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ABSTRACT: A nickel-catalyzed reductive cross-coupling reaction of aryl cyclopropyl ketones with easily accessible 
unactivated alkyl bromides to access aryl alkyl ketones has been developed. This strategy facilitates access to various of γ-alkyl 
substituted ketones via ring opening of cyclopropyl ketones (26 examples, 50−90% yield). Initial mechanistic studies revealed 
that the reaction proceeds via a radical cleavage of the alkyl bromide. 

Nickel-catalyzed reductive coupling reactions are 
highly desirable, with the operational advantage of 
circumventing the use of preformed organometallic reagents 
of traditional cross-coupling reactions.1 These synthetically 
useful reductive processes have been widely developed by 
Gosmini,2 Weix,3 Gong,4 Reisman,5 Diao,6 Shu,7 Wang8 and 
others using diverse electrophiles (Scheme 1a). A subset of 
such transformations include nickel-catalyzed reductive 
coupling of enolizable intermediates, which have been 
demonstrated to be valuable in the synthesis of bioactive 
molecules.9  Usually, such transformations involve 
nickel-enolate intermediates.10 For example, Durandetti and 
Gosmini,9b, 9e our team,9d and the Reisman9a group have 
reported the reductive arylations of α-haloesters to generate 
anti-inflammatory drug derivatives, NSAIDs (Scheme 1b).  
More recently, a nickel-catalyzed asymmetric tandem alky 
arylation of acrylates was developed by us.9c  Like the 
reductive coupling of enolizable carbonyl compounds, the 
reductive coupling of homoenolates and their higher 

homologues (γ-metallated carbonyls) are under developed.11 
Scheme 1. Transition-Metal-Catalyzed Reductive 
Cross-Coupling Reactions 

 
    We have been interested in reductive coupling of 
carbonyl-containing electrophiles, including asymmetric 
variants.9c, 9d, 11 One of our goals is the use of 
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α-functionalized electrophiles that undergo transposition of 
functionality to positions further removed from the carbonyl 
group. Recently, our team developed a nickel-catalyzed 
reductive coupling of nickel-bound homoenolates in which 
the homoenolate was catalytically generated via 
decarbonylation of cyclic anhydrides (Scheme 2a).11a These 
recent findings led us to wonder if γ-nickel carbonyl 
intermediates could be utilized in reductive alkylations to 
elaborate carbonyl compounds.   

Cyclopropyl ketones are easily accessible materials and 
represent a class of important precursors for ring opening 
reactions.12  Ogoshi, Nagata and Kurosawa demonstrated 
that in the presence of Ni(COD)2, cyclopropyl ketones 
underwent ring opening to form nickeladihydropyran 
intermediates (Scheme 2b).13 Notably, this nickel-bound 
intermediate is a γ-metallated enolate and is primed for 
further elaboration.  Herein, we report a nickel-catalyzed 
reductive alkylation of cyclopropyl ketones via ring-opened 
γ-metallated intermediates. Such species enable generation 
of an array of γ-alkylated ketone products (Scheme 2c). 
During the final preparations of this manuscript, Wang and 
co-workers reported a related coupling of cyclopropyl 
ketones14 with alkyl halides with a different catalyst.  
Interestingly, these two processes proceed by different 
reaction mechanisms (2-electron vs. radical).  

Scheme 2. Nickel-Catalyzed Cross-Coupling via Ring 
Opening of Carbonyl Compounds  

 
We initiated our research with 1 equiv. cyclopropyl 

phenyl ketone 1a and 1 equiv. (2-bromoethyl)benzene 2a as 
model substrates.  For the catalyst generation, 10 mol % 
Ni(COD)2 and 15 mol % bipy were employed in the 
presence of 2 equiv. Zn powder and N,N-dimethylacetamide 
(DMA) at 80 ℃ for 12 h. Under these conditions the 
1,6-diphenylhexan-1-one 3aa was obtained in 32% yield 
(Table 1, entry 1). To improve the yield of the product, the 
Ni source was varied maintaining bipy as ligand. Compared 
to other nickel sources (NiBr2, NiI2, NiBr2•DME, the 
commercially available Ni(ClO4)2·6H2O provided 42% yield 
(Table 1, entry 5).  NiBr2, NiI2, NiBr2•DME led to 
decreased yields (Table 1, entries 2–4). The impact of 
temperature was next examined. Lowering the temperature 
from 80 to 60 °C resulted in an increase in the yield to 50% 
(Table 1, entry 6) and further decreasing the temperature to 
40 °C afforded the desired product in 65% yield (Table 1, 
entry 7). No coupling product was detected at 20 °C (Table 1, 

entry 8).  
We next examined how the ratio of 1a : 2a impacted 

the reaction outcome.  Increasing 1a : 2a from 1 : 1 to 1 : 
2.5 resulted in an improvement in the yield of 3aa from 65% 
to 86% (Table 1, entry 7 vs. 9－11). The influence of other 
reaction parameters, including the use of different solvents, 
concentrations, ligands and reductants were tested (see the 
Supporting Information for full details). These studies did 
not lead to improvement on the conditions in Table 1 (Entry 
11). Ultimately, the optimal conditions for this 
nickel-catalyzed reductive cross-coupling of cyclopropyl 
phenyl ketones entail 1a (1.0 equiv), alkyl bromide 2a (2.5 
equiv), Zn powder (2 equiv), Ni(ClO4)2·6H2O (10 mol %) 
and bipy (15 mol %) in DMA (0.5 M) at 40 °C for 12 h. 

Table 1. Optimization of the Reaction Conditionsa 

 

Entry Ni source 
Temp 
(oC) 

1a : 2a 
Yieldb 
(%) 

1 Ni(COD)2 80 1 : 1 32 
2 NiBr2 80 1 : 1 17 
3 NiI2 80 1 : 1 24 
4 NiBr2·DME 80 1 : 1 30 
5 Ni(ClO4)2·6H2O 80 1 : 1 42 
6 Ni(ClO4)2·6H2O 60 1 : 1 50 
7 Ni(ClO4)2·6H2O 40 1 : 1 65 
8 Ni(ClO4)2·6H2O 20 1 : 1 trace 
9 Ni(ClO4)2·6H2O 40 1 : 1.5 69 
10 Ni(ClO4)2·6H2O 40 1 : 2 73 
11 Ni(ClO4)2·6H2O 40 1 : 2.5 86 

aReactions were conducted on a 0.1 mmol scale using 1a, 2a, 
Ni source (10 mol %), bipy (15 mol %), and DMA (0.5 M). 
bIsolated yield. Trace means the yield <5%.  

With the optimized reaction conditions above (Table 1, 
entry 11), we then determined the scope of the reaction with 
respect to alkyl bromide substrates (Scheme 3). The parent 
(2-bromoethyl)benzene 2a reacted to give the cross-coupling 
product 3aa in 86% isolated yield. Primary n-alkyl bromides 
containing 2, 4, 6, or 8 carbon chains furnished the linear 
coupled products in 69% to 86% yield (3ab–3ae). Primary 
alkyl bromides with branching, such as iso-butyl bromide (2f) 
and neopentyl bromide (2g), furnished products 3af and 3ag 
with 79% and 69% yield, respectively. Furthermore, primary 
cyclic alkyl bromides bearing 4, 5, or 6-membered rings 
(2h–2j), provided the cross-coupling products 3ah–3aj in 
74−90% yield.  

Secondary alkyl bromides were next evaluated.  
Acyclic secondary alkyl bromides 2k – 2m and cyclic 
secondary alkyl bromides 2n–2p were all suitable under the 
standard conditions, providing the coupled products 3ak–
3ap with 56−78% yield. Unfortunately, when functionalized 
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alkyl bromides bearing ether and chloride were employed, 
cross-coupling products were not observed (the starting 
materials remained). These results inspired a search for 
suitable conditions for these important substrates. By 
rescreening the ligands and temperatures, we identified 
modified conditions with 5,5'-dimethyl-2,2'-dipyridyl in 
place of bipy at a higher temperature (80 °C). Under the 
modified conditions, functionalized alkyl bromides bearing 
ether (2q–2s) and chloro (2t) provided the corresponding 
functionalized products 3aq‒3at in 50‒69% yield.  

Scheme 3. Substrate Scope of Alkyl Bromidesa 

 
aReactions performed on a 0.1 mmol scale with 1a (1.0 
equiv.), 2 (2.5 equiv.), Ni(ClO4)2·6H2O (10 mol %), bipy (15 
mol %), DMA (0.5 M) under 80 oC for 12h. b 
5,5'-dimethyl-2,2'-dipyridyl instead of bipy. 

The scope of the aryl substituent of the aryl cyclopropyl 
ketone was subsequently examined under the modified 
conditions (Scheme 4). It is found that when the aryl was 
substituted with a 3-Me (1b), the target product 3ba was 
obtained in 82% yield. Disubstituted aryl groups 
4-fluoro-3-methylphenyl and 3-fluoro-4-methylphenyl 
afforded coupling products 3ca and 3da in 78% and 69% 
yield, respectively. Ketones supporting 4-Cl, and 4-Br 
successfully participated to generate, 60 and 63% yields of 
the halogenated products. The 4-tert-butyl-containing 
substrate provided 3ga in 56% yield. In addition, when 
cyclopropyl(4-(trifluoromethyl)phenyl)methanone 3h was 
used as coupling partner, the target product 3ha was 
generated in 67% yield. However, 
cyclopropyl(4-methoxyphenyl)methanone 3i exhibited poor 
reactivity, producing only trace product. 

Scheme 4. Substrate Scope of Aryl Cyclopropyl Ketones a 

 
aReactions performed on a 0.1 mmol scale with 1 (1.0 
equiv.), 2a (2.5 equiv.), Ni(ClO4)2·6H2O (10 mol %), 
5,5'-dimethyl-2,2'-dipyridyl (15 mol %), DMA (0.5 M) 
under 80 oC for 12h. 

To test the scalability of this transformation, 5.0 mmol 
of cyclopropyl phenyl ketone 1a was coupled with 
(2-bromoethyl)benzene 2a under the standard conditions 
(Scheme 5). The desired cross-coupling product 3aa was 
isolated in 80% yield (1.01 g).  
Scheme 5. Scale-up to 5.0 mmol.  

 

To provide insight into the reductive cross-coupling 
reaction mechanism, several control experiments were 
performed (Scheme 6). When the radical scavenger TEMPO 
was added to the standard reaction conditions,15 the product 
3aa was formed in only trace amounts (Scheme 6a). This 
result caused us to speculate that the reaction might proceed 
through radical intermediates. We explored the coupling 
with a substrate bearing a pendent olefin as a radical trap.16 
Cyclopropyl phenyl ketone (1a) and 5-hexenyl bromide (2u) 
were examined at various catalyst loadings.  The idea is 
that if the reaction involves radical intermediates, lower 
loadings of the catalyst will decrease the rate of capture of 
the originally formed primary radical, resulting in increased 
cyclized product.  As the loading of catalyst is increased, 
the rate of capture of the original primary radical before 
cyclization will also rise. When the Ni loading was increased 
from 5 mol % to 40 mol % (with concomitant increase of 
bipy), we observed the ratio of directly cross-coupled 
product 3au to the cyclized product 3au’ increased linearly 
with catalyst loading (Scheme 6b).  This relationship is 
consistent with a radical intermediate. (see the Supporting 
Information for full details, Supplementary Table S5) 

Finally, in order to exclude the possibility of an 
organozinc intermediate in the reaction system, 
phenethylzinc bromide A (1.0 M) was synthesized17 and 
subjected to the cyclopropyl phenyl ketone (1a) in the 
absence of zinc powder (Scheme 6c). Only trace 
cross-coupled product 3aa was observed. Taken together, 
these observations lead us to propose that the activation of 
the alkyl bromide likely involves a single electron transfer 
(SET) process. These results stand in contrast to the 
observations by Wang and co-workers, which suggest that in 
MeOH solvent and a different Ni catalyst, the alkyl bromide 
is activated by a 2-electron process.14  

Scheme 6.  Mechanistic Studies 
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On the basis of these studies, a proposed mechanism is 
described in Scheme 7. Ni0 oxidatively adds cyclopropyl 
phenyl ketone 1 giving a six-membered cyclic Ni(II) species 
(I).13-14 Next, oxidative capture of the alkyl radical affords 
the NiIII species (II), which undergoes reductive elimination 
to forge the C–C bond and form a NiI-enolate species (III). 
The Ni(I) intermediate (III) initiates single-electron transfer 
(SET) with alkyl bromide 2 to generate alkyl radical and a 
NiII species (IV). Finally, the NiII intermediate IV is reduced 
by Zn0 powder to regenerate Ni0 and the zinc–enolate 
product V. Acidic workup liberates the cross-coupled ketone 
product 3. 

Scheme 7. Proposed Mechanism 

 

In summary, we have developed a nickel-catalyzed 
reductive cross-coupling of γ-metallated ketones with 
unactivated alkyl bromides. This method can provide various 
γ-alkylated ketones in good to excellent yields. In addition, 
this transformation avoids use of preformed organometallic 
reagents. Initial mechanistic studies indicate that the reaction 
proceeds via an alkyl radical. Further efforts to expand the 
nickel-catalyzed reductive cross-coupling strategy are 
currently under investigation in our laboratories. 
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