
Poster: Combining Split and Federated Architectures for
Efficiency and Privacy in Deep Learning

Valeria Turina
Saint Louis University
valeria.turina@slu.edu

Zongshun Zhang
Boston University
zhangzs@bu.edu

Flavio Esposito
Saint Louis University
flavio.esposito@slu.edu

Ibrahim Matta
Boston University
matta@bu.edu

ABSTRACT
Distributed learning systems are increasingly being adopted for
a variety of applications as centralized training becomes unfeasi-
ble. A few architectures have emerged to divide and conquer the
computational load, or to run privacy-aware deep learning models,
using split or federated learning. Each architecture has benefits and
drawbacks. In this work, we compare the efficiency and privacy
performance of two distributed learning architectures that combine
the principles of split and federated learning, trying to get the best
of both. In particular, our design goal is to reduce the computational
power required by each client in Federated Learning and to paral-
lelize Split Learning. We share some initial lessons learned from our
implementation that leverages the PySyft and PyGrid libraries.

CCS CONCEPTS
• Security and privacy → Privacy protections; • Computer
systems organization → Distributed architectures; • Com-
puting methodologies → Machine learning.

KEYWORDS
Split Learning, Federated Learning, Privacy.
ACM Reference Format:
Valeria Turina, Zongshun Zhang, Flavio Esposito, and Ibrahim Matta. 2020.
Poster: Combining Split and Federated Architectures for Efficiency and
Privacy in Deep Learning. In The 16th International Conference on emerging
Networking EXperiments and Technologies (CoNEXT ’20), December 1–4, 2020,
Barcelona, Spain.ACM, New York, NY, USA, 2 pages. https://doi.org/10.1145/
3386367.3431678

1 INTRODUCTION
Federated learning was introduced by McMahan et al. [2] in 2016.
It allows the training of a neural network without sharing the
raw training data. Thus, the data can be privately owned by each
process participating in the training. The design principle of this
architecture assumes that the machine learning model is sent to
the training processes with a data shard each, and then the differ-
ent (decomposed) neural networks are combined via an exchange
of the neural network weights during the training phase. While
federated learning is becoming a necessity for many applications

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
CoNEXT ’20, December 1–4, 2020, Barcelona, Spain
© 2020 Association for Computing Machinery.
ACM ISBN 978-1-4503-7948-9/20/12. . . $15.00
https://doi.org/10.1145/3386367.3431678

Figure 1: Parallel (left) and Federated (right) Split Learning

that benefit from regular retraining [5], in other applications this
approach faces a challenge: clients required to run the sub-training
process may not have enough computational power to train the
full neural network model, and the delay of the aggregation phase
is dictated by the slowest client. To solve this and other problems,
another type of distributed architecture has recently emerged: Split
Learning [8]. In Split Learning, multiple agents systematically split
the deep neural network (composed of many computational layers)
and run a subset of these layers, sharing over the network only the
intermediate result(s). The seminal paper SplitNN [8] generally low-
ered the computing power required at each device as compared to
the federated learning model. But Split Learning processes need to
run sequentially by design and are hard to parallelize. Furthermore,
the training process may not reach convergence sharply, or may
not reach convergence at all if the dataset is unbalanced. In this
work, we study how to improve the efficiency and privacy of Split
and Federated learning, by combining them into a new architec-
ture, that we call Federated Split Learning. We then compare this
architecture with Parallel Split Learning [9], a recent attempt to
combining the two classical architectures. We tested our algorithms
on real datasets and observe that Federated Split Learning is similar
in terms of accuracy to Parallel Split Learning but the former one
is better in terms of privacy provided the datasets at the clients
are big enough. Furthermore, we are working on a real distributed
implementation of the privacy-aware versions. Also, to extend the
comparison, we plan to measure other aspects of the performance,
e.g. in terms of cost, and to conduct further experiments with other
neural networks and datasets.

2 FEDERATED SPLIT LEARNING
Our Federated Split Learning architecture is composed of a number
of clients that is equal to the number of servers, as illustrated in Fig-
ure 1. The neural network is divided into two parts as in the SplitNN
algorithm and then each client-server pair computes the training
of the model simultaneously. When all data in each client has been
used to update the parameters, the neural network weights of the
servers’ portion of the neural network are averaged and updated.

562

https://doi.org/10.1145/3386367.3431678
https://doi.org/10.1145/3386367.3431678
https://doi.org/10.1145/3386367.3431678

CoNEXT ’20, December 1–4, 2020, Barcelona, Spain Turina et al.

Note that at the end of the training each of the clients will have a
different set of parameters based on the input data. We use Parallel
Split Learning [9] as the state of art to compare with our new archi-
tecture. It splits the neural network in to two parts: the first is sent
to 𝐼 different clients and the second to a server. The forward prop-
agation phase of a neural network learning process begins inside
each client simultaneously, and then the intermediate activation
output is sent to the single central server that continues the forward
pass and computes the loss function using a batch size equal to
𝐼 × (𝑐𝑙𝑖𝑒𝑛𝑡 ′𝑠 𝑏𝑎𝑡𝑐ℎ 𝑠𝑖𝑧𝑒). After this step, from the server-side, the
gradient of the loss is computed and starts to backpropagate. Finally,
each client receives a gradient and finishes the backpropagation.

2.1 Performance and Privacy analysis
Performance analysis. In Figure 2, considering privacy-oblivious
graphs, we can observe that the performance in terms of accuracy
of Federated Split Learning is similar to Parallel Split Learning if
each client has enough data; but if the data owned by each client is
small, the latter can achieve a higher level of accuracy in less time.
For example, with a fixed training dataset of 60,000 of images when
we move from 20 to 500 clients to compute the training, we can see
a significant drop in the test-set level of accuracy, from 98% to 40%,
under Federated Split Learning.
Privacy analysis.We implement an attacker neural network, that
can reconstruct the original data starting from the intermediate
result that a client sends to the server during the training phase.
We notice that for both Federated Split Learning and Parallel Split
learning, the attacker is able to easily reconstruct the original data.
To overcome this problem, we changed the loss function used dur-
ing the training of the two architectures; in particular, as in [6], we
add a privacy increment (called Distance Correlation [6]) to the loss
function Cross Entropy that describes how the initial data derives
from the intermediate result. Using the attacker neural network on
these new intermediate results we note that Federated Split Learning
is able to provide better privacy for the data than using Parallel Split
Learning; at the same time, Federated Split Learning is able to ob-
tain good results in terms of accuracy (compare the privacy-aware
curves in Figure 2). We noted that a drop of 10% of the distance
correlation value in Federated Split Learning is enough to preserve
the privacy of the input data. For example, in our experiments using
the MNIST dataset [11] the distance correlation value changes from
0.9958 to 0.9085 when we move from the privacy-oblivious to the
privacy-aware training in Federated Split learning; the value of this
quantity remains almost identical for Parallel Split Learning: from
0.9964 to 0.9944.

3 SYSTEM IMPLEMENTATION
To implement the two architectures, we use the PySyft library [7]
for a local setup of the processes on the same machine and, then,
the PyGrid [1] library for a distributed setup of the architectures on
different machines. In particular, the distributed implementation
is deployed on several virtual machines hosted on the Chameleon
Cloud [3]. Each instance reserved has 48 vCPUs and 128GBmemory.
We experiment with multiple datasets, including MNIST and a
dataset of chest X-ray for COVID-19 recognition [4], using different
neural networks, respectively, LeNet [10] and DarkCovidNet [4].

Figure 2: Accuracy: with and without privacy-awareness

4 INITIAL RESULTS AND LESSONS LEARNED
Using the distributed setup on different virtual machines, we are
able to reproduce the same values of accuracy and loss function
obtained in the local setup of the privacy-oblivious approach. How-
ever, running the code on PyGrid workers, we obtain an average
run-time for each epoch of 6 minutes in Parallel Split Learning and
8 minutes in Federated Split Learning. This result differs from the
experiment run over the same local simulated versions, which have
corresponding average run-time of 2.1 and 2.8 minutes, respec-
tively. This run-time discrepancy suggests a need for performant
split and federated learning libraries as an interested networking
(for machine learning) research direction.

We are studying the backward propagation process, where we
add the privacy increment to the standardCross Entropy. To keep the
privacy increment private inside each client, we are implementing
the Distance Correlation increment so that it does not depend on
the server neural network,during the backpropagation phase when
the server’s gradients are sent to the client neural networks.

In conclusion, we found that Federated Split Learning performs
well in terms of time of convergence as it is able to reach perfor-
mance (accuracy) similar to the state of art, but it is better in terms
of privacy, provided that each of the clients has a reasonable amount
of data for its training operations.

5 ACKNOWLEDGMENT
This work has been partially supported by Comcast and by NSF
awards CNS-1647084, CNS-1836906, CNS-1908574, CNS-1908677.

REFERENCES
[1] 2020. PyGrid. Retrieved Oct 8, 2020 from https://github.com/OpenMined/PyGrid
[2] H. McMahan et. al. 2017. Communication-Efficient Learning of Deep Networks

from Decentralized Data. In AISTATS.
[3] Kate Keahey et. al. 2020. Lessons Learned from the Chameleon Testbed. In

Proceedings of the 2020 USENIX Annual Technical Conference (USENIX ATC ’20).
[4] Ozturk et. al. 2020. Automated Detection of COVID-19 Cases Using Deep Neural

Networks with X-ray Images. Computers in Biology and Medicine 121 (04 2020).
https://doi.org/10.1016/j.compbiomed.2020.103792

[5] Philipp Moritz et. al. 2018. Ray: A Distributed Framework for Emerging AI
Applications. In 13th USENIX OSDI 18. Carlsbad, CA, 561–577.

[6] Praneeth Vepakomma et. al. 2020. NoPeek: Information leakage reduction to
share activations in distributed deep learning. CoRR abs/2008.09161 (2020).
arXiv:2008.09161 https://arxiv.org/abs/2008.09161

[7] Theo Ryffel et. al. 2018. A generic framework for privacy preserving deep learning.
arXiv:1811.04017 [cs.LG]

[8] Otkrist Gupta and Ramesh Raskar. 2018. Distributed learning of deep neural
network over multiple agents. Journal of Network and Computer Applications 116
(August 2018), 1–8. https://doi.org/10.1016/j.jnca.2018.05.003

[9] Jeon Joohyung and Joongheon Kim. 2020. Privacy-Sensitive Parallel Split Learn-
ing. 7–9. https://doi.org/10.1109/ICOIN48656.2020.9016486

[10] Y. Lecun, L. Bottou, Y. Bengio, and P. Haffner. 1998. Gradient-based learning
applied to document recognition. Proc. IEEE 86, 11 (1998), 2278–2324.

[11] Yann LeCun and Corinna Cortes. 2010. MNIST handwritten digit database.
http://yann.lecun.com/exdb/mnist/. (2010). http://yann.lecun.com/exdb/mnist/

563

https://github.com/OpenMined/PyGrid
https://doi.org/10.1016/j.compbiomed.2020.103792
https://arxiv.org/abs/2008.09161
https://arxiv.org/abs/2008.09161
https://arxiv.org/abs/1811.04017
https://doi.org/10.1016/j.jnca.2018.05.003
https://doi.org/10.1109/ICOIN48656.2020.9016486
http://yann.lecun.com/exdb/mnist/

	Abstract
	1 Introduction
	2 Federated Split Learning
	2.1 Performance and Privacy analysis

	3 System Implementation
	4 Initial Results and Lessons Learned
	5 Acknowledgment
	References

