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1 | INTRODUCTION

Abstract

The Tits Conjecture, proved by Crisp and Paris, states
that squares of the standard generators of any Artin
group generate an obvious right-angled Artin subgroup.
We consider a larger set of elements consisting of all the
centers of the irreducible spherical special subgroups of
the Artin group, and conjecture that sufficiently large
powers of those elements generate an obvious right-
angled Artin subgroup. This alleged right-angled Artin
subgroup is in some sense as large as possible; its nerve is
homeomorphic to the nerve of the ambient Artin group.
We verify this conjecture for the class of locally reducible
Artin groups, which includes all 2-dimensional Artin
groups, and for spherical Artin groups of any type other
than E, E,, Eq. We use our results to conclude that cer-
tain Artin groups contain hyperbolic surface subgroups,
answering questions of Gordon, Long and Reid.

MSC (2020)
20F36, 20F65 (primary)

Suppose (W, S) is a Coxeter system (cf. [5] or [14]). This means that W is a group, S is a distin-
guished set of generators and that W has a presentation

W = (s e S|s* = (st)™ =1),

where mg; € {2,3,...} U {o0}. Given a Coxeter system (W, S) there is an associated Artin group A.
This group has one generator x for each s € S and the braid relations:

xsxt cee = xtxs ey
N———— N————
mg, terms mg, terms
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where both sides of the equation are alternating words in x; and x,, and where m,, denotes the
order of st in W. The Artin group is right-angled (and called a RAAG) if m;, € {2, co}.

Consider the subgroup of A generated by the squares x?. These elements are all contained in the
pure Artin group PA, which is the kernel of the canonical homomorphism A — W which sends x;
to s. There are obvious commuting relations between the xSZ, namely if my, = 2, then [xsz, xtz] =1.
Crisp and Paris in [13] proved the remarkable fact that these are the only relations between these
elements. This verified a conjecture of Tits, who had previously shown that the elements {xsz}
get sent to linearly independent elements in the abelianization of the pure Artin group. In fact,

Crisp-Paris showed that the same is true if we replace to 2 with any number N > 2.

Tits Conjecture [13, Thm 1]. Let A be an Artin group. For every N > 2, the subgroup generated by
the set {xé\’ : s € S}is a RAAG with presentation

(N, X'l = 1ifmg = 2).

This is one of the few theorems known to hold for all Artin groups (for example, it is not known
if all Artin groups are torsion-free, have solvable word problem and so forth). The Tits Conjecture
had earlier been proved by Appel-Schupp for extra-large Artin groups (where mg > 3) [2], by
Collins for the braid groups [11] and by Charney for the locally reducible Artin groups (where the
associated Coxeter groups have each finite special subgroup a direct product of dihedral groups
and Z/2) [8], see also [23], [28] for more partial results.

We will come back to Crisp and Paris’ method later in the introduction. Very roughly speaking,
they construct a representation from the Artin group into the mapping class group of some surface
and show that it is faithful on the alleged RAAG subgroup.

In this paper, we are interested in a conjectural generalization of the Tits Conjecture, which
first appeared in [19, Conj 4.9]. This generalization asks for a RAAG subgroup that is as ‘large’ as
possible in a certain sense. In particular, it contains the RAAG subgroup that Crisp and Paris find
and its nerve is homeomorphic to the nerve of the Artin group. We will now explain how there is
a natural candidate for this larger RAAG.

Given a Coxeter system (W, S) and T C S, the subgroup W generated by ¢t € T is called the
special subgroup corresponding to T. Then (W, T) also is a Coxeter system. The subset T is
spherical if W, is finite, in this case W is a spherical special subgroup. The subset T is called
reducible if it decomposes as T; U T,, where m,, =2 for all t € T; and t' € T,, otherwise T is
irreducible (and we say W is as well). If T is reducible with decomposition T = U T}, then
Wy =Wp X X Wy .

Similarly, the subgroup Ay of A generated by the {x;},cr is the Artin group associated to the
Coxeter system (W, T) [32]. If T is irreducible and spherical, then Ay is a irreducible, spherical spe-
cial subgroup of A. These spherical Artin groups are better understood than general Artin groups.
Topologically, the pure Artin group (which in this case is finite index in A) is the fundamental
group of an aspherical linear hyperplane arrangement in C", which, for example, allows one to
compute various cohomological invariants of A [20]. Combinatorially, these groups admit a Gar-
side structure, which, for example, gives an easy to compute normal form [7]. It is also known that
the pure spherical Artin groups have an infinite center which is isomorphic to Z if the Coxeter
group is irreducible. This center corresponds to the fundamental group of the fiber after projec-
tivizing the hyperplane complement. We denote the generator of this by A% (it is related to the
longest element in W, see Section 2).
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We consider the subgroup of an Artin group A generated by (powers of)) the centers of the irre-
ducible, spherical, pure Artin subgroups. There are some obvious commuting relations between
these elements, namely, if T C U or if m,; =2 forallu € U and ¢t € T, then the corresponding
centers A%], A2 commute. We write [U,T] = 1if m,, =2 forallu € U and t € T. As in the Tits
Conjecture, we ask whether those are the only relations.

Let S be the set of all irreducible, spherical subsets T C S. Let RA be a RAAG generated by the
set {zr}res, With the presentation

RA={(z; | [zp,2y] =1{UCT, TCU, or [UT]=1). (1.1

By the above, there are homomorphisms ®5 : RA — A so that ®y(zr) = A%N . The map @y is
injective if and only if the subgroup of A generated by {A%N }res is isomorphic to RA. For a gener-
ator x,, the infinite cyclic subgroup (x,) of A is itself an irreducible, spherical, special Artin sub-
group, so the subgroup generated by {A%N }res contains an appropriate RAAG subgroup found by
Crisp and Paris. It will turn out that the injectivity (when we can verify it) of &, will depend on
N, unlike the original Tits Conjecture. Therefore, we propose the following.

Generalized Tits Conjecture. Let A be an Artin group, RA the associated RAAG and &y :
RA — A the homomorphism defined above. Then ®; is injective for some N.

If we can verify that a specific homomorphism ®, is injective, then we say that A satisfies the
Generalized Tits Conjecture for N = k. The Generalized Tits Conjecture for N = 1 was conjec-
tured by Davis, Le and the second author in [19, Conjecture 4.9]. This turns out to be too opti-
mistic in general, though we can show it for a reasonably large class of Artin groups. In Exam-
ple 5.8 we show that @, is not injective for braid groups on at least 4 strands. However, a theorem
of Koberda (Theorem 5.3) implies that braid groups satisfy the Generalized Tits Conjecture (for
some N >> 0).

We claim this is a good generalization of the Tits Conjecture. As evidence, recall that there is
a simplicial complex L (= L(W, S)), called the nerve. Its vertex set is S and a subset T C S spans
a simplex of L if and only if T is spherical. Davis and Huang showed in [15] that the nerve L’ of
the RAAG RA defined above is a partial barycentric subdivision of the nerve L. In particular the
nerve of the Artin group is homeomorphic to the nerve of the alleged RAAG subgroup. This is
desirable since many topological properties of this nerve are related to algebraic properties of the
Artin group. For example, contingent on the K(7, 1)-conjecture, RA and A will have the same
cohomological dimension, their compactly supported/#2-cohomology will be nontrivial in the
same dimensions, and so forth. In this sense, the alleged subgroup is as ‘large’ a RAAG subgroup
asone can expect to find in A. Davis and Huang in [15] were interested in determining the minimal
dimensional manifold model for a classifying space BA (see also Le’s thesis [31]). These partial
subdivisions L’ appeared earlier in [17, 18].

1.1 | Results

We show the Generalized Tits Conjecture holds for Charney’s class of locally reducible Artin
groups. This includes all 2-dimensional Artin groups and Artin groups with my, # 3foralls,t € S.
The irreducible spherical Artin subgroups correspond to edges of the nerve, so the only new gen-
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erators that we are considering come from centers of the Artin subgroups generated by (s, t) for
my; > 3. We can show the following:

Theorem 1.1. Artin groups with mg; # 3 forall s, t € S satisfy the Generalized Tits Conjecture with
N = 1. Locally reducible Artin groups satisfy the Generalized Tits Conjecture with N = 2.

We also prove that the Generalized Tits Conjecture holds for large N for the following spherical
Artin groups.

Theorem 1.2. The Generalized Tits Conjecture holds with N sufficiently large for all spherical Artin
groups except for those of type E,,.

Our methods do not work for these remaining exotic cases. The hardest part of Theorem 1.2 is
confirming the conjecture for the Artin groups of type D,, (the conjecture for Artin groups of type
B,, also follows from Koberda’s result). For technical reasons we have to assume that N is even,
though we suspect it works for general large N.

1.2 | Applications

Here are some immediate applications of our results. The rough moral here is that if an Artin
group satisfies the Generalized Tits Conjecture, then its subgroups are as complicated as the sub-
groups of the corresponding RAAG. In particular, we give a new proof of Wise’s result that the
spherical Artin group A of type H; is incoherent, and can show that A (along with many other
Artin groups) contains a closed hyperbolic surface subgroup, answering questions of Gordon-
Long-Reid [27]. The advantage of our argument is that the same proof works for both questions;
the RAAG subgroup of A has a nerve which is a cone on a pentagon, and it is easy to see this
subgroup is incoherent and contains hyperbolic surface subgroups.

1.3 | Outlines of the proofs

Our methods of proof in the case of a spherical Artin group and locally reducible Artin groups
are very different. For the locally reducible Artin groups, we use similar methods to [8]. Char-
ney showed that the Deligne complexes of locally reducible Artin groups are CAT(0). She then
constructed a cube complex with an action of the predicted RAAG, and showed that it isometri-
cally embeds in the Deligne complex, using arguments from CAT(0) geometry. The crucial case to
understand is the dihedral Artin groups A,,, (that is, (W, S) is a dihedral group D,,,,), since these
appear in the links of vertices in the larger Deligne complex. The RAAG that we consider is larger,
sowe are trying to isometrically embed a larger complex into the Deligne complex. Again, we need
to understand the dihedral Artin groups. In this case, our complex looks roughly like a Z’s worth
of Charney’s complex, and we need to show that the pieces embed pairwise orthogonally in the
Deligne complex of the dihedral Artin group.

For the spherical Artin groups, we follow Crisp and Paris. We start with a representation from
the Artin group into the mapping class group of a surface X. For spherical Artin groups of type
A,,D, and E,, these representations are classical and due to Perron and Vannier [36]. The gen-
erators of the Artin groups map to Dehn twists around simple closed curves, and powers of the
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centers of irreducible spherical Artin subgroups map to Dehn twists about the boundary curves of
connected subsurfaces of X. Then Koberda’s result implies that high powers of Dehn twists around
this collection of curves generates a RAAG subgroup of the mapping class group of Z. The reader
might suspect that we are done now, and the proof trivially follows from Koberda’s theorem (as
we initially thought). However, the boundary of these subsurfaces is not necessarily connected, so
each center maps to a product of Dehn twists about disjoint simple closed curves in X. Therefore,
we have to study the following question:

Question 1.3. Let RA be a RAAG. Let {w;} be a collection of elements of RA, where each w; is
a product of commuting generators of RA. Is the subgroup of RA generated by w; the (obvious)
RAAG?

This turns out to be subtle, and was also considered in [13] and [29]. Koberda and Crisp—Paris
gave different conditions on the {w;} which guaranteed a positive answer to the above question.
These conditions fail for the system of curves produced by the Perron-Vannier representation of
the Artin groups of type D,,. Our main work in this case is to generalize Koberda’s condition to a
condition that the curves in this system satisfy. This new condition may be of independent interest.

Unfortunately, our conditions do not work for the RAAG and subwords produced from the
Perron-Vannier representation of the Artin groups of type E,,. Even worse, for E, and Eg we can
find words in the alleged RAAG subgroup which are in the kernel of the representation, see Sub-
section 5.4. One can check by hand that these words correspond to nontrivial elements of the
Artin group, so these mapping class group representations are not faithful enough to be used to
verify the conjecture, even for spherical Artin groups.

1.4 | Organization of the paper

In Section 2, we give some background on Coxeter and Artin groups. Section 3 is devoted to prov-
ing Theorem 1.1. In Section 4 we study RAAG subgroups of RAAG’s, and it can be read indepen-
dently of the rest of the paper. In Sections 5 and 6 we use this to prove Theorem 1.2 first in the
small type case (that is, where all mg; < 3), and then for the remaining cases. Section 7 discusses
some applications.

2 | COXETER GROUPS AND ARTIN GROUPS

Let (W, S) be a Coxeter system, and let A be the corresponding Artin group. There is a canonical
surjection p : A — W which sends x; to s. The kernel of p is called the pure Artin group and
denoted by PA. It is obviously finite index in A if and only if W is a finite Coxeter group. There is
also a canonical set-theoretic section o : W — A of p which takes a reduced positive word w in
W to the same word in A. It follows from Tits’ solution to the word problem for Coxeter groups
that this does not depend on the choice of reduced expression for w.

2.1 | Coxeter diagrams

When there are many commuting generators, Coxeter groups and Artin groups can be efficiently
described in terms of their Coxeter diagrams. Given a Coxeter system (W, S), we consider a graph
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D n Eg p
: Ix(p)
FIGURE 1 Coxeter graphs of the irreducible finite Coxeter groups

I whose vertex set is the set of standard generators S, and whose edges correspond to the pairs
of generators that do not commute, that is, there is an edge between s and ¢ if and only if s # ¢
and mg, # 2. If my, €{4,5,6, ...} U {oo}, then the edge between s and ¢ is labeled with mg,. Oth-
erwise, that is, when mg = 3, the edge has no label. Given such a graph I', we will denote the
corresponding Artin group by Ar.

Note that if the Coxeter graph I' has multiple connected components I';, then the Artin group
Ar splits as the direct product []; Ap,. If the Coxeter graph is connected, we say that Ar. is an
irreducible Artin group. We say an Artin group is small-type if m; € {2,3} for all 5,t € S. These
correspond to Coxeter diagrams which are unlabeled graphs (where there are no loops or multiple
edges). The finite Coxeter groups with connected Coxeter diagram were classified by Coxeter, and
correspond to the Coxeter graphs in Figure 1. The small-type irreducible spherical Artin groups
therefore split into two infinite families, type A4, and D,,, and three exotic cases Eg, E; and Eg. Each
of the other spherical Artin groups injects into a product of small-type spherical Artin groups, see
[12] or Section 6.

2.2 | Fundamental elements and Coxeter elements

Let (W, S) be a Coxeter system with W finite. A Coxeter element of W is a product of all the gen-
erators of S, in any order, where each generator appears exactly once in the product. Different
orderings produce conjugate Coxeter elements [5, V.6.1]. The Coxeter number h of (W, S) is the
order of a (any) Coxeter element in W.

Areflectionin W is a conjugate of an element of S. Each finite Coxeter group has a unique longest
element wg. This can be characterized as the unique element for which Z(swg) = £(wgs) < £(wg)
for all s € S, where #(w) is the minimal length of a representative for w. The length of wy is
precisely the number of reflections in W. Conjugation by wg induces an involution of the Coxeter
diagram I', in the sense that generators are sent to generators and the relations are preserved. It
follows from this that w, is in the center of W if and only if this involution is trivial. This involution
happens to be nontrivial if and only if the Coxeter group is of type A,,, D,, with n odd, E4 or I,(p)
for p odd.

The image of wg in A under the section o : W — A will be called the fundamental element
of A, and we will denote it by A. Each spherical Artin group has an infinite cyclic center which
is generated by either A or A? (depending as above whether the Coxeter group has a nontrivial
center). For simplicity, we will only deal with the squares A%, which generate the center of the
pure Artin groups, see [35, Thm 4.7]. We record the following lemma in [7], which will be used in
Section 6.
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FIGURE 2 The subdivision o, for the braid group on four strands

Lemma 2.1. Let A be a spherical Artin group. We have that A?> = o(c)", where c is any Coxeter
element and h is the Coxeter number.

2.3 | Subdivisions

The nerve L of a Coxeter system (W, S) is a simplicial complex L with vertex set S where a subset
T C S spans a simplex of L if and only if T is spherical. Let o be a simplex in L corresponding to
a spherical subset T, and A} the corresponding spherical special Artin subgroup of A. Davis and
Huang described a partial barycentric subdivision o, of o where the vertices of o, correspond to
irreducible subsets of T. For U C T, we think of the vertex corresponding to A; as the barycenter
of the associated simplex in o. There are edges between two vertices U and U’ if and only if U C
U', U’ C U or|[U,U’] = 1. See Figure 2 for the subdivision corresponding to the braid group on
4 strands.

In terms of the Coxeter diagram T', the irreducible spherical Artin subgroups of A correspond
to connected spherical subdiagrams. In this case, there is an edge between two connected subsets
U,TofT'yifandonlyif U CT,T C U or U and T have distance > 2inT.

The subdivision o, can be defined as the flag completion of this graph. Of course, it is not
obvious with this definition that this is a subdivision of o; Davis and Huang provide an alter-
native description of o, which obviously produces a subdivision of o, and show that it is a flag
complex with the 1-skeleton described above. In either case, these subdivisions o fit together to
give a subdivision Lg, of L. The simplicial complex L, is the nerve of the RAAG RA described in
the introduction.

In the next subsection, we verify that ®,; : RA — A isinjective when restricted the free abelian
subgroups corresponding to simplices of the nerve L. This can be seen from looking at the
abelianization of PA. We will also need an explicit description of a natural basis for H,(PA, Z)
in the locally reducible case.

2.4 | Abelianization of pure spherical Artin groups

Each finite Coxeter group W acts on R" by linear reflections, where n is the number of elements
of S. Complexifying this action gives a group action on C" by linear reflections. The complement
of the reflecting hyperplanes, denoted by M(W), has 7r;(M(W)) = PA, where A is the associated
Artin group.

The Coxeter group acts freely on M(W), and 7;(M(W)/W) = A. Deligne showed that M(W)
is aspherical [20], so in particular H,(PA, Z) is isomorphic to H,(M(W), Z). It is easy to see that
H,(M(W), Z) is isomorphic to the free abelian group 7R where R is the set of reflections in W,
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or the set of hyperplanes in this arrangement [35] (the complement deformation retracts to its
intersection with S2"~1, which is homeomorphic to $>*~! — | J, $?*~3). Given a spherical subset
T of S, let Ry C R be the set of reflections in Wo.

Let {e,} be the standard basis of ZX. For each element s € S, the element xs2 in PA corresponds to
aloop around the hyperplane corresponding to s in C". It turns out that the class of xs2 is precisely
e,foreachs € S. Anyr € Risaconjugate of an element s € S, thatis,r = wsw™! forsome w € W.
Let a,, be any element of A that projects to w under p : A — W. Then awxszab_u1 isin PA, and its
image in H,(PA, Z) is precisely e,.

Lemma 2.2 [15, Lem 2.2]. Suppose that T is spherical. Let e; be the image of A% in Hi(PAr, Z).
Then

It follows from this lemma that given any simplex 7 in o, the image of the elements in
H,(PAy, Z) corresponding to the vertices of t are linearly independent, so in particular these
form a free abelian subgroup of PA; (and hence of PA) of rank dim(z) — 1.

Davis and Huang also show that the intersection of these free abelian subgroups is as expected,
that is, if o and 7 are simplices of Ly, then the subgroups correspond to o and 7 intersects in the
subgroup corresponding to o N 7. This serves as further evidence for the Generalized Tits Conjec-
ture.

Remark 2.3. There are similar configurations of free abelian subgroups for affine hyperplane com-
plementsin C", and as far as we know the analogue to the Generalized Tits Conjecture is also open
in this case (see [19, Section 5]). In this case, the relevant simplicial complex L comes from the
intersection poset of the hyperplane arrangement. Each irreducible central subarrangement has
an infinite cyclic center, and these combine as above to produce standard free abelian subgroups.
Again, it is known that these centers are linearly independent vectors in the first homology group
of the arrangement complement. In this case, the relevant partial subdivision of L is the geometric
realization of the nested set complex associated to the minimal building set for the arrangement
as defined by De Concini and Procesi [21].

Remark 2.4. The motivation in [19] behind generalizing the Tits Conjecture was the computation
of action dimension of RAAG’s in [3]. This is the minimal dimension of a manifold model of the
classifying space B(RA). This is obviously monotone, in the sense that if H is a subgroup of G, then
the action dimension of G is greater than the action dimension of H. Therefore, if the Generalized
Tits Conjecture was true, the action dimension of the Artin group A is larger than the action
dimension of RA, and in many cases this would lead to a complete calculation for A. On the other
hand, combined work of Davis—-Huang and Le gave a nearly complete computation for the action
dimension of Artin groups (contingent on the K(7, 1)-conjecture) without using the conjecture
(it was enough that the standard free abelian subgroups inject into A and intersect as expected)
[15, 31].

2.5 | Deligne complex

The spherical subsets of S form a poset under inclusion. Let K denote the geometric realization
of this poset; K is the cone on the barycentric subdivision bL of the nerve, with the cone vertex
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corresponding to the empty set @. There is another poset of spherical cosets aA of A, wherea € A
and Ay is a spherical special subgroup, again ordered by inclusion. The geometric realization of
this poset is called the modified Deligne complex [10], and denoted by D(A). The Artin group A
acts on D(A) by left multiplication, and K is a strict fundamental domain for this action. The
analogous construction in the Coxeter group setting (that is, replace aA; with wW7) is precisely
the Davis complex.

Here is an alternative description of D(A). Given a spherical subset T, let K. denote the sub-
complex of K spanned by vertices Ay with T C T’. Then

D(A) = AXK/ ~,

where (a;, x) ~ (a,, x) if and only if x is in K, and al_la2 € Ar. We identify K with 1 X K. If
A is itself a spherical Artin group, the poset of spherical cosets has a maximal element A, so the
Deligne complex is a cone with cone point A. The link of A is a simplicial complex of dimension
|S| — 1, and we denote it by B(A).

Conjecturally, the modified Deligne complex is contractible for all Artin groups. It follows
from Deligne’s work on spherical Artin groups that this would imply the well-known K(7, 1)-
conjecture. Motivated by this, Charney and Davis in [10] put two natural piecewise Euclidean
metrics on D(A). Note that D(A) has a natural cube complex structure, since the cone on the
barycentric subdivision of a simplex is combinatorially isomorphic to a cube. The first metric
simply makes each cube isometric to a standard Euclidean cube [0, 1]". It turns out that this met-
ric is CAT(0) if and only if the nerve L is a flag complex (the induced metric on the link of the
vertex @ is isometric to L with the all-right spherical metric, so flagness is an obvious necessary
condition).

The second metric on D(A) is called the Moussong metric, as it is related to the Moussong metric
on the Davis complex, which is always CAT(0). Charney and Davis showed that the Moussong
metric on D(A) is CAT(0) for 2-dimensional Artin groups. It is still open whether D(A) equipped
with the Moussong metric is CAT(0) for all Artin groups.

‘We now describe this metric for Artin groups corresponding to dihedral groups, which is the
only important case for this paper. It is slightly more convenient for us to keep the original cellu-
lation of D(A) as a simplicial complex. See [8] or [10] for details in the general case. The dihedral
group D,,, acts by linear reflections on R? in the standard way, with strict fundamental domain
a simplicial cone. Let x be the unique point in this cone whose distance from the two walls of
the cone is 1. The convex hull of the orbit of x under D,,, is a 2m-gon with edge lengths 2. We
subdivide the 2m-gon by coning off the orbit of x. The intersection of this convex hull with the
simplicial cone is combinatorially isomorphic to K, and we give K the inherited Euclidean metric.
This defines a piecewise Euclidean metric on D(A), which in this case is CAT(0). See Figure 3.
This naturally gives a piecewise spherical metric on B(A), where every edge has length 7 /2m.
This turns out to be a CAT(1) metric, which in this case is equivalent to there being no closed
geodesics with length < 27. In the 2-dimensional case, this follows from [2, Lem 6].

We now recall the structure of links of vertices in the Deligne complex, again see [10] or [8] for
complete details. It suffices to consider vertices in K as this is a strict fundamental domain for the
action. Let T be a spherical subset of S, and let v} be the corresponding vertex in K. Then we have
the following join decomposition:

Lkp(a)(vr) = Lk (vr) * B(Ap).
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FIGURE 3 The Moussong metric on K for the dihedral Artin group and a small part of the development of
the Deligne complex

The piecewise spherical metric on Lkp4)(vr) is isometric to the spherical join of the metrics
on LszT (vr) and B(A7) [9, Lem 2.2]. Recall the spherical join of two piecewise spherical metrics
is defined by making each simplex o * 7 isometric to the simplex in S4mo+dim7+1 gpanned by
o € 89m7 and ¢ C S9MT where points in ¢ and 7 are all distance 77 /2 apart. Charney proves this
for the cubical metric on D(A), our links are isometric but have a finer subdivision (which still
preserves the join structure).

2.6 | Representations of small-type Artin groups inside mapping class
groups

Let ¥ be an oriented compact surface, possibly with boundary. Let P = {P,,... P,;} be a collec-
tion of n punctures in the interior of =. Let Homeo™ (L, P) denote the group of orientation-
preserving homeomorphisms of ¥ which fix the boundary pointwise, and which preserve P. Let
Homeog(Z,P) denote the connected component of the identity in Homeo™ (Z, P). The mapping
class group of the pair (Z, P) is defined to be

Mod(Z, P) = Homeo™ (Z, P)/ Homeo (Z, P).

A multicurve is a disjoint union of a finite number of simple, closed, essential curves in =. A
multitwist about a multicurve is the composition of (not necessarily the same) powers of Dehn
twists about the individual curves. Since the curves are disjoint, the order in which we compose
those Dehn twists does not matter.

For the small-type spherical Artin groups, there are classical representations into mapping class
groups. This is due to Birman-Hilden for type A,,, and Perron-Vannier in general [36]. We will
refer to all of them as Perron-Vannier representations. Crisp and Paris defined similar representa-
tions for all small-type Artin groups, however we shall not need this generality. These represen-
tations also naturally arise as geometric monodromies of simple singularities of type I [33].

For A of type A,,, the Perron-Vanier representation A — Mod(Z) sends the consecutive gener-
ators of A to the Dehn twists around the consecutive curves in Figure 4. The surface X has genus
”T_l and two boundary components, when 7 is odd, and X has genus g and one boundary compo-
nent, when n is even.
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e A A g

FIGURE 4 The Perron-Vannier representation for the Artin groups of type A,. If n is even, then the
element A? goes to a Dehn twists around the boundary curve. If  is odd, then the element A7 goes to multitwist
that is a product of single Dehn twists about each of the boundary curves

R A

A

FIGURE 5 The Perron-Vannier representation A — Mod(Z) for Artin group A of type D,,. Let y; be the left
connected component of 6. For n odd, the element Ai, gets sent to a product of Dehn twists y;"zyz. For n even,

21
the element Ag gets sent to a product of Dehn twists y; 7,73

If A has type D,,, let the standard generators of A be {s, s, t;,...,t,_,} where s and s’ are both
adjacent to f; in the Coxeter graph, and ¢; and f;, ; are adjacent foralli =1, ...,n — 3. The Perron-
Vannier representation A - Mod(X) sends the generators to the Dehn twists around curves, as
pictured in Figure 5. The surface X has genus ”T_l and two boundary components when » is odd,
and genus "7_2 and three boundary components when n is even.

The Perron-Vannier representation A — Mod(Z) of the Artin group A of type E,,, where n =
6,7,8, is illustrated in Figure 6. The surface X has

+ genus three and one boundary component, if n = 6;
+ genus three and two boundary components, if n = 7;
 genus four and one boundary component, if n = 8.

Remark 2.5. For any small-type spherical Artin group A with the Perron-Vannier representation
p . A > Mod(Z), the image of the element A‘; under p is a multitwist about the boundary com-
ponents of d%. It will never matter for us the exact power of each Dehn twist.
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e

FIGURE 6 The Coxeter diagram for Artin group A of type E, E,, E;. A representation A — Mod(Z). The
subsurfaces with gray boundary curves correspond to E, and E,

3 | GENERALIZED TITS CONJECTURE FOR LOCALLY REDUCIBLE
ARTIN GROUPS

In this section, we show that Artin groups with no edges labeled by 3 satisfy the Generalized Tits
Conjecture for N = 1, and locally reducible Artin groups satisfy the conjecture for N = 2. An Artin
group is totally reducible if its Coxeter diagram is a disjoint union of vertices and single edges, that
is, itisa direct product of Artin groups of rank at most 2. Recall from the introduction that an Artin
group is locally reducible if all spherical special subgroups are totally reducible. We first record an
easy characterization of the locally reducible Artin groups in terms of their Coxeter diagram.

Lemma 3.1 [8, Lem 3.1]. Let T be a Coxeter diagram, and A the associated Artin group. Then A is
locally reducible if and only if T satisfies the following condition:

If two consecutive edges of T are not contained in a triangle, then their labels a, b satisfy 1/a +
1/b<1/2.

3.1 | CAT(0) geometry

We will assume that the reader is comfortable with comparison geometry, particularly in the set-
ting of piecewise Euclidean and piecewise spherical cell complexes, see [8], [6] or [14, Appendix I]
for the relevant details. We record some theorems and definitions that we will need. The first is
due to Gromov, proofs can be found in [6].

Theorem 3.2. Let X be a piecewise Euclidean cell complex. Then X is locally CAT(0) if and only
if the induced piecewise spherical metric on the link Lk(v, X) is CAT(D) for all verticesv € X. If X is
simply connected and locally CAT(0), then it is CAT(0).

Lemma 3.3 (see Appendix of [10]). The spherical join of two piecewise spherical complexes L, and
L, is CAT(1) if and only if L, and L, are CAT(1).

Definition 3.4. Let f : L — L’ be a map between piecewise spherical complexes. We say f is
n-distance preserving if

dr(x1, %) 2 = dp(f(x), f(xp)) 2 7.
If L is not connected, then we set d; = oo for points in different components. Thus f : L — L'is

n-distance preserving if it is 7-distance preserving on each component of L and points in different
components get mapped > 7 apartin L'.
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Lemma 3.5 [8, Lem 1.4]. Suppose f : X — X' is a map between two piecewise Euclidean complexes
which takes piecewise geodesics to piecewise geodesics. Then f is locally an isometric embedding if
and only if the induced maps on all links Lk(x,X) — Lk(f(x),X") are n-distance preserving. Fur-
thermore, if X' is CAT(0), then f is an isometric embedding.

Lemma 3.6 (see Appendix of [10]). If f : L, — L} and g : L, — L/ are r-distance preserving, and
Ly * Ly, L} * L) are spherical joins, then

feg:iLy*Ly—L %L
is -distance preserving.

Charney showed that the proof that D(A) is CAT(0) for 2-dimensional Artin groups extends to
locally reducible Artin groups.

Theorem 3.7 [8, Thm 3.2]. Let A be a locally reducible Artin group. Then D(A) equipped with the
Moussong metric is CAT(0).

3.2 | Orthogonality in the Deligne complex

Definition 3.8. Let F,, = (X, ..., x,,) be a free group of rank n. Then every element ¢ of F,, can
be written uniquely as
Mz xlk

iy Ty T

g=Xx

where Xj, * Xi,, and n; € Z — {0}. The syllable length of ¢ in this case is equal k. If G is a group
admitting a surjection ¢ : F,, — G is a surjection, then for ¢ € G we define the syllable length of g
with respect to the generating set {¢(x;), ..., $(x,,)}, to be the infimum of syllable lengths of words

in ¢~ (g).

For convenience, we will denote the generators of A by letters s, ¢, ... rather than x, x, .... We
will also denote the coset a(f§) just by a for each a € A. If A is a dihedral Artin group, then a
simplicial path in B(A) between two cosets g and h must contain an even number of vertices. In
particular, each pair of consecutive edges connects g to gt* or gsk for some k € Z. Therefore, we
can associate to a path in B(A) between g and h a word w in the free group F(s, t) so that gw = h
in A. If this path is embedded, then its length is equal to %k where k is the syllable length of w.

We now record a technical proposition concerning dihedral Artin groups. In this case, the pure
Artin group is isomorphic to the direct product F,,_; X Z, where A? is the generator of Z (in this
case, the hyperplane complement is homeomorphic to a C*-bundle over an m-punctured sphere).
The proposition states a sort of orthogonality for the action of the pure Artin group on the Deligne
complex. Given two elements g, h in the Artin group, we let dg4)(g, h) denote the distance in B(A)
between the vertices g and h.

Proposition 3.9. Let A be a dihedral Artin group. Let g be an element of the free subgroup (s, t2).
Then for any n € Z — {0} we have that

dpay (8", 9) > 7.
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Furthermore, if m = mg, > 3, then
dpay (D™, g) > 7w+ 7t /m.
Finally, if m = my, = 3 and g is in the free subgroup (s*, t*), then
dpa) (A", 9) > T+ 7 /m.
Proof. Suppose that dg A)(AZ”, g) < m, so there is a € A of syllable length < m so that
A = ag.

Note that a is obviously an element of the pure Artin group PA, since both g and A*" are. We now
compute the image a of a in H;(PA, Z). Let a = bc, where b has only odd powers of s and ¢, and ¢
begins with s?" or t?". Let 7 : A — W be the canonical projection. Since the length of 7z(b) in W is
< 2m, c must be nontrivial, otherwise a would not be in PA. Without loss of generality, suppose
that ¢ starts with s, Note that ¢ must project to 7(b)~! under 7. In particular, the syllable length
of b is strictly smaller than W’T_l

Thus we can write a = bs*’ b~!bc’, where bc’ is in PA and has strictly smaller syllable length

than a. Since bs* b~! and bc’ are in PA, in H 1(PA, Z) we have the relation between the images
@ =bsb~! +bc'.

Therefore, by induction on the syllable length of a, we can assume that a € H,(PA, Z) is the
sum of images of elements bl-sz"bl.‘1 and bitzrbl.‘l, where the syllable length of the b; is < mT—z
and the b; only contain odd powers of s and ¢ (or they are trivial). Therefore, the image of A*" in
H,(PA, Z) could be written as a sum of elements b;s?" b~ and b;t*"b! with syllable length of the
b; < mT—z It is also easy to see that these b; can only have syllable length mT_Z for a single i.

However, this contradicts Lemma 2.2. Recall that H,(PA, Z) has a standard basis given by the
hyperplanes in the dihedral arrangement, and the image of bl‘szbi_1 is precisely the basis vector
e,, where r is the conjugate 7(b;)s7(b;)~.

In particular, if m is odd, then any such sum as above misses the hyperplane corresponding
to the longest element of W, which is a conjugate wsw~! where w has length mT_l If m is even,
there are two hyperplanes corresponding to conjugates wsw~' and w’t(w’)~! where w and w’
have length mT—z hence the elements in our sum miss one of these. We will refer to these as longest
hyperplanes. Since A*"* maps in H,(PA, Z) to a vector with nontrivial e,-term for each r € R, this
is a contradiction as the image of ¢ obviously misses these longest hyperplanes as well. This com-
pletes the proof of the first statement.

Now, suppose that mg, > 3 and dp4)(A*", g) = 7. We first consider the odd case, where m =
2k + 1. We can write

AZH — ag’

where the syllable length of a is equal to m. In the decomposition a = bc above, we claim
that b must have syllable length k. Otherwise, we can again write the images in H,(PA, Z) as
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@ = bsb~1 + bc’. If b has syllable length < k then both bs2"b—1 and b¢’ will miss the vector in
H, corresponding to the longest hyperplane.

Therefore, without loss of generality we have a = bc and the syllable length of b is k. Since a
is in the pure Artin group, c is of the form s?"x or t*"x where x projects to 7z(b)~! (in particular
each term of x has odd exponent).

Therefore, without loss of generality we can rewrite a = bs?’b~'a’. By the above, a’ = b’c/,
where b’ has all odd exponents, has syllable length k — 1, and where ¢/ = s"x’ or t*"x’ as above.
Repeating this argument gives us that in H,(PA, Z),

a=e, +te, +-+e,
where the length of the reflections r; is strictly decreasing. If mg > 3, then there are two hyper-
planes of length 1 < #(r) < m, and hence the image a misses one of those.

If m = 2k is even, the proof essentially extends. The point here is that there are two longest
hyperplanes and the image a will again miss one of these. More precisely, suppose that a = bc
as above. In order to hit one of the longest hyperplanes, b must have syllable length k — 1. This
implies that ¢ = s?"x or ¢ = t¥'x, and x projects to 7z(b)~'. In particular, we must have that x =
yt?™ or x = ys*™ where y projects to 7(b)~!. Therefore, we can push the last syllable into g. Since
we now have a word a’ of length < m, the proof in the first case rules out this possibility.

‘We now prove the last statement. We will now assume that mg; = 3, thatis, A is the braid group
on 3-strands. We need the following lemma:

Lemma 3.10. Ifn > 0 we have that

A" = st?s 1257 e = ts §P2 e,
N———— ————
2n—1 terms 2n—1 terms
A—Zn — S—lt—ZnS—l t—zs—z e — t—ls—Znt—l S—2t—2
N———— N————
2n—1 terms 2n—1 terms

Proof. We only prove the first equalities for both A?* and A~%"; the same argument with s and ¢
switched will give the second. Since A? = st?st?> = t%st>s we have by induction that for n > 1

AP = 5225 1252 o (E2st2s) = st (st2s)s t2s? -

N———— N————
2n—3 terms 2n—3 terms

= st?"st?s? t2s% .. .
N————
2n—1 terms

Similarly, A=2 = s71t=2s71t=2 = t=251t=2s7!, so by induction for n > 1 we have

A~ = gl =22 =212l —lypdng-l =202
N———— N—— — D
2n—3 terms 2n—1 terms
Now, suppose that A" = ag where a has syllable length 3 and g € (s*, t*). Then by Lemma 2.2
without loss of generality we can assume that a = s¥t?"s! where k and I are odd integers. We will
assume that n > 0, a similar argument works for n < 0.
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By conjugating with an even power of s, we can assume that k = 1. Then we have

stMs 122 ... =St4nSlgSk_1

N———
2n—1 terms

so in particular

252 oo = sl7lgskL,
N————

2n—1 terms

where [ — 1 and k — 1 are even.
Since the original Tits Conjecture holds for A, we must have that

[232 cee
N——— —
2n+1 terms

is equivalent to s/~ gs*~! in the free group on s and t. But the powers of s and ¢ in g are powers of
4, which is a contradiction. O

3.3 | Proof of Generalized Tits Conjecture in the locally reducible case

Let A be a locally reducible Artin group and RA the associated RAAG. Let K be the fundamental
domain for the action of A on its Deligne complex D(A) with the metric as described in Section 2.5.
Let A denote the RAAG subgroup that is in the original Tits Conjecture (that is, the generators of
A correspond to generators of A). In [8] Charney defined a complex

D(A) = AxK/ ~,

where (a;, X) ~ (a,, x) if and only if x € K, and a;’ la, € Ay. This is not the Deligne complex
for A, since A\T may not be spherical. We define

D(A)=RAXK/ ~,

where (a,, x) ~ (a,, x) if and only if x € K, and al_la2 € RA7.

The Moussong metric on K induces a piecewise Euclidean metric on IA)(A), and the homomor-
phisms @, : RA — A define an induced map dADN : ﬁ(A) — D(A) which sends s X K isomorphi-
cally onto @ (s) X K.

If A is spherical, then both D(A) and ﬁ(A) have a cone point, labeled by A. We let §(A) be the
link of this cone point in ﬁ(A), and B(A) the link of the cone point in D(A). Note that B(A) is nat-
urally a subcomplex of B(A). If A is dihedral, then we denote the generators of RA by {25, 24, Zi5 )
In particular, @y (z; ;) = A2V,

Lemma 3.11. If A is a dihedral Artin group, then B(A) is the disjoint union

Ba) = |7, ,BA).

i€z
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Proof. The adjacent vertices in §(A) to w(s) are w@¥ and wz, @, (and similarly for w(t)). Since

w= gzgs i and wz; = gzsz{ forsome g € F,, the power z{ i is the same for w and ws. Therefore,

any vertices that can be connected by a path in B(A) have the same power of 2y, - The zg -action
on §(A) identifies each connected component of §(A) with B(A). O

Proposition 3.12. Let A be a totally reducible, finite-type Artin group with mg # 3 for each
factor. Then the induced map @, : Lk(A,lA)(A)) — Lk(A, D(A)) is m-distance preserving. For any
totally reducible finite-type Artin group, the induced map @, : Lk(A,ﬁ(A)) — Lk(A,D(A)) is 7-
distance preserving.

Proof. In this proof N = 1 or 2, depending on whether there are s, t with m,, = 3. We have that A
and RA decompose as

A=A XAy X XA RA=RA XRA,X-XRA,,

where each 4; is an irreducible spherical subgroup of rank 2 or Z. Therefore, both B(A) and §(A)
decompose as spherical joins

B(A) = B(A,) * B(Ay) - * B(A);  B(A) = B(A,) * B(A,) * -  B(Ay),

so by Lemma 3.6 it suffices to check z-distance preserving for each A;. If A = Z this is obvious,
so suppose that A is a dihedral Artin group.

By [8, Lem 4.1], the induced map </I3N : B(A) - B(A) is m-distance preserving. Since the map
®, is equivariant, this implies that the induced map is 7-distance preserving on each component
(A2N)'B(A). By Lemma 3.11, it suffices to verify that for x,y in two different copies of D(A) in
5(/1), their images $N(x), EDN(y) have distance at least 7 in D(A). Let x lie in an edge of A?™B(A)
and y lie in an edge of A22B(A), where g, g, € A, and n; # n,. Then x and y are within distance
7 /2m from vertices A*™ g, and A>™ g,. By Proposition 3.9,

dB(A)(A2n2 92, 0% ) = dB(A)(Az(nz_nl), a9 )z r+m/m.
This implies that the images of x and y are > 7 apart. O

Theorem 3.13. The map ®, : RA — Aisinjective for every locally reducible Artin group. If my, # 3
foralls,t €S, then ®, : RA — A is injective.

Proof. In this proof N = 1or2,depending on whether there are s, t with mg; = =3.We prove that the
induced map <1>N D(A) — D(A) is an isometric embeddmg By Lemma 3.5, d)N D(A) - D(A)
is an isometric embedding provided that the map Lk(x, D(A)) - Lk(d)N(x) D(A)) induced by ) N
is -distance preserving for every x € D(A). We only check this where x is a vertex, essentially
the same argument works for all x. Since 3 N 1s equivariant, it suffices to check vertices of K. For
T a spherical subset and vy € IA)(A) N K, the link of vy decomposes as Lk(x, K1) X §(AT). Since
the link of vy in D(A) decomposes as Lk(x, K1) X B(A7) and the map between links decomposes
as Id x®,; the result follows from Proposition 3.12. O
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3.4 | Intersections with special subgroups

Finally, we use a coning trick to show that for any locally reducible Artin group A and special
subgroup A7, we have that our RAAG subgroup for A intersects Ay in the RAAG subgroup for T'.
Charney used CAT(0) geometry to prove this for the RAAG provided by the original Tits Conjec-
ture [8, Thm 5.2]. Since @, : RA — A injective, by Theorem 3.13, we write RA; for the image of
RA7 under @,.

Proposition 3.14. Let A be a locally reducible Artin group. Then RANAr = RA;.

Proof. Suppose that there was a reduced word w in RA so that w & RA; but w € A7. Define a
larger Artin group A by ‘coning’ off T, that is, introduce a new generator s so that m,, = 2forallt €
T and mg, = oo otherwise. Then A is a locally reducible Artin group, so we know the Generalized
Tits Conjecture for A. Note that the RAAG for A is just the RAAG for A with the RAAG for
Ay coned off. Now, by assumption we have that [s, w] = 1, which contradicts the RAAG for A
injecting into A, as the centralizer of s in that RAAG is the RAAG subgroup RA X{s). O

Remark 3.15. The same argument shows that the RAAG subgroup that Crisp and Paris find inter-
sects each special Artin group in the expected way. If we knew the Generalized Tits Conjecture
for all Artin groups, then we would know this intersection property as well.

4 | RAAG SUBGROUPS OF RAAGs

In this section, we study whether a subgroup of a RAAG generated by words which are powers
of commuting elements is the ‘obvious’ RAAG. In Sections 5 and 6 we apply these ideas to the
Generalized Tits Conjecture, but we hope that this will be of independent interest.

In general, this is a delicate question; the subgroup may be a RAAG but a different one than
expected, or may not be a RAAG at all. See [28] and [29] for a detailed analysis and many (pos-
itive and negative) examples. Our main goal in this section is Theorem 4.9, which generalizes a
condition on the words given in [29] called Property PP (short for ping-pong).

4.1 | Koberda’s Property PP

Let L be a flag complex and RA; the corresponding RAAG. For each simplex o € L, let w, be
a (possibly trivial) word with all positive powers (or all negative powers) of the generators cor-
responding to vertices in o (in particular, if w, is nontrivial it has a nontrivial power of each
generator in o(?),

The collection {w,},c; determines a flag complex L’. The vertex set of L' is {c €L :
w, is nontrivial} (the reader can imagine the vertex at the barycenter of o), and the simplices
correspond to collections oy, ..., 0, where w, ,...w,, pairwise commute in RA;. Of course, we
have that w, and w, commute if any only if o and 7 span a simplex in L.

Definition 4.1. We say that the collection {w,},¢; satisfies Property PP if there is an injective
simplicial map p : L' — L, so that
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« p(L')is a full subcomplex of L,
« for every vertex o of L’ we have p(c) € o, and
« if vertices o, T are joined by an edge in L', then p(c) & .

One can think of this map p as choosing a representative vertex in L for each w,. The require-
ment that p(L') is a full subcomplex ensures that if two words w, and w,, do not commute,
then their representative vertices do not commute. The following proposition of Koberda follows
quickly from the normal form for RAAG’s.

Proposition 4.2 [29, Lem 4.2]. Let w, have Property PP. Then the map f : RA;, — RA; sending
the generators o of RA[, to wy, is injective. Therefore, the subgroup generated by (w, ) is isomorphic
to RAL/.

We note that the statement of property PP in [29] does not include the third condition of Defi-
nition 4.1. However without that assumption Proposition 4.2 fails to hold:

Example 4.3. Consider a graph on four vertices s, t, u, x where s, t, u are pairwise adjacent, and
x is adjacent to u. The associated Artin group A is (Z? * Z) X Z. Let st, stu, x be a collection of
words and let L’ be the corresponding flag complex, which is the disjoint union of an interval
joining st and stu and a point x. The map p : L’ — L sending st — s, stu — t and x — Xx satisfies
the first two conditions in Definition 4.1. However, the subgroup (st, stu, x) is not isomorphic to
the associated RAAG Z? # Z since [st(stu)~!, x] = 1.

The proof of Lemma 4.2 in [29] is correct for the property PP as stated in Definition 4.1. The
last sentence of the second paragraph of the proof is not true without the third condition of Defi-
nition 4.1.

Example 4.4. The following example is taken from [29], where it is attributed to M. Casals. Let
RA; = F, X F, where the first F, is generated by a, c and the second generated by b, d. Consider
the subgroup H,, < RA; generated by a”,d" and (bc)" for n € N. It turns out that H,, is not iso-
morphic to any right-angled Artin group. We will not provide the full proof of this, the key point
is that in this group there is the relation

[a", (be)"d*(bc)™] = 1.

Note that this collection of words does not satisfy property PP, in this case L’ is the disjoint union
of an edge and a point, and hence there is no injective map from L’ — L where the image is a
full subcomplex.

4.2 | Generalization of Property PP
We start with a motivating example.
Example 4.5. Let L be a path with 4 vertices a, b, ¢, d, and let RA; be the corresponding RAAG.

Consider the subgroup H generated by {a, d, bc}. By the same reasoning as Example 4.4, this col-
lection of words do not satisfy property PP (in this case L’ is 3 points and there is no injective
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map from 3 points to L with image a full subcomplex). However, we claim that the subgroup H
generated by these words is still isomorphic to the free group F;.
To see this, note that RA; splits as the amalgamated product

R‘AL = (a,b,c} *(b,c) <b,C,d>

and F; decomposes as F, *, F,. We can use Property PP to say that the subgroups generated by
(a,bc) and (bc, d) inside (a, b, c) and (b, c,d), respectively, are both F,. Furthermore, each of
these subgroups intersects (b, c) in (bc) (this is not completely obvious and generalizing this is
the majority of our work below). Therefore, we can apply the following lemma of Serre:

Proposition 4.6 [40, Chap 1 Prop 3]. Let G; be a collection of groups with common subgroup A and
let x4, G; denote the amalgamated product. Let H; C G; be subgroups and suppose the intersection
B = H; n A is independent of i. Then the natural homomorphism xg H; =%, G, is injective.

So, in the above example, we get an injection from F; = F, %, F, — (a, bc,d), which is obvi-
ously an isomorphism.

For general RAAG’s, we suppose the following: Our nerve L decomposes as L = L, U L,,
where each L; is a full subcomplex. We consider a collection of words {w, },<; where, as before,
w, is a (possibly trivial) word with all positive powers (or all negative powers) of the generators
corresponding to vertices in 0. We assume that each of the collections {wg},¢ , {Wsloey, satisfies
Property PPin RA; , RA; , respectively. Note that the functions in property PP for each L; do not
have to agree on the words for L, (if they do it is easy to see that the words already satisfy property
PP). However, we have to make some additional assumptions, to conclude that RA;, embeds in
RA;.

Definition 4.7. Let L be a flag complex and L, a full subcomplex. Suppose we have a collection
of words {w,},¢;, satisfying property PP, and L’ is the associated flag complex and function p :
L' — L. We say that the collection {w,},¢; avoids L, if o & L, implies that p(c) & L,.

The next lemma guarantees that if {w,},; satisfies property PP and avoid L, then the inter-
section of the RAAG subgroup (which is guaranteed by the Koberda’s Property PP) generated by
the {w,} intersects the special subgroup A;, as expected.

Lemma 4.8. Let L be a flag complex, RA; the RAAG on L, and let L, be a full subcomplex. Let
{w,},ecr, be words satisfying Property PP avoiding L,. Let RA;, be the RAAG subgroup of RA; gen-
erated by the {w,}, ¢, and RAL(r) the RAAG subgroup generated by {w,},¢;, . Then RAjy NRA; =
RA;/.

0

Proof. Obviously, RAL(/J is contained in RA; N RA, . The proof of the other containment is similar
to the coning trick in Proposition 3.14. Make a new flag complex K by coning off L,. On the group
level we are adding a new generator x which commutes only with the generators in L. Since {w,}
satisfies Property PP and avoids L, the collection {w,} U {x} satisfies Property PP. Therefore, by
Proposition 4.2 this collection generates the obvious RAAG subgroup RAg: of RAg. IfRA; NRA
contained an element w not in RAL6, then w would commute with x, and this relation does not
appear in RAg,. [
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Lemma 4.8 combined with Proposition 4.6 implies the following theorem:

Theorem 4.9. Let L be a flag complex and suppose that L = L, Ur, Lo where each L; is a full sub-
complex. Let {w},¢;, be words so that each subcollection {w,},¢;, satisfies property PP and avoids
L. Then the subgroup generated by the {w,},¢; is the RAAG based on L’.

Proof. By Property PP, we know that the subgroup RA;/ of RA; generated by {w, },¢;, isa RAAG.
By Lemma 4.8, we know that

RA; NRA; =RA; NRA; =RAp.

By Proposition 4.6, RA;, = RAL; *RA, RAL; injects into RA; = RA; s, RA[ . O
o -0

Remark 4.10. The words b, d, ac in Example 4.4 do not satisfy generalized PP for any decom-
position of L. For example, if we take L, the full subcomplex containing a, b, c and L, the full
subcomplex containing b, ¢, d, then for the edge ac we have to choose the vertex c in property
PP, which is in L, N L,. Note that the subgroup generated by ac and b contains cbc~!, and hence
intersects the subgroup (b, c) outside of (b).

5 | GENERALIZED TITS CONJECTURE AND SMALL TYPE
SPHERICAL ARTIN GROUPS

In this section, we describe how the Generalized Tits Conjecture holds for small-type spherical
Artin groups of type A,, and D,. The main work is type D,, where we require the generalized
Property PP of the previous section.

Let A be any small-type spherical Artin group with the standard generating set S, and the
Perron-Vannier representation A — Mod(Z). Let RA be the associated RAAG with the presen-
tation 1.1. Let us record the following observation:

P
Lemma 5.1. If the composition RA S A- Mod(X) is injective, then A satisfies the Generalized
Tits Conjecture for N = k.

For every irreducible subset T C S, let Ay — Mod(Z) be its Perron-Vannier representation of
the special subgroup A;. If T = {s}, by £ as well as 0Z; we mean the single curve in X correspond-
ing to s. The surface £, can be embedded in ¥ and that embedding induces a homomorphism
Mod(Z;) — Mod(Z) which makes the following diagram commute:

Ar —— Mod(Z7)

A —— Mod(2)

Note that 02 is a multicurve in . By Remark 2.5, A‘} is sent to a multitwist around the boundary
components of 9%, in Mod(Z). We summarize the above discussion in the following lemma:
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Lemma 5.2. Let A be a small type spherical Artin group and let N > 2. Then each of the generators
{zr}r of the RAAG RA is mapped to a multitwist in Mod(Z) via po®;.

The following theorem of Koberda is our main tool for proving the Generalized Tits Conjecture
for the spherical Artin groups:

Theorem 5.3 [29, Thm 1.1]. Let f; be a finite collection of nontrivial powers of Dehn twists around
simple closed curves so that the subgroup (f;, f ;) is not cyclic for all i, j. Then there isan M > 0 so
that the powers f" generate a RAAG subgroup of Mod(Z) for all m > M.

The flag complex that is the nerve of the RAAG generated by those powers of Dehn twists has
the collection of the curves as its vertex set, where a subcollection of curves spans a simplex if
and only if they can be realized as pairwise disjoint curves. The analogous result does not hold
for multitwists instead of Dehn twists about single curves. Indeed, it is easy to find surfaces and
multicurves so that the RAAG generated by Dehn twists about the individual curves is F, X F,,
and the words given by the multicurves are as in Example 4.4.

Coming back to the surface X from the Perron-Vannier representation of A, let C denote the
collection of all the curves in the support of the multitwists {po®y(z;)}. By Theorem 5.3, high
powers of Dehn twists about the curves in C generate a RAAG RA. Therefore, we have an
induced homomorphism RA — RA,. C Mod(X), where each generator of RA goes to a product
of commuting generators of RA.. In order to prove that A satisfies the Generalized Tits Con-
jecture with N, it suffices to show that RA — RA. is injective. In the case of A of type A, and
D,,, we show it using Property PP and generalized Property PP from Section 4, respectively. To
verify Property PP, we pick one of the boundary components p(T) in 0Z; for each irreducible
T such that the curves p(T), p(T’) intersect if and only if [A2,A%2] = 1 (if and only if T C T”,
T' CT,or [T, T'] = 1). For details on how we verify generalized Property PP, see subsection on
type D,,.

‘We now rephrase Property PP in terms of curves on surfaces in the context of RAAG subgroups
of mapping class groups.

Lemma 5.4. Let C be a collection of multicurves in a surface X and let C be the union of all the
connected component of elements of C. Suppose there exists a function p : ¢ — C such that

* p(a) € aand
* p(a), p(B) intersect if and only if some connected component of « intersect some connected com-

ponent of f.
* Ifa U B is a multicurve, then p(c) is not contained in (3.

Let{T, : a € C}be a collection of multitwists about multicurves in C. Then there exists M > 0 such

that (TM : a € C ) is a RAAG.

Proof. By Theorem 5.3 the group generated by sufficiently large powers of Dehn twists around
C is a RAAG. The assumption about existence of function p is just reformulation of Property PP
from Definition 4.1. The conclusion follows from Proposition 4.2. O

Similarly, the generalized Property PP could also be rephrased in terms of curves in a surface.
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5.1 | Intersections of boundary curves

Let A be a small-type spherical Artin group, and let A — Mod(Z) be the Perron-Vannier repre-
sentation. Suppose that T and T’ are two irreducible spherical subsets of S, and let £ and £, be
the associated subsurfaces of Z. If A% and A%, commute, then each of the boundary curves of X
and X, are necessarily disjoint. If they do not commute, then there are different possibilities for
the possible intersections between the curves. We shall record a few lemmas that we will need
later.

Lemma 5.5. Let A be of type A,,, and suppose that T and T’ are irreducible subsets such that A%
and A%, do not commute. If X has one boundary component up to homotopy (so |T| =1 or |T| is
even), then the boundary curve of ;- has nontrivial intersection number with every boundary curve

OfAT/ .

Proof. Note that 02 is fixed up to homotopy by the hyperelliptic involution. If A7, has two bound-
ary components, then these are permuted up to homotopy by the hyperelliptic involution. There-
fore, we only have to show that 0X; has nontrivial intersection number with a single boundary
component of X . Since the Perron-Vannier representation is injective in this case [36], this
follows from the fact that [AT', A;,] #1in A,,. O

Lemma 5.6. Suppose X and Z; both have two boundary components, that is, both |T| and |T’|
are odd and # 1. Then,

* each boundary component of . intersects at least one boundary component of =!., and vice versa.
« If|T —T'| is odd, then each boundary component of T intersects each boundary component of
ZT/.

Proof. For the first statement, again by injectivity of the Perron-Vannier representation we must
have that at least one component of 0% intersects a component of 0Z.. Since both components
are permuted by the hyperelliptic involution, we get the other intersection.

We will prove the second statement in the alternative proof of Proposition 5.9 below, once we
have developed more notation. O

There is a similar lemma for the images of curves in the Perron-Vannier representation A —
Mod(Z) for Artin groups A of type D,,. Note that X has a unique boundary curve which is contained
in the boundary of X for any irreducible subset T C S of type D,,, for m < n. We will call this the
central component, and the other boundary components non-central components. We shall see that
the Dehn twist around the central component never factors into any of our calculations.

Lemma 5.7. Let A be of type D,,, and suppose that T and T’ are irreducible subsets such that A%
and A?, do not commuite.

(1) If Ay has type D,,, and m = 2k + 1 for k > 0, then the non-central boundary component of 90X
intersects each curve in 0% if 5,5’ & T, and intersects one boundary curve of v if one of s or
s'eT.

(2) If Ay has type D,, and m = 2k for k > 1, then if s, s’ & T' each non-central boundary compo-
nent either intersects all curves in 0Xp, or there are two pairs of components that intersect. If
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FIGURE 7 Dehn twists around the gray curves in this diagram are images of A2 for certain braid subgroups
of the braid group on 8 strands. The red and blue curves arise via the lantern relation, and obviously commute in
the braid group. It is easy to check that the words in the lantern relation which produce these curves do not
commute in the RAAG on the A%, and hence the induced homomorphism from this RAAG to the braid group is
not injective

sors' €T/, there is one non-central component of < which has nontrivial intersection with
8%1. Furthermore, one component intersects all 3%, for T' that contain s, and one component
intersects all 3% for T' that contain s'.

(3) Ifs€ T and s’ € T’, then the components of 0%, and 8% that are not contained in 9zp, for
any m always intersect.

Proof. The proof of the first two items is similar to Lemma 5.5. The non-central component(s)
of 3% is fixed by the hyperelliptic involution. If 6%, has two components then if s, s’ & T’ then
these are permuted by the hyperelliptic involution. If s or s’ € T/, then one of the curves of % is
contained in 6%, form > n, and hence misses the non-central component(s) of X, . The other
curve therefore intersects 62Dn For the last statement of the second item, note that each of the
boundary components of 9%, is a boundary component of 92, and 9% AL Therefore, they are
disjoint from 6%, anddZ, respectively, for m > n.

For the last item, note that both these curves have nontrivial intersection number with y; and y?,
respectively (where y; and y/ are the curves corresponding to the generators s and s). The curves
¥, and y¢ and the outer boundary component are the boundary of a pair of pants. If our curves
had trivial intersection number, then we could homotope one of them to have trivial intersection
number with both y; and y!. O

52 | TypeA,

Suppose that A is a spherical Artin group of type A,,, that is, A is the braid group on n + 1-strands.
Then A is the mapping class group of the n + 1-punctured disc. We give the punctures an arbitrary
labeling {1, 2, ..., n + 1}. The squares of the standard generators of A correspond to the Dehn twists
about the simple closed curves around two consecutive punctures {i, i + 1}. Any irreducible subset
T of S corresponds to a subset I C {1, ..., n + 1} of consecutive numbers, where |I| = |T| + 1. The
center of the pure braid group PB; corresponds to a Dehn twist T; around punctures in I, see
Figure 7. Therefore, the Generalized Tits Conjecture for N = 1 asks if this collection of Dehn twists
about these simple closed curves generates a RAAG subgroup of the braid group. For simplicity,
we denote the generators z; of RA by z;.
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FIGURE 8 Curvess,,ss, s}, ... Sy Sy 415 Sy, - and curves ¢, ., in the surface X of type A,. The thick

curves are an example of a choice of the representatives for property PP

Example 5.8. The braid groups on > 4 strands do not satisfy the Generalized Tits Conjecture with
N = 1. The map @, is not injective, as there are deeper relations between the A%. See Figure 7.
By the lantern relation (see, for example, [24, Prop 5.1]), the Dehn twist T, about the red curve in
Figure 7 satisfies

-1
T, =T ;3T12T 3.

Similarly, the Dehn twist T}, about the blue curve satisfies

Tpy = Ty, Ty T3y

—1 -1 . . .
However, the elements z],,2,2,; and z3,,2,323, do not commute in RA. Indeed, it suffices to

consider their images under the retraction RA — (z;,3,2534) =~ F,.

As we have noted, Theorem 5.3 implies that high powers of these elements generate a RAAG,
that is, we get the following:

Proposition 5.9. The Generalized Tits Conjecture holds for all spherical Artin groups of type A,
with N sufficiently large.

We shall also show how the conjecture follows from using the Perron-Vannier representation
and property PP (this will serve as a warmup for the other cases).

Alternative proof of Proposition 5.9. By Lemma 5.4, it suffices to show that the multicurves that
arise in the Perron-Vannier representation satisfy the condition in the statement of the lemma.
Let S = {t;, ... t,} be the standard set of generators.

Note that if n is odd, then Z — {t,, t5, ..., t54 41, --- £,,} has two connected components. Similarly,
if nis even, then X — {t,t5, ... ty5 41, - » t,—1, K} has two connected components, where k is an arc
with both endpoints in % and which intersect only ¢,, among the curves in S. In either case, we
pick a connected component, and denote it by X . Similarly, let £, be the connected component
that does not contain 8% of, respectively, T — | J{t,, 4, ... t,,_1, ¢, ¢’} in case of odd n, and of T —
Uitz tys .- t,, k'} in case of even n. Here, #,#’ denote arcs with the endpoint in two connected
components of X where £ intersects only t;, and £’ intersects only ¢, among curves in S. The arc
k’ has both endpoint in 6% and intersects only ¢, among curves in S.

LetT ={t;,...,t j}. If |T| is even, then X} has a unique boundary component, denoted by ¢;. j*
Otherwise, if |T| is odd, then we denote the two boundary component of X, by {t;. jo tl.’ :j}. See
Figure 8. If additionally, i is odd, then again exactly one of these curves is contained in ~,_. We
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assume it is ¢;. ;. Similarly, if i is even, then we assume that ¢;.; is contained in X. For each irre-
ducibleset T = {t;, ..., tj}, we set p(T) = ti-js ifi > 1.

We claim that our choice function p satisfies Lemma 5.4. By the first part of Lemma 5.5, we
only need to worry about irreducible subsets of odd cardinality. Suppose we have two subsets
T=1{t,.., tj} and T" = {ty, ..., tj,} of odd cardinality which do not commute, that is, [z, zp] # 1
in RA.

We claim that if i is odd and i’ is even or vice versa, then each curve in 9%, intersects each
curve in 0Z; (this is the second part of Lemma 5.7). To see this, note that it suffices to assume
that T = {1,2,..., j}and T’ = {k, ..., 1}. Since j is odd, 8%} has two components, and both compo-
nents of 0X; intersect the curve t,_; exactly once (and miss all other ¢; for i < j). Therefore, each
component of 8%, intersects both components of X — {t1, {5, ..., ty_y, ... t;}, and therefore must
intersect both components of 0.

If i and i’ are both odd, then p(T) cannot intersect the curve of 8%, which is contained in
¥ — X,, and by the second part of Lemma 5.5, p(T) intersects p(T”). Similarly, if i and i’ are both
even, then p(T) and p(T”) intersect.

Finally, note that the third condition in Lemma 5.4 is trivially satisfied, as no curve is contained
in 0%, and 0% for T # T'. O

We do not know if N = 2 suffices for the braid group. In fact, Runnels and Seo have indepen-
dently and recently shown an effective version of Koberda’s result [37, 39]. For the collections of
Dehn twists that arise in the braid group case, it turns out that N = 17 works, and we suspect
there is a not very large N that works for all Artin groups.

53 | TypeD,

We now consider an Artin group A of type D,, with the standard generating set S = {s, s/, t;, ... t,,},
as in Figure 5.

Theorem 5.10. Generalized Tits Conjecture holds for all spherical Artin groups of type D,,.

Proof. This proof will use the generalized property PP from the last section. There are four families
of irreducible subsets of S with at least two elements.

1) T ={s, s’,tl,...,tj}wherej < n — 2, then A has type Dj,,.

(2) UT ={t;,...,t;} where 1 <i < j<n-—2,then Ay hastype A;_; ;.
3) T = {s’,tl,...,tj}where 1< j<n—2,then Ay hastype 4;,;.
(4) T = {s, tl,...,tj}where 1< j € n—2,then Ay has type Ajgre

We consider the Perron-Vannier representation p : A — Mod(Z) (see Section 2.6 and Figure 5).
By Lemma 5.2 the generator z; of RA is sent to a multitwist about the boundary of a subsurface
2.

We pick a connected component X of, respectively, = — {t,, t,, ..., t,,_,, £} When n is even, and
of & —{ty,t4, ..., t,_3,¢,¢'} when n is odd. In both cases # denotes an arc with both endpoints in
the central boundary component of £ that intersects ¢; and no other curves in S. When 7 is odd,
then #’ denotes an arc with both endpoints in the unique non-central boundary component of
Z, that intersects f,,_, and no other curves in S. We can also pick a connected component X of,
respectively, £ — {t,,t3, ..., t,_3, K, Ky, k3} when n is even, and of £ — {t,, t5, ..., t,,_,, k;, k,} when
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FIGURE 9 Curves sy, s; = 2,8 =5, ... Sy, Syj41, Sy g - and curvest;. tj.;in the surface X corresponding

to the Artin group of type A, or D,,. In the case of D,,, the boundary of X includes the gray curve

. | @

FIGURE 10 Curvesr,,r;,.. andr;,r;,...

n is odd. By k;, k,, k; we denote arc with endpoints in distinct connected components of 0 that
intersect only, respectively, s, s, t,_, (the last one only when n is even) among curves of S.

Let us now analyze what the multicurves 0% are for T' in the four families of irreducible subsets
of S. Let s, denote the central component of 9%.

(1) For each irreducible set T ={s,s,t;,...,¢t j}, the multicurve 9%, is of the form
{505 Sjt1s s;H} when |T| is even, and of the form {s,, sj} when |T| is odd. We also set s; = s
and 5| = s'. See the left side of Figure 9. Without loss of generality, we can assume that all
the curves s; are contained in ..

(2) Now consider an irreducible subset T = {{;, ..., ;} where 1 <i < j < n —2.If |T| is even,
let ;. ; be the unique boundary curve of the subsurface ;. If |T| is odd, let ;. ;, ¢! g be the
two boundary curves of the subsurface containing ¢;, ..., ;. See the right side of Figure 9.
If i is even, we assume that ¢;.; liesin X, and if i is odd, we assume that ¢;. ; is contained
inZX,.

(3)/(4) Finally consider an irreducible subset T = {s’,t;,...t j}. When j is odd, we denote the
unique boundary component of X, by r;,,. When j is even, the boundary of the sub-
surface 0% has two connected components, one is s}. +1> and the other is denoted by r; ;.

See Figure 10. We define curves r;, rg, ... analogously, so that §%, = {rj. b or{sji, r; )

for T ={s',ty,...t;}

Let C = {s}, sj.} uitituit.;, tlf,j} U {r;, 7"} be the collection of all the curves that arise as bound-
ary curves of subsurfaces X for irreducible subsets T C S. By Theorem 5.3 the subgroup generated
by sufficiently large powers of Dehn twists around curves in C is a RAAG, which we denote by
RA.. Note that the words w, corresponding to centers of irreducible spherical Artin subgroups,
regarded as elements of RA. do not satisfy property PP, see Figure 11.

We now show that generalized property PP implies the conjecture for Artin groups of type D,,.
Let C; = C = {r}i50, G, = C = {rihisp and G = G, N Gy = C = {ry, 1 Jyso-

Let L be the flag complex on the vertex set C defining RA., and let L, L;, L, be the full sub-
complexes of L on the sets C,, C;, C, respectively. Since the curves r; and r;. intersect for every
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FIGURE 11 These curves show the failure of property PP for the images of centers of D,. The red and
orange curves are boundary components of subsurfaces =, and X ;. The green curves are the boundary
components of the subsurface X, . Since the other boundary compc;nent misses y and y’, respectively, we are
forced to choose these. However, this implies that we cannot correctly choose a boundary component of %,

i, j > 2, the complex L decomposes as L, U L,. Therefore we have a splitting of the RA. as
Ap, *4, Ap, where A; is a RAAG with nerve L;. Also, the RAAG RA associated with A splits as
0 1

RA =RA[ #y Ar RA;, where

* RA; omits all the generators corresponding to centers of the irreducible special subgroups
from family (4), thatis, Ay with T = {s, t;,..., f;}and k > 1;

* RA; omits generators corresponding to centers of the irreducible special subgroups from fam-
ily (3), thatis, Ay with T = {5/, t,, ...t} }and k > 1; and

* RA; omits all the generators corresponding to centers of the irreducible special subgroups
from families (3) and (4).

We claim that each L; satisfies Property PP avoiding L. We only verify it for L;, the proof for
L, is analogous. For each irreducible subset T (which corresponds to a simplex in L spanned by
the boundary curves of its corresponding subsurface ;) from families (1), (2) and (3), we need to
make a choice of a boundary curve of X;. For a subgroup from family (3) of type A; we choose
the curve ;.. Note that these subsets are exactly the ones corresponding to simplices o of L with
nontrivial w, such that o ¢ L,. We thus see that p(c) & L, for such simplices o. Also, w, is trivial
for any other simplex r containing p(c), because X is the unique subsurface corresponding to an
irreducible subset of S whose boundary contains ry.

By Lemma 5.7, for each irreducible subset T from family (1), there is a unique boundary curve
of £ which intersects 0Z; for U in family (3). Indeed, it is the curve s, _;, see Figure 9.

Finally, for an irreducible subset in family (2), we pick the curve ¢;. i that is, a curve in 9%
that intersects r for everyi < k < j, which is unique unless i, j are both odd (in which case either
choice works).

For each simplex in L; — L,, we have chosen curves not contained in L,,. Also, for each simplex
in L, — L, we have chosen a simple closed curve that is not a boundary curve of any subsurface
corresponding to a different irreducible Artin subgroup. Apart from the curve s, (which is not in
the image of p), the only curves contained in two multicurves are the S;k+1' Since p(T) = Sy41
for Ay of type D, ,, and p(T) = 1y, for Ap of type A, from family (3) this guarantees the
third condition in Lemma 5.4 is satisfied. By Theorem 4.9, the conclusion follows. O

54 | TypesE E, and Eg

We now show that any homomorphism Ap — Mod(X) which sends generators to Dehn twists
has nontrivial kernel which intersects the image of ®,,. Wajnryb has previously shown that there
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FIGURE 12 High powers of Dehn twists around the multicurves above do not generate the obvious RAAG
subgroup. The figure on the left shows the corresponding centers of irreducible Artin subgroups. To see this, start
with the Dehn twist around s, then conjugate by the red multitwist, then conjugate by the green multitwist. This
element commutes with the blue multitwist

isno injective homomorphism from the Artin groups of type E;, E;, Eg to any mapping class group
which maps generators to Dehn twists [42]. It is still open whether these Artin groups admit other
faithful representations into mapping class groups.

The Dehn twists in Figure 12 show an element in the kernel of the Perron-Vannier representa-
tion p : A - Mod(Z) where A is of type E,. A specific element in the kernel of p is the commu-
tator

[A%NA%JNSZNABZNA;ZN’ AZVN]

where T = {t;,t,,t3,t4, 5}, U = {t5, 85,84, t5, b6} and V = {t,, t5, 14, s, ts, s}. The nerve of the sub-
group of RA on the generators corresponding to T, {s}, V, U is a path on 4 vertices. It is easy to verify
that the corresponding commutator in RA is nontrivial. The commutator above is also nontrivial
in A. This can be verified by computing the Deligne’s normal form for its positive representatives.
We have performed the computation in GAP 3 with the package CHEVIE [25, 41]. Note that the
above does not imply that the Generalized Tits Conjecture does not hold for Artin group of type E,
(or Eg). It only shows that our strategy, using the Perron-Vannier representation, does not work
in that case.

Remark 5.11. The multicurves produced by the Perron-Vannier representation of the Artin group
of type E4 do not satisfy generalized property PP, but we cannot find a word in RA as above in the
kernel of the representation.

6 | GENERALIZED TITS CONJECTURE FOR OTHER SPHERICAL
ARTIN GROUPS

In this section, we show that the Generalized Tits Conjecture holds for all spherical Artin groups

which are not small type. The main tool is a folding trick due to Crisp (see [12] or [13, Section 6]),
which embeds any of these Artin groups into small-type spherical Artin groups.

6.1 | Folding homomorphisms

In this section it is more convenient to work with Coxeter diagrams rather than nerves. So, suppose
that A is an Artin group with a connected Coxeter diagram I' that has no co-labels. Crisp and Paris
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XRXC X

FIGURE 13 The graph I'(m) on 2(m — 1) vertices

define a folding homomorphism ¥ . Ar — Ay where Ay is small type. Here is the construction:
let N = lcm{m, — 1|s # t € S}. For each vertex s € S, let I(s) be a set with N elements. For m > 3,
let T'(m) be the Coxeter diagram for A,,_; X A,,_;, thatis, I'(m) is a disjoint union of two copies
of the Coxeter graph of type A,,,_;. See Figure 13.

Let T be a Coxeter diagram so that:

* The vertex set of I is the disjoint union of the sets I(s).
 Ifthereis noedgein I between s and t, there is no edge between vertices in I(s) and the vertices
of I(t). In particular, there are no edges between any two vertices in I(s).

* If my > 3,then the subgraph of T spanned by I(s) U I(t) is isomorphic to N

mg—1

copies of T'(my;).

It is easy to see that such a I can always be constructed, though it will not be unique. There
is a map of graphs T' — T sending every vertex in I(s) to s. Crisp and Paris show that the map
¥ : Ap — Apwhich sends a generator s to the product [ ¢, 5; extends to a homomorphism [13,
Prop 13]. Crisp showed that this homomorphism is injective when restricted to the Artin monoid
[12], and it follows that it is injective when A is spherical. It is still open whether W is injective
in general.

We now verify that ¥ has some additional properties. For each T C S, let T denote the preimage
of T under T’ — T, that is, T contains the vertices in I(s) for each s € T.

Lemma 6.1. Let Ay be an Artin group with connected Coxeter diagram T and no co-labels. Let T be
as above, and let ¥ : Ar — Ag be the above homomorphism. Then W satisfies the following:

* For every spherical Artin subgroup Ar C Ar, Az is spherical.
* If Ay is an irreducible spherical subgroup of Ar, then

wap) = [ 2%

T,CT
where the {T} are the irreducible components of T.

Proof. If Ay is small type, then the Coxeter diagram of Az is a disjoint union of finitely many
copies of Coxeter diagram for A7, and hence Az is a direct product of copies of Ar. In this case,
both statements follow easily. Suppose o is not small type. If A7 is irreducible, the Coxeter subdi-
agram I'; for A7 is a line, with exactly one edge e labeled with number greater than 3. Let fiT bea
connected component of the Coxeter diagram for I';. Then I'z; is obtained from I'; by replacing
e with a copy of I'(m) and then attaching copies of T — e. In each case we check directly that this
produces a spherical Artin group.

For the second statement, by the definition of W, a Coxeter element for W maps to a
Coxeter element for W. The Coxeter number is preserved in the above identifications (see
Lemma 6.2 below), in that if fﬁ» is connected component of I'y, then the Coxeter number of
Arg is the same as the number for A7). This immediately implies the second statement by
Lemma 2.1. |
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We now record the following specific cases of Lemma 6.1 (these were previously tabulated in

[12]).

Lemma 6.2. Let A be a spherical Artin group as above, and let Afc be an Artin group in the image

of ¥ where fc is a connected component of T. Let h be the Coxeter number of the Coxeter system of
Ar. Then the Coxeter number of the Coxeter system of Ap. is h. Moreover:

(1) IfAr = B, then Ay _has type D,,, or Ay,_,, and h = 2n.
(2) If Ar = L(p), then Ap, hastype A,_; and h = p.

(3) If Ar = H;, then Ax has type Dg and h = 10.

(4) If A = Hy, then AfC has type Eg and h = 30.

(5) IfAp = F,, then Af: has type Eg and h = 12.

Let Ap be an Artin group with no oo-labels and connected I'. The RAAG with presentation 1.1
associated with Ay is denoted by RAr, and the RAAG associated with A is denoted by RAr. We
denote the homomorphism RAy — Ay from the statement of the Generalized Tits Conjecture by
&,

We consider the composition Wo®,, : RAr — Ap. Our aim is to verify the Generalized Tits
Conjecture for Ar, that is, to show that ®y; is injective for some N. Let F : RAr — RAr. If T isan
irreducible, special subset, then T will generally not be irreducible. For a generator z; of RA[ its
image F(zy) is the product H’T}gf Z7, of generators in RAy corresponding to irreducible subsets
T; C T. For each N, we have the following equality ®yoF = Wod,,.

Crisp and Paris show the following lemma for the RAAG generated by {s* : s € S}. The same
proof works for our RAAGs. For the benefit of the reader, we provide the proof.

Lemma 6.3. The homomorphism F is injective. Therefore, if ® is injective, then ®y; is injective.

Proof. Note thatif T,U C S are distinct irreducible subsets, then zz # z; for all i and j. Fur-
thermore, if z; and z;; do not commute in RA[, then for every zz there exists a zg: that does not
commute with s in RAg. To see this, note that if two spherical subsets T and U do not commute,
thereist € T — U andu € U — T with m,,, # 2. Any component T' of T contains a vertex f of I(t).
There exists a vertex & € I(u) with my; # 2. Therefore, the component of U containing # does not
commute with T;. By the normal form for RAAGs this implies F is injective, as it takes a reduced
word in RA¢ to a reduced word in RAz. O

6.2 | Generalized Tits Conjecture for B,,F,,H;,H,,I1,(p)

We now finish the remaining spherical cases. By Lemma 6.2 Artin groups of types B,,, H; and
I,(p) embed via the folding homomorphisms in Artin groups of types A,, and D,,, for which we
already know that the conjecture holds by Proposition 5.9 and Theorem 5.10. By Lemma 6.1 and
Lemma 6.3 we get the following.

Corollary 6.4. The Generalized Tits Conjecture holds for a spherical Artin group of type B,,, H; and
L(p).
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FIGURE 14 The restriction of the folding homomorphism for A. of type F, to one connected component.
The generators of A are mapped to the Dehn twists and multitwists in the left surface. The right surface has all
the multicurves that arise as subsurfaces corresponding to irreducible special subgroups of Ar. Thick curves
represent an example of a choice of curves satisfying Property PP

In the case of F, and H,, we do not know the conjecture for E; and Ejg, respectively. However, in
each of those cases, we can still show that the Generalized Tits Conjecture holds by considering

RAp — Ar & Ap = [ [ Mod(Zr),
FC

where Ay is of type F, (respectively, H,), RAy its associated RAAG and each component I'¢ of T’
is of type E (respectively, Eg) with its Perron-Vannier representation in a mapping class group
(see Section 2.6). In both cases, we will only concentrate on one component of . An identical
argument will work for all components, and so we get a faithful representation of RAr into a
direct product of RAAG's.

Theorem 6.5. The Generalized Tits Conjecture holds for the spherical Artin group of type F .

Proof. Let S ={s,t,u,v} be the standard generators of A of type F, where my, = m,, = 3,
my, = 4. Consider the homomorphism ¥; : Ar — Af, where Ay has type Eq, and where ¥; is
the composition of the folding homomorphism ¥ with the projection Ax — Ap, where T} is a
connected component of . See Figure 14. We also consider the Perron-Vannier representation
o Afi — Mod(Z), as discussed in Section 2.6. The images of the elements A4T for irreducible
subsets T C S are powers of Dehn twists around curves in %, pictured in Figure 14. Let C denote
the collection of all these curves. Again, by Theorem 5.3 sufficiently large powers k of Dehn twists
around single curves in C generate a RAAG. By Lemma 5.4 to show that A satisfies the Gener-
alized Tits Conjecture, we need to make a choice p(T) of a curve in dZ; for each of the irre-
ducible subsets T of S. For T = {u} or {v}, the choice is unique. It remains to make choices for
{s},{t}. {s, t},{t, u}, {s, t,u}, {t, u, v}. There is a unique curve in X, , that intersects the curve p({v}),
we choose that curve for p({t, u}). Note that that curve intersects both boundary components of
Z;;, both boundary components of Xy ;; and the unique boundary component of %, ;. For each
choice of a curve in 0%, there is a unique intersecting curve in 9%, and there is a unique curve
in 9% , that is the boundary of a subsurface containing those two curves. We make such a con-
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ey

FIGURE 15 The restriction of folding homomorphism for A, of type E; to one connected component. The
thick curves are the ones we choose for the standard generators in verifying Property PP. The gray and purple
curves are the curves we choose for {t, u, v} and {s, t, u}, respectively. The black, brown and orange curves are the

unique curves for the irreducible rank 2 subsets

sistent choice of p({s}), p({t}), p({s, t}). Then there is a unique choice of p({t, u, v}) that intersects
p({s}) and both components of X, ;. Finally, any choice of p({s, ¢, u}) works. The only multic-
urves which share a curve correspond to the collections {¢, u} and {¢t, u, v}, and we never choose
this curve (the thin pink and teal curve in Figure 14), therefore the third condition of property PP
is satisfied. O

Theorem 6.6. The Generalized Tits Conjecture holds for the spherical Artin group of type H,,.

Proof. Let S = {s,t,u, v} be the standard generators of A of type H, where mgy = 5 and m;,, =
m,,, = 3. Consider the restriction of a folding homomorphism to a single component of Coxeter
diagram. We geta homomorphism @ : Ay, — A aspictured in the left of Figure 15. We also con-
sider the Perron-Vannier representation Ay — Mod(Z), as discussed in Section 2.6. The images
of the squares of the original generators, and of the elements A% for other irreducible subsets
T C S, are Dehn twists around curves in two copies of £ in Figure 14. Let C denote the collection
of all these curves. As in previously considered cases, by Theorem 5.3 sufficiently large powers k
of Dehn twists around single curves in C generate a RAAG. We need to verify that Property PP is
satisfied for {@(A%k)}. Specifically, we need to make choices for the following irreducible subsets
of S: {s},{t}, {s, t},{t, u},{s, t,u}, {t,u, v}. There is a unique curve in Z, , that intersects the curve
corresponding to v, we choose that curve for p({t, u}). Note that that curve intersects both bound-
ary components of Zgy, both boundary components of Z ;, and the unique boundary component
of Xy, ;. For each choice of a curve in 9Z,, there is a unique intersecting curve in %, and there
is a unique curve in 0% ,, that is the composition of those two curves. We make such a consistent
choice of p({s}), p({t}), p({s, t}). That also forces a choice of p({t,u,v}) and p({s, t, u}). Since no
multicurves share a curve, the third condition of property PP is trivially satisfied. O

7 | APPLICATIONS
If the Generalized Tits Conjecture holds in full generality, one immediate application is that the

subgroups of Artin groups are as complicated as subgroups of right-angled Artin groups. The latter
are currently more well understood. In this section, we give a few applications of this idea.

7.1 | Incoherence

Recall that a group G is coherent if every finitely generated subgroup of G is finitely presented.
Droms had showed that the right-angled Artin group RA; was coherent if and only if L was a



34 | JANKIEWICZ AND SCHREVE

chordal graph [21]. Gordon showed that if the Artin group of type H; was incoherent, there was a
similar classification of coherent Artin groups. Wise answered this in the affirmative in 2013.

Theorem 7.1 [43]. The Artin group of type H; is incoherent.

Since A of type H, satisfies the Generalized Tits Conjecture, we can give an alternative proof
of Wise’s theorem. In this case, the nerve Ly of the RAAG subgroup RA in A is the cone on
a pentagon. The RAAG based on a pentagon is well known to be incoherent, for example, the
Bestvina-Brady subgroup of the RAAG (the kernel of the map to Z which sends every generator
to 1) is finitely generated and not finitely presented.

7.2 | Hyperbolic surface subgroups

In [27], Gordon, Long and Reid studied which Coxeter groups and Artin groups contained hyper-
bolic surface subgroups. They showed that all finite-type Artin groups except types A;, I,(m) and
H, contained these subgroups. The first two classes do not contain such subgroups (more gener-
ally, any Artin group where the nerve L is a tree does not contain a hyperbolic surface subgroup),
and type H; was left as an open question. It follows from the Generalized Tits Conjecture that the
answer to their question is yes.

Theorem 7.2. Every Artin group with s, t,u € S so that mg,, m,,;, m,; < oo and at most one of them
equals 2, contains a surface subgroup.

Proof. The subgroup Ay, satisfies the Generalized Tits Conjecture and the nerve of RA;
is a pentagon, hexagon or a cone on a pentagon. The RAAG based on a pentagon or a hexagon
is commensurable to a right-angled Coxeter group which has a pentagon or a hexagon as a full
subcomplex [16]. It follows that the Coxeter group contains a hyperbolic surface subgroup, hence
so does the RAAG, and hence so does the Artin group. O

Corollary 7.3. The Artin group of type H; contains a hyperbolic surface subgroup.

Gordon-Long-Reid also considered Artin groups of Euclidean type, and asked specifically if the
Artin group of type B, or type G, contains a hyperbolic surface subgroup. The nerves of these Artin
groups are triangles with labels (2,4,4) and (2, 3, 6), respectively. In unpublished work, Sang-
hyun Kim can show the existence of such a subgroup in the B, case, but we believe the G, case
was still open. In either case, these groups are locally reducible. Therefore, the answer to this
question is also yes, and follows as above from the Generalized Tits Conjecture.

Corollary 7.4. The Artin groups of types B, and G, contain hyperbolic surface subgroups.

At this point, we do not have a complete characterization of which Artin groups contain hyper-
bolic surface subgroups. This is still open in the right-angled case. On the other hand, these should
be easier to construct outside of the right-angled case. For example, if the nerve L is a 4-cycle, then
the RAAG is F, X F,, which does not contain such a subgroup. On the other hand, if any edge
has a label > 2 then the Artin group is locally reducible and the associated RAAG subgroup has
nerve an n-gon with n > 5.
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7.3 | Subgroups of type F, and not F,_,

Spherical Artin groups are generally too high dimensional for coherence to be an interesting ques-
tion. A more interesting question is when a spherical Artin group contains a subgroup which is
type F,, but not type F,,; where n + 2 is the cohomological dimension (recall a group is type F,,
if it admits a classifying space with finite n-skeleton). For example, the type H; Artin group has
cohomological dimension 3, so coherence is an interesting question. It follows again from the
Generalized Tits Conjecture that Artin groups of type H, or F, have subgroups which are F, but
not F;.

In [44], Zaremsky showed that the pure braid groups PB,, contained subgroups N so that N was
type F,,_; but not F,,_, for 3 < m < n. The existence of these subgroups again follows from the
fact that the Generalized Tits Conjecture holds for the braid groups (on the other hand Zaremsky’s
examples are normal and ours are not). In this case, the nerve of the RAAG subgroup is the cone
on a flag triangulation of S"~!. The Bestvina-Brady subgroup of this RAAG is type F,,_; but not
type F,_,. To get subgroups that are F,,_; but not F,,,_, for 3 < m < n, one can instead map RA
to Z by sending some generators to 0.

Since the Generalized Tits Conjecture holds for type D,,, we have an analogous theorem with
the same proof as above.

Theorem 7.5. The Artin group of type D,, contains subgroups N so that N is type F,,_; butnotF,,_,
for3<m<n.

Of course, the Artin group of type D,, contains the braid group A,,_;, so the only improvement
on what Zaremsky’s theorem provides is n = m.

7.4 | Subgroup separability

A subgroup H of a group G is separable if H is closed in the profinite topology of G, or equivalently
ifevery H is equal to the intersection of all the subgroups of finite index of G containing H. A group
G is subgroup separable if every finitely generated subgroup of G is separable in G.

In [1] Almeida-Lima used our result to formulate a criterion for subgroup separability of Artin
group, generalizing the criterion for RAAG’s due to Metaftsis-Raptis [34]. They prove that an
Artin group A is subgroup separable if and only if A is obtained from Artin groups of rank 2 via a
sequence of two operations: taking free products and taking direct product with Z.

8 | QUESTIONS
We end the paper with some open questions.
Question 8.1. Does the Generalized Tits Conjecture hold for spherical Artin groups of type E,?

If one can show the conjecture holds for all spherical Artin groups, a natural next step is the
Artin groups of FC type.
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Question 8.2. Does the conjecture hold for all Artin groups of FC type?
It would be very interesting to know some geometric properties of these subgroups.

Question 8.3. Each standard free abelian subgroup quasi-isometrically embeds into the Artin
group A. When the Generalized Tits Conjecture is true, are the entire RAAG subgroups quasi-
isometrically embedded? Does a quasi-isometry between two Artin groups coarsely preserve these
RAAG subgroups?
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