restrictions on concepts/requirements, references to other sections/codes, etc.
A number of computability metrics were also proposed to analyze the syntactic and semantic complexities and
computability of the sentence clusters: syntactic cluster complexity, semantic cluster complexity, essential semantic
information (ESI) absence factor, secondary semantic information (SSI) presence factor, and cluster computability.
Clusters with low average silhouette coefficients were subclustered using additional word-level features such as

phrase structure rules and POS tags. The sentence clusters were evaluated intrinsically, based on the average

22

589

590

591
592
593
594
595
596
597
598
599
600
601
602

603

604
605
606
607
608
609
610
611
612
613
614

615

silhouette coefficient and cophenetic coefficient; and the identified sentence types were evaluated extrinsically,

using both expert evaluation and application-oriented evaluation.

A total of 6,608 sentences from IBC 2009 and Champaign IBC amendment 2015 were analyzed using the proposed
approach. A total of twelve types and subtypes of sentences were identified, characterized in terms of their
computability features and metrics, and classified into six complexity levels (very low to very high complexity) and
computability levels (very high to very low computability). For example, Type 1.1, which has the lowest complexity
and highest computability, has simple NP and VP, very simple PP/SBAR, has no missing essential semantic
information (ESI), and has no restrictions or references. Type 7, which has the highest complexity and lowest
computability, has moderately complex VP, very complex NP and PP/SBAR, has no quantitative information, and
has both restrictions and references. The distribution of sentence types is nonuniform; and in total, more than 80% of
the sentences are of moderately high to low computability. The intrinsic evaluation results showed an average
silhouette coefficient of 0.742 and a cophenetic coefficient of 0.852 for the first-level clustering. The extrinsic
evaluation indicated perfect (100%) alignment between the human- and computer-identified types and 80%
agreement in the assignment of sentences to the types. It also indicated that sentence types with high computability

showed significantly higher information extraction performance than those types with low computability.

In their future work, the authors plan to improve the proposed approach and leverage the insights about sentence
types in four directions. First, the feature analysis and selection methods could be improved to enhance the
performance of clustering and the comprehensiveness of computability analysis. For example, additional features
such coreferences, implicit meanings, and difficult-to-interpret concepts (e.g., “structural integrity” is more difficult
to interpret than “height”) could be explored. Second, the analysis could be extended to multi-sentence requirements
and to other types of codes or regulatory documents. One sentence could include multiple requirements, while
multiple sentences could jointly express one requirement. The proposed computability features and indicators could
be adapted to analyze multi-sentence requirements. They could also be adapted to analyze other types of codes or
other types of regulatory documents such as contract specifications, which tend to be more complex in terms of
length, sentence structures, exceptions, and conjunctive and alternative obligations, etc. Third, the proposed features
and metrics, along with the identified sentence types, could be used to analyze the capabilities of existing ACC

approaches and tools (e.g., the CORENET ePlanCheck, SMARTcodes, SNACC system), in terms of which types of

23

616
617
618
619
620
621
622
623

624

625

626

627
628

629

630

631

632

633
634
635
636
637

638
639

640
641

642
643
644

645
646
647

requirements can be processed, represented, and checked, and which not. This could provide a better understanding
of what tools and methods exists and where the practical and knowledge gaps are. Fourth, and most importantly, the
authors will explore how the knowledge of sentence types — and their features, complexities, and computability —
can help pave the path toward smart and computable codes and eventually full automation in code checking and
analysis. As we embark on this endeavor, understanding the types and characteristics of the text we are dealing with
is essential to understanding the problem at hand, breaking it into manageable parts, and tackling each part one by
one. Our ultimate goal is to leverage machine learning and other artificial intelligence approaches to reach a level
where we can automatically process the entire building code and represent it in a computable manner — hopefully

including all types of sentences in the code.

Data Availability Statement
Some or all data, models, or code that support the findings of this study are available from the corresponding author
upon reasonable request (building-code sentence data and computational code for the clustering-based computability

analysis).

Acknowledgements
The authors would like to thank the National Science Foundation (NSF). This material is based on work supported
by the NSF under Grant No. 1827733. Any opinions, findings, and conclusions or recommendations expressed in

this material are those of the authors and do not necessarily reflect the views of the NSF.

References

[1] AEC3. (2012). International Code Council. http://acc3.homepage.t-online.de/en/5/5 013 ICC.htm.
(September 15, 2020).

[2] Aggarwal, C. C., and Zhai, C. (2012). Mining Text Data, Springer Science & Business Media, U.S.
[3] Agresti, A. (2003). Categorical data analysis. John Wiley & Sons, Hoboken.

[4] Al Qady, M., and Kandil, A. (2014). "Automatic clustering of construction project documents based on
textual similarity." Autom. Construct., 42, 36-49.

[5] Alashwal, A.M., and Abdul-Rahman, H. (2014). “Using PLS-PM to model the process of inter-project
learning in construction projects.” Autom. Construct., 44, 176-182.

[6] Allahyari, M., Pouriyeh, S., Assefi, M., Safaei, S., Trippe, E.D., Gutierrez, J.B., and Kochut, K. (2017). “A
brief survey of text mining: Classification, clustering and extraction techniques.” arXiv preprint
arXiv:1707.02919.

[7] Ambati, B.R., Reddy, S., and Steedman, M. (2016). “Assessing relative sentence complexity using an
incremental CCG parser.” Proc. 2016 Conf. of the North American Chapter of the Association for
Computational Linguistics (NAACL): Human Language Technologies, ACL, Stroudsburg, 1051-1057.

24

648

649
650
651

652
653

654
655

656

657
658

659
660
661

662
663
664

665
666

667
668

669
670

671
672

673
674

675
676

677
678

679
680

681
682

683
684

685

686
687

688
689

690
691

(8]

(9]

[10]

[11]

[12]
[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

(21]

[22]

(23]

[24]

[25]

[26]
[27]

(28]

[29]

Arthur, D., and Vassilvitskii, S. (2006). k-means++. The advantages of careful seeding, Stanford.

Bekkerman, R., El-Yaniv, R., Tishby, N., and Winter, Y. (2001). “On feature distributional clustering for
text categorization.” Proc., 24th Annual Int. ACM SIGIR Conf. on Research and Development in
Information Retrieval, Association for Computing Machinery (ACM), New York, 146-153.

Bird, S., Klein, E., and Loper, E. (2009). “Natural language processing with Python: analyzing text with the
natural language toolkit.” O'Reilly Media, Inc.

Cadez, 1., Heckerman, D., Meek, C., Smyth, P., and White, S. (2003). “Model-based clustering and
visualization of navigation patterns on a web site.” Data Min. Knowl. Discov., 7(4), 399-424.

Clark, V., and Creswell, J. (2008). The mixed methods readers, Sage Publications, Thousand Oaks.

Cutting, D. R., Karger, D. R., Pedersen, J. O., and Tukey, J. W. (2017). “Scatter/gather: A cluster-based
approach to browsing large document collections.” ACM SIGIR Forum, 51(2), 148-159.

Dimyadi, J., and Amor, R. (2013). “Regulatory knowledge representation for automated compliance audit
of BIM-based models.” Proc., 30th CIB W78 Int. Conf., Conseil International du Béatiment (CIB),
Rotterdam, Netherlands, 68-78.

Dimyadi, J., Clifton, C., Spearpoint, M., and Amor, R. (2016). “Computerizing regulatory knowledge for
building engineering design.” J. Comput. Civil. Eng., 30(5), 10.1061/(ASCE)CP.1943-5487.0000572,
C4016001.

Dougherty, J., Kohavi, R. and Sahami, M. (1995). “Supervised and unsupervised discretization of
continuous features.” Mach. Learn Proc. 1995, Morgan Kaufmann, Burlington, 194-202.

Eastman, C., Lee, J., Jeong, Y., and Lee, J. (2009). “Automatic rule-based checking of building designs.”
Autom. Construct., 18(8), 1011-1033.

Etikan, 1., Musa, S.A., and Alkassim, R.S. (2016). “Comparison of convenience sampling and purposive
sampling.” Am. J. Theor. Appl. Stat., 5(1), 1-4.

El-Diraby, T.E., and Osman, H. (2011). “A domain ontology for construction concepts in urban
infrastructure products.” Autom. Construct., 20(8), 1120-1132.

Fodeh, S., Punch, B. and Tan, P. N. (2011). “On ontology-driven document clustering using core semantic
features.” Knowl. Inform. Syst., 28(2), 395-421.

Garrett, J.H., and Fenves, S.J. (1987). “A knowledge-based standards processor for structural component
design.” Engineering with Computers, 2(4), 219-238.

Garrett Jr, J.JH. and Hakim, M.M. (1992). “Object-oriented model of engineering design standards.” J.
Comput. Civil. Eng., 6(3), 323-347.

Hallgren, K. A. (2012). “Computing inter-rater reliability for observational data: an overview and tutorial.”
Tutorials in Quant. Methods for Psychol., 8(1), 23.

Hjelseth, E., and Nisbet, N. (2010). “Exploring semantic based model checking.” Proc. 27th CIB W78 Int.
Conf. <http://itc.scix.net/data/works/att/w78-2010-54.pdf> (May 15, 2018).

Jin, X.H. (2010). “Neurofuzzy decision support system for efficient risk allocation in public-private
partnership infrastructure projects.” J. Comput. Civ. Eng., 24(6), 525-538.

Jurafsky, D., and Martin, J. (2014). Speech and language processing. 3rd edn. Pearson, London.

Kaufman, L., and Rousseeuw, P.J. (2009). Finding groups in data: an introduction to cluster analysis. John
Wiley & Sons, Hoboken.

Ketchen, D.J., and Shook, C.L. (1996). “The application of cluster analysis in strategic management
research: an analysis and critique.” Strateg. Manage. J., 17(6), 441-458.

Kifokeris, D., and Xenidis, Y. (2017). “Constructability: Outline of past, present, and future research.” J.
Construct. Eng. Manag., 143(8), 04017035.

25

692
693
694

695
696

697
698

699
700

701
702

703
704

705
706
707

708
709

710
711

712
713

714
715

716
717

718
719

720
721

722
723

724
725

726
727

728

729
730
731

732
733

734
735

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

(48]

[49]

[50]

Kilicoglu, H., and S. Bergler. (2009). “Syntactic dependency based heuristics for biological event
extraction.” Proc., 2009 Workshop on Current Trends in Biomedical Natural Language Processing: Shared
Task, Boulder, Colorado, U.S., 119-127.

Li, S., Cai, H., and Kamat, V.R. (2016). “Integrating natural language processing and spatial reasoning for
utility compliance checking.” J. Constr. Eng. Manage., 142(12), p.04016074.

Li, Y., Chung, S. M., and Holt, J. D. (2008). “Text document clustering based on frequent word meaning
sequences.” Data Knowl. Eng., 64(1), 381-404.

Lomakina, L. S., Rodionov, V. B., and Surkova, A. S. (2014). “Hierarchical clustering of text documents.”
Autom. Rem. Contr., 75(7), 1309-1315.

Malsane, S., Matthews, J., Lockley, S., Love, P. E., and Greenwood, D. (2015). “Development of an object
model for automated compliance checking.” Autom. Construct., 49, 51-58.

Manning, C.D., Schiitze, H., and Raghavan, P. (2008). Introduction to information retrieval. Cambridge
university press, Cambridge, United Kingdom.

Manning, C.D., Surdeanu, M., Bauer, J., Finkel, J.R., Bethard, S., and McClosky, D. (2014). “The Stanford
CoreNLP natural language processing toolkit.” Proc. ACL 2014: system demonstrations, ACL, Stroudsburg,
55-60.

Massung, S., Zhai, C., and Hockenmaier, J. (2013) “Structural parse tree features for text representation.”
2013 IEEE 7th International Conference on Semantic Computing, IEEE, New York, 9-16.

Naughton, M., Stokes, N., and Carthy, J. (2010). “Sentence-level event classification in unstructured texts.”
Information retrieval, 13(2), 132-156.

Nawari, N.O. (2019). “A Generalized Adaptive Framework (GAF) for Automating Code Compliance
Checking.” Buildings, 9(4), 86.

Ng, H. S., Toukourou, A. and Soibelman, L. (2006). “Knowledge discovery in a facility condition
assessment database using text clustering.” J. Infrastruct. Syst., 12(1), 50-59.

Ozkaya, 1., and Akin, O. (2006). “Requirement-driven design: assistance for information traceability in
design computing.” Design Studies, 27(3), 381-398.

Preidel, C., and Borrmann, A. (2016). “Towards code compliance checking on the basis of a visual
programming language.” ITcon. 21(25), 402-421.

Rousseeuw, P. J. (1987). “Silhouettes: a graphical aid to the interpretation and validation of cluster
analysis.” J. Comput. Appl. Math., 20, 53-65.

Salama, D.A., and El-Gohary, N.M. (2013). “Automated compliance checking of construction operation
plans using a deontology for the construction domain.” J. Comput. Civ. Eng., 27(6), 681-698.

Salton, G., and Buckley, C. (1988). “Term-weighting approaches in automatic text retrieval.” Inf. Process.
Mgmt., 24(5), 513-523.

Sarndal, C. E., Swensson, B., and Wretman, J. (2003). Model Assisted Survey Sampling. Springer Science
& Business Media, New York, 100-109.

Sarstedt, M., and Mooi, E. (2014). A Concise Guide to Market Research. Springer, Berlin.

Shepitsen, A., Gemmell, J., Mobasher, B., and Burke, R. (2008). “Personalized recommendation in social
tagging systems using hierarchical clustering.” Proc., 2008 ACM conf. on Recommender Systems,
Association for Computing Machinery (ACM), New York, 259-266.

Sneath, P.H., and Sokal, R.R. (1973). Numerical taxonomy. The principles and practice of numerical
classification. W .H. Freeman and Company, San Francisco.

Stajner, S., and Hulpus, I. (2018). “Automatic assessment of conceptual text complexity using knowledge
graphs.” Proc. 27th International Conference on Computational Linguistics, ACL, Stroudsburg, 318-330.

26

736
737

738
739

740
741

742
743

744
745

746
747

748
749

750
751

752
753

754
755
756

757
758
759

760
761
762

763
764

765
766

767
768

769
770
771

772
773

[51]

[52]

[53]

[54]

[55]

[56]

[57]

[58]

[59]

[60]

[61]

[62]

[63]

[64]

[65]

[66]

[67]

Stemler, S.E. (2004). “A comparison of consensus, consistency, and measurement approaches to estimating
interrater reliability.” Pract. Assess. Res. Eval., 9(1), 4.

Solibri. (2018). “Solibri Model Checker.” https://www.solibri.com/products/solibri-model-checker. (May
15,2018)

Solihin, W., and Eastman, C. (2015). “Classification of rules for automated BIM rule checking
development.” Autom. Construct., 53, 69-82.

Valdes-Vasquez, R., and Klotz, L. E. (2012). “Social sustainability considerations during planning and
design: framework of processes for construction projects.” J. Construct. Eng. Manag., 139(1), 80-89.

Weise, M., Liebich, T., Nisbet, N. and Benghi, C. (2017). “IFC model checking based on mvdXML 1.1.”
eWork and eBusiness in Architecture, Engineering and Construction. ECPPM 2016, 19-26.

Yang, L., Cai, X., Zhang, Y., and Shi, P. (2014). “Enhancing sentence-level clustering with ranking-based
clustering framework for theme-based summarization.” Inform. Sci., 260, 37-50.

Yao, J., Mao, Q., Goodison, S., Mai, V., and Sun, Y. (2015). “Feature selection for unsupervised learning
through local learning.” Pattern Recognit. Lett., 53, 100-107.

Yurchyshyna, A., and Zarli, A. (2009). “An ontology-based approach for formalisation and semantic
organisation of conformance requirements in construction.” Autom. Construct., 18(8), 1084-1098.

Zhai, C., and Massung, S. (2016). Text data management and analysis: a practical introduction to
information retrieval and text mining, ACM, New York, USA.

Zhang, J., and El-Gohary, N. (2013). “Semantic NLP-based information extraction from construction
regulatory documents for automated compliance checking.” J. = Comput. Civ. Eng.,
10.1061/(ASCE)CP.1943-5487.0000346, 04015014.

Zhang, J., and El-Gohary, N. (2015). “Automated information transformation for automated regulatory
compliance checking in construction.” J. Comput. Civ. Eng., 10.1061/(ASCE)CP.1943-5487.0000427,
B4015001.

Zhang, J., and El-Gohary, N. (2016). “Extending building information models semiautomatically using
semantic natural language processing techniques.” J. Comput. Civ. Eng., 10.1061/(ASCE)CP.1943-
5487.0000536, C4016004.

Zhang, J., and El-Gohary, N. (2017a). “Semantic-based logic representation and reasoning for automated
regulatory compliance checking.” J. Comput. Civ. Eng., 31(1), 10.1061/(ASCE)CP.1943-5487.0000583.

Zhang, J., and El-Gohary, N. (2017b). “Integrating semantic NLP and logic reasoning into a unified system
for fully-automated code checking.” Autom. Construct., 73, 45-57.

Zhang, R., and El-Gohary, N. (2020). “A machine-learning approach for building-code sentence generation
for automatic semantic analysis.” Proc. 2020 ASCE CRC, ASCE.

Zhong, B., Xing, X., Luo, H., Zhou, Q., Li, H., Rose, T., and Fang, W. (2020). “Deep learning-based
extraction of construction procedural constraints from construction regulations.” Adv. Eng. Inform., 43,
p.101003.

Zhou, P., and El-Gohary, N. (2017). “Ontology-based automated information extraction from building
energy conservation codes.” Autom. Construct., 74, 103-117.

27

774

775

776

777

778

779

List of Figure Captions

Fig. 1. Constituency parsing tree of an example sentence.

Fig. 2. Methodology for building-code computability analysis and typing.
Fig. 3. Extrinsic evaluation process.

Fig. 4. Plot of the percentage of variance explained by the clusters.

Fig. 5. Plot of the silhouette coefficient of each sentence and cluster.

28

780

781
782

783
784

785
786

787
788
789
790
791
792
793

Tables

Table 1. Semantic Information Elements for Representing Requirements for Compliance Checking Purposes (Zhang

and El-Gohary 2015)

Semantic information element

Definition

Subject

IAn ontology concept representing a thing (e.g., building element) that is subject to a
[particular requirement

Compliance checking attribute

IAn ontology concept representing a specific characteristic of a “subject” that is checked for
compliance

Deontic operator indicator

IA term/phrase that indicates the deontic type of the requirement (i.e., obligation, permission,
or prohibition)

Quantitative relation

|A term/phrase that defines the type of relation for the quantity (e.g., extend)

Comparative relation

IA term/phrase for comparing quantitative values, including “greater than or equal to,”
“greater than,” “less than or equal to,” “less than,” and “equal to”

Quantity value

IA numerical value that defines the quantity

Quantity unit

[The unit of measure for a “quantity value”

Restriction

29 ¢

/A term/phrase that places a constraint on the “subject,
“quantity,” or the whole requirement

compliance checking attribute,”

Reference

IA term or phrase that denotes the mention or reference to a chapter, section, document, table,
or equation in a building-code sentence (e.g., “Section 1312” in “the revolving door shall

comply with Section 1312”)

Table 2. Scales of Syntactic and Semantic Cluster Complexities and Computability

Symbolic representation Scale of Synt?.CtIC cluster corpple)uty, semantlc.cluster Scale of cluster computability
complexity, and syntactic feature complexity
- Very simple Very low
-- Simple Low
- Moderately simple Moderately low
+ Moderately complex Moderately high
++ Complex High
+++ Very complex Very high
Table 3. Cluster Characterization and Computability of First-level Clusters
Cluster Syntactic features Syntactic cl_uster Semantic features E Semantic cl.uster Computability
NP | VP | PP/SBAR | S complexity A | Q] Rf | Rs complexity
1 0.11 0.19 0.00 0.12 0.09 1.00 | 0.98 | 0.00 0.00 0.00 0.00 0.96
() () (=) () (=) H [H] G)) (=) (t++)
5 0.09 | 0.18 0.00 0.10 0.00 0.00 | 0.00| 0.00 0.00 1.00 0.33 0.84
(=) | (=) (=) (=) (=)))) () () () ()
3 0.08 0.20 0.00 0.12 0.05 0.00 | 0.00| 1.00 0.00 1.00 0.61 0.67
(=) | () (=) () ()) (OGS (O] ()) (&)
4 0.13 0.22 0.00 0.15 0.19 1.00 | 0.00| 1.00 0.00 1.00 0.61 0.60
©) ©) (=) (O]) D O] @) () (&) (&)
5 0.15 0.36 0.07 0.31 0.82 1.00 | 1.00| 0.00 1.00 0.00 0.39 0.40
) | D () () () H ®H] G ()) ())
6 0.13 0.30 0.05 0.24 0.56 0.00 | 0.00| 0.00 1.00 1.00 0.72 0.36
) (@) ()) ()))) () () ())
7 0.15 0.31 0.05 0.26 0.64 0.00 | 0.00| 1.00 1.00 1.00 1.00 0.18
() (6] ()) ()) B | () () (t++) ()
3 0.17 | 0.39 0.08 0.35 1.00 1.00 | 1.00 | 1.00 0.96 0.00 0.65 0.17
() |) () (t++) () H [H]) ())) (=)
9 0.19 | 0.32 0.08 0.29 0.79 1.00 | 0.00| 1.00 1.00 1.00 1.00 0.10
Gt () (t++) (t++) () (G IO NG () () (t++) (=)

Note: 1. NP = noun phrase; VP = verb phrase; PP = preposition phrase; SBAR = clause introduced by a subordinating
conjunction; S = whole sentence; A = compliance checking attribute; Q = quantitative semantic information; Rf = reference; Rs =
restriction; E = percentage of sentences in the cluster that have missing essential semantic information.

2. The scales of the syntactic feature complexity, syntactic and semantic cluster complexities, and computability are shown in

Table 2.

3. For the semantic feature complexity: + symbol = feature is present in most of the sentences in the cluster; - symbol = feature is
absent from most of the sentences in the cluster.

29

794

Table 4. Cluster Characterization and Computability of Children Clusters

Parent cluster

Subclustering features

Comparison of children clusters

Computability of
children clusters

Cluster 1 IN Compared to sentences in Cluster 1.1, Cluster 1.2 [Cluster 1.1 (+++)
CC sentences have more prepositions (IN) (e.g., “of”, [Cluster 1.2 (++)
(‘IN’, ‘DT?) “in”, “at”) and/or more conjunctions (CC), and have
Total number of phrase |more phrase structure rules. Sentences in Cluster 1.2
structure rules are likely to have multiple requirements (e.g., two
requirements, one on width and one on height) in the
form of preposition phrases and/or conjunctions and
thus are more complex both syntactically and
semantically.
Cluster 5 INP - NP PP Compared to sentences in Cluster 5.1, Cluster 5.2 [Cluster 5.1 (+)
(‘DT ‘NN”) sentences have more noun phrases (NP), more pairs [Cluster 5.2 (-)
(‘JJ°, °'NN”) of determiner (DT) and noun (NN), and more pairs
(‘DT’, <JJ) of adjective (JJ) and noun. Sentences in Cluster 5.2
are likely to have multiple requirements in the form
of long and nested noun phrases and thus are more
complex both syntactically and semantically.
Cluster 8 INP > NP PP Compared to sentences in Cluster 8.1, Cluster 8.2 [Cluster 8.1 (--)
INP > NNP CD sentences have more pairs of determiner and noun, [Cluster 8.2 (---)
('CD''NNS") pairs of preposition and noun, and pairs of cardinal
('NNS''IN") mumber (CD) and noun. Sentences in Cluster 8.2 are
('IN'"'NN") likely to have multiple requirements in the form of
('NN''IN") long and nested noun phrases and thus are more
('JJ' ™NN") complex both syntactically and semantically.
('IN' 'NNP")
('DT' 'NN")
('JJR''IN")
('IN' 'DT")
('DT' 1J")
(IMDV UVBI)
(ICD’ l'l)

795
796
797

30

Note: NNP = proper noun, singular; NNS = noun, plural; JJR = adjective, comparative; MD = modal; VB = verb, base form.

798

799

800

Table 5. Sentence T

pes in the International Building Code

Percentage of

Sentence type Example sentence sentence types in| Computability

the whole dataset|

1.1 (Cluster 1.1) [The height of door openings shall not be less than 80 inches |1.5% Very high (0.96)
(2032 mm).

1.2 (Cluster 1.2) Occupiable spaces, habitable spaces and corridors shall have (1.3% High (0.96)

a ceiling height of not less than 7 feet 6 inches.

2 (Cluster 2) Louvers shall be prohibited. 6.9% High (0.84)

3.1 (Cluster 3) Shaft enclosures shall meet the requirements of Section 7.8% Moderately high
703.2.1. (0.67)

3.2 (Cluster 4) The fire-resistance rating of building elements, components [3.0% Moderately high
or assemblies shall be determined in accordance with the test (0.60)
procedures set forth in ASTM E 119 or UL 263 or in
accordance with Section 703.3.

4.1 (Cluster 5.1) Spacing of braced wall lines shall not exceed 35 feet on 12.1% Moderately high
center in both the longitudinal and transverse directions in (0.40)
cach story.

4.2 (Cluster 5.2) 'Where an egress court serving a building or portion thereof |11.2% Moderately low

is less than 10 feet in width, the egress court walls shall have
not less than 1-hour fire-resistance-rated construction for a
distance of 10 feet above the floor of the court.

(0.40)

5.1 (Cluster 6)

Openings between the Group S-2 enclosed parking garage
and Group S-2 open parking garage, except exit openings,
shall not be required to be protected.

27.7%

Moderately low
(0.36)

5.2 (Cluster 7)

'Where exterior walls serve as a part of a required fire-
resistance-rated shaft or exit enclosure, or separation, such
walls shall comply with the requirements of Section 705 for
exterior walls and the fire-resistance-rated enclosure or
separation requirements shall not apply.

19.2%

Low (0.18)

6.1 (Cluster 8.1)

In occupancies in Groups B, E, F, I-1, M, R-1, R-2, R-4,
Sand U, where the building is equipped throughout with an
automatic sprinkler system in accordance with Section
903.3.1.1, the length of the dead-end corridors shall not
exceed 50 feet.

3.8%

Low (0.17)

6.2 (Cluster 8.2)

The aggregate floor area of the Group H occupancies located
at the perimeter of the unlimited area building shall not
exceed 10 percent of the area of the building nor the area
limitations for the Group H occupancies as specified in
Table 503 as modified by Section 506.2, based upon the
percentage of the perimeter of each Group H floor area that
fronts on a street or other unoccupied space.

4.0%

Very low (0.17)

7 (Cluster 9)

In determining the fire-resistance rating of exterior bearing
walls, compliance with the ASTM E 119 or UL 263 criteria
for unexposed surface temperature rise and ignition of cotton
waste due to passage of flame or gases is required only for a
period of time corresponding to the required fire-resistance
rating of an exterior nonbearing wall with the same fire

separation distance, and in a building of the same group.

1.5%

Very low (0.10)

31

801

802

803
804

805
806

807

808

Table 6. Average Silhouette Coefficients for the Tested Clustering Algorithms

Hierarchical clustering
Clustering - - - - K-means| PAM
Single |Complete|AverageMcQuitty| Median | Centroid |Ward’s
First-level clustering 0.464 | 0.647 | 0.678 | 0.701 | 0.129 | 0.478 |0.742 | 0.488 | 0.485
Cluster 1| 0.527 | 0.674 | 0.545 | 0.674 | 0.539 | 0.545 |0.674 | 0.601 0.674
Subclustering Cluster 5| 0.566 | 0.661 | 0.568 | 0.589 | 0.589 | 0.568 |0.613| 0.642 | 0.643
Cluster 8| 0.234 | 0.468 | 0.463 | 0.515 | 0.469 | 0.463 |0.483| 0.498 | 0.506

Note: Bold font indicates the best performance(s); PAM = partition around medians.

Table 7. Average Silhouette Coefficients Before and After Feature Selection and Synthesis

Clustering Initial features Final features

First-level clustering 0.183 0.742
Cluster 1 0.245 0.674

Subclustering Cluster 5 0.245 0.661
Cluster 8 0.233 0.515

Table 8. Experimental Results of Application-Oriented Evaluation

Sentences with very high or high computability Sentence types with low or very low computability
Sentence types Type 1.1 Type 1.2 Type 2 Type 6.1 Type 6.2 Type 7
Precision 0.95 0.96 0.98 0.81 0.79 0.77
Recall 0.98 0.95 0.97 0.79 0.78 0.75
F1-measure 0.96 0.96 0.97 0.80 0.78 0.76

32

