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ABSTRACT 
 
Automated checking of the compliance of building information modeling (BIM)-based building 
designs with relevant codes and regulations requires bridging the semantic gap between the 
Industry Foundation Classes (IFC) schema and the natural language. In most of the existing 
automated compliance checking (ACC) systems, the integration of the IFC schema and natural 
language is realized through hardcoding or predefined rules, ontologies, or dictionaries. These 
methods require intensive manual engineering effort and are often rigid and difficult to 
generalize. There is, thus, a need for an automated, and meanwhile flexible and generalizable 
information integration method. To address this need, this paper leverages transformer-based 
language models to learn the semantic representations of concepts in the building information 
models (BIMs) and regulatory documents. An automated IFC-regulatory information integration 
approach based on these learned semantic representations is proposed. The preliminary 
experimental results show that the proposed approach achieved promising performance – an 
accuracy of 80% – on integrating IFC and regulatory concepts. 
 
INTRODUCTION 
 
BIMs and regulatory documents such as building codes, specifications, and standards speak two 
different languages – the language of the IFC schema and the natural language. Thus, checking 
the compliance of BIM-based building designs with relevant regulations first requires bridging 
the semantic gap by integrating the semantic information in the natural-language requirements 
with that in the BIMs (Zhang and El-Gohary 2016). In most of the existing ACC systems, such 
information integration is realized through hardcoding (e.g., using modeling languages) methods 
or methods based on predefined rules, ontologies, or dictionaries. For example, the 
buildingSMART Data Dictionary (bSDD) (buildingSMART 2020a), an online data dictionary 
that contains objects and their properties for the building and construction industry, was 
developed to facilitate the alignment of concepts in natural-language requirements to their 
corresponding IFC concepts (e.g., IFC entities, properties, or enumerated property values, etc.). 
These methods require intensive manual engineering effort and are by nature rigid and difficult 
to generalize (Zhou and El-Gohary 2020). For example, the rules, ontologies, or dictionaries 
designed based on one chapter or document might need to be modified when applied to a 
different one. There is, thus, a need for an automated, and meanwhile flexible and generalizable 
information integration method, for fully automated compliance checking.  



 – 2 –   

To address this need, machine learning-based methods have been developed and applied 
to solving the BIM-regulatory information integration problem, such as IFC and regulatory 
concept alignment (e.g., Zhou and El-Gohary 2020), IFC schema extension (e.g., Zhang and El-
Gohary 2017), and IFC semantic enrichment (e.g., Wu and Zhang 2019). These methods use 
machine-learning models to automatically identify text or IFC data patterns that support 
information integration. However, existing machine learning-based information integration 
methods mostly rely on traditional semantic representations, such as the Word2vec (Zhou and 
El-Gohary 2020) and the global vectors for word representation (GloVe) (Zhang and El-Gohary 
2019), and have not exploited the context-aware semantic representations generated using the 
pretrained transformer-based language models, which have recently achieved the state-of-the-art 
performance in various downstream natural language processing (NLP) tasks. There is, thus, a 
missing opportunity to leverage these pretrained language models to learn the semantic 
representations of the IFC and regulatory concepts for BIM-regulatory information integration. 

To address this gap, this paper proposes an automated IFC-regulatory information 
integration approach based on the semantic representations generated by pretrained transformer-
based language models that are finetuned using domain-specific corpora. The proposed approach 
consists of five main steps: data preparation, pretrained language model finetuning, semantic 
concept representation, semantic similarity-based concept alignment, and evaluation. The 
proposed approach was implemented and tested in integrating regulatory concepts from multiple 
building codes with IFC concepts from the IFC4 schema.  
 
BACKGROUND 
 
BIM-regulatory Information Integration. BIM-regulatory information integration aims to 
align natural-language regulatory information (e.g., regulatory concepts), which is typically 
extracted from requirements, with IFC information (e.g., IFC concepts such as IFC entities, 
properties, or enumerated property values). Existing efforts have focused on hardcoding using 
modeling languages (e.g., Yurchyshyna and Zarli 2009) or developing dictionaries (e.g., 
BuildingSMART 2020a), ontologies (e.g., Yurchyshyna and Zarli 2009), or rules (e.g., Pauwels 
et al. 2011) for mapping regulatory concepts to IFC concepts, either manually or 
semiautomatically. Despite the state-of-the-art performance achieved by these methods, they still 
require significant manual effort. Also, they often lack the flexibility to deal with the changes in 
the BIMs or the regulatory documents and are difficult to generalize to different types of 
regulatory documents (e.g., building code, energy conservation code, and accessibility standards) 
or different BIMs (e.g., BIMs of different levels of development) (Zhou and El-Gohary 2020).  

A few research efforts have explored the use of machine-learning models such as 
classification models for BIM-regulatory information alignment for supporting ACC. For 
example, Zhang and El-Gohary (2016) developed a hybrid rule and ML-based method to extend 
the IFC schema. Zhou and El-Gohary (2018, 2020) further computed concept similarities based 
on the semantic representations (i.e., Word2vec) of concepts and explored different types of 
supervised learning algorithms and features in classifying the relationship between regulatory 
and IFC concepts. 
 
Transformer-based Language Models. The transformer-based model architectures are deep 
learning models that consist of blocks – the transformers – that use attention mechanisms (Vaswani 
2017) to model text data, and especially learn the contextual dependencies between words in the 
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text. Compared to other deep learning models that were predominately used for NLP tasks, 
transformer-based architectures have improved both the language modeling performance, 
especially in dealing with long term dependencies in the text, and the computational efficiency in 
model training, by (1) replacing the recurrent or convolutional neural networks with the attention-
based transformers (Vaswani 2017); and (2) incorporating deeper model structures (e.g., millions 
of model parameters and several stacked model layers). The transformer-based model architectures 
enable pretraining language models on large open-domain corpora (e.g., Wikipedia). The 
pretrained transformer-based language models can then be finetuned on smaller, domain- or task-
specific text data for downstream NLP tasks, such as sequence labeling, machine translation, and 
question answering (Vaswani 2017, Devlin et al. 2018, Radford et al. 2019). Two main categories 
of transformer-based language models have been proposed, pretrained, and implemented in 
solving these tasks: autoregressive models, such as the generative pre-trained transformer (GPT) 
series [e.g., GPT-2 (Radford et al. 2019)] by OpenAI, and autoencoding models, such as the 
bidirectional encoder representations from transformers (BERT) (Devlin et al. 2018) by Google 
and its variants.  
 
PROPOSED APPROACH FOR BIM-REGULATORY INFORMATION INTEGRATION 
 
The proposed approach for BIM-regulatory information integration consists of five main steps, as 
shown in Figure 1: regulatory and IFC data preparation, pretrained language model finetuning, 
semantic concept representation, semantic similarity-based concept alignment, and evaluation. 
 

 
Figure 1. Proposed approach for BIM-regulatory information integration. 

 
Regulatory and IFC Data Preparation. Two sets of data were prepared for training and testing. 
The training data set consists of 50,000 sentences and sentence fragments collected from various 
types of regulatory documents from the architecture, engineering, and construction (AEC) domain, 
including building codes, specifications, and standards. The sentences and sentence fragments 
were cleaned and tokenized, and were stored in a single TXT file. The training data set was later 
used for pretrained language model finetuning.  

The testing data set consists of two parts: the regulatory and IFC data sets. The regulatory 
data set consists of 120 sentences collected from three types of regulatory documents: the 
International Building Code (IBC), International Energy Conservation Code (IECC), and 
Americans with Disabilities Act Standards for Accessible Design (ADA Standards). The sentences 
were cleaned and tokenized, and a total of 200 regulatory concepts were manually extracted from 
the sentences and mapped to IFC concepts contained in the IFC data set by three experts. The IFC 
concept data set, which consists of IFC concepts (e.g., IFC entities, properties, and enumerated 
property values) and the canonical forms of these concepts, were manually prepared based on the 
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buildingSMART International standards and supporting documentation on IFC4 
(BuildingSMART 2020b). A canonical form is a natural-language description of an IFC concept. 
For example, the canonical form of the IFC entity IfcDoor is “door”. Table 1 shows example IFC 
concepts, their canonical forms, and their related IFC concepts. The testing data set was later used 
for semantic concept representation, semantic similarity-based concept alignment, and evaluation. 
 

Table 1: Example IFC Concepts in the Testing Data Set 

IFC concept IFC concept 
type 

Canonical 
form Example(s) of related IFC concepts 

IfcDoor Entity door 

• FireRating (via Pset_DoorCommon) 
• SINGLE_SWING_LEFT (via 

IfcDoorTypeOperationEnum) 
• OverallHeight (via IfcDoor attributes) 

FireRating Property fire rating 
• IfcDoor (via Pset_DoorCommon) 
• IfcStair (via Pset_StairCommon) 
• IfcWall (via Pset_WallCommon) 

SINGLE_SWING
_LEFT 

Enumerated 
property value 

single left 
swinging door 

• IfcDoor (via 
IfcDoorTypeOperationEnum) 

 
Pretrained Language Model Finetuning. Two types of transformer-based deep learning model 
architectures – BERT and GPT2 – were selected for learning the semantic representations of IFC 
and regulatory concepts. The pretrained base and uncased BERT and the pretrained base GPT2, 
both of which are accessible via the transformers library (Wolf et al. 2020), were finetuned on 
the training regulatory data set for capturing domain-specific text patterns. Three training 
practices were followed: (1) the sentences and sentence fragments were encoded using the BERT 
and GPT2 tokenizers, respectively; (2) the pretrained BERT was finetuned using the masked 
language modeling loss and the pretrained GPT2 was finetuned using the casual language 
modeling loss; and (3) the finetuning was stopped early to prevent potential overfitting.  
 
Semantic Concept Representation. For each regulatory concept or canonical form of an IFC 
concept, the semantic concept representation was generated following three steps: word 
encoding, context-aware word representation generation, and concept representation 
construction. First, the sequence of words corresponding to the canonical form or the regulatory 
concept was encoded using the tokenizers of the pretrained language models. Second, the 
encoded sequence was fed into the models for computing the outputs of the hidden layers, which 
were used as the context-aware word representations of the sequence of words. Third, for each 
canonical form, the concept representation was constructed by averaging the word 
representations of the words contained in the canonical form or the regulatory concept. For each 
regulatory concept, two semantic representations were constructed – the complete and core 
semantic representations – by averaging the representations of all the words contained in the 
concept and directly using the representation of the last word in the concept, respectively. The 
size of each generated word or concept representation is 768, which equals the hidden-layer size 
of the base and uncased BERT and the base GPT2 (i.e., the number of neurons in the attention 
and output layers of the transformers in both models is 768). 
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Semantic Similarity-based Concept Alignment. Each regulatory concept was determined as 
aligned to an IFC concept (in the IFC concept data set) or not aligned (to any of the IFC concepts 
in the data set), following three main steps, as shown in Figure 2: core semantic similarity 
assessment, complete semantic similarity assessment, and threshold-based alignment. First, for 
each IFC concept, the semantic similarities between the core semantic representation and the 
semantic representations of all the canonical forms were calculated to obtain the IFC concept that 
has the maximum similarity. Second, the IFC concept that has the maximum similarity with the 
complete semantic representation was obtained similarly. Third, if the larger similarity of the two 
exceeds the information integration threshold, the regulatory concept is aligned to the IFC concept 
with this larger similarity; otherwise, the regulatory concept is unaligned.  
 

 

 
Figure 2. Semantic similarity-based concept alignment. 

 
For each pair of a canonical form of an IFC concept and a regulatory concept, the semantic 

similarity was defined as the cosine similarity between the corresponding pair of semantic concept 
representations, as per Eq. (1), where 𝐒𝒄 is the semantic representation of the canonical form of an 
IFC concept c and 𝐒𝒓 is the semantic representation of the regulatory concept r.  
 

𝑆𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦 (𝑐, 𝑟) =  
𝐒𝒄 ∙ 𝐒𝒓

‖𝐒𝒄‖‖𝐒𝒓‖
    (1) 

 
Evaluation. The external evaluation metric, information integration accuracy (Zhang and El-
Gohary 2016), was calculated, as per Eq. (2), where m is the number of regulatory concepts 
correctly aligned to their corresponding IFC concepts or not aligned to any IFC concepts 
according to the testing data set and N is the total number of regulatory concepts contained in the 
testing data set. 
 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  
𝑚

𝑁
    (2) 

 
PRELIMINARY EXPERIMENTS AND RESULTS 
 
Comparison of Different Pretrained Language Models. The two selected pretrained language 
models – the base and uncased BERT and the base GPT2 (with and without finetuning on the 
training regulatory text data) – were compared in terms of information integration accuracy. The 
experimental results, as shown in Table 2, indicate that (1) there was no significant difference 
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between the performances of the two types of pretrained language models; and (2) finetuning of 
the pretrained language models improved their performances. 
 

Table 2: Pretrained Language Models and BIM-regulatory Information Integration  

Metric 

Pretrained language model 
BERT 

(without 
finetuning) 

GPT2 
(without 

finetuning) 

BERT 
(with 

finetuning) 

GPT2 
(with 

finetuning) 
Information integration accuracy 0.74 0.75 0.80 0.80 

 
Comparison of Different Semantic Representations. The semantic representations generated 
using the pretrained language models were compared with GloVe in terms of information 
integration accuracy. The experimental results, as shown in Table 3, indicate that the former 
performs better,  because the pretrained language models captured the contextual semantic 
representations of the concepts, while GloVe only captured fixed, global semantic 
representations. 
 

Table 3: Semantic Representations and BIM-regulatory Information Integration  

Metric Semantic representation 
GloVe Pretrained language models 

Information integration accuracy 0.77 0.80 
 
Comparison of Different Concept Alignment Thresholds. Three different information 
alignment thresholds were tested and compared in terms of information integration accuracy: 
50%, 70%, and 90%. The experimental results, as shown in Table 4, indicate that the 70% 
threshold led to the best performance. 

 
Table 4: Concept Alignment Threshold and BIM-regulatory Information Integration  

Metric Information alignment threshold 
50% 70% 90% 

Information integration accuracy 0.76 0.80 0.68 
 
Error Analysis. Two types of errors were identified based on the experimental results. First, 
long and complex regulatory concepts (e.g., “side-hinged opaque door assembly”) were not 
correctly aligned/unaligned, possibly because the averaging of word representations 
corresponding to these concepts reduced the semantic representations to be less discriminative in 
similarity-based concept alignment. Second, regulatory concepts that have words rarely occuring 
in the training data set or words very often occurring (e.g., stop words) were not correctly 
aligned/unaligned, possibly because the semantic representations were not able to capture the 
context-aware semantics that is discriminative in similarity-based concept alignment. 
 
CONCLUSION 
 
This paper proposed a new machine learning-based approach for semantic representation 
learning and information integration of building information modeling and regulatory concepts. 
First, the pretrained transformer-based language models (i.e., the base and uncased BERT and 
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the base GPT2) were finetuned on domain-specific regulatory text data. Second, for each 
regulatory concept and canonical form of an IFC concept, semantic concept representations were 
generated using the pretrained language models. Third, each regulatory concept was determined 
as aligned to an IFC concept or unaligned based on the semantic similarity between its semantic 
concept representations and these of the canonical forms of the IFC concepts. The proposed 
approach achieved an information integration accuracy of 80% on 200 regulatory concepts and 
IFC concepts from the IFC4 schema, indicating promising performance. 

This paper contributes to the body of knowledge in two primary ways. First, the paper 
leverages pretrained transformer-based language models for capturing the semantic 
representations of IFC and regulatory concepts. Second, the initial experimental results show that 
the funetuning of pretrained language models and the information integration threshold can 
greatly impact the performance of the proposed approach.  

In future work, first, the authors plan to improve the performance of the BIM-regulatory 
information integration by (1) incorporating the graph structures of the regulatory concepts in the 
requirements and IFC entities in the BIMs to allow complex concept alignment; (2) testing and 
comparing other state-of-the-art pretrained language models; and (3) including more IFC and 
regulatory concepts. Second, the authors plan to integrate the proposed BIM-regulatory 
information integration approach with machine learning-based regulatory information extraction 
and transformation approaches and compliance reasoning mechanisms in a machine learning-
driven, fully automated compliance checking system. 
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