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Abstract

The digital and integrated representation of the physical and functional characteristics of buildings
enabled by building information modeling (BIM) provides a computational environment for
automated compliance checking (ACC) of building designs. The integration of natural language
processing (NLP) and artificial intelligence (Al) with BIM brings further opportunities for ACC —
it can empower BIM with text analytics and Al capabilities, thereby injecting intelligence and
automation in the compliance checking processes. This chapter highlights emerging approaches
that aim to facilitate and harness the marriage of BIM, NLP, and Al to enable the next generation
of automated compliance checking systems (ACC) systems. This chapter (1) reviews different
types of BIM-based ACC systems that leverage NLP and Al techniques, (2) discusses how NLP
and Al techniques are applied in regulatory text analytics tasks and BIM information analytics
tasks in the context of ACC, and (3) discusses the future trends of BIM-based ACC systems.

Keywords: Automated compliance checking, Building information modeling, Natural language
processing, Artificial intelligence.

Section 1 Introduction

Building designs must comply with a multitude of requirements from building codes, regulations,
project specifications, etc. These requirements come from different authorities and cover a wide
variety of topics such as energy, safety, and accessibility. Manually checking the compliance of a
building design with all applicable requirements is costly, time consuming, and error prone. For
example, in 2018, over $200 million were spent on, only, checking the compliance of the designs
of new privately-owned housing units (US Census Bureau 2019). It takes 15 to 18 days to complete
the review and checking of the design of a new residential building (City of Manassas 2019;
Wisconsin Department of Safety and Professional Services 2019). For larger building projects (e.g.,
projects over $400,000 in construction valuation), the compliance checking process takes more
time, with multiple checking cycles (City of Sacramento 2019). And, a study showed that about
29% of the manual checking has errors and inconsistencies (Fiatech 2012).

To reduce the time, cost, and errors of building code compliance checking, a number of automated
code compliance checking (ACC) methods and systems have been developed and implemented,
both in academia and industry. ACC systems are computational systems that process both the


mailto:rzhang65@illinois.edu
mailto:gohary@illinois.edu

natural-language requirements and the digital building designs and analyze both to detect non-
compliance instances (as illustrated in Fig. 1). Since the advent of building information modeling
(BIM) technology, ACC systems have become BIM-based and have benefited from the more
integrated and normalized design information representations brought by BIM. The goal of BIM-
based ACC systems is to check the BIM-represented building design (e.g., the configuration and
properties of building elements) for compliance with relevant requirements (e.g., requirements
expressed in the building code).
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Fig. 1 BIM-based ACC systems.

Existing BIM-based ACC systems are, however, not entirely automated — still requiring several
manual processes such as manual reading and interpretation of the building code and formalization
of the requirements in a computer-processable form (e.g., rules). Fully automated ACC, instead,
requires all processes to be automated, including the extraction of requirements (or rules) from the
regulatory documents, the extraction of relevant design information from the BIM model, and the
alignment of the semantic representations of both. In reality, however, achieving full automation
is challenging, for three main reasons. First, regulatory documents are written in natural language,
which are difficult for computer interpretation and can often be vague or ambiguous even to
humans. For example, a requirement might be subject to more than one interpretation. Second,
regulatory documents tend to have complex syntactic and semantic structures, such as
hierarchically-complex clause and sentence structures including deeply nested syntactic and
semantic structures, conjunctive and alternative obligations, and multiple exceptions. Third, the
BIM models and the regulatory documents are largely speaking different languages, using different
semantic representations and terminologies (Solihin and Eastman 2015; Zhou and El-Gohary 2017;
Nawari 2019).

Despite the existence of these challenges, the rapidly advancing natural language processing (NLP)
and artificial intelligence (Al) techniques are opening the doors for many new solutions. NLP is a



field of linguistics and computer science that uses computational tools for computer systems to
automatically process, analyze, and understand natural language data (e.g., text) (Goldberg 2017).
Al is a field of computer science that develops computer systems capable to automatically interpret
external data, learn from these data, and use the learnings to perform tasks that normally require
human intelligence (Kaplan and Haenlein 2019). In ACC systems, NLP and Al techniques support
text and BIM information analytics tasks including requirement classification, semantic annotation,
regulatory information extraction, design information extraction, BIM semantic enrichment, BIM-
regulatory information alignment, and compliance reasoning (as shown in Fig. 2). Requirement
classification aims to classify natural-language requirements into predefined categories (e.g.,
relevant versus irrelevant requirements). Semantic annotation aims to annotate the requirements
with markups that indicate the elements of the requirements (e.g., subject of compliance) and their
meanings. Regulatory information extraction aims to extract the requirement information from the
text (e.g., code) and represent the extracted information in a computer-processable form (e.g.,
rules). Design information extraction aims to extract relevant building design information from the
BIM models. BIM semantic enrichment aims to add meaningful information to a BIM model.
BIM-regulatory information alignment aims to align the meanings and representations of the
requirements and the BIM models. And, compliance reasoning aims to analyze the aligned BIM-
regulatory information to detect non-compliance instances.

Traditionally, NLP and AI were based on explicitly programmed rules and expert/knowledge
systems, suffering from a lack of flexibility and adaptability. Recently, NLP and AI have been
seeing an increasing adoption of machine learning (ML) techniques. ML techniques develop
computational models that learn from data (i.e., training data) to make predictions/decisions,
without the need for explicit programming (Alpaydin 2020). Researchers have already started — in
the past several years — to explore how ML could help tackle the challenges in BIM-based ACC
systems and further increase their flexibility and adaptability (e.g., Zhang and El-Gohary 2016;
Ma et al. 2018; Xue and Zhang 2019; Bloch and Sacks 2020; Zhong et al. 2020).

This chapter aims to review different types of BIM-based ACC systems (Section 2), and how NLP
and Al techniques have been applied in regulatory text analytics tasks (Section 3) and BIM
information analytics tasks (Section 4) in the context of ACC, and ends with a discussion of the
future of BIM-based ACC systems (Section 5) with an emphasis on the application of ML
techniques. Overall, this chapter also illustrates how BIM, NLP, and Al can, together, drive
innovation and convergence in the AEC domain.
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Fig. 2 NLP and Al in BIM-based ACC systems.

Section 2 Existing BIM-based ACC Systems

2.1 Al-assisted ACC Systems

BIM-based ACC systems have been evolving from Al-assisted systems to Al-driven systems. Al-
assisted systems predominately rely on human effort (e.g., extensive manual input and human
interpretation of rules) for compliance checking, with a limited number of processes such as
compliance reasoning being supported by Al techniques. Also, these systems mainly use symbolic
Al techniques, where explicit representations composed of symbolic elements (e.g., constants,
functions, and predicates) are manually designed by experts to represent implicit knowledge
(Garnelo et al. 2016). The first symbolic Al techniques that were applied in (non-BIM-based) ACC
systems are expert systems (e.g., Hayes-Roth et al. 1983). Since then, many research efforts on
Al-assisted ACC systems have been undertaken, such as safety checking (e.g., Zhang et al. 2013,
Choi et al. 2014), fire safety checking (e.g., Balaban et al. 2012, Kincelova et al. 2020), building
accessibility checking (e.g., Lau and Law 2004, Lee et al. 2015), building performance checking
(e.g., Pauwels et al. 2011), water distribution system checking (e.g., Martins and Monteiro 2013),
and building design checking (e.g., Eastman et al. 2009, Tan et al. 2010). And many of the first
commercialized or government-funded ACC systems are also Al-assisted such as CORENET
ePlanCheck (AECBytes 2005), REScheck and COMcheck (US Department of Energy 2020),
SMARTcodes (Government of Singapore 2016), and Solibri Model Checker (Solibri 2020). Al-
assisted systems can be further classified into four main categories based on how the users interact
with these systems, as shown in Fig. 3: White-box, semantic annotation-based, parametric
template-based, and black-box systems.



White-box ACC systems. White-box systems require users (e.g., compliance checking
professionals) to manually translate natural-language requirements into computer-processable
forms using programming languages. For example, the Building Environment and Analysis
Language (Lee 2011) was designed to represent building objects and their properties and relations
contained in the requirements. The BIM Rule Language (Dimyadi et al. 2016) was designed to
query BIM models using a Structured Query Language (SQL)-based syntax, and then rule
checking algorithms are applied to the query results to perform compliance reasoning. Conceptual
graphs (Solihin and Eastman 2016) and Visual Code Checking Language (Preidel and Borrmann
2016) were used to extract and represent the rules, constraints, building objects, and relationships
between objects, and visualize the rules in graph-like structures. White-box ACC systems reveal
most of the information representations to the users, but require users to know the syntax and
vocabulary of the language used.

Semantic annotation-based ACC systems. Semantic annotation-based systems require manual
annotation of the semantic concepts and relations that describe the requirements using semantic
tags. For example, the users of the SMARTcodes software first read the building code, and then
annotate the text with the requirement, applicability, selection, and exception (RASE) markups
(Hjelseth and Nisbet 2010). Semantic annotation-based systems reveal partial information
representations to the users — the semantic markups, which are typically simple to understand and
use, but usually keep the post-processing processes of the annotated regulatory information and
the compliance reasoning mechanisms hidden.

Parametric template-based ACC systems. Parametric template-based systems use predesigned
rule templates, and require manual extraction of the regulatory requirements from the code by the
users. For example, the users of Solibri Model Checker (Solibri 2020) need to read the natural-
language requirements, identify the correct rule templates for the requirements, and obtain the
values for the parameters of the templates from the requirements. Similar to semantic annotation-
based ACC systems, parametric template-based systems only reveal partial information
representations to the users.

Black-box ACC systems. Black-box systems are different from the previous three types of
systems in that they are opaque to the users — the users have no control over the text and BIM
information analytics processes, neither do they have knowledge of the representations nor the
compliance reasoning mechanisms. Instead, the requirements have been already encoded using the
chosen representation/language by ACC software developers; and users only have access to the
input (i.e., the natural-language requirements and the BIM models) and the output (i.e., the
compliance checking report) of the system. Most of the current commercialized or government-
funded ACC systems are hardcoded black-box systems. The earliest ones among such systems are
CORENET ePlanCheck (Government of Singapore 2016) and REScheck and COMcheck (US
Department of Energy 2020), and the more recent ones include SMARTreview, UpCodes,
Compliance Audit Systems Limited, Daima, and Invicara.

Even though Al-assisted ACC requires much less manual effort compared to manual compliance
checking, the amount of manual effort needed is still significant. This manual effort is time
consuming and could be a source of errors. For example, a complex requirement that includes



multiple conjunctions and/or disjunctions and restrictions and/or exceptions could take 30 minutes
or more to input into the rule templates of the Solibri Model Checker. Another example is
REScheck — it takes one to three business days to generate a compliance checking report using this
software (REScheck EZ 2020).
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Fig. 3 Comparison of Al-assisted ACC systems.

2.2 Al-driven ACC Systems

Al-driven systems rely heavily on Al, with most of the complex ACC processes such as regulatory
information extraction benefiting from Al techniques. Also, different from Al-assisted systems,
they rely on NLP and ML techniques instead of symbolic Al. Al-driven systems are, thus, more
flexible and scalable and have greater potential to be adapted to different types of regulatory
documents in the AEC domain. They can be further classified into two main categories: rule-based
systems and ML-based systems.

Rule-based ACC systems. Rule-based systems are built on expert-defined rules. For example, as
shown in Fig. 4, the semantic NLP-based ACC (SNACC) system (Zhang and El-Gohary 2017a,
2017b) uses semantic modeling, NLP, and information extraction rules to automatically extract
the regulatory information from the natural-language requirements and the design information



from the BIM models, and formalizes both into the same form (first-order logic) for compliance
reasoning. The rules define patterns of syntactic and semantic text features, and use pattern
matching to identify the information to extract based on the recognized text patterns. Based on the
aforementioned work, Zhou and El-Gohary (2017) and Li et al. (2016) further developed rule-
based systems for energy compliance checking and utility spatial compliance checking,
respectively. Compared to Al-assisted systems, rule-based systems are more flexible and scalable,
offering a higher level of automation with minimal manual effort (e.g., the effort required by
system developers to develop the regulatory information extraction rules). However, as all other
types of Al-driven systems, rule-based ACC systems have their intelligence and automation limits.
For example, these systems are limited in dealing with natural-language requirements that are
ambiguous or require human judgment by nature.
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Fig. 4 Example of a rule-based ACC system (Zhang and El-Gohary 2017b).

ML-based ACC systems. ML-based ACC systems use ML models to automatically learn the
syntactic and semantic patterns in natural-language requirements and BIM models to guide the
text and BIM analytics tasks such as information extraction. Such efforts have focused on applying
ML and ML-based NLP techniques in different ACC processes and adapting these techniques,
which originate from other domains such as computer science, to AEC domain-specific data and
applications. For example, Zhang and El-Gohary (2019a) developed ML models to automatically
extract and transform regulatory information from natural-language requirements into computer-
processable forms. Wu and Zhang (2019) developed data-driven methods to automatically classify
IFC objects for supporting the alignment of design information and regulatory information. Recent
advances in deep learning methods and their application in AEC-domain tasks such as indoor



localization using BIM image data (Ha et al. 2018) and design command prediction using BIM log
data (Pan and Zhang 2020) have provided insights for leveraging deep learning in ACC systems.
Deep learning methods use computational models such as deep neural networks to learn multi-
layer abstract representations from raw data and thus can achieve great power and
flexibility/adaptability (Goodfellow et al. 2016). Examples of the first research efforts to develop
deep learning-based ACC systems include the recurrent neural network-based methods for
regulatory information extraction and transformation developed by Zhang and El-Gohary (2019b,
2020). The application of ML and/or NLP techniques in Al-driven systems, particularly ML-based
ACC systems, further pushes the levels of flexibility/adaptability and automation of ACC systems
into a new optimal boundary (see Fig. 5). However, ML-based ACC systems are far less mature
than Al-assisted ACC systems (see Fig. 5) — currently, there are no ACC systems that solely rely
on ML techniques. In addition, none of the existing ML-based ACC approaches have been
evaluated on a large number of testing cases while achieving performance competitive to the state-
of-the-art Al-assisted or rule-based ACC systems.
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Fig. 5 Comparison of Al-assisted and Al-driven ACC systems.
Section 3: Regulatory Text Analytics in BIM-based ACC Systems

3.1 Natural-language Requirement Classification

Classifying natural-language requirements into predefined categories (e.g., binary classification of
building code as checkable or not) prior to other ACC processes such as rule extraction and
compliance reasoning, helps improve the performance of these processes by filtering out
requirements that are either irrelevant or not checkable. Text classification is a foundational task
in many NLP-based applications (Lai et al. 2015) and numerous research efforts have been
undertaken in the computer science and computational linguistic domains. These efforts range
from handcrafted syntactic and semantic rule-based methods [e.g., CONSTRUE/TIS by Hayes and



Weinstein (1990)] to methods using ML techniques, including supervised (Joachims 1999) and
unsupervised learning algorithms (Turney 2002)]. Most recently, text classification efforts are
predominantly using deep learning [e.g., character-level convolutional neural networks (Zhang et
al. 2015), recurrent neural networks (Lai et al. 2015), and transfer learning with deep neural
networks (Howard et al. 2018)]. Compared to domain-general text classification, classification of
requirements for ACC is more challenging, mainly because there is a lack of predefined
requirement types to guide the classification. Also, the regulatory text in the AEC domain has
syntactic and semantic structures that are different from, and often more complex, than text in
other domains such as social media (Zhou and El-Gohary 2016a; 2016b).

Manual and empirical classification. A few research efforts have manually classified natural-
language requirements into types for supporting compliance checking purposes. For example,
Malsane et al. (2015) classified building-code requirements based on whether they are checkable
and interpretable by computers or not, and accordingly defined three requirement types: (1)
declarative requirements: requirements having checkable information and thus are computer
interpretable (e.g., simple geometrical rules); (2) informative requirements: requirements having
information that needs human interpretation and thus are not directly interpretable by computers;
and (3) remaining requirements: requirements that are not suitable for compliance checking.
Solihin and Eastman (2015) classified building-code requirements based on whether they can be
checked in some of the existing ACC systems (e.g., Solibri Model Checker), and if so, how they
can be checked. Four requirement types were defined: (1) requirements that need explicit BIM
data for compliance checking; (2) requirements that need attribute values derived from explicit
BIM data for compliance checking; (3) requirements that need extended BIM data structures for
compliance checking; and (4) requirements that need a “proof of solution” (e.g., an illustrative
case and/or a manual compliance reasoning process). In many commercialized ACC applications
(e.g., SMARTreview), developers manually classify requirements into two groups — those that
need direct verification and those that do not.

NLP and ML-based classification. Recent research efforts used Al-driven methods that leverage
NLP and ML techniques to automatically classify natural-language requirements and/or identify
requirement types. Examples of supervised learning-based methods include Salama and El-Gohary
(2016), who proposed a supervised learning-based method for classifying regulatory documents
and contract clauses into predefined categories (e.g., environmental, safety, health) using a mixed
set of text features (e.g., document frequency) and feature reweighting techniques. Zhou and El-
Gohary (2016a) proposed a supervised learning-based method with word-level and document-
level features (e.g., term frequency and inverse document frequency) to classify requirements (e.g.,
in the International Energy Conservation Code) according to environmental compliance checking
topics. Le et al. (2019) developed a Naive Bayes-based method to differentiate requirements from
non-requirement text in contractual documents. Examples of unsupervised learning-based methods
include Zhou and El-Gohary (2016b), who proposed an ontology- and clustering-based method to
classify regulatory text according to an environmental compliance checking topic hierarchy. Zhang
and El-Gohary (2018) proposed a hierarchical clustering-based method and syntactic and semantic
features to classify requirements based on their syntactic and semantic features and their level of
computability, which is defined as the ability of natural-language requirements to be automatically



understood and processed by computers. NLP and ML-based requirement classification methods
can greatly reduce manual effort and scale up to various types of regulatory documents.

3.2 Regulatory Information Extraction

In ACC systems, regulatory information (e.g., subject of compliance, quantity value, and quantity
units) is extracted from natural-language requirements and transformed into computer-processable
forms to support compliance reasoning. Numerous information extraction efforts have been
undertaken in the computer science and computational linguistics domains for supporting different
data analytics tasks, such as entity recognition (e.g., Bommarito II et al. 2018), event extraction
(Chambers and Jurafsky 2011), and commonsense question answering (Fader et al. 2011).
Regulatory information extraction in ACC systems is more challenging compared to information
extraction for many other data analytics tasks because ACC requires deep or full information
extraction — the entire meaning of the text must be captured for complete and correct extraction
of the elements of the requirements, while in tasks such as entity recognition only partial
information (e.g., companies and geopolitical entities) are extracted from the text.

Rule-based regulatory information extraction. Existing state-of-the-art information extraction
methods rely on rules that are developed using NLP techniques and semantic analysis. For
example, Zhang and El-Gohary (2013; 2015) and Zhou and El-Gohary (2017) developed semantic
NLP-based methods, which use semantic and syntactic features and information extraction rules
(as shown in Fig. 6) to extract semantic information elements from regulatory documents such as
building codes, energy conservation codes, and specifications for supporting ACC. Li et al. (2016)
used NLP techniques to translate the textual descriptions of spatial configurations into computer-
processable spatial rules. Park and Lee (2016) developed NLP and logic-based rules to
automatically translate natural-language requirements into queries. Despite the state-of-the-art
performance levels many of them have achieved [e.g., nearly 100% recall reported by Zhang and
El-Gohary (2013) and Zhou and El-Gohary (2017), with above 95 % precision], rule-based
approaches are difficult to scale to a variety of documents due to the limited patterns that are used
to develop the rules. In general, when the type of regulatory document or the characteristics of the
text change, although some of the IE rules could be reused, most of these rules will require retesting
and possibly modification or addition. Depending on the amount of retesting and adaptation
involved, this could require significant effort.
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Natural-language Requirement

Habitable rooms shall have a net floor area of not less than 70 square feet

L

Features

Part-of-speech features: (Habitable JJ) (rooms NNS) (shall MD) (have VB) ...
Ontology concept features: (Habitable rooms BE) shall have ...

2

Regulatory Information Extraction Rules

Rule 1 (semantic rule):

IF “BE” is matched,

THEN the text with “BE” is extracted as an instance of “Subject”

Rule 2 (syntactic rule):

IF “MD + VB” is matched,

THEN the text with “VB” is extracted as an instance of “Quantitative Relation”

Rule n: ...
L

Extracted Regulatory Semantic Information Element Instances

Subject: Habitable room Quantitative Relation: >=
Compliance Checking Attribute: Net floor area Quantity Value: 70
Deontic Operator Indicator: required Quantity Unit: Square feet

JJ=adjective; NNS=noun, plural; MD=modal; VB=verb, base form; BE=building element

Fig. 6. Example of rule-based regulatory information extraction in ACC systems (Zhang and El-
Gohary 2015).

ML-based regulatory information extraction. The most recent ACC research efforts have
focused on leveraging ML-based NLP techniques in IE methods to automatically capture the
syntactic and semantic patterns — which need to be explicitly identified by experts in rule-based IE
methods. For example, Zhang and El-Gohary (2019a) proposed a conditional random field (CRF)-
based method to extract semantic roles in the form of predicate-argument-modifier structures.
Zhang and El-Gohary (2019b) proposed a recurrent neural network-based method to extract
requirement hierarchies from building-code sentences, where each hierarchy consists of
requirement units and dependencies between the units. Xu and Cai (2019) used a semantic frame-
based information extraction method to support utility compliance checking. Xue and Zhang
(2020) used ML-based NLP to improve part-of-speech tagging for supporting rule-based IE.
Zhong et al. (2020) used bidirectional long short-term memory (LSTM) and CRF models to extract
procedural constraints from construction regulations. Zhang and El-Gohary (2020) used deep
learning models, consisting of LSTM and CRF, together with transfer learning strategies (as shown
in Fig. 7) to extract information from the 2009 International Building Code.

Several of the aforementioned research efforts have succeeded to use ML models to reduce the
amount of manual effort needed in the regulatory information extraction process, while achieving
high performance. For example, Zhang and El-Gohary (2020) have achieved nearly 90% precision
and recall for most information classes. However, the state-of-the-art rule-based methods,
expectedly, still achieved higher levels of performance. For example, Zhang and El-Gohary (2013)
and Zhou and EI-Gohary (2017) have reached a recall of nearly 100%, with above 95% precision.
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In terms of implementation, the aforementioned ML-based information extraction methods are
also still in progress, requiring further integration in existing ACC systems and/or further testing
on a wide range of regulatory documents.

EaRe

Requirement wall  height shall not exceed 8 feet

Deep learning information
extraction model

Bidirectional LSTM layer

Input word-embedding layer

A=compliance checking attribute; D=deontic operator indicator; CR=comparative relationship; QV=quantity value; QU=quantity unit;
LSTM=long short term memory; CRF=conditional random field

Fig. 7. Example of machine learning-based regulatory information extraction in ACC systems
(Zhang and El-Gohary 2020).

Section 4: BIM Information Analytics in BIM-based ACC Systems

4.1 BIM Semantic Enrichment

Current BIMs provide limited support for ACC because the information in the BIMs are typically
incomplete and/or unnormalized, making the BIM representation unable to fully meet the needs of
compliance checking (Sacks et al. 2020). Semantic enrichment of BIM models for supporting ACC
aims to infer new meaningful information, which is required for or will facilitate ACC processes,
and add the inferred information to the models (Belsky et al. 2016).

Rule-based semantic enrichment. Rule-based semantic enrichment methods apply expert-
defined rules to add information to existing BIM models. The most recent, state-of-the-art semantic
enrichment method in the context of ACC is the SeeBIM (Belsky et al. 2016, Sacks et al. 2017).
SeeBIM, originally developed by Belsky et al. (2016), first parses the IFC file of the BIM model
to extract the attributive information (e.g., geometry and location) of the objects, and then applies
semantic enrichment rules to infer additional information about the objects, which is stored in an
enriched IFC file that can be used in ACC systems. Sacks et al. (2017) further enhanced the
SeeBIM by enabling the classification of BIM objects, and extending the semantic enrichment
rules to facilitate the computing of complex geometry and processing of precise topological
requirements.

ML-based semantic enrichment. ML-based semantic enrichment methods automatically
supplement the BIM models with semantic information generated by ML models (e.g.,
classification and clustering models). For example, Zhang and El-Gohary (2016) developed a
relation classification method that uses ML algorithms such as support vector machine (SVM) and
k-nearest neighbors, and syntactic and semantic features, to classify the relationships between the
regulatory and IFC concepts for semantically enriching existing BIMs with regulatory concepts.
Koo et al. (2019) proposed a supervised learning-based method that uses SVM to supplement BIM
models with mappings between BIM objects and IFC classes. Ma et al. (2018) proposed a
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similarity-based method to classify BIM objects for adding object classification information to the
BIM models. Wu and Zhang (2019) proposed a pattern matching-based method to classify BIM
objects based on geometric features into predefined categories and integrate these categories into
the BIM models.

Compared to rule-based methods, ML-based methods eliminate the cost of developing semantic-
enrichment rules. However, similar to other ML-based approaches, their performance could be
limited. For example, the object misclassification detection method by Koo et al. (2019) achieved
a range of 80.95% to 97.14% of accuracy for different classes (Koo et al. 2019). The object
detection recall and precision ranged from 84.45% and 85.20% for common building element
categories to 100% for detailed beam categories (Wu and Zhang 2019). On the other hand, rule-
based methods could achieve perfect or nearly perfect performance. For example, 100% accuracy
was achieved for 390 objects in the testing case of a bridge model (Ma et al. 2018).

4.2 BIM-Regulatory Information Alignment

BIMs and regulatory documents speak different languages — the information representations and
terminology used in the BIMs are different from those used in the natural-language requirements.
BIM-regulatory information alignment aims to align a concept or relationship in natural language
to the corresponding BIM concept (e.g., an IFC entity, an enumeration type, etc.) or relationship
by mapping or transforming one or both types of concepts/relationships.

Hardcoding or rule-based information alignment. Existing research efforts for BIM-regulatory
information alignment are predominately based on hardcoding or predefined rules. They can be
classified into three main groups based on how the two types of information are changed during
the alignment: requirement translation, BIM-requirement mapping, and BIM adaptation.

In requirement translation, the concepts in the requirements are manually mapped to those in the
BIM, and then translators are developed to automate the mapping of instances. These translators
typically use modeling languages such as SPARQL protocol and Resource Description Framework
(RDF) query language (SPARQL) (Yurchyshyna and Zarli 2009), visual code checking language
(Preidel and Borrmann 2016), and building environment rule and analysis language (Lee 2011).
In BIM-requirement mapping, concepts and relationships in the requirements are mapped to those
in the BIM models using dictionaries (e.g., buildingSMART Data Dictionary), rules (e.g., Tan et
al. 2010, Pauwels et al. 2011, Zhou and El-Gohary 2018), or ontologies (e.g., Yurchyshyna et al.
2009, Zhong et al. 2015, Beach et al. 2015). In BIM adaptation, the BIM models are modified to
enable direct alignment between the representations of the requirements and the BIM models by
adding concepts and relationships from the requirements (e.g., requirements in International
Building Code) to the BIM schema (Zhang and El-Gohary 2016) or by modifying existing
properties in the BIM model itself (Choi et al. 2014).

Despite the state-of-the-art performance achieved by the hardcoding or rule-based BIM-regulatory
information alignment methods, they still require significant manual effort, making these methods
time-consuming and costly. And, many of these methods lack flexibility/adaptability (e.g., due to
the use of pre-defined mappings or mapping rules) and might not allow successful implementation
across different BIM models (e.g., BIM models in different design stages), different types of
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regulations (e.g., building code versus energy code), and changes or updates to the BIM or the
regulations (Garrett et al. 2014, Dimyadi et al. 2016).

ML-based information alignment. A few research efforts have explored the use of supervised
learning models such as classification models for BIM-regulatory information alignment for
supporting ACC. Zhang and El-Gohary (2016) developed a hybrid rule and ML-based method to
extend the IFC schema. The hybrid method consists of three parts: (1) a regulatory concept
extraction method, which consists of pattern-matching rules for extracting regulatory concepts
from regulatory documents, (2) a similarity-based matching method, which assesses the similarity
between concepts and selects the most related IFC concepts to the extracted regulatory concepts,
and (3) a relation classification method, which uses an ML model to classify the relationship
between the extracted regulatory concepts and their most related IFC concepts. In their later study,
Zhang and El-Gohary (2017b) successfully integrated the hybrid rule and ML-based information
alignment method with methods for regulatory information extraction and transformation and
compliance reasoning, in their SNACC system, showing the potential of ML in solving challenging
ACC problems. Based on this hybrid method, Zhang and El-Gohary (2019c¢) further explored
similarity based on embeddings of concepts, and different types of supervised learning algorithms
and features, in classifying the relationship between regulatory and IFC concepts.

Section 5 Next Generation BIM-based ACC Systems

Although ACC is challenging because of the complex and ambiguous nature of natural-language
requirements and the discrepancy between the languages spoken by BIM and the requirements,
the concept of ACC has been gaining strong industry and academia-wide support. With the fast-
evolving NLP and Al techniques, and increasingly integrable and interoperable BIMs, an
increasing number of research and commercialization efforts are being undertaken to develop
BIM-based ACC systems with higher levels of performance, automation, and
flexibility/adaptability. One example is a currently ongoing NSF Partnerships for Innovation (PFI)
project (by the authors and other academic and industrial collaborators), which aims to develop
and accelerate the commercialization of an advanced BIM-based ACC system, one that leverages
NLP, Al and interoperable BIM techniques to achieve high levels of performance, automation,
and flexibility/adaptability (NSF 2020). As we continue to experience an increased technological
shift from Al-assisted to Al-driven BIM-based ACC systems — a shift that increasingly uses ML
and deep learning — the authors foresee four trends that will drive the AEC domain towards the
next generation BIM-based ACC systems.

Procedural to end-to-end. BIM-based ACC systems will become more integrated and could reach
an end-to-end status, with the boundaries between separate processes such as rule interpretation,
rule representation, and building model preparation (Eastman et al. 2009) becoming blurred or
even disappearing. For example, the aforementioned three processes in existing ACC systems
could become a single process with the help of more advanced NLP and ML tools, where an ML
model could automatically generate the compliance reasoning result (e.g., compliant, non-
compliant, or irrelevant) given the natural-language requirement and a snippet of the IFC model.
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However, this is challenging to achieve because of the complexity of the underlying semantic
interpretations, mappings, and processing that would take place.

Empirical to data-driven. BIM-based ACC systems will become more data-driven, enabled by
the use of advanced computational tools (e.g., deep neural networks) and fast-growing
computational power (e.g., GPUs). By training ML models on large-scale, pattern-rich, and
annotated training data from other domains using transfer learning techniques, the robustness and
scalability of the ML-based methods could be improved, and the cost of preparing AEC domain-
specific training data could be also reduced. Thus, the focus of developing ML-based methods for
ACC systems will be on leveraging out-of-domain large datasets, fast creation of AEC-domain
large datasets, and/or development of small-scale, highly discriminative datasets for fine-tuning
trained ML models.

Predominance of ML-based NLP. ML-based NLP techniques will play an essential role in the
future BIM-based ACC systems. By nature, BIM-based ACC systems require the alignment of
BIM information, which is represented by IFC schemas, and regulatory information, which is
represented in natural language. Research in ML-based NLP tasks such as semantic parsing,
question answering, and machine translation could provide important insights into solving the
alignment problem. For example, recurrent neural network-based methods have been proposed to
automatically convert natural-language sentences to logic languages [e.g., the lambda calculus
(Berant and Liang 2014, Yih et al. 2015)], query languages [e.g., SQL (Zhong et al. 2017) and
SPARQL (Dubey et al. 2016)], or programming languages [e.g., Python (Yin and Neubig 2017)].

Emergence of explainable AI. Many ML models are “black-box”, especially the ones that use
complex computational tools (e.g., deep neural network), which risks reducing the “one-step” Al-
driven ACC systems that use such models to be uninterpretable or unexplainable. Such “black-
box” Al-driven ACC systems might not be trusted by the users, because of the difficulty for both
the users and developers to evaluate the systems and analyze the errors. To achieve trustworthiness,
and to better evaluate the systems and analyze the errors, explanations of Al decisions in the ML-
based ACC systems are necessary — these explanations are expected to “provide insight into the
rationale the Al uses to draw a conclusion” (Doran et al. 2017). Thus, these “black-box” Al-driven
systems are expected to upgrade into “clear box”, explainable Al-driven systems. Different from
Al-assisted systems that mostly use explainable, symbolic Al techniques, where most of the work
is carried out by humans, the majority of the work in explainable Al-driven systems would be done
by ML models. Yet, users of the explainable Al-driven systems would be able to understand how
the compliance results are generated, by possibly leveraging explainable Al techniques such as
visualizing features and elucidating the neurons and layers in deep neural networks (Zhu et al.
2018) in the systems.

Section 6 Conclusion

In this chapter, the authors discussed the needs and challenges of BIM-based ACC systems, and
reviewed existing BIM-based ACC efforts and systems that leverage NLP and Al techniques
towards increasing performance and automation. The chapter covered both Al-assisted and Al-
driven systems, and highlighted the technological shift towards Al-driven systems and ML
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approaches. The authors focused on four important processes needed in advanced BIM-based ACC
systems: natural-language requirement classification, regulatory information extraction, semantic
enrichment, and BIM-regulatory information alignment. Existing approaches and solutions were
reviewed, with a focus on the state-of-the-art NLP- and Al-based methods. In the end, the authors
identified four trends for the next generation BIM-based ACC systems.

This chapter mainly reviewed the current research progress in regulatory text analytics and BIM
information analytics, in current BIM-based ACC systems. Yet new, more powerful NLP and Al
technologies, such as deep learning, are evolving rapidly and are becoming the new standard in
automatically processing, analyzing, and understanding digitalized information in numerous
domains including the AEC domain. It is expected that the next generation of Al-driven ACC
systems will rely on advanced technologies at the forefront of the NLP and Al domains, such as
end-to-end ML and explainable Al, which would bring increased integration, automation, and
adaptability to compliance checking as well as increased transparency and explainability to the
analytics processes. These technologies will be the key to tackling the technological challenges in
BIM and BIM-based ACC systems, and thus deserve the attention of researchers and entrepreneurs,
both in academia and industry.
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