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Abstract
The Tits Conjecture, proved by Crisp and Paris, states
that squares of the standard generators of any Artin
group generate an obvious right-angled Artin subgroup.
We consider a larger set of elements consisting of all the
centers of the irreducible spherical special subgroups of
the Artin group, and conjecture that sufficiently large
powers of those elements generate an obvious right-
angled Artin subgroup. This alleged right-angled Artin
subgroup is in some sense as large as possible; its nerve is
homeomorphic to the nerve of the ambient Artin group.
We verify this conjecture for the class of locally reducible
Artin groups, which includes all 2-dimensional Artin
groups, and for spherical Artin groups of any type other
than 𝐸6, 𝐸7, 𝐸8. We use our results to conclude that cer-
tain Artin groups contain hyperbolic surface subgroups,
answering questions of Gordon, Long and Reid.
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1 INTRODUCTION

Suppose (𝑊, 𝑆) is a Coxeter system (cf. [5] or [14]). This means that 𝑊 is a group, 𝑆 is a distin-
guished set of generators and that𝑊 has a presentation

𝑊 ∶= ⟨𝑠 ∈ 𝑆|𝑠2 = (𝑠𝑡)𝑚𝑠𝑡 = 1⟩,
where𝑚𝑠𝑡 ∈ {2, 3, … } ∪ {∞}. Given a Coxeter system (𝑊, 𝑆) there is an associated Artin group 𝐴.
This group has one generator 𝑥𝑠 for each 𝑠 ∈ 𝑆 and the braid relations:

𝑥𝑠𝑥𝑡 ⋯
⏟ ⏟ ⏟
𝑚𝑠𝑡 terms

= 𝑥𝑡𝑥𝑠 ⋯
⏟ ⏟ ⏟
𝑚𝑠𝑡 terms

,
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where both sides of the equation are alternating words in 𝑥𝑠 and 𝑥𝑡, and where 𝑚𝑠𝑡 denotes the
order of 𝑠𝑡 in𝑊. The Artin group is right-angled (and called a RAAG) if𝑚𝑠𝑡 ∈ {2,∞}.
Consider the subgroup of𝐴 generated by the squares 𝑥2

𝑠 . These elements are all contained in the
pure Artin group 𝑃𝐴, which is the kernel of the canonical homomorphism𝐴 → 𝑊 which sends 𝑥𝑠
to 𝑠. There are obvious commuting relations between the 𝑥2

𝑠 , namely if𝑚𝑠𝑡 = 2, then [𝑥2
𝑠 , 𝑥

2
𝑡 ] = 1.

Crisp and Paris in [13] proved the remarkable fact that these are the only relations between these
elements. This verified a conjecture of Tits, who had previously shown that the elements {𝑥2

𝑠 }

get sent to linearly independent elements in the abelianization of the pure Artin group. In fact,
Crisp–Paris showed that the same is true if we replace to 2 with any number 𝑁 ⩾ 2.

Tits Conjecture [13, Thm 1]. Let 𝐴 be an Artin group. For every 𝑁 ⩾ 2, the subgroup generated by
the set {𝑥𝑁

𝑠 ∶ 𝑠 ∈ 𝑆} is a RAAG with presentation

⟨𝑥𝑁
𝑠 |[𝑥𝑁

𝑠 , 𝑥
𝑁
𝑡 ] = 1 if𝑚𝑠𝑡 = 2⟩.

This is one of the few theorems known to hold for all Artin groups (for example, it is not known
if all Artin groups are torsion-free, have solvable word problem and so forth). The Tits Conjecture
had earlier been proved by Appel–Schupp for extra-large Artin groups (where 𝑚𝑠𝑡 > 3) [2], by
Collins for the braid groups [11] and by Charney for the locally reducible Artin groups (where the
associated Coxeter groups have each finite special subgroup a direct product of dihedral groups
and ℤ∕2) [8], see also [23], [28] for more partial results.
We will come back to Crisp and Paris’ method later in the introduction. Very roughly speaking,

they construct a representation from theArtin group into themapping class group of some surface
and show that it is faithful on the alleged RAAG subgroup.
In this paper, we are interested in a conjectural generalization of the Tits Conjecture, which

first appeared in [19, Conj 4.9]. This generalization asks for a RAAG subgroup that is as ‘large’ as
possible in a certain sense. In particular, it contains the RAAG subgroup that Crisp and Paris find
and its nerve is homeomorphic to the nerve of the Artin group. We will now explain how there is
a natural candidate for this larger RAAG.
Given a Coxeter system (𝑊, 𝑆) and 𝑇 ⊆ 𝑆, the subgroup 𝑊𝑇 generated by 𝑡 ∈ 𝑇 is called the

special subgroup corresponding to 𝑇. Then (𝑊𝑇, 𝑇) also is a Coxeter system. The subset 𝑇 is
spherical if 𝑊𝑇 is finite, in this case 𝑊𝑇 is a spherical special subgroup. The subset 𝑇 is called
reducible if it decomposes as 𝑇1 ∪ 𝑇2, where 𝑚𝑡𝑡′ = 2 for all 𝑡 ∈ 𝑇1 and 𝑡′ ∈ 𝑇2, otherwise 𝑇 is
irreducible (and we say 𝑊𝑇 is as well). If 𝑇 is reducible with decomposition 𝑇 = ∪𝑛

𝑖=1
𝑇𝑖 , then

𝑊𝑇 = 𝑊𝑇1
×⋯ ×𝑊𝑇𝑛

.
Similarly, the subgroup 𝐴𝑇 of 𝐴 generated by the {𝑥𝑡}𝑡∈𝑇 is the Artin group associated to the

Coxeter system (𝑊𝑇, 𝑇) [32]. If𝑇 is irreducible and spherical, then𝐴𝑇 is a irreducible, spherical spe-
cial subgroup of𝐴. These spherical Artin groups are better understood than general Artin groups.
Topologically, the pure Artin group (which in this case is finite index in 𝐴) is the fundamental
group of an aspherical linear hyperplane arrangement in ℂ𝑛, which, for example, allows one to
compute various cohomological invariants of 𝐴 [20]. Combinatorially, these groups admit a Gar-
side structure, which, for example, gives an easy to compute normal form [7]. It is also known that
the pure spherical Artin groups have an infinite center which is isomorphic to ℤ if the Coxeter
group is irreducible. This center corresponds to the fundamental group of the fiber after projec-
tivizing the hyperplane complement. We denote the generator of this by Δ2

𝑇
(it is related to the

longest element in𝑊𝑇 , see Section 2).
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We consider the subgroup of an Artin group𝐴 generated by (powers of) the centers of the irre-
ducible, spherical, pure Artin subgroups. There are some obvious commuting relations between
these elements, namely, if 𝑇 ⊆ 𝑈 or if 𝑚𝑢𝑡 = 2 for all 𝑢 ∈ 𝑈 and 𝑡 ∈ 𝑇, then the corresponding
centers Δ2

𝑈
, Δ2

𝑇
commute. We write [𝑈, 𝑇] = 1 if 𝑚𝑢𝑡 = 2 for all 𝑢 ∈ 𝑈 and 𝑡 ∈ 𝑇. As in the Tits

Conjecture, we ask whether those are the only relations.
Let  be the set of all irreducible, spherical subsets 𝑇 ⊆ 𝑆. Let RA be a RAAG generated by the

set {𝑧𝑇}𝑇∈ , with the presentation

RA = ⟨𝑧𝑇 ∣ [𝑧𝑇, 𝑧𝑈] = 1 if 𝑈 ⊆ 𝑇, 𝑇 ⊆ 𝑈, or [𝑈, 𝑇] = 1⟩. (1.1)

By the above, there are homomorphisms Φ𝑁 ∶ RA → 𝐴 so that Φ𝑁(𝑧𝑇) = Δ2𝑁
𝑇
. The map Φ𝑁 is

injective if and only if the subgroup of𝐴 generated by {Δ2𝑁
𝑇

}𝑇∈ is isomorphic to RA. For a gener-
ator 𝑥𝑠, the infinite cyclic subgroup ⟨𝑥𝑠⟩ of 𝐴 is itself an irreducible, spherical, special Artin sub-
group, so the subgroup generated by {Δ2𝑁

𝑇
}𝑇∈ contains an appropriate RAAG subgroup found by

Crisp and Paris. It will turn out that the injectivity (when we can verify it) of Φ𝑁 will depend on
𝑁, unlike the original Tits Conjecture. Therefore, we propose the following.

Generalized Tits Conjecture. Let 𝐴 be an Artin group, RA the associated RAAG and Φ𝑁 ∶

RA → 𝐴 the homomorphism defined above. Then Φ𝑁 is injective for some𝑁.

If we can verify that a specific homomorphism Φ𝑘 is injective, then we say that 𝐴 satisfies the
Generalized Tits Conjecture for 𝑁 = 𝑘. The Generalized Tits Conjecture for 𝑁 = 1 was conjec-
tured by Davis, Le and the second author in [19, Conjecture 4.9]. This turns out to be too opti-
mistic in general, though we can show it for a reasonably large class of Artin groups. In Exam-
ple 5.8 we show that Φ1 is not injective for braid groups on at least 4 strands. However, a theorem
of Koberda (Theorem 5.3) implies that braid groups satisfy the Generalized Tits Conjecture (for
some 𝑁 >> 0).
We claim this is a good generalization of the Tits Conjecture. As evidence, recall that there is

a simplicial complex 𝐿 (= 𝐿(𝑊, 𝑆)), called the nerve. Its vertex set is 𝑆 and a subset 𝑇 ⊆ 𝑆 spans
a simplex of 𝐿 if and only if 𝑇 is spherical. Davis and Huang showed in [15] that the nerve 𝐿′ of
the RAAG RA defined above is a partial barycentric subdivision of the nerve 𝐿. In particular the
nerve of the Artin group is homeomorphic to the nerve of the alleged RAAG subgroup. This is
desirable since many topological properties of this nerve are related to algebraic properties of the
Artin group. For example, contingent on the 𝐾(𝜋, 1)-conjecture, RA and 𝐴 will have the same
cohomological dimension, their compactly supported/𝓁2-cohomology will be nontrivial in the
same dimensions, and so forth. In this sense, the alleged subgroup is as ‘large’ a RAAG subgroup
as one can expect to find in𝐴. Davis andHuang in [15]were interested in determining theminimal
dimensional manifold model for a classifying space 𝐵𝐴 (see also Le’s thesis [31]). These partial
subdivisions 𝐿′ appeared earlier in [17, 18].

1.1 Results

We show the Generalized Tits Conjecture holds for Charney’s class of locally reducible Artin
groups. This includes all 2-dimensional Artin groups andArtin groupswith𝑚𝑠𝑡 ≠ 3 for all 𝑠, 𝑡 ∈ 𝑆.
The irreducible spherical Artin subgroups correspond to edges of the nerve, so the only new gen-
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erators that we are considering come from centers of the Artin subgroups generated by ⟨𝑠, 𝑡⟩ for
𝑚𝑠𝑡 ⩾ 3. We can show the following:

Theorem 1.1. Artin groups with𝑚𝑠𝑡 ≠ 3 for all 𝑠, 𝑡 ∈ 𝑆 satisfy the Generalized Tits Conjecture with
𝑁 = 1. Locally reducible Artin groups satisfy the Generalized Tits Conjecture with𝑁 = 2.

We also prove that the Generalized Tits Conjecture holds for large𝑁 for the following spherical
Artin groups.

Theorem 1.2. TheGeneralized Tits Conjecture holds with𝑁 sufficiently large for all spherical Artin
groups except for those of type 𝐸𝑛.

Our methods do not work for these remaining exotic cases. The hardest part of Theorem 1.2 is
confirming the conjecture for the Artin groups of type 𝐷𝑛 (the conjecture for Artin groups of type
𝐵𝑛 also follows from Koberda’s result). For technical reasons we have to assume that 𝑁 is even,
though we suspect it works for general large 𝑁.

1.2 Applications

Here are some immediate applications of our results. The rough moral here is that if an Artin
group satisfies the Generalized Tits Conjecture, then its subgroups are as complicated as the sub-
groups of the corresponding RAAG. In particular, we give a new proof of Wise’s result that the
spherical Artin group 𝐴 of type 𝐻3 is incoherent, and can show that 𝐴 (along with many other
Artin groups) contains a closed hyperbolic surface subgroup, answering questions of Gordon–
Long–Reid [27]. The advantage of our argument is that the same proof works for both questions;
the RAAG subgroup of 𝐴 has a nerve which is a cone on a pentagon, and it is easy to see this
subgroup is incoherent and contains hyperbolic surface subgroups.

1.3 Outlines of the proofs

Our methods of proof in the case of a spherical Artin group and locally reducible Artin groups
are very different. For the locally reducible Artin groups, we use similar methods to [8]. Char-
ney showed that the Deligne complexes of locally reducible Artin groups are CAT(0). She then
constructed a cube complex with an action of the predicted RAAG, and showed that it isometri-
cally embeds in the Deligne complex, using arguments fromCAT(0) geometry. The crucial case to
understand is the dihedral Artin groups 𝐴2𝑚 (that is, (𝑊, 𝑆) is a dihedral group 𝐷2𝑚), since these
appear in the links of vertices in the larger Deligne complex. The RAAG that we consider is larger,
sowe are trying to isometrically embed a larger complex into theDeligne complex. Again, we need
to understand the dihedral Artin groups. In this case, our complex looks roughly like a ℤ′𝑠 worth
of Charney’s complex, and we need to show that the pieces embed pairwise orthogonally in the
Deligne complex of the dihedral Artin group.
For the spherical Artin groups, we follow Crisp and Paris. We start with a representation from

the Artin group into the mapping class group of a surface Σ. For spherical Artin groups of type
𝐴𝑛,𝐷𝑛 and 𝐸𝑛, these representations are classical and due to Perron and Vannier [36]. The gen-
erators of the Artin groups map to Dehn twists around simple closed curves, and powers of the
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centers of irreducible spherical Artin subgroupsmap to Dehn twists about the boundary curves of
connected subsurfaces ofΣ. ThenKoberda’s result implies that high powers of Dehn twists around
this collection of curves generates a RAAG subgroup of the mapping class group of Σ. The reader
might suspect that we are done now, and the proof trivially follows from Koberda’s theorem (as
we initially thought). However, the boundary of these subsurfaces is not necessarily connected, so
each center maps to a product of Dehn twists about disjoint simple closed curves in Σ. Therefore,
we have to study the following question:

Question 1.3. Let RA be a RAAG. Let {𝑤𝑖} be a collection of elements of RA, where each 𝑤𝑖 is
a product of commuting generators of RA. Is the subgroup of RA generated by 𝑤𝑖 the (obvious)
RAAG?

This turns out to be subtle, and was also considered in [13] and [29]. Koberda and Crisp–Paris
gave different conditions on the {𝑤𝑖} which guaranteed a positive answer to the above question.
These conditions fail for the system of curves produced by the Perron–Vannier representation of
the Artin groups of type 𝐷𝑛. Our main work in this case is to generalize Koberda’s condition to a
condition that the curves in this system satisfy. This new conditionmay be of independent interest.
Unfortunately, our conditions do not work for the RAAG and subwords produced from the

Perron–Vannier representation of the Artin groups of type 𝐸𝑛. Even worse, for 𝐸7 and 𝐸8 we can
find words in the alleged RAAG subgroup which are in the kernel of the representation, see Sub-
section 5.4. One can check by hand that these words correspond to nontrivial elements of the
Artin group, so these mapping class group representations are not faithful enough to be used to
verify the conjecture, even for spherical Artin groups.

1.4 Organization of the paper

In Section 2, we give some background on Coxeter and Artin groups. Section 3 is devoted to prov-
ing Theorem 1.1. In Section 4 we study RAAG subgroups of RAAG’s, and it can be read indepen-
dently of the rest of the paper. In Sections 5 and 6 we use this to prove Theorem 1.2 first in the
small type case (that is, where all𝑚𝑠𝑡 ⩽ 3), and then for the remaining cases. Section 7 discusses
some applications.

2 COXETER GROUPS AND ARTIN GROUPS

Let (𝑊, 𝑆) be a Coxeter system, and let 𝐴 be the corresponding Artin group. There is a canonical
surjection 𝑝 ∶ 𝐴 → 𝑊 which sends 𝑥𝑠 to 𝑠. The kernel of 𝑝 is called the pure Artin group and
denoted by 𝑃𝐴. It is obviously finite index in 𝐴 if and only if𝑊 is a finite Coxeter group. There is
also a canonical set-theoretic section 𝜎 ∶ 𝑊 → 𝐴 of 𝑝 which takes a reduced positive word 𝑤 in
𝑊 to the same word in 𝐴. It follows from Tits’ solution to the word problem for Coxeter groups
that this does not depend on the choice of reduced expression for 𝑤.

2.1 Coxeter diagrams

When there are many commuting generators, Coxeter groups and Artin groups can be efficiently
described in terms of their Coxeter diagrams. Given a Coxeter system (𝑊, 𝑆), we consider a graph
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An

Bn = Cn 4

Dn

E6

E7

E8

4

F4

6

G2
5

H2

5

H3
5

H4
p

I2(p)

F IGURE 1 Coxeter graphs of the irreducible finite Coxeter groups

Γ whose vertex set is the set of standard generators 𝑆, and whose edges correspond to the pairs
of generators that do not commute, that is, there is an edge between 𝑠 and 𝑡 if and only if 𝑠 ≠ 𝑡

and 𝑚𝑠𝑡 ≠ 2. If 𝑚𝑠𝑡 ∈ {4, 5, 6, … } ∪ {∞}, then the edge between 𝑠 and 𝑡 is labeled with 𝑚𝑠𝑡. Oth-
erwise, that is, when 𝑚𝑠𝑡 = 3, the edge has no label. Given such a graph Γ, we will denote the
corresponding Artin group by 𝐴Γ.
Note that if the Coxeter graph Γ has multiple connected components Γ𝑖 , then the Artin group

𝐴Γ splits as the direct product
∏

𝑖 𝐴Γ𝑖
. If the Coxeter graph is connected, we say that 𝐴Γ is an

irreducible Artin group. We say an Artin group is small-type if 𝑚𝑠𝑡 ∈ {2, 3} for all 𝑠, 𝑡 ∈ 𝑆. These
correspond to Coxeter diagramswhich are unlabeled graphs (where there are no loops ormultiple
edges). The finite Coxeter groups with connected Coxeter diagramwere classified by Coxeter, and
correspond to the Coxeter graphs in Figure 1. The small-type irreducible spherical Artin groups
therefore split into two infinite families, type𝐴𝑛 and𝐷𝑛, and three exotic cases𝐸6, 𝐸7 and𝐸8. Each
of the other spherical Artin groups injects into a product of small-type spherical Artin groups, see
[12] or Section 6.

2.2 Fundamental elements and Coxeter elements

Let (𝑊, 𝑆) be a Coxeter system with𝑊 finite. A Coxeter element of𝑊 is a product of all the gen-
erators of 𝑆, in any order, where each generator appears exactly once in the product. Different
orderings produce conjugate Coxeter elements [5, V.6.1]. The Coxeter number ℎ of (𝑊, 𝑆) is the
order of a (any) Coxeter element in𝑊.
A reflection in𝑊 is a conjugate of an element of 𝑆. Each finiteCoxeter grouphas a unique longest

element𝑤𝑆 . This can be characterized as the unique element for which 𝓁(𝑠𝑤𝑆) = 𝓁(𝑤𝑆𝑠) < 𝓁(𝑤𝑆)

for all 𝑠 ∈ 𝑆, where 𝓁(𝑤) is the minimal length of a representative for 𝑤. The length of 𝑤𝑆 is
precisely the number of reflections in𝑊. Conjugation by𝑤𝑆 induces an involution of the Coxeter
diagram Γ𝑆 , in the sense that generators are sent to generators and the relations are preserved. It
follows from this that𝑤𝑠 is in the center of𝑊 if and only if this involution is trivial. This involution
happens to be nontrivial if and only if the Coxeter group is of type 𝐴𝑛, 𝐷𝑛 with 𝑛 odd, 𝐸6 or 𝐼2(𝑝)
for 𝑝 odd.
The image of 𝑤𝑆 in 𝐴 under the section 𝜎 ∶ 𝑊 → 𝐴 will be called the fundamental element

of 𝐴, and we will denote it by Δ. Each spherical Artin group has an infinite cyclic center which
is generated by either Δ or Δ2 (depending as above whether the Coxeter group has a nontrivial
center). For simplicity, we will only deal with the squares Δ2, which generate the center of the
pure Artin groups, see [35, Thm 4.7]. We record the following lemma in [7], which will be used in
Section 6.
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F IGURE 2 The subdivision 𝜎⊘ for the braid group on four strands

Lemma 2.1. Let 𝐴 be a spherical Artin group. We have that Δ2 = 𝜎(𝑐)ℎ, where 𝑐 is any Coxeter
element and ℎ is the Coxeter number.

2.3 Subdivisions

The nerve 𝐿 of a Coxeter system (𝑊, 𝑆) is a simplicial complex 𝐿 with vertex set 𝑆 where a subset
𝑇 ⊆ 𝑆 spans a simplex of 𝐿 if and only if 𝑇 is spherical. Let 𝜎 be a simplex in 𝐿 corresponding to
a spherical subset 𝑇, and 𝐴𝑇 the corresponding spherical special Artin subgroup of 𝐴. Davis and
Huang described a partial barycentric subdivision 𝜎⊘ of 𝜎 where the vertices of 𝜎⊘ correspond to
irreducible subsets of 𝑇. For𝑈 ⊆ 𝑇, we think of the vertex corresponding to𝐴𝑈 as the barycenter
of the associated simplex in 𝜎. There are edges between two vertices 𝑈 and 𝑈′ if and only if 𝑈 ⊆

𝑈′, 𝑈′ ⊆ 𝑈 or [𝑈,𝑈′] = 1. See Figure 2 for the subdivision corresponding to the braid group on
4 strands.
In terms of the Coxeter diagram Γ, the irreducible spherical Artin subgroups of 𝐴Γ correspond

to connected spherical subdiagrams. In this case, there is an edge between two connected subsets
𝑈,𝑇 of Γ𝜎 if and only if 𝑈 ⊆ 𝑇, 𝑇 ⊆ 𝑈 or 𝑈 and 𝑇 have distance > 2 in Γ.
The subdivision 𝜎⊘ can be defined as the flag completion of this graph. Of course, it is not

obvious with this definition that this is a subdivision of 𝜎; Davis and Huang provide an alter-
native description of 𝜎⊘ which obviously produces a subdivision of 𝜎, and show that it is a flag
complex with the 1-skeleton described above. In either case, these subdivisions 𝜎⊘ fit together to
give a subdivision 𝐿⊘ of 𝐿. The simplicial complex 𝐿⊘ is the nerve of the RAAG RA described in
the introduction.
In the next subsection, we verify thatΦ𝑁 ∶ RA → 𝐴 is injective when restricted the free abelian

subgroups corresponding to simplices of the nerve 𝐿⊘. This can be seen from looking at the
abelianization of 𝑃𝐴. We will also need an explicit description of a natural basis for 𝐻1(𝑃𝐴,ℤ)

in the locally reducible case.

2.4 Abelianization of pure spherical Artin groups

Each finite Coxeter group𝑊 acts on ℝ𝑛 by linear reflections, where 𝑛 is the number of elements
of 𝑆. Complexifying this action gives a group action on ℂ𝑛 by linear reflections. The complement
of the reflecting hyperplanes, denoted by𝑀(𝑊), has 𝜋1(𝑀(𝑊)) = 𝑃𝐴, where 𝐴 is the associated
Artin group.
The Coxeter group acts freely on 𝑀(𝑊), and 𝜋1(𝑀(𝑊)∕𝑊) = 𝐴. Deligne showed that 𝑀(𝑊)

is aspherical [20], so in particular 𝐻1(𝑃𝐴,ℤ) is isomorphic to 𝐻1(𝑀(𝑊), ℤ). It is easy to see that
𝐻1(𝑀(𝑊), ℤ) is isomorphic to the free abelian group ℤ𝑅, where 𝑅 is the set of reflections in 𝑊,
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or the set of hyperplanes in this arrangement [35] (the complement deformation retracts to its
intersection with 𝑆2𝑛−1, which is homeomorphic to 𝑆2𝑛−1 −

⋃
𝑅 𝑆

2𝑛−3). Given a spherical subset
𝑇 of 𝑆, let 𝑅𝑇 ⊆ 𝑅 be the set of reflections in𝑊𝑇 .
Let {𝑒𝑟} be the standard basis ofℤ𝑅. For each element 𝑠 ∈ 𝑆, the element𝑥2

𝑠 in𝑃𝐴 corresponds to
a loop around the hyperplane corresponding to 𝑠 in ℂ𝑛. It turns out that the class of 𝑥2

𝑠 is precisely
𝑒𝑠 for each 𝑠 ∈ 𝑆. Any 𝑟 ∈ 𝑅 is a conjugate of an element 𝑠 ∈ 𝑆, that is, 𝑟 = 𝑤𝑠𝑤−1 for some𝑤 ∈ 𝑊.
Let 𝑎𝑤 be any element of 𝐴 that projects to 𝑤 under 𝑝 ∶ 𝐴 → 𝑊. Then 𝑎𝑤𝑥

2
𝑠 𝑎

−1
𝑤 is in 𝑃𝐴, and its

image in𝐻1(𝑃𝐴,ℤ) is precisely 𝑒𝑟.

Lemma 2.2 [15, Lem 2.2]. Suppose that 𝑇 is spherical. Let 𝑒𝑇 be the image of Δ2
𝑇
in 𝐻1(𝑃𝐴𝑇, ℤ).

Then

𝑒𝑇 =
∑
𝑡∈𝑅𝑇

𝑒𝑡.

It follows from this lemma that given any simplex 𝜏 in 𝜎⊘, the image of the elements in
𝐻1(𝑃𝐴𝑇, ℤ) corresponding to the vertices of 𝜏 are linearly independent, so in particular these
form a free abelian subgroup of 𝑃𝐴𝑇 (and hence of 𝑃𝐴) of rank dim(𝜏) − 1.
Davis and Huang also show that the intersection of these free abelian subgroups is as expected,

that is, if 𝜎 and 𝜏 are simplices of 𝐿⊘, then the subgroups correspond to 𝜎 and 𝜏 intersects in the
subgroup corresponding to 𝜎 ∩ 𝜏. This serves as further evidence for the Generalized Tits Conjec-
ture.

Remark 2.3. There are similar configurations of free abelian subgroups for affine hyperplane com-
plements inℂ𝑛, and as far aswe know the analogue to theGeneralized Tits Conjecture is also open
in this case (see [19, Section 5]). In this case, the relevant simplicial complex 𝐿 comes from the
intersection poset of the hyperplane arrangement. Each irreducible central subarrangement has
an infinite cyclic center, and these combine as above to produce standard free abelian subgroups.
Again, it is known that these centers are linearly independent vectors in the first homology group
of the arrangement complement. In this case, the relevant partial subdivision of 𝐿 is the geometric
realization of the nested set complex associated to the minimal building set for the arrangement
as defined by De Concini and Procesi [21].

Remark 2.4. The motivation in [19] behind generalizing the Tits Conjecture was the computation
of action dimension of RAAG’s in [3]. This is the minimal dimension of a manifold model of the
classifying space𝐵(RA). This is obviouslymonotone, in the sense that if𝐻 is a subgroup of𝐺, then
the action dimension of𝐺 is greater than the action dimension of𝐻. Therefore, if the Generalized
Tits Conjecture was true, the action dimension of the Artin group 𝐴 is larger than the action
dimension of RA, and inmany cases this would lead to a complete calculation for𝐴. On the other
hand, combined work of Davis–Huang and Le gave a nearly complete computation for the action
dimension of Artin groups (contingent on the 𝐾(𝜋, 1)-conjecture) without using the conjecture
(it was enough that the standard free abelian subgroups inject into 𝐴 and intersect as expected)
[15, 31].

2.5 Deligne complex

The spherical subsets of 𝑆 form a poset under inclusion. Let 𝐾 denote the geometric realization
of this poset; 𝐾 is the cone on the barycentric subdivision 𝑏𝐿 of the nerve, with the cone vertex
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corresponding to the empty set ∅. There is another poset of spherical cosets 𝑎𝐴𝑇 of𝐴, where 𝑎 ∈ 𝐴

and 𝐴𝑇 is a spherical special subgroup, again ordered by inclusion. The geometric realization of
this poset is called the modified Deligne complex [10], and denoted by 𝐷(𝐴). The Artin group 𝐴

acts on 𝐷(𝐴) by left multiplication, and 𝐾 is a strict fundamental domain for this action. The
analogous construction in the Coxeter group setting (that is, replace 𝑎𝐴𝑇 with 𝑤𝑊𝑇) is precisely
the Davis complex.
Here is an alternative description of 𝐷(𝐴). Given a spherical subset 𝑇, let 𝐾⩾𝑇 denote the sub-

complex of 𝐾 spanned by vertices 𝐴𝑇′ with 𝑇 ⊆ 𝑇′. Then

𝐷(𝐴) = 𝐴 × 𝐾∕ ∼,

where (𝑎1, 𝑥) ∼ (𝑎2, 𝑥) if and only if 𝑥 is in 𝐾⩾𝑇 and 𝑎−1
1

𝑎2 ∈ 𝐴𝑇 . We identify 𝐾 with 1 × 𝐾. If
𝐴 is itself a spherical Artin group, the poset of spherical cosets has a maximal element 𝐴, so the
Deligne complex is a cone with cone point 𝐴. The link of 𝐴 is a simplicial complex of dimension
|𝑆| − 1, and we denote it by 𝐵(𝐴).
Conjecturally, the modified Deligne complex is contractible for all Artin groups. It follows

from Deligne’s work on spherical Artin groups that this would imply the well-known 𝐾(𝜋, 1)-
conjecture. Motivated by this, Charney and Davis in [10] put two natural piecewise Euclidean
metrics on 𝐷(𝐴). Note that 𝐷(𝐴) has a natural cube complex structure, since the cone on the
barycentric subdivision of a simplex is combinatorially isomorphic to a cube. The first metric
simply makes each cube isometric to a standard Euclidean cube [0, 1]𝑛. It turns out that this met-
ric is CAT(0) if and only if the nerve 𝐿 is a flag complex (the induced metric on the link of the
vertex ∅ is isometric to 𝐿 with the all-right spherical metric, so flagness is an obvious necessary
condition).
The secondmetric on𝐷(𝐴) is called theMoussongmetric, as it is related to theMoussongmetric

on the Davis complex, which is always CAT(0). Charney and Davis showed that the Moussong
metric on 𝐷(𝐴) is CAT(0) for 2-dimensional Artin groups. It is still open whether 𝐷(𝐴) equipped
with the Moussong metric is CAT(0) for all Artin groups.
We now describe this metric for Artin groups corresponding to dihedral groups, which is the

only important case for this paper. It is slightly more convenient for us to keep the original cellu-
lation of 𝐷(𝐴) as a simplicial complex. See [8] or [10] for details in the general case. The dihedral
group 𝐷2𝑚 acts by linear reflections on ℝ2 in the standard way, with strict fundamental domain
a simplicial cone. Let 𝑥 be the unique point in this cone whose distance from the two walls of
the cone is 1. The convex hull of the orbit of 𝑥 under 𝐷2𝑚 is a 2𝑚-gon with edge lengths 2. We
subdivide the 2𝑚-gon by coning off the orbit of 𝑥. The intersection of this convex hull with the
simplicial cone is combinatorially isomorphic to𝐾, and we give𝐾 the inherited Euclideanmetric.
This defines a piecewise Euclidean metric on 𝐷(𝐴), which in this case is CAT(0). See Figure 3.
This naturally gives a piecewise spherical metric on 𝐵(𝐴), where every edge has length 𝜋∕2𝑚.
This turns out to be a CAT(1) metric, which in this case is equivalent to there being no closed
geodesics with length < 2𝜋. In the 2-dimensional case, this follows from [2, Lem 6].
We now recall the structure of links of vertices in the Deligne complex, again see [10] or [8] for

complete details. It suffices to consider vertices in 𝐾 as this is a strict fundamental domain for the
action. Let 𝑇 be a spherical subset of 𝑆, and let 𝑣𝑇 be the corresponding vertex in𝐾. Then we have
the following join decomposition:

Lk𝐷(𝐴)(𝑣𝑇) = Lk𝐾⩾𝑇
(𝑣𝑇) ∗ 𝐵(𝐴𝑇).
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F IGURE 3 The Moussong metric on 𝐾 for the dihedral Artin group and a small part of the development of
the Deligne complex

The piecewise spherical metric on Lk𝐷(𝐴)(𝑣𝑇) is isometric to the spherical join of the metrics
on Lk𝐾⩾𝑇

(𝑣𝑇) and 𝐵(𝐴𝑇) [9, Lem 2.2]. Recall the spherical join of two piecewise spherical metrics
is defined by making each simplex 𝜎 ∗ 𝜏 isometric to the simplex in 𝕊dim𝜎+dim 𝜏+1 spanned by
𝜎 ⊆ 𝑆dim𝜎 and 𝜏 ⊆ 𝑆dim𝜏, where points in 𝜎 and 𝜏 are all distance 𝜋∕2 apart. Charney proves this
for the cubical metric on 𝐷(𝐴), our links are isometric but have a finer subdivision (which still
preserves the join structure).

2.6 Representations of small-type Artin groups inside mapping class
groups

Let Σ be an oriented compact surface, possibly with boundary. Let 𝑃 = {𝑃1, …𝑃𝑛} be a collec-
tion of 𝑛 punctures in the interior of Σ. Let Homeo+(Σ, 𝑃) denote the group of orientation-
preserving homeomorphisms of Σ which fix the boundary pointwise, and which preserve 𝑃. Let
Homeo+

0
(Σ, 𝑃) denote the connected component of the identity in Homeo+(Σ, 𝑃). The mapping

class group of the pair (Σ, 𝑃) is defined to be

Mod(Σ, 𝑃) = Homeo+(Σ, 𝑃)∕Homeo+
0
(Σ, 𝑃).

A multicurve is a disjoint union of a finite number of simple, closed, essential curves in Σ. A
multitwist about a multicurve is the composition of (not necessarily the same) powers of Dehn
twists about the individual curves. Since the curves are disjoint, the order in which we compose
those Dehn twists does not matter.
For the small-type spherical Artin groups, there are classical representations intomapping class

groups. This is due to Birman–Hilden for type 𝐴𝑛, and Perron–Vannier in general [36]. We will
refer to all of them as Perron–Vannier representations. Crisp and Paris defined similar representa-
tions for all small-type Artin groups, however we shall not need this generality. These represen-
tations also naturally arise as geometric monodromies of simple singularities of type Γ [33].
For 𝐴 of type 𝐴𝑛, the Perron–Vanier representation 𝐴 → Mod(Σ) sends the consecutive gener-

ators of 𝐴 to the Dehn twists around the consecutive curves in Figure 4. The surface Σ has genus
𝑛−1

2
and two boundary components, when 𝑛 is odd, and Σ has genus 𝑛

2
and one boundary compo-

nent, when 𝑛 is even.
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F IGURE 4 The Perron–Vannier representation for the Artin groups of type 𝐴𝑛. If 𝑛 is even, then the
element Δ4

𝑆
goes to a Dehn twists around the boundary curve. If 𝑛 is odd, then the element Δ2

𝑆
goes to multitwist

that is a product of single Dehn twists about each of the boundary curves

t1 t2 t3 t4 t5s

s
t1

t3 t5

t2 t4
s

s

t1 t2 t3 t4 t5 t6s

s
t1

t3 t5

t2 t4
s

s

t6

F IGURE 5 The Perron–Vannier representation 𝐴 → 𝑀𝑜𝑑(Σ) for Artin group 𝐴 of type 𝐷𝑛. Let 𝛾1 be the left
connected component of 𝜕Σ. For 𝑛 odd, the element Δ2

𝑆
gets sent to a product of Dehn twists 𝛾𝑛−2

1
𝛾2. For 𝑛 even,

the element Δ2
𝑆
gets sent to a product of Dehn twists 𝛾

𝑛

2
−1

1
𝛾2𝛾3

If 𝐴 has type 𝐷𝑛, let the standard generators of 𝐴 be {𝑠, 𝑠′, 𝑡1, … , 𝑡𝑛−2} where 𝑠 and 𝑠′ are both
adjacent to 𝑡1 in the Coxeter graph, and 𝑡𝑖 and 𝑡𝑖+1 are adjacent for all 𝑖 = 1, … , 𝑛 − 3. The Perron–
Vannier representation 𝐴 → Mod(Σ) sends the generators to the Dehn twists around curves, as
pictured in Figure 5. The surface Σ has genus 𝑛−1

2
and two boundary components when 𝑛 is odd,

and genus 𝑛−2

2
and three boundary components when 𝑛 is even.

The Perron–Vannier representation 𝐴 → Mod(Σ) of the Artin group 𝐴 of type 𝐸𝑛, where 𝑛 =

6, 7, 8, is illustrated in Figure 6. The surface Σ has

∙ genus three and one boundary component, if 𝑛 = 6;
∙ genus three and two boundary components, if 𝑛 = 7;
∙ genus four and one boundary component, if 𝑛 = 8.

Remark 2.5. For any small-type spherical Artin group 𝐴 with the Perron–Vannier representation
𝜌 ∶ 𝐴 → Mod(Σ), the image of the element Δ4

𝑆
under 𝜌 is a multitwist about the boundary com-

ponents of 𝜕Σ. It will never matter for us the exact power of each Dehn twist.
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t1 t2 t3 t4 t5 t6 t7

s

t1 t3 t5 t7

t2 t4 t6

s

F IGURE 6 The Coxeter diagram for Artin group 𝐴 of type 𝐸6, 𝐸7, 𝐸8. A representation 𝐴 → Mod(Σ). The
subsurfaces with gray boundary curves correspond to 𝐸6 and 𝐸7

3 GENERALIZED TITS CONJECTURE FOR LOCALLY REDUCIBLE
ARTIN GROUPS

In this section, we show that Artin groups with no edges labeled by 3 satisfy the Generalized Tits
Conjecture for𝑁 = 1, and locally reducibleArtin groups satisfy the conjecture for𝑁 = 2. AnArtin
group is totally reducible if its Coxeter diagram is a disjoint union of vertices and single edges, that
is, it is a direct product of Artin groups of rank atmost 2. Recall from the introduction that anArtin
group is locally reducible if all spherical special subgroups are totally reducible. We first record an
easy characterization of the locally reducible Artin groups in terms of their Coxeter diagram.

Lemma 3.1 [8, Lem 3.1]. Let Γ be a Coxeter diagram, and 𝐴 the associated Artin group. Then 𝐴 is
locally reducible if and only if Γ satisfies the following condition:
If two consecutive edges of Γ are not contained in a triangle, then their labels 𝑎, 𝑏 satisfy 1∕𝑎 +

1∕𝑏 ⩽ 1∕2.

3.1 CAT(0) geometry

We will assume that the reader is comfortable with comparison geometry, particularly in the set-
ting of piecewise Euclidean and piecewise spherical cell complexes, see [8], [6] or [14, Appendix I]
for the relevant details. We record some theorems and definitions that we will need. The first is
due to Gromov, proofs can be found in [6].

Theorem 3.2. Let 𝑋 be a piecewise Euclidean cell complex. Then 𝑋 is locally CAT(0) if and only
if the induced piecewise spherical metric on the link Lk(𝑣, 𝑋) is CAT(1) for all vertices 𝑣 ∈ 𝑋. If 𝑋 is
simply connected and locally CAT(0), then it is CAT(0).

Lemma 3.3 (see Appendix of [10]). The spherical join of two piecewise spherical complexes 𝐿1 and
𝐿2 is CAT(1) if and only if 𝐿1 and 𝐿2 are CAT(1).

Definition 3.4. Let 𝑓 ∶ 𝐿 → 𝐿′ be a map between piecewise spherical complexes. We say 𝑓 is
𝜋-distance preserving if

𝑑𝐿(𝑥1, 𝑥2) ⩾ 𝜋 ⇒ 𝑑𝐿′(𝑓(𝑥1), 𝑓(𝑥2)) ⩾ 𝜋.

If 𝐿 is not connected, thenwe set 𝑑𝐿 = ∞ for points in different components. Thus𝑓 ∶ 𝐿 → 𝐿′ is
𝜋-distance preserving if it is 𝜋-distance preserving on each component of 𝐿 and points in different
components get mapped ⩾ 𝜋 apart in 𝐿′.
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Lemma 3.5 [8, Lem 1.4]. Suppose 𝑓 ∶ 𝑋 → 𝑋′ is amap between two piecewise Euclidean complexes
which takes piecewise geodesics to piecewise geodesics. Then 𝑓 is locally an isometric embedding if
and only if the induced maps on all links Lk(𝑥, 𝑋) → Lk(𝑓(𝑥), 𝑋′) are 𝜋-distance preserving. Fur-
thermore, if 𝑋′ is CAT(0), then 𝑓 is an isometric embedding.

Lemma 3.6 (see Appendix of [10]). If 𝑓 ∶ 𝐿1 → 𝐿′
1
and g ∶ 𝐿2 → 𝐿′

2
are 𝜋-distance preserving, and

𝐿1 ∗ 𝐿2, 𝐿′1 ∗ 𝐿′
2
are spherical joins, then

𝑓 ∗ g ∶ 𝐿1 ∗ 𝐿2 → 𝐿′1 ∗ 𝐿′2

is 𝜋-distance preserving.

Charney showed that the proof that 𝐷(𝐴) is CAT(0) for 2-dimensional Artin groups extends to
locally reducible Artin groups.

Theorem 3.7 [8, Thm 3.2]. Let 𝐴 be a locally reducible Artin group. Then 𝐷(𝐴) equipped with the
Moussong metric is CAT(0).

3.2 Orthogonality in the Deligne complex

Definition 3.8. Let 𝐹𝑛 = ⟨𝑥1, … , 𝑥𝑛⟩ be a free group of rank 𝑛. Then every element g of 𝐹𝑛 can
be written uniquely as

g = 𝑥
𝑛1
𝑖1
𝑥
𝑛2
𝑖2

… 𝑥
𝑖𝑘
𝑖𝑘
,

where 𝑥𝑖𝑗 ≠ 𝑥𝑖𝑗+1 and 𝑛𝑖 ∈ ℤ − {0}. The syllable length of g in this case is equal 𝑘. If 𝐺 is a group
admitting a surjection 𝜙 ∶ 𝐹𝑛 → 𝐺 is a surjection, then for g ∈ 𝐺 we define the syllable length of g
with respect to the generating set {𝜙(𝑥1), … , 𝜙(𝑥𝑛)}, to be the infimum of syllable lengths of words
in 𝜙−1(g).

For convenience, we will denote the generators of 𝐴 by letters 𝑠, 𝑡, … rather than 𝑥𝑠, 𝑥𝑡 … . We
will also denote the coset 𝑎⟨∅⟩ just by 𝑎 for each 𝑎 ∈ 𝐴. If 𝐴 is a dihedral Artin group, then a
simplicial path in 𝐵(𝐴) between two cosets g and ℎ must contain an even number of vertices. In
particular, each pair of consecutive edges connects g to g𝑡𝑘 or g𝑠𝑘 for some 𝑘 ∈ ℤ. Therefore, we
can associate to a path in 𝐵(𝐴) between g and ℎ a word 𝑤 in the free group 𝐹(𝑠, 𝑡) so that g𝑤 = ℎ

in 𝐴. If this path is embedded, then its length is equal to 𝜋

𝑚
𝑘 where 𝑘 is the syllable length of 𝑤.

We now record a technical proposition concerning dihedral Artin groups. In this case, the pure
Artin group is isomorphic to the direct product 𝐹𝑚−1 × ℤ, where Δ2 is the generator of ℤ (in this
case, the hyperplane complement is homeomorphic to aℂ∗-bundle over an𝑚-punctured sphere).
The proposition states a sort of orthogonality for the action of the pure Artin group on the Deligne
complex. Given two elements g , ℎ in theArtin group,we let𝑑𝐵(𝐴)(g , ℎ) denote the distance in𝐵(𝐴)
between the vertices g and ℎ.

Proposition 3.9. Let 𝐴 be a dihedral Artin group. Let g be an element of the free subgroup ⟨𝑠2, 𝑡2⟩.
Then for any 𝑛 ∈ ℤ − {0} we have that

𝑑𝐵(𝐴)(Δ
2𝑛, g) ⩾ 𝜋.
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Furthermore, if𝑚 = 𝑚𝑠𝑡 > 3, then

𝑑𝐵(𝐴)(Δ
2𝑛, g) ⩾ 𝜋 + 𝜋∕𝑚.

Finally, if𝑚 = 𝑚𝑠𝑡 = 3 and g is in the free subgroup ⟨𝑠4, 𝑡4⟩, then
𝑑𝐵(𝐴)(Δ

2𝑛, g) ⩾ 𝜋 + 𝜋∕𝑚.

Proof. Suppose that 𝑑𝐵(𝐴)(Δ2𝑛, g) < 𝜋, so there is 𝑎 ∈ 𝐴 of syllable length < 𝑚 so that

Δ2𝑛 = 𝑎g .

Note that 𝑎 is obviously an element of the pure Artin group 𝑃𝐴, since both g and Δ2𝑛 are. We now
compute the image 𝑎 of 𝑎 in𝐻1(𝑃𝐴,ℤ). Let 𝑎 = 𝑏𝑐, where 𝑏 has only odd powers of 𝑠 and 𝑡, and 𝑐
begins with 𝑠2𝑟 or 𝑡2𝑟. Let 𝜋 ∶ 𝐴 → 𝑊 be the canonical projection. Since the length of 𝜋(𝑏) in𝑊 is
< 2𝑚, 𝑐 must be nontrivial, otherwise 𝑎 would not be in 𝑃𝐴. Without loss of generality, suppose
that 𝑐 starts with 𝑠2𝑟. Note that 𝑐must project to 𝜋(𝑏)−1 under 𝜋. In particular, the syllable length
of 𝑏 is strictly smaller than 𝑚−1

2
.

Thus we can write 𝑎 = 𝑏𝑠2𝑟𝑏−1𝑏𝑐′, where 𝑏𝑐′ is in 𝑃𝐴 and has strictly smaller syllable length
than 𝑎. Since 𝑏𝑠2𝑟𝑏−1 and 𝑏𝑐′ are in 𝑃𝐴, in𝐻1(𝑃𝐴,ℤ) we have the relation between the images

𝑎 = 𝑏𝑠2𝑟𝑏−1 + 𝑏𝑐′.

Therefore, by induction on the syllable length of 𝑎, we can assume that 𝑎̄ ∈ 𝐻1(𝑃𝐴,ℤ) is the
sum of images of elements 𝑏𝑖𝑠2𝑟𝑏−1𝑖

and 𝑏𝑖𝑡
2𝑟𝑏−1

𝑖
, where the syllable length of the 𝑏𝑖 is ⩽

𝑚−2

2

and the 𝑏𝑖 only contain odd powers of 𝑠 and 𝑡 (or they are trivial). Therefore, the image of Δ2𝑛 in
𝐻1(𝑃𝐴,ℤ) could be written as a sum of elements 𝑏𝑖𝑠2𝑟𝑏−1𝑖

and 𝑏𝑖𝑡2𝑟𝑏−1𝑖
with syllable length of the

𝑏𝑖 ⩽
𝑚−2

2
. It is also easy to see that these 𝑏𝑖 can only have syllable length

𝑚−2

2
for a single 𝑖.

However, this contradicts Lemma 2.2. Recall that 𝐻1(𝑃𝐴,ℤ) has a standard basis given by the
hyperplanes in the dihedral arrangement, and the image of 𝑏𝑖𝑠2𝑏−1𝑖

is precisely the basis vector
𝑒𝑟, where 𝑟 is the conjugate 𝜋(𝑏𝑖)𝑠𝜋(𝑏𝑖)−1.
In particular, if 𝑚 is odd, then any such sum as above misses the hyperplane corresponding

to the longest element of𝑊, which is a conjugate 𝑤𝑠𝑤−1 where 𝑤 has length 𝑚−1

2
. If 𝑚 is even,

there are two hyperplanes corresponding to conjugates 𝑤𝑠𝑤−1 and 𝑤′𝑡(𝑤′)−1 where 𝑤 and 𝑤′

have length 𝑚−2

2
, hence the elements in our summiss one of these.Wewill refer to these as longest

hyperplanes. Since Δ2𝑛 maps in 𝐻1(𝑃𝐴,ℤ) to a vector with nontrivial 𝑒𝑟-term for each 𝑟 ∈ 𝑅, this
is a contradiction as the image of g obviously misses these longest hyperplanes as well. This com-
pletes the proof of the first statement.
Now, suppose that 𝑚𝑠𝑡 > 3 and 𝑑𝐵(𝐴)(Δ

2𝑛, g) = 𝜋. We first consider the odd case, where 𝑚 =

2𝑘 + 1. We can write

Δ2𝑛 = 𝑎g ,

where the syllable length of 𝑎 is equal to 𝑚. In the decomposition 𝑎 = 𝑏𝑐 above, we claim
that 𝑏 must have syllable length 𝑘. Otherwise, we can again write the images in 𝐻1(𝑃𝐴,ℤ) as
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𝑎 = 𝑏𝑠2𝑟𝑏−1 + 𝑏𝑐′. If 𝑏 has syllable length < 𝑘 then both 𝑏𝑠2𝑟𝑏−1 and 𝑏𝑐′ will miss the vector in
𝐻1 corresponding to the longest hyperplane.
Therefore, without loss of generality we have 𝑎 = 𝑏𝑐 and the syllable length of 𝑏 is 𝑘. Since 𝑎

is in the pure Artin group, 𝑐 is of the form 𝑠2𝑟𝑥 or 𝑡2𝑟𝑥 where 𝑥 projects to 𝜋(𝑏)−1 (in particular
each term of 𝑥 has odd exponent).
Therefore, without loss of generality we can rewrite 𝑎 = 𝑏𝑠2𝑟𝑏−1𝑎′. By the above, 𝑎′ = 𝑏′𝑐′,

where 𝑏′ has all odd exponents, has syllable length 𝑘 − 1, and where 𝑐′ = 𝑠2𝑟𝑥′ or 𝑡2𝑟𝑥′ as above.
Repeating this argument gives us that in𝐻1(𝑃𝐴,ℤ),

𝑎 = 𝑒𝑟1 + 𝑒𝑟2 +⋯ + 𝑒𝑟𝑘+1 ,

where the length of the reflections 𝑟𝑖 is strictly decreasing. If 𝑚𝑠𝑡 > 3, then there are two hyper-
planes of length 1 < 𝓁(𝑟) < 𝑚, and hence the image 𝑎 misses one of those.
If 𝑚 = 2𝑘 is even, the proof essentially extends. The point here is that there are two longest

hyperplanes and the image 𝑎 will again miss one of these. More precisely, suppose that 𝑎 = 𝑏𝑐

as above. In order to hit one of the longest hyperplanes, 𝑏 must have syllable length 𝑘 − 1. This
implies that 𝑐 = 𝑠2𝑟𝑥 or 𝑐 = 𝑡2𝑟𝑥, and 𝑥 projects to 𝜋(𝑏)−1. In particular, we must have that 𝑥 =

𝑦𝑡2𝑚 or 𝑥 = 𝑦𝑠2𝑚 where 𝑦 projects to 𝜋(𝑏)−1. Therefore, we can push the last syllable into g . Since
we now have a word 𝑎′ of length < 𝑚, the proof in the first case rules out this possibility.
We now prove the last statement. We will now assume that𝑚𝑠𝑡 = 3, that is,𝐴 is the braid group

on 3-strands. We need the following lemma:

Lemma 3.10. If 𝑛 > 0 we have that

Δ2𝑛 = 𝑠𝑡2𝑛𝑠 𝑡2𝑠2 ⋯
⏟⏟⏟
2𝑛−1 terms

= 𝑡𝑠2𝑛𝑡 𝑠2𝑡2 ⋯
⏟⏟⏟
2𝑛−1 terms

,

Δ−2𝑛 = 𝑠−1𝑡−2𝑛𝑠−1 𝑡−2𝑠−2 ⋯
⏟⎴⏟⎴⏟
2𝑛−1 terms

= 𝑡−1𝑠−2𝑛𝑡−1 𝑠−2𝑡−2 ⋯
⏟⎴⏟⎴⏟
2𝑛−1 terms

.

Proof. We only prove the first equalities for both Δ2𝑛 and Δ−2𝑛; the same argument with 𝑠 and 𝑡

switched will give the second. Since Δ2 = 𝑠𝑡2𝑠𝑡2 = 𝑡2𝑠𝑡2𝑠 we have by induction that for 𝑛 > 1

Δ2𝑛 = 𝑠𝑡2𝑛−2𝑠 𝑡2𝑠2 ⋯
⏟ ⏟⏟

2𝑛−3 terms

(𝑡2𝑠𝑡2𝑠) = 𝑠𝑡2𝑛−2(𝑡2𝑠𝑡2𝑠)𝑠 𝑡2𝑠2 ⋯
⏟ ⏟⏟

2𝑛−3 terms

= 𝑠𝑡2𝑛𝑠𝑡2𝑠2 𝑡2𝑠2 ⋯
⏟ ⏟⏟

2𝑛−1 terms

.

Similarly, Δ−2 = 𝑠−1𝑡−2𝑠−1𝑡−2 = 𝑡−2𝑠−1𝑡−2𝑠−1, so by induction for 𝑛 > 1 we have

Δ−2𝑛 = 𝑠−1𝑡−2𝑛+2𝑠−1 𝑡−2𝑠−2 ⋯
⏟⎴⏟⎴⏟
2𝑛−3 terms

𝑡−2𝑠−1𝑡−2𝑠−1 = 𝑠−1𝑡−2𝑛𝑠−1 𝑡−2𝑠−2 ⋯
⏟⎴⏟⎴⏟
2𝑛−1 terms

.
□

Now, suppose that Δ2𝑛 = 𝑎g where 𝑎 has syllable length 3 and g ∈ ⟨𝑠4, 𝑡4⟩. Then by Lemma 2.2
without loss of generality we can assume that 𝑎 = 𝑠𝑘𝑡2𝑛𝑠𝑙 where 𝑘 and 𝑙 are odd integers. We will
assume that 𝑛 > 0, a similar argument works for 𝑛 < 0.
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By conjugating with an even power of 𝑠, we can assume that 𝑘 = 1. Then we have

𝑠𝑡4𝑛𝑠 𝑡2𝑠2 ⋯
⏟ ⏟⏟

2𝑛−1 terms

= 𝑠𝑡4𝑛𝑠𝑙g𝑠𝑘−1

so in particular

𝑡2𝑠2 ⋯
⏟ ⏟⏟

2𝑛−1 terms

= 𝑠𝑙−1g𝑠𝑘−1,

where 𝑙 − 1 and 𝑘 − 1 are even.
Since the original Tits Conjecture holds for 𝐴, we must have that

𝑡2𝑠2 ⋯
⏟ ⏟⏟

2𝑛+1 terms

is equivalent to 𝑠𝑙−1g𝑠𝑘−1 in the free group on 𝑠 and 𝑡. But the powers of 𝑠 and 𝑡 in g are powers of
4, which is a contradiction. □

3.3 Proof of Generalized Tits Conjecture in the locally reducible case

Let 𝐴 be a locally reducible Artin group and RA the associated RAAG. Let 𝐾 be the fundamental
domain for the action of𝐴 on its Deligne complex𝐷(𝐴)with themetric as described in Section 2.5.
Let 𝐴̂ denote the RAAG subgroup that is in the original Tits Conjecture (that is, the generators of
𝐴̂ correspond to generators of 𝐴). In [8] Charney defined a complex

𝐷̂(𝐴) = 𝐴 × 𝐾∕ ∼,

where (𝑎1, 𝑥) ∼ (𝑎2, 𝑥) if and only if 𝑥 ∈ 𝐾⩾𝑇 and 𝑎−1
1

𝑎2 ∈ 𝐴𝑇 . This is not the Deligne complex
for 𝐴, since 𝐴𝑇 may not be spherical. We define

Ê𝐷(𝐴) = 𝑅𝐴 × 𝐾∕ ∼,

where (𝑎1, 𝑥) ∼ (𝑎2, 𝑥) if and only if 𝑥 ∈ 𝐾⩾𝑇 and 𝑎−1
1

𝑎2 ∈ 𝑅𝐴𝑇 .
The Moussong metric on 𝐾 induces a piecewise Euclidean metric on Ê𝐷(𝐴), and the homomor-

phismsΦ𝑁 ∶ RA → 𝐴 define an induced map ÊΦ𝑁 ∶ Ê𝐷(𝐴) → 𝐷(𝐴)which sends 𝑠 × 𝐾 isomorphi-
cally onto Φ𝑁(𝑠) × 𝐾.
If 𝐴 is spherical, then both 𝐷̂(𝐴) and Ê𝐷(𝐴) have a cone point, labeled by 𝐴. We let Ê𝐵(𝐴) be the

link of this cone point in Ê𝐷(𝐴), and 𝐵(𝐴) the link of the cone point in 𝐷̂(𝐴). Note that 𝐵(𝐴) is nat-
urally a subcomplex of Ê𝐵(𝐴). If𝐴 is dihedral, then we denote the generators ofRA by {𝑧𝑠, 𝑧𝑡, 𝑧{𝑠,𝑡}}.
In particular, Φ𝑁(𝑧{𝑠,𝑡}) = Δ2𝑁 .

Lemma 3.11. If 𝐴 is a dihedral Artin group, then Ê𝐵(𝐴) is the disjoint union

Ê𝐵(𝐴) =
⨆
𝑖∈ℤ

𝑧𝑖
{𝑠,𝑡}

𝐵(𝐴).
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Proof. The adjacent vertices in Ê𝐵(𝐴) to 𝑤⟨𝑠⟩ are 𝑤∅ and 𝑤𝑧𝑠∅, (and similarly for 𝑤⟨𝑡⟩). Since
𝑤 = g𝑧𝑖

{𝑠,𝑡}
and𝑤𝑧𝑠 = g𝑧𝑠𝑧

𝑖
{𝑠,𝑡}

for some g ∈ 𝐹2, the power 𝑧𝑖{𝑠,𝑡} is the same for𝑤 and𝑤𝑠. Therefore,
any vertices that can be connected by a path in Ê𝐵(𝐴) have the same power of 𝑧{𝑠,𝑡}. The 𝑧{𝑠,𝑡}-action
on Ê𝐵(𝐴) identifies each connected component of Ê𝐵(𝐴) with 𝐵(𝐴). □

Proposition 3.12. Let 𝐴 be a totally reducible, finite-type Artin group with 𝑚𝑠𝑡 ≠ 3 for each
factor. Then the induced map Φ1 ∶ Lk(𝐴, Ê𝐷(𝐴)) → Lk(𝐴,𝐷(𝐴)) is 𝜋-distance preserving. For any
totally reducible finite-type Artin group, the induced map Φ2 ∶ Lk(𝐴, Ê𝐷(𝐴)) → Lk(𝐴,𝐷(𝐴)) is 𝜋-
distance preserving.

Proof. In this proof𝑁 = 1 or 2, depending on whether there are 𝑠, 𝑡 with𝑚𝑠𝑡 = 3. We have that 𝐴
and RA decompose as

𝐴 = 𝐴1 × 𝐴2 ×⋯ × 𝐴𝑘; RA = RA1 ×RA2 ×⋯ × RA𝑘,

where each𝐴𝑖 is an irreducible spherical subgroup of rank 2 or ℤ. Therefore, both 𝐵(𝐴) and Ê𝐵(𝐴)
decompose as spherical joins

𝐵(𝐴) = 𝐵(𝐴1) ∗ 𝐵(𝐴2) ∗ ⋯ ∗ 𝐵(𝐴𝑘); Ê𝐵(𝐴) = Ê𝐵(𝐴1) ∗ Ê𝐵(𝐴2) ∗ ⋯ ∗ Ê𝐵(𝐴𝑘),

so by Lemma 3.6 it suffices to check 𝜋-distance preserving for each 𝐴𝑖 . If 𝐴 = ℤ this is obvious,
so suppose that 𝐴 is a dihedral Artin group.
By [8, Lem 4.1], the induced map Φ̂𝑁 ∶ 𝐵(𝐴) → 𝐵(𝐴) is 𝜋-distance preserving. Since the map

Φ𝑁 is equivariant, this implies that the induced map is 𝜋-distance preserving on each component
(Δ2𝑁)𝑖𝐵(𝐴). By Lemma 3.11, it suffices to verify that for 𝑥, 𝑦 in two different copies of 𝐷̂(𝐴) in
Ê𝐷(𝐴), their images ÊΦ𝑁(𝑥), ÊΦ𝑁(𝑦) have distance at least 𝜋 in𝐷(𝐴). Let 𝑥 lie in an edge ofΔ2𝑛1𝐵(𝐴)

and 𝑦 lie in an edge of Δ2𝑛2𝐵(𝐴), where g1, g2 ∈ 𝐴, and 𝑛1 ≠ 𝑛2. Then 𝑥 and 𝑦 are within distance
𝜋∕2𝑚 from vertices Δ2𝑛1g1 and Δ2𝑛2g2. By Proposition 3.9,

𝑑𝐵(𝐴)(Δ
2𝑛2g2, Δ

2𝑛1g1) = 𝑑𝐵(𝐴)(Δ
2(𝑛2−𝑛1), g1g

−1
2 ) ⩾ 𝜋 + 𝜋∕𝑚.

This implies that the images of 𝑥 and 𝑦 are ⩾ 𝜋 apart. □

Theorem 3.13. ThemapΦ2 ∶ 𝑅𝐴 → 𝐴 is injective for every locally reducible Artin group. If𝑚𝑠𝑡 ≠ 3

for all 𝑠, 𝑡 ∈ 𝑆, then Φ1 ∶ 𝑅𝐴 → 𝐴 is injective.

Proof. In this proof𝑁 = 1 or 2, depending onwhether there are 𝑠, 𝑡with𝑚𝑠𝑡 = 3.We prove that the
induced map ÊΦ𝑁 ∶ Ê𝐷(𝐴) → 𝐷(𝐴) is an isometric embedding. By Lemma 3.5, ÊΦ𝑁 ∶ Ê𝐷(𝐴) → 𝐷(𝐴)

is an isometric embedding provided that themap Lk(𝑥, Ê𝐷(𝐴)) → Lk(ÊΦ𝑁(𝑥), 𝐷(𝐴)) induced by ÊΦ𝑁

is 𝜋-distance preserving for every 𝑥 ∈ Ê𝐷(𝐴). We only check this where 𝑥 is a vertex, essentially
the same argument works for all 𝑥. Since ÊΦ𝑁 is equivariant, it suffices to check vertices of 𝐾. For
𝑇 a spherical subset and 𝑣𝑇 ∈ Ê𝐷(𝐴) ∩ 𝐾, the link of 𝑣𝑇 decomposes as Lk(𝑥, 𝐾⩾𝑇) × Ê𝐵(𝐴𝑇). Since
the link of 𝑣𝑇 in𝐷(𝐴) decomposes as Lk(𝑥, 𝐾⩾𝑇) × 𝐵(𝐴𝑇) and themap between links decomposes
as Id ×Φ𝑁 the result follows from Proposition 3.12. □
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3.4 Intersections with special subgroups

Finally, we use a coning trick to show that for any locally reducible Artin group 𝐴 and special
subgroup𝐴𝑇 , we have that our RAAG subgroup for𝐴 intersects𝐴𝑇 in the RAAG subgroup for 𝑇.
Charney used CAT(0) geometry to prove this for the RAAG provided by the original Tits Conjec-
ture [8, Thm 5.2]. Since Φ2 ∶ RA → 𝐴 injective, by Theorem 3.13, we write RA𝑇 for the image of
RA𝑇 under Φ2.

Proposition 3.14. Let 𝐴 be a locally reducible Artin group. Then RA∩𝐴𝑇 = RA𝑇 .

Proof. Suppose that there was a reduced word 𝑤 in RA so that 𝑤 ∉ RA𝑇 but 𝑤 ∈ 𝐴𝑇 . Define a
largerArtin group𝐴 by ‘coning’ off𝑇, that is, introduce a new generator 𝑠 so that𝑚𝑠𝑡 = 2 for all 𝑡 ∈
𝑇 and𝑚𝑠𝑢 = ∞ otherwise. Then𝐴 is a locally reducible Artin group, so we know the Generalized
Tits Conjecture for 𝐴. Note that the RAAG for 𝐴 is just the RAAG for 𝐴 with the RAAG for
𝐴𝑇 coned off. Now, by assumption we have that [𝑠, 𝑤] = 1, which contradicts the RAAG for 𝐴
injecting into 𝐴, as the centralizer of 𝑠 in that RAAG is the RAAG subgroup RA𝑇 ×⟨𝑠⟩. □

Remark 3.15. The same argument shows that the RAAG subgroup that Crisp and Paris find inter-
sects each special Artin group in the expected way. If we knew the Generalized Tits Conjecture
for all Artin groups, then we would know this intersection property as well.

4 𝐑𝐀𝐀𝐆 SUBGROUPS OF 𝐑𝐀𝐀𝐆s

In this section, we study whether a subgroup of a RAAG generated by words which are powers
of commuting elements is the ‘obvious’ RAAG. In Sections 5 and 6 we apply these ideas to the
Generalized Tits Conjecture, but we hope that this will be of independent interest.
In general, this is a delicate question; the subgroup may be a RAAG but a different one than

expected, or may not be a RAAG at all. See [28] and [29] for a detailed analysis and many (pos-
itive and negative) examples. Our main goal in this section is Theorem 4.9, which generalizes a
condition on the words given in [29] called Property PP (short for ping-pong).

4.1 Koberda’s Property PP

Let 𝐿 be a flag complex and RA𝐿 the corresponding RAAG. For each simplex 𝜎 ∈ 𝐿, let 𝑤𝜎 be
a (possibly trivial) word with all positive powers (or all negative powers) of the generators cor-
responding to vertices in 𝜎 (in particular, if 𝑤𝜎 is nontrivial it has a nontrivial power of each
generator in 𝜎(0)).
The collection {𝑤𝜎}𝜎∈𝐿 determines a flag complex 𝐿′. The vertex set of 𝐿′ is {𝜎 ∈ 𝐿 ∶

𝑤𝜎 is nontrivial} (the reader can imagine the vertex at the barycenter of 𝜎), and the simplices
correspond to collections 𝜎1, … , 𝜎𝑘 where 𝑤𝜎1

, …𝑤𝜎𝑘
pairwise commute in RA𝐿. Of course, we

have that 𝑤𝜎 and 𝑤𝜏 commute if any only if 𝜎 and 𝜏 span a simplex in 𝐿.

Definition 4.1. We say that the collection {𝑤𝜎}𝜎∈𝐿 satisfies Property 𝑃𝑃 if there is an injective
simplicial map 𝑝 ∶ 𝐿′ → 𝐿, so that
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∙ 𝑝(𝐿′) is a full subcomplex of 𝐿,
∙ for every vertex 𝜎 of 𝐿′ we have 𝑝(𝜎) ∈ 𝜎, and
∙ if vertices 𝜎, 𝜏 are joined by an edge in 𝐿′, then 𝑝(𝜎) ∉ 𝜏.

One can think of this map 𝑝 as choosing a representative vertex in 𝐿 for each 𝑤𝜎. The require-
ment that 𝑝(𝐿′) is a full subcomplex ensures that if two words 𝑤𝜎 and 𝑤𝜎′ do not commute,
then their representative vertices do not commute. The following proposition of Koberda follows
quickly from the normal form for RAAG’s.

Proposition 4.2 [29, Lem 4.2]. Let 𝑤𝜎 have Property 𝑃𝑃. Then the map 𝑓 ∶ RA𝐿′ → RA𝐿 sending
the generators 𝜎 of RA𝐿′ to 𝑤𝜎, is injective. Therefore, the subgroup generated by ⟨𝑤𝜎⟩ is isomorphic
to RA𝐿′ .

We note that the statement of property PP in [29] does not include the third condition of Defi-
nition 4.1. However without that assumption Proposition 4.2 fails to hold:

Example 4.3. Consider a graph on four vertices 𝑠, 𝑡, 𝑢, 𝑥 where 𝑠, 𝑡, 𝑢 are pairwise adjacent, and
𝑥 is adjacent to 𝑢. The associated Artin group 𝐴 is (ℤ2 ∗ ℤ) × ℤ. Let 𝑠𝑡, 𝑠𝑡𝑢, 𝑥 be a collection of
words and let 𝐿′ be the corresponding flag complex, which is the disjoint union of an interval
joining 𝑠𝑡 and 𝑠𝑡𝑢 and a point 𝑥. The map 𝑝 ∶ 𝐿′ → 𝐿 sending 𝑠𝑡 ↦ 𝑠, 𝑠𝑡𝑢 ↦ 𝑡 and 𝑥 ↦ 𝑥 satisfies
the first two conditions in Definition 4.1. However, the subgroup ⟨𝑠𝑡, 𝑠𝑡𝑢, 𝑥⟩ is not isomorphic to
the associated RAAG ℤ2 ∗ ℤ since [𝑠𝑡(𝑠𝑡𝑢)−1, 𝑥] = 1.

The proof of Lemma 4.2 in [29] is correct for the property PP as stated in Definition 4.1. The
last sentence of the second paragraph of the proof is not true without the third condition of Defi-
nition 4.1.

Example 4.4. The following example is taken from [29], where it is attributed to M. Casals. Let
RA𝐿 = 𝐹2 × 𝐹2 where the first 𝐹2 is generated by 𝑎, 𝑐 and the second generated by 𝑏, 𝑑. Consider
the subgroup 𝐻𝑛 < RA𝐿 generated by 𝑎𝑛, 𝑑𝑛 and (𝑏𝑐)𝑛 for 𝑛 ∈ ℕ. It turns out that 𝐻𝑛 is not iso-
morphic to any right-angled Artin group. We will not provide the full proof of this, the key point
is that in this group there is the relation

[𝑎𝑛, (𝑏𝑐)𝑛𝑑𝑛(𝑏𝑐)−𝑛] = 1.

Note that this collection of words does not satisfy property PP, in this case 𝐿′ is the disjoint union
of an edge and a point, and hence there is no injective map from 𝐿′ → 𝐿 where the image is a
full subcomplex.

4.2 Generalization of Property PP

We start with a motivating example.

Example 4.5. Let 𝐿 be a path with 4 vertices 𝑎, 𝑏, 𝑐, 𝑑, and let RA𝐿 be the corresponding RAAG.
Consider the subgroup𝐻 generated by {𝑎, 𝑑, 𝑏𝑐}. By the same reasoning as Example 4.4, this col-
lection of words do not satisfy property 𝑃𝑃 (in this case 𝐿′ is 3 points and there is no injective
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map from 3 points to 𝐿 with image a full subcomplex). However, we claim that the subgroup 𝐻

generated by these words is still isomorphic to the free group 𝐹3.
To see this, note that RA𝐿 splits as the amalgamated product

RA𝐿 = ⟨𝑎, 𝑏, 𝑐⟩ ∗⟨𝑏,𝑐⟩ ⟨𝑏, 𝑐, 𝑑⟩
and 𝐹3 decomposes as 𝐹2 ∗ℤ 𝐹2. We can use Property 𝑃𝑃 to say that the subgroups generated by
⟨𝑎, 𝑏𝑐⟩ and ⟨𝑏𝑐, 𝑑⟩ inside ⟨𝑎, 𝑏, 𝑐⟩ and ⟨𝑏, 𝑐, 𝑑⟩, respectively, are both 𝐹2. Furthermore, each of
these subgroups intersects ⟨𝑏, 𝑐⟩ in ⟨𝑏𝑐⟩ (this is not completely obvious and generalizing this is
the majority of our work below). Therefore, we can apply the following lemma of Serre:

Proposition 4.6 [40, Chap 1 Prop 3]. Let𝐺𝑖 be a collection of groups with common subgroup𝐴 and
let ∗𝐴, 𝐺𝑖 denote the amalgamated product. Let 𝐻𝑖 ⊆ 𝐺𝑖 be subgroups and suppose the intersection
𝐵 = 𝐻𝑖 ∩ 𝐴 is independent of 𝑖. Then the natural homomorphism ∗𝐵 𝐻𝑖 →∗𝐴 𝐺𝑖 is injective.

So, in the above example, we get an injection from 𝐹3 ≅ 𝐹2 ∗ℤ 𝐹2 → ⟨𝑎, 𝑏𝑐, 𝑑⟩, which is obvi-
ously an isomorphism.
For general RAAG’s, we suppose the following: Our nerve 𝐿 decomposes as 𝐿 = 𝐿1 ∪𝐿0

𝐿2,
where each 𝐿𝑖 is a full subcomplex. We consider a collection of words {𝑤𝜎}𝜎∈𝐿 where, as before,
𝑤𝜎 is a (possibly trivial) word with all positive powers (or all negative powers) of the generators
corresponding to vertices in 𝜎. We assume that each of the collections {𝑤𝜎}𝜎∈𝐿1 , {𝑤𝜎}𝜎∈𝐿2 satisfies
Property PP in RA𝐿1

, RA𝐿2
, respectively. Note that the functions in property 𝑃𝑃 for each 𝐿𝑖 do not

have to agree on the words for 𝐿0 (if they do it is easy to see that the words already satisfy property
𝑃𝑃). However, we have to make some additional assumptions, to conclude that RA𝐿′ embeds in
RA𝐿.

Definition 4.7. Let 𝐿 be a flag complex and 𝐿0 a full subcomplex. Suppose we have a collection
of words {𝑤𝜎}𝜎∈𝐿 satisfying property 𝑃𝑃, and 𝐿′ is the associated flag complex and function 𝑝 ∶

𝐿′ → 𝐿. We say that the collection {𝑤𝜎}𝜎∈𝐿 avoids 𝐿0 if 𝜎 ∉ 𝐿0 implies that 𝑝(𝜎) ∉ 𝐿0.

The next lemma guarantees that if {𝑤𝜎}𝜎∈𝐿 satisfies property 𝑃𝑃 and avoid 𝐿0, then the inter-
section of the RAAG subgroup (which is guaranteed by the Koberda’s Property PP) generated by
the {𝑤𝜎} intersects the special subgroup 𝐴𝐿0

as expected.

Lemma 4.8. Let 𝐿 be a flag complex, RA𝐿 the RAAG on 𝐿, and let 𝐿0 be a full subcomplex. Let
{𝑤𝜎}𝜎∈𝐿 be words satisfying Property 𝑃𝑃 avoiding 𝐿0. Let RA𝐿′ be the RAAG subgroup of RA𝐿 gen-
erated by the {𝑤𝜎}𝜎∈𝐿, and RA𝐿′

0
the RAAG subgroup generated by {𝑤𝜎}𝜎∈𝐿0 . Then RA𝐿′ ∩RA𝐿0

=

RA𝐿′
0
.

Proof. Obviously,RA𝐿′
0
is contained inRA𝐿′ ∩RA𝐿0

. The proof of the other containment is similar
to the coning trick in Proposition 3.14. Make a new flag complex 𝐾 by coning off 𝐿0. On the group
level we are adding a new generator 𝑥 which commutes only with the generators in 𝐿0. Since {𝑤𝜎}

satisfies Property 𝑃𝑃 and avoids 𝐿0, the collection {𝑤𝜎} ∪ {𝑥} satisfies Property 𝑃𝑃. Therefore, by
Proposition 4.2 this collection generates the obviousRAAGsubgroup𝑅𝐴𝐾′ of𝑅𝐴𝐾 . IfRA𝐿′ ∩RA𝐿0
contained an element 𝑤 not in RA𝐿′

0
, then 𝑤 would commute with 𝑥, and this relation does not

appear in 𝑅𝐴𝐾′ . □
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Lemma 4.8 combined with Proposition 4.6 implies the following theorem:

Theorem 4.9. Let 𝐿 be a flag complex and suppose that 𝐿 = 𝐿1 ∪𝐿0
𝐿2 where each 𝐿𝑖 is a full sub-

complex. Let {𝑤𝜎}𝜎∈𝐿 be words so that each subcollection {𝑤𝜎}𝜎∈𝐿𝑖 satisfies property 𝑃𝑃 and avoids
𝐿0. Then the subgroup generated by the {𝑤𝜎}𝜎∈𝐿 is the RAAG based on 𝐿′.

Proof. By Property 𝑃𝑃, we know that the subgroupRA𝐿′
𝑖
ofRA𝐿𝑖

generated by {𝑤𝜎}𝜎∈𝐿𝑖 is aRAAG.
By Lemma 4.8, we know that

RA𝐿′
1
∩RA𝐿0

= RA𝐿′
2
∩RA𝐿0

= RA𝐿′
0
.

By Proposition 4.6, RA𝐿′ = RA𝐿′
1
∗RA𝐿′

0

RA𝐿′
2
injects into RA𝐿 = RA𝐿1

∗RA𝐿0
RA𝐿2

. □

Remark 4.10. The words 𝑏, 𝑑, 𝑎𝑐 in Example 4.4 do not satisfy generalized PP for any decom-
position of 𝐿. For example, if we take 𝐿1 the full subcomplex containing 𝑎, 𝑏, 𝑐 and 𝐿2 the full
subcomplex containing 𝑏, 𝑐, 𝑑, then for the edge 𝑎𝑐 we have to choose the vertex 𝑐 in property
PP, which is in 𝐿1 ∩ 𝐿2. Note that the subgroup generated by 𝑎𝑐 and 𝑏 contains 𝑐𝑏𝑐−1, and hence
intersects the subgroup ⟨𝑏, 𝑐⟩ outside of ⟨𝑏⟩.

5 GENERALIZED TITS CONJECTURE AND SMALL TYPE
SPHERICAL ARTIN GROUPS

In this section, we describe how the Generalized Tits Conjecture holds for small-type spherical
Artin groups of type 𝐴𝑛 and 𝐷𝑛. The main work is type 𝐷𝑛, where we require the generalized
Property PP of the previous section.
Let 𝐴 be any small-type spherical Artin group with the standard generating set 𝑆, and the

Perron–Vannier representation 𝐴 → Mod(Σ). Let RA be the associated RAAG with the presen-
tation 1.1. Let us record the following observation:

Lemma 5.1. If the composition RA
Φ𝑘
��→ 𝐴 → Mod(Σ) is injective, then 𝐴 satisfies the Generalized

Tits Conjecture for𝑁 = 𝑘.

For every irreducible subset 𝑇 ⊆ 𝑆, let 𝐴𝑇 → Mod(Σ𝑇) be its Perron–Vannier representation of
the special subgroup𝐴𝑇 . If𝑇 = {𝑠}, byΣ𝑇 aswell as 𝜕Σ𝑇 wemean the single curve inΣ correspond-
ing to 𝑠. The surface Σ𝑇 can be embedded in Σ and that embedding induces a homomorphism
Mod(Σ𝑇) → Mod(Σ) which makes the following diagram commute:

Note that 𝜕Σ𝑇 is a multicurve in Σ. By Remark 2.5, Δ4
𝑇
is sent to a multitwist around the boundary

components of 𝜕Σ𝑇 inMod(Σ). We summarize the above discussion in the following lemma:
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Lemma 5.2. Let𝐴 be a small type spherical Artin group and let𝑁 ⩾ 2. Then each of the generators
{𝑧𝑇}𝑇 of the RAAG RA is mapped to a multitwist inMod(Σ) via 𝜌◦Φ𝑁 .

The following theorem of Koberda is our main tool for proving the Generalized Tits Conjecture
for the spherical Artin groups:

Theorem 5.3 [29, Thm 1.1]. Let 𝑓𝑖 be a finite collection of nontrivial powers of Dehn twists around
simple closed curves so that the subgroup ⟨𝑓𝑖, 𝑓𝑗⟩ is not cyclic for all 𝑖, 𝑗. Then there is an𝑀 > 0 so
that the powers 𝑓𝑚

𝑖
generate a RAAG subgroup ofMod(Σ) for all𝑚 ⩾ 𝑀.

The flag complex that is the nerve of the RAAG generated by those powers of Dehn twists has
the collection of the curves as its vertex set, where a subcollection of curves spans a simplex if
and only if they can be realized as pairwise disjoint curves. The analogous result does not hold
for multitwists instead of Dehn twists about single curves. Indeed, it is easy to find surfaces and
multicurves so that the RAAG generated by Dehn twists about the individual curves is 𝐹2 × 𝐹2,
and the words given by the multicurves are as in Example 4.4.
Coming back to the surface Σ from the Perron–Vannier representation of 𝐴, let  denote the

collection of all the curves in the support of the multitwists {𝜌◦Φ𝑁(𝑧𝑇)}𝑇 . By Theorem 5.3, high
powers of Dehn twists about the curves in  generate a RAAG RA . Therefore, we have an
induced homomorphism RA → RA ⊆ Mod(Σ), where each generator of RA goes to a product
of commuting generators of RA . In order to prove that 𝐴 satisfies the Generalized Tits Con-
jecture with 𝑁, it suffices to show that RA → RA is injective. In the case of 𝐴 of type 𝐴𝑛 and
𝐷𝑛, we show it using Property PP and generalized Property PP from Section 4, respectively. To
verify Property PP, we pick one of the boundary components 𝑝(𝑇) in 𝜕Σ𝑇 for each irreducible
𝑇 such that the curves 𝑝(𝑇), 𝑝(𝑇′) intersect if and only if [Δ2

𝑇
, Δ2

𝑇
] = 1 (if and only if 𝑇 ⊆ 𝑇′,

𝑇′ ⊆ 𝑇, or [𝑇, 𝑇′] = 1). For details on how we verify generalized Property PP, see subsection on
type 𝐷𝑛.
We now rephrase Property PP in terms of curves on surfaces in the context of RAAG subgroups

of mapping class groups.

Lemma 5.4. Let ̂ be a collection of multicurves in a surface Σ and let  be the union of all the
connected component of elements of ̂. Suppose there exists a function 𝑝 ∶ ̂ →  such that

∙ 𝑝(𝛼) ∈ 𝛼 and
∙ 𝑝(𝛼), 𝑝(𝛽) intersect if and only if some connected component of 𝛼 intersect some connected com-
ponent of 𝛽.

∙ If 𝛼 ∪ 𝛽 is a multicurve, then 𝑝(𝛼) is not contained in 𝛽.

Let {𝑇𝛼 ∶ 𝛼 ∈ ̂} be a collection of multitwists about multicurves in ̂. Then there exists𝑀 > 0 such
that ⟨𝑇𝑀

𝛼 ∶ 𝛼 ∈ ̂ ⟩ is a RAAG.
Proof. By Theorem 5.3 the group generated by sufficiently large powers of Dehn twists around
 is a RAAG. The assumption about existence of function 𝑝 is just reformulation of Property PP
from Definition 4.1. The conclusion follows from Proposition 4.2. □

Similarly, the generalized Property PP could also be rephrased in terms of curves in a surface.
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5.1 Intersections of boundary curves

Let 𝐴 be a small-type spherical Artin group, and let 𝐴 → Mod(Σ) be the Perron–Vannier repre-
sentation. Suppose that 𝑇 and 𝑇′ are two irreducible spherical subsets of 𝑆, and let Σ𝑇 and Σ𝑇′ be
the associated subsurfaces of Σ. If Δ2

𝑇
and Δ2

𝑇′ commute, then each of the boundary curves of Σ𝑇

and Σ𝑇′ are necessarily disjoint. If they do not commute, then there are different possibilities for
the possible intersections between the curves. We shall record a few lemmas that we will need
later.

Lemma 5.5. Let 𝐴 be of type 𝐴𝑛, and suppose that 𝑇 and 𝑇′ are irreducible subsets such that Δ2
𝑇

and Δ2
𝑇′ do not commute. If Σ𝑇 has one boundary component up to homotopy (so |𝑇| = 1 or |𝑇| is

even), then the boundary curve of Σ𝑇 has nontrivial intersection number with every boundary curve
of 𝐴𝑇′ .

Proof. Note that 𝜕Σ𝑇 is fixed up to homotopy by the hyperelliptic involution. If𝐴𝑇′ has two bound-
ary components, then these are permuted up to homotopy by the hyperelliptic involution. There-
fore, we only have to show that 𝜕Σ𝑇 has nontrivial intersection number with a single boundary
component of 𝜕Σ𝑇′ . Since the Perron–Vannier representation is injective in this case [36], this
follows from the fact that [Δ𝑚

𝑇
, Δ𝑛

𝑇′] ≠ 1 in 𝐴𝑛. □

Lemma 5.6. Suppose Σ𝑇′ and Σ𝑇 both have two boundary components, that is, both |𝑇| and |𝑇′|
are odd and ≠ 1. Then,

∙ each boundary component of Σ𝑇 intersects at least one boundary component of Σ′
𝑇
, and vice versa.

∙ If |𝑇 − 𝑇′| is odd, then each boundary component of Σ𝑇 intersects each boundary component of
Σ𝑇′ .

Proof. For the first statement, again by injectivity of the Perron–Vannier representation we must
have that at least one component of 𝜕Σ𝑇 intersects a component of 𝜕Σ𝑇′ . Since both components
are permuted by the hyperelliptic involution, we get the other intersection.
We will prove the second statement in the alternative proof of Proposition 5.9 below, once we

have developed more notation. □

There is a similar lemma for the images of curves in the Perron–Vannier representation 𝐴 →

Mod(Σ) forArtin groups𝐴 of type𝐷𝑛. Note thatΣhas a unique boundary curvewhich is contained
in the boundary of Σ𝑇 for any irreducible subset 𝑇 ⊆ 𝑆 of type 𝐷𝑚 for𝑚 < 𝑛. We will call this the
central component, and the other boundary components non-central components.We shall see that
the Dehn twist around the central component never factors into any of our calculations.

Lemma 5.7. Let 𝐴 be of type 𝐷𝑛, and suppose that 𝑇 and 𝑇′ are irreducible subsets such that Δ2
𝑇

and Δ2
𝑇′ do not commute.

(1) If 𝐴𝑇 has type 𝐷𝑚 and𝑚 = 2𝑘 + 1 for 𝑘 > 0, then the non-central boundary component of 𝜕Σ𝑇

intersects each curve in 𝜕Σ𝑇′ if 𝑠, 𝑠′ ∉ 𝑇′, and intersects one boundary curve of Σ𝑇′ if one of 𝑠 or
𝑠′ ∈ 𝑇′.

(2) If 𝐴𝑇 has type 𝐷𝑚 and 𝑚 = 2𝑘 for 𝑘 > 1, then if 𝑠, 𝑠′ ∉ 𝑇′ each non-central boundary compo-
nent either intersects all curves in 𝜕Σ𝑇′ or there are two pairs of components that intersect. If
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F IGURE 7 Dehn twists around the gray curves in this diagram are images of Δ2
𝑇
for certain braid subgroups

of the braid group on 8 strands. The red and blue curves arise via the lantern relation, and obviously commute in
the braid group. It is easy to check that the words in the lantern relation which produce these curves do not
commute in the RAAG on the Δ2

𝑇
, and hence the induced homomorphism from this RAAG to the braid group is

not injective

𝑠 or 𝑠′ ∈ 𝑇′, there is one non-central component of 𝜕Σ𝑇 which has nontrivial intersection with
𝜕Σ𝑇′ . Furthermore, one component intersects all 𝜕Σ𝑇′ for 𝑇′ that contain 𝑠, and one component
intersects all 𝜕Σ𝑇′ for 𝑇′ that contain 𝑠′.

(3) If 𝑠 ∈ 𝑇 and 𝑠′ ∈ 𝑇′, then the components of 𝜕Σ𝑇 and 𝜕Σ𝑇′ that are not contained in 𝜕Σ𝐷𝑚
for

any𝑚 always intersect.

Proof. The proof of the first two items is similar to Lemma 5.5. The non-central component(s)
of 𝜕Σ is fixed by the hyperelliptic involution. If 𝜕Σ𝑇′ has two components then if 𝑠, 𝑠′ ∉ 𝑇′ then
these are permuted by the hyperelliptic involution. If 𝑠 or 𝑠′ ∈ 𝑇′, then one of the curves of 𝜕Σ𝑇′ is
contained in 𝜕Σ𝐷𝑚

for𝑚 > 𝑛, and hence misses the non-central component(s) of 𝜕Σ𝐷𝑛
. The other

curve therefore intersects 𝜕Σ𝐷𝑛
For the last statement of the second item, note that each of the

boundary components of 𝜕Σ𝐷𝑛
is a boundary component of 𝜕Σ𝐴𝑛

and 𝜕Σ𝐴′
𝑛
. Therefore, they are

disjoint from 𝜕Σ𝐴𝑚
and 𝜕Σ𝐴′

𝑚
respectively, for𝑚 > 𝑛.

For the last item, note that both these curves have nontrivial intersection numberwith 𝛾𝑠 and 𝛾′𝑠,
respectively (where 𝛾𝑠 and 𝛾′𝑠 are the curves corresponding to the generators 𝑠 and 𝑠

′). The curves
𝛾𝑠 and 𝛾𝑠′ and the outer boundary component are the boundary of a pair of pants. If our curves
had trivial intersection number, then we could homotope one of them to have trivial intersection
number with both 𝛾𝑠 and 𝛾′𝑠. □

5.2 Type 𝑨𝒏

Suppose that𝐴 is a spherical Artin group of type𝐴𝑛, that is,𝐴 is the braid group on 𝑛 + 1-strands.
Then𝐴 is themapping class group of the 𝑛 + 1-punctured disc.We give the punctures an arbitrary
labeling {1, 2, … , 𝑛 + 1}. The squares of the standard generators of𝐴 correspond to theDehn twists
about the simple closed curves around two consecutive punctures {𝑖, 𝑖 + 1}. Any irreducible subset
𝑇 of 𝑆 corresponds to a subset 𝐼 ⊆ {1, … , 𝑛 + 1} of consecutive numbers, where |𝐼| = |𝑇| + 1. The
center of the pure braid group 𝑃𝐵𝑇 corresponds to a Dehn twist 𝑇𝐼 around punctures in 𝐼, see
Figure 7. Therefore, theGeneralized Tits Conjecture for𝑁 = 1 asks if this collection ofDehn twists
about these simple closed curves generates a RAAG subgroup of the braid group. For simplicity,
we denote the generators 𝑧𝑇 of RA by 𝑧𝐼 .
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F IGURE 8 Curves 𝑠2, 𝑠3, 𝑠′3, … 𝑠2𝑘, 𝑠2𝑘+1, 𝑠
′
2𝑘+1

… and curves 𝑡𝑖∶𝑗 , 𝑡′𝑖∶𝑗 in the surface Σ of type 𝐴𝑛. The thick
curves are an example of a choice of the representatives for property PP

Example 5.8. The braid groups on⩾ 4 strands do not satisfy theGeneralized Tits Conjecturewith
𝑁 = 1. The map Φ1 is not injective, as there are deeper relations between the Δ2

𝑇
. See Figure 7.

By the lantern relation (see, for example, [24, Prop 5.1]), the Dehn twist 𝑇𝑟 about the red curve in
Figure 7 satisfies

𝑇𝑟 = 𝑇−1
123𝑇12𝑇23.

Similarly, the Dehn twist 𝑇𝑏 about the blue curve satisfies

𝑇𝑏 = 𝑇−1
234𝑇23𝑇34.

However, the elements 𝑧−1
123

𝑧12𝑧23 and 𝑧−1
234

𝑧23𝑧34 do not commute in RA. Indeed, it suffices to
consider their images under the retraction RA → ⟨𝑧123, 𝑧234⟩ ≃ 𝐹2.

As we have noted, Theorem 5.3 implies that high powers of these elements generate a RAAG,
that is, we get the following:

Proposition 5.9. The Generalized Tits Conjecture holds for all spherical Artin groups of type 𝐴𝑛

with𝑁 sufficiently large.

We shall also show how the conjecture follows from using the Perron–Vannier representation
and property PP (this will serve as a warmup for the other cases).

Alternative proof of Proposition 5.9. By Lemma 5.4, it suffices to show that the multicurves that
arise in the Perron–Vannier representation satisfy the condition in the statement of the lemma.
Let 𝑆 = {𝑡1, … 𝑡𝑛} be the standard set of generators.
Note that if 𝑛 is odd, then Σ − {𝑡1, 𝑡3, … , 𝑡2𝑘+1, … 𝑡𝑛} has two connected components. Similarly,

if 𝑛 is even, then Σ − {𝑡1, 𝑡3, … 𝑡2𝑘+1, … , 𝑡𝑛−1, 𝑘} has two connected components, where 𝑘 is an arc
with both endpoints in 𝜕Σ and which intersect only 𝑡𝑛 among the curves in 𝑆. In either case, we
pick a connected component, and denote it by Σ+. Similarly, let Σ# be the connected component
that does not contain 𝜕Σ of, respectively, Σ −

⋃
{𝑡2, 𝑡4, … 𝑡𝑛−1,𝓁,𝓁

′} in case of odd 𝑛, and of Σ −⋃
{𝑡2, 𝑡4, … 𝑡𝑛, 𝑘

′} in case of even 𝑛. Here, 𝓁,𝓁′ denote arcs with the endpoint in two connected
components of 𝜕Σwhere 𝓁 intersects only 𝑡1, and 𝓁′ intersects only 𝑡𝑛 among curves in 𝑆. The arc
𝑘′ has both endpoint in 𝜕Σ and intersects only 𝑡1 among curves in 𝑆.
Let 𝑇 = {𝑡𝑖, … , 𝑡𝑗}. If |𝑇| is even, then Σ𝑇 has a unique boundary component, denoted by 𝑡𝑖∶𝑗 .

Otherwise, if |𝑇| is odd, then we denote the two boundary component of Σ𝑇 by {𝑡𝑖∶𝑗, 𝑡
′
𝑖∶𝑗

}. See
Figure 8. If additionally, 𝑖 is odd, then again exactly one of these curves is contained in Σ+. We
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assume it is 𝑡𝑖∶𝑗 . Similarly, if 𝑖 is even, then we assume that 𝑡𝑖∶𝑗 is contained in Σ#. For each irre-
ducible set 𝑇 = {𝑡𝑖, … , 𝑡𝑗}, we set 𝑝(𝑇) = 𝑡𝑖∶𝑗 , if 𝑖 > 1.
We claim that our choice function 𝑝 satisfies Lemma 5.4. By the first part of Lemma 5.5, we

only need to worry about irreducible subsets of odd cardinality. Suppose we have two subsets
𝑇 = {𝑡𝑖, … , 𝑡𝑗} and 𝑇′ = {𝑡𝑖′ , … , 𝑡𝑗′ } of odd cardinality which do not commute, that is, [𝑧𝑇, 𝑧𝑇′] ≠ 1

in RA.
We claim that if 𝑖 is odd and 𝑖′ is even or vice versa, then each curve in 𝜕Σ𝑇 intersects each

curve in 𝜕Σ𝑇′ (this is the second part of Lemma 5.7). To see this, note that it suffices to assume
that 𝑇 = {1, 2, … , 𝑗} and 𝑇′ = {𝑘, … , 𝑙}. Since 𝑗 is odd, 𝜕Σ𝑇 has two components, and both compo-
nents of 𝜕Σ𝑇′ intersect the curve 𝑡𝑘−1 exactly once (and miss all other 𝑡𝑖 for 𝑖 ⩽ 𝑗). Therefore, each
component of 𝜕Σ𝑇′ intersects both components of Σ𝑇 − {𝑡1, 𝑡3, … , 𝑡𝑘−1, … 𝑡𝑗}, and therefore must
intersect both components of 𝜕Σ𝑇 .
If 𝑖 and 𝑖′ are both odd, then 𝑝(𝑇) cannot intersect the curve of 𝜕Σ𝑇′ which is contained in

Σ − Σ+, and by the second part of Lemma 5.5, 𝑝(𝑇) intersects 𝑝(𝑇′). Similarly, if 𝑖 and 𝑖′ are both
even, then 𝑝(𝑇) and 𝑝(𝑇′) intersect.
Finally, note that the third condition in Lemma 5.4 is trivially satisfied, as no curve is contained

in 𝜕Σ𝑇 and 𝜕Σ𝑇′ for 𝑇 ≠ 𝑇′. □

We do not know if 𝑁 = 2 suffices for the braid group. In fact, Runnels and Seo have indepen-
dently and recently shown an effective version of Koberda’s result [37, 39]. For the collections of
Dehn twists that arise in the braid group case, it turns out that 𝑁 = 17 works, and we suspect
there is a not very large 𝑁 that works for all Artin groups.

5.3 Type 𝑫𝒏

We now consider an Artin group𝐴 of type 𝐷𝑛 with the standard generating set 𝑆 = {𝑠, 𝑠′, 𝑡1, … 𝑡𝑛},
as in Figure 5.

Theorem 5.10. Generalized Tits Conjecture holds for all spherical Artin groups of type 𝐷𝑛.

Proof. This proof will use the generalized property PP from the last section. There are four families
of irreducible subsets of 𝑆 with at least two elements.

(1) If 𝑇 = {𝑠, 𝑠′, 𝑡1, … , 𝑡𝑗} where 𝑗 ⩽ 𝑛 − 2, then 𝐴𝑇 has type 𝐷𝑗+2.
(2) If 𝑇 = {𝑡𝑖, … , 𝑡𝑗} where 1 ⩽ 𝑖 < 𝑗 ⩽ 𝑛 − 2, then 𝐴𝑇 has type 𝐴𝑗−𝑖+1.
(3) If 𝑇 = {𝑠′, 𝑡1, … , 𝑡𝑗} where 1 ⩽ 𝑗 ⩽ 𝑛 − 2, then 𝐴𝑇 has type 𝐴𝑗+1.
(4) If 𝑇 = {𝑠, 𝑡1, … , 𝑡𝑗} where 1 ⩽ 𝑗 ⩽ 𝑛 − 2, then 𝐴𝑇 has type 𝐴𝑗+1.

We consider the Perron–Vannier representation 𝜌 ∶ 𝐴 → Mod(Σ) (see Section 2.6 and Figure 5).
By Lemma 5.2 the generator 𝑧𝑇 of RA is sent to a multitwist about the boundary of a subsurface
Σ𝑇 .
We pick a connected component Σ+ of, respectively, Σ − {𝑡2, 𝑡4, … , 𝑡𝑛−2,𝓁} when 𝑛 is even, and

of Σ − {𝑡2, 𝑡4, … , 𝑡𝑛−3,𝓁,𝓁
′} when 𝑛 is odd. In both cases 𝓁 denotes an arc with both endpoints in

the central boundary component of Σ that intersects 𝑡1 and no other curves in 𝑆. When 𝑛 is odd,
then 𝓁′ denotes an arc with both endpoints in the unique non-central boundary component of
Σ, that intersects 𝑡𝑛−2 and no other curves in 𝑆. We can also pick a connected component Σ# of,
respectively, Σ − {𝑡1, 𝑡3, … , 𝑡𝑛−3, 𝑘1, 𝑘2, 𝑘3} when 𝑛 is even, and of Σ − {𝑡1, 𝑡3, … , 𝑡𝑛−2, 𝑘1, 𝑘2} when
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F IGURE 9 Curves 𝑠0, 𝑠1 = 2, 𝑠′
1
= 𝑠′, … 𝑠2𝑘, 𝑠2𝑘+1, 𝑠

′
2𝑘+1

… and curves 𝑡𝑖∶𝑗 , 𝑡′𝑖∶𝑗 in the surface Σ corresponding
to the Artin group of type 𝐴𝑛 or 𝐷𝑛. In the case of 𝐷𝑛, the boundary of Σ includes the gray curve

r3
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r5

r3
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F IGURE 10 Curves 𝑟2, 𝑟3, … and 𝑟′
2
, 𝑟′

3
, …

𝑛 is odd. By 𝑘1, 𝑘2, 𝑘3 we denote arc with endpoints in distinct connected components of 𝜕Σ that
intersect only, respectively, 𝑠, 𝑠′, 𝑡𝑛−2 (the last one only when 𝑛 is even) among curves of 𝑆.
Let us now analyzewhat themulticurves 𝜕Σ𝑇 are for𝑇 in the four families of irreducible subsets

of 𝑆. Let 𝑠0 denote the central component of 𝜕Σ.

(1) For each irreducible set 𝑇 = {𝑠, 𝑠′, 𝑡1, … , 𝑡𝑗}, the multicurve 𝜕Σ𝑇 is of the form
{𝑠0, 𝑠𝑗+1, 𝑠

′
𝑗+1

}when |𝑇| is even, and of the form {𝑠0, 𝑠𝑗}when |𝑇| is odd. We also set 𝑠1 = 𝑠

and 𝑠′
1
= 𝑠′. See the left side of Figure 9. Without loss of generality, we can assume that all

the curves 𝑠𝑗 are contained in Σ+.
(2) Now consider an irreducible subset 𝑇 = {𝑡𝑖, … , 𝑡𝑗} where 1 ⩽ 𝑖 < 𝑗 ⩽ 𝑛 − 2. If |𝑇| is even,

let 𝑡𝑖∶𝑗 be the unique boundary curve of the subsurface Σ𝑇 . If |𝑇| is odd, let 𝑡𝑖∶𝑗, 𝑡′𝑖∶𝑗 be the
two boundary curves of the subsurface containing 𝑡𝑖, … , 𝑡𝑗 . See the right side of Figure 9.
If 𝑖 is even, we assume that 𝑡𝑖∶𝑗 lies in Σ+, and if 𝑖 is odd, we assume that 𝑡𝑖∶𝑗 is contained
in Σ#.

(3)/(4) Finally consider an irreducible subset 𝑇 = {𝑠′, 𝑡1, … 𝑡𝑗}. When 𝑗 is odd, we denote the
unique boundary component of Σ𝑇 by 𝑟𝑗+1. When 𝑗 is even, the boundary of the sub-
surface 𝜕Σ𝑇 has two connected components, one is 𝑠′𝑗+1, and the other is denoted by 𝑟𝑗+1.
See Figure 10. We define curves 𝑟′

2
, 𝑟′

3
, … analogously, so that 𝜕Σ𝑇 = {𝑟′

𝑗+1
} or {𝑠𝑗+1, 𝑟′𝑗+1}

for 𝑇 = {𝑠′, 𝑡1, … 𝑡𝑗}.

Let  = {𝑠𝑗, 𝑠
′
𝑗
} ∪ {𝑡𝑗} ∪ {𝑡𝑖∶𝑗, 𝑡

′
𝑖,𝑗
} ∪ {𝑟𝑗, 𝑟

′
𝑗
} be the collection of all the curves that arise as bound-

ary curves of subsurfacesΣ𝑇 for irreducible subsets𝑇 ⊆ 𝑆. By Theorem 5.3 the subgroup generated
by sufficiently large powers of Dehn twists around curves in  is a RAAG, which we denote by
RA . Note that the words 𝑤𝜎 corresponding to centers of irreducible spherical Artin subgroups,
regarded as elements of RA do not satisfy property PP, see Figure 11.
We now show that generalized property PP implies the conjecture for Artin groups of type 𝐷𝑛.

Let 1 =  − {𝑟′
𝑘
}𝑘⩾2, 2 =  − {𝑟𝑘}𝑘⩾2 and 0 = 1 ∩ 2 =  − {𝑟𝑘, 𝑟

′
𝑘
}𝑘⩾2.

Let 𝐿 be the flag complex on the vertex set  defining RA , and let 𝐿0, 𝐿1, 𝐿2 be the full sub-
complexes of 𝐿 on the sets 0,1,2 respectively. Since the curves 𝑟𝑖 and 𝑟′

𝑗
intersect for every
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F IGURE 11 These curves show the failure of property PP for the images of centers of 𝐷𝑛. The red and
orange curves are boundary components of subsurfaces Σ𝐴5

and Σ𝐴′
5
. The green curves are the boundary

components of the subsurface Σ𝐷4
. Since the other boundary component misses 𝛾 and 𝛾′, respectively, we are

forced to choose these. However, this implies that we cannot correctly choose a boundary component of 𝜕Σ𝐷4

𝑖, 𝑗 ⩾ 2, the complex 𝐿 decomposes as 𝐿1 ∪𝐿0
𝐿2. Therefore we have a splitting of the RA as

𝐴𝐿1
∗𝐴𝐿0

𝐴𝐿2
where 𝐴𝐿𝑖

is a RAAG with nerve 𝐿𝑖 . Also, the RAAG RA associated with 𝐴 splits as
RA = RA𝐿1

∗RA𝐿0
RA𝐿2

where

∙ RA𝐿1
omits all the generators corresponding to centers of the irreducible special subgroups

from family (4), that is, 𝐴𝑇 with 𝑇 = {𝑠, 𝑡1, … , 𝑡𝑘} and 𝑘 ⩾ 1;
∙ RA𝐿2

omits generators corresponding to centers of the irreducible special subgroups from fam-
ily (3), that is, 𝐴𝑇 with 𝑇 = {𝑠′, 𝑡1, … , 𝑡𝑘} and 𝑘 ⩾ 1; and

∙ RA𝐿0
omits all the generators corresponding to centers of the irreducible special subgroups

from families (3) and (4).

We claim that each 𝐿𝑖 satisfies Property PP avoiding 𝐿0. We only verify it for 𝐿1, the proof for
𝐿2 is analogous. For each irreducible subset 𝑇 (which corresponds to a simplex in 𝐿 spanned by
the boundary curves of its corresponding subsurface Σ𝑇) from families (1), (2) and (3), we need to
make a choice of a boundary curve of Σ𝑇 . For a subgroup from family (3) of type 𝐴𝑘 we choose
the curve 𝑟𝑘. Note that these subsets are exactly the ones corresponding to simplices 𝜎 of 𝐿 with
nontrivial𝑤𝜎 such that 𝜎 ∉ 𝐿0. We thus see that 𝑝(𝜎) ∉ 𝐿0 for such simplices 𝜎. Also,𝑤𝜏 is trivial
for any other simplex 𝜏 containing 𝑝(𝜎), because Σ𝑇 is the unique subsurface corresponding to an
irreducible subset of 𝑆 whose boundary contains 𝑟𝑘.
By Lemma 5.7, for each irreducible subset 𝑇 from family (1), there is a unique boundary curve

of Σ𝑇 which intersects 𝜕Σ𝑈 for 𝑈 in family (3). Indeed, it is the curve 𝑠𝑘−1, see Figure 9.
Finally, for an irreducible subset in family (2), we pick the curve 𝑡𝑖∶𝑗 , that is, a curve in 𝜕Σ𝑇

that intersects 𝑟𝑘 for every 𝑖 ⩽ 𝑘 ⩽ 𝑗, which is unique unless 𝑖, 𝑗 are both odd (in which case either
choice works).
For each simplex in 𝐿1 − 𝐿0, we have chosen curves not contained in 𝐿0. Also, for each simplex

in 𝐿1 − 𝐿0, we have chosen a simple closed curve that is not a boundary curve of any subsurface
corresponding to a different irreducible Artin subgroup. Apart from the curve 𝑠0 (which is not in
the image of 𝑝), the only curves contained in two multicurves are the 𝑠′

2𝑘+1
. Since 𝑝(𝑇) = 𝑠2𝑘+1

for 𝐴𝑇 of type 𝐷2𝑘+2, and 𝑝(𝑇) = 𝑟2𝑘+1 for 𝐴𝑇 of type 𝐴2𝑘+1 from family (3) this guarantees the
third condition in Lemma 5.4 is satisfied. By Theorem 4.9, the conclusion follows. □

5.4 Types 𝑬𝟔, 𝑬𝟕 and 𝑬𝟖

We now show that any homomorphism 𝐴𝐸7
→ Mod(Σ) which sends generators to Dehn twists

has nontrivial kernel which intersects the image of Φ𝑚. Wajnryb has previously shown that there
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F IGURE 1 2 High powers of Dehn twists around the multicurves above do not generate the obvious RAAG
subgroup. The figure on the left shows the corresponding centers of irreducible Artin subgroups. To see this, start
with the Dehn twist around 𝑠, then conjugate by the red multitwist, then conjugate by the green multitwist. This
element commutes with the blue multitwist

is no injective homomorphism from theArtin groups of type𝐸6, 𝐸7, 𝐸8 to anymapping class group
whichmaps generators to Dehn twists [42]. It is still openwhether these Artin groups admit other
faithful representations into mapping class groups.
The Dehn twists in Figure 12 show an element in the kernel of the Perron–Vannier representa-

tion 𝜌 ∶ 𝐴 → Mod(Σ) where 𝐴 is of type 𝐸7. A specific element in the kernel of 𝜌 is the commu-
tator

[Δ2𝑁
𝑇 Δ2𝑁

𝑈 𝑠2𝑁Δ−2𝑁
𝑈 Δ−2𝑁

𝑇 , Δ2𝑁
𝑉 ]

where 𝑇 = {𝑡1, 𝑡2, 𝑡3, 𝑡4, 𝑠}, 𝑈 = {𝑡2, 𝑡3, 𝑡4, 𝑡5, 𝑡6} and 𝑉 = {𝑡2, 𝑡3, 𝑡4, 𝑡5, 𝑡6, 𝑠}. The nerve of the sub-
group ofRA on the generators corresponding to𝑇, {𝑠}, 𝑉,𝑈 is a path on 4 vertices. It is easy to verify
that the corresponding commutator in RA is nontrivial. The commutator above is also nontrivial
in𝐴. This can be verified by computing the Deligne’s normal form for its positive representatives.
We have performed the computation in GAP 3 with the package CHEVIE [25, 41]. Note that the
above does not imply that the Generalized Tits Conjecture does not hold for Artin group of type𝐸7

(or 𝐸8). It only shows that our strategy, using the Perron–Vannier representation, does not work
in that case.

Remark 5.11. The multicurves produced by the Perron–Vannier representation of the Artin group
of type 𝐸6 do not satisfy generalized property PP, but we cannot find a word in RA as above in the
kernel of the representation.

6 GENERALIZED TITS CONJECTURE FOR OTHER SPHERICAL
ARTIN GROUPS

In this section, we show that the Generalized Tits Conjecture holds for all spherical Artin groups
which are not small type. The main tool is a folding trick due to Crisp (see [12] or [13, Section 6]),
which embeds any of these Artin groups into small-type spherical Artin groups.

6.1 Folding homomorphisms

In this section it ismore convenient toworkwithCoxeter diagrams rather thannerves. So, suppose
that𝐴Γ is anArtin groupwith a connectedCoxeter diagramΓ that has no∞-labels. Crisp and Paris
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F IGURE 13 The graph Γ(𝑚) on 2(𝑚 − 1) vertices

define a folding homomorphism Ψ ∶ 𝐴Γ → 𝐴Γ̃ where 𝐴Γ̃ is small type. Here is the construction:
let𝑁 = lcm{𝑚𝑠𝑡 − 1|𝑠 ≠ 𝑡 ∈ 𝑆}. For each vertex 𝑠 ∈ 𝑆, let 𝐼(𝑠) be a set with𝑁 elements. For𝑚 ⩾ 3,
let Γ(𝑚) be the Coxeter diagram for 𝐴𝑚−1 × 𝐴𝑚−1, that is, Γ(𝑚) is a disjoint union of two copies
of the Coxeter graph of type 𝐴𝑚−1. See Figure 13.
Let Γ̃ be a Coxeter diagram so that:

∙ The vertex set of Γ̃ is the disjoint union of the sets 𝐼(𝑠).
∙ If there is no edge in Γ between 𝑠 and 𝑡, there is no edge between vertices in 𝐼(𝑠) and the vertices
of 𝐼(𝑡). In particular, there are no edges between any two vertices in 𝐼(𝑠).

∙ If𝑚𝑠𝑡 ⩾ 3, then the subgraph of Γ̃ spanned by 𝐼(𝑠) ∪ 𝐼(𝑡) is isomorphic to 𝑁

𝑚𝑠𝑡−1
copies of Γ(𝑚𝑠𝑡).

It is easy to see that such a Γ̃ can always be constructed, though it will not be unique. There
is a map of graphs Γ̃ → Γ sending every vertex in 𝐼(𝑠) to 𝑠. Crisp and Paris show that the map
Ψ ∶ 𝐴Γ → 𝐴Γ̃ which sends a generator 𝑠 to the product

∏
𝑠𝑖∈𝐼(𝑠)

𝑠𝑖 extends to a homomorphism [13,
Prop 13]. Crisp showed that this homomorphism is injective when restricted to the Artin monoid
[12], and it follows that it is injective when 𝐴Γ is spherical. It is still open whether Ψ is injective
in general.
We now verify thatΨ has some additional properties. For each 𝑇 ⊆ 𝑆, let 𝑇 denote the preimage

of 𝑇 under Γ̃ → Γ, that is, 𝑇 contains the vertices in 𝐼(𝑠) for each 𝑠 ∈ 𝑇.

Lemma 6.1. Let𝐴Γ be an Artin group with connected Coxeter diagram Γ and no∞-labels. Let Γ̃ be
as above, and let Ψ ∶ 𝐴Γ → 𝐴Γ̃ be the above homomorphism. Then Ψ satisfies the following:

∙ For every spherical Artin subgroup 𝐴𝑇 ⊆ 𝐴Γ, 𝐴𝑇 is spherical.
∙ If 𝐴𝑇 is an irreducible spherical subgroup of 𝐴Γ , then

Ψ(Δ2
𝑇) =

∏
𝑇𝑖⊆𝑇

Δ2
𝑇𝑖
,

where the {𝑇𝑖} are the irreducible components of 𝑇.

Proof. If 𝐴𝑇 is small type, then the Coxeter diagram of 𝐴𝑇 is a disjoint union of finitely many
copies of Coxeter diagram for 𝐴𝑇 , and hence 𝐴𝑇 is a direct product of copies of 𝐴𝑇 . In this case,
both statements follow easily. Suppose 𝜎 is not small type. If 𝐴𝑇 is irreducible, the Coxeter subdi-
agram Γ𝑇 for𝐴𝑇 is a line, with exactly one edge 𝑒 labeled with number greater than 3. Let Γ̃𝑖

𝑇
be a

connected component of the Coxeter diagram for Γ̃𝑇 . Then Γ̃𝑇𝑖 is obtained from Γ𝑇 by replacing
𝑒 with a copy of Γ(𝑚) and then attaching copies of 𝑇 − 𝑒. In each case we check directly that this
produces a spherical Artin group.
For the second statement, by the definition of Ψ, a Coxeter element for 𝑊Γ maps to a

Coxeter element for 𝑊Γ̃. The Coxeter number is preserved in the above identifications (see
Lemma 6.2 below), in that if Γ̃𝑇𝑖 is connected component of Γ̃𝑇 , then the Coxeter number of
𝐴𝑇 is the same as the number for 𝐴𝑇𝑖 ). This immediately implies the second statement by
Lemma 2.1. □
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We now record the following specific cases of Lemma 6.1 (these were previously tabulated in
[12]).

Lemma 6.2. Let𝐴Γ be a spherical Artin group as above, and let𝐴Γ̃𝑐
be an Artin group in the image

of Ψ where Γ̃𝑐 is a connected component of Γ̃. Let ℎ be the Coxeter number of the Coxeter system of
𝐴Γ. Then the Coxeter number of the Coxeter system of 𝐴Γ̃𝑐

is ℎ. Moreover:

(1) If 𝐴Γ = 𝐵𝑛, then 𝐴Γ̃𝑐
has type 𝐷𝑛+1 or 𝐴2𝑛−1, and ℎ = 2n.

(2) If 𝐴Γ = 𝐼2(𝑝), then 𝐴Γ̃𝑐
has type 𝐴𝑝−1 and ℎ = 𝑝.

(3) If 𝐴Γ = 𝐻3, then 𝐴Γ̃𝑐
has type 𝐷6 and ℎ = 10.

(4) If 𝐴Γ = 𝐻4, then 𝐴Γ̃𝑐
has type 𝐸8 and ℎ = 30.

(5) If 𝐴Γ = 𝐹4, then 𝐴Γ̃𝑐
has type 𝐸6 and ℎ = 12.

Let 𝐴Γ be an Artin group with no∞-labels and connected Γ. The RAAG with presentation 1.1
associated with 𝐴Γ is denoted by RAΓ, and the RAAG associated with 𝐴Γ̃ is denoted by RAΓ̃. We
denote the homomorphism RAΓ̃ → 𝐴Γ̃ from the statement of the Generalized Tits Conjecture by
Φ̃𝑁 .
We consider the composition Ψ◦Φ𝑁 ∶ 𝑅𝐴Γ → 𝐴Γ̃. Our aim is to verify the Generalized Tits

Conjecture for𝐴Γ, that is, to show thatΦ𝑁 is injective for some𝑁. Let 𝐹 ∶ RAΓ → RAΓ̃. If 𝑇 is an
irreducible, special subset, then 𝑇 will generally not be irreducible. For a generator 𝑧𝑇 of RAΓ its
image 𝐹(𝑧𝑇) is the product

∏
𝑇𝑖⊆𝑇

𝑧𝑇𝑖 of generators in RAΓ̃ corresponding to irreducible subsets
𝑇𝑖 ⊆ 𝑇. For each 𝑁, we have the following equality Φ̃𝑁◦𝐹 = Ψ◦Φ𝑁 .
Crisp and Paris show the following lemma for the RAAG generated by {𝑠2 ∶ 𝑠 ∈ 𝑆}. The same

proof works for our RAAGs. For the benefit of the reader, we provide the proof.

Lemma 6.3. The homomorphism 𝐹 is injective. Therefore, if Φ̃𝑁 is injective, then Φ𝑁 is injective.

Proof. Note that if 𝑇,𝑈 ⊆ 𝑆 are distinct irreducible subsets, then 𝑧𝑇𝑖 ≠ 𝑧𝑈𝑗 for all 𝑖 and 𝑗. Fur-
thermore, if 𝑧𝑇 and 𝑧𝑈 do not commute in RAΓ, then for every 𝑧𝑇𝑖 there exists a 𝑧𝑈𝑖 that does not
commute with 𝑠𝑇𝑖 in RAΓ̃. To see this, note that if two spherical subsets 𝑇 and𝑈 do not commute,
there is 𝑡 ∈ 𝑇 − 𝑈 and 𝑢 ∈ 𝑈 − 𝑇 with𝑚𝑡𝑢 ≠ 2. Any component 𝑇𝑖 of 𝑇 contains a vertex 𝑡̃ of 𝐼(𝑡).
There exists a vertex 𝑢 ∈ 𝐼(𝑢)with𝑚𝑡̃𝑢 ≠ 2. Therefore, the component of𝑈 containing 𝑢 does not
commute with 𝑇𝑖 . By the normal form for RAAGs this implies 𝐹 is injective, as it takes a reduced
word in RAΓ to a reduced word in RAΓ̃. □

6.2 Generalized Tits Conjecture for 𝑩𝒏, 𝑭𝟒,𝑯𝟑,𝑯𝟒, 𝑰𝟐(𝒑)

We now finish the remaining spherical cases. By Lemma 6.2 Artin groups of types 𝐵𝑛, 𝐻3 and
𝐼2(𝑝) embed via the folding homomorphisms in Artin groups of types 𝐴𝑚 and 𝐷𝑚, for which we
already know that the conjecture holds by Proposition 5.9 and Theorem 5.10. By Lemma 6.1 and
Lemma 6.3 we get the following.

Corollary 6.4. The Generalized Tits Conjecture holds for a spherical Artin group of type 𝐵𝑛,𝐻3 and
𝐼2(𝑝).
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F IGURE 14 The restriction of the folding homomorphism for 𝐴Γ of type 𝐹4 to one connected component.
The generators of 𝐴Γ are mapped to the Dehn twists and multitwists in the left surface. The right surface has all
the multicurves that arise as subsurfaces corresponding to irreducible special subgroups of 𝐴Γ. Thick curves
represent an example of a choice of curves satisfying Property PP

In the case of𝐹4 and𝐻4, we do not know the conjecture for𝐸6 and𝐸8, respectively. However, in
each of those cases, we can still show that the Generalized Tits Conjecture holds by considering

RAΓ → 𝐴Γ ↪ 𝐴Γ̃ →
∏
Γ𝑐

Mod(ΣΓ𝑐 ),

where 𝐴Γ is of type 𝐹4 (respectively, 𝐻4), RAΓ its associated RAAG and each component Γ𝑐 of Γ̃
is of type 𝐸6 (respectively, 𝐸8) with its Perron–Vannier representation in a mapping class group
(see Section 2.6). In both cases, we will only concentrate on one component of Γ̃. An identical
argument will work for all components, and so we get a faithful representation of 𝑅𝐴Γ into a
direct product of RAAG’s.

Theorem 6.5. The Generalized Tits Conjecture holds for the spherical Artin group of type 𝐹4.

Proof. Let 𝑆 = {𝑠, 𝑡, 𝑢, 𝑣} be the standard generators of 𝐴Γ of type 𝐹4 where 𝑚𝑠𝑡 = 𝑚𝑢𝑣 = 3,
𝑚𝑡𝑢 = 4. Consider the homomorphism Ψ𝑖 ∶ 𝐴Γ → 𝐴Γ̃𝑖

, where 𝐴Γ̃ has type 𝐸6, and where Ψ𝑖 is
the composition of the folding homomorphism Ψ with the projection 𝐴Γ̃ → 𝐴Γ̃𝑖

where Γ̃𝑖 is a
connected component of Γ̃. See Figure 14. We also consider the Perron–Vannier representation
𝜌 ∶ 𝐴Γ̃𝑖

→ Mod(Σ), as discussed in Section 2.6. The images of the elements Δ4
𝑇
for irreducible

subsets 𝑇 ⊆ 𝑆 are powers of Dehn twists around curves in Σ, pictured in Figure 14. Let  denote
the collection of all these curves. Again, by Theorem 5.3 sufficiently large powers 𝑘 of Dehn twists
around single curves in  generate a RAAG. By Lemma 5.4 to show that 𝐴 satisfies the Gener-
alized Tits Conjecture, we need to make a choice 𝑝(𝑇) of a curve in 𝜕Σ𝑇 for each of the irre-
ducible subsets 𝑇 of 𝑆. For 𝑇 = {𝑢} or {𝑣}, the choice is unique. It remains to make choices for
{𝑠}, {𝑡}, {𝑠, 𝑡}, {𝑡, 𝑢}, {𝑠, 𝑡, 𝑢}, {𝑡, 𝑢, 𝑣}. There is a unique curve in Σ𝑡,𝑢 that intersects the curve 𝑝({𝑣}),
we choose that curve for 𝑝({𝑡, 𝑢}). Note that that curve intersects both boundary components of
Σ{𝑠}, both boundary components of Σ{𝑠,𝑡} and the unique boundary component of Σ{𝑢,𝑣}. For each
choice of a curve in 𝜕Σ{𝑠}, there is a unique intersecting curve in 𝜕Σ{𝑡}, and there is a unique curve
in 𝜕Σ{𝑠,𝑡} that is the boundary of a subsurface containing those two curves. We make such a con-
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F IGURE 15 The restriction of folding homomorphism for 𝐴Γ of type 𝐸8 to one connected component. The
thick curves are the ones we choose for the standard generators in verifying Property PP. The gray and purple
curves are the curves we choose for {𝑡, 𝑢, 𝑣} and {𝑠, 𝑡, 𝑢}, respectively. The black, brown and orange curves are the
unique curves for the irreducible rank 2 subsets

sistent choice of 𝑝({𝑠}), 𝑝({𝑡}), 𝑝({𝑠, 𝑡}). Then there is a unique choice of 𝑝({𝑡, 𝑢, 𝑣}) that intersects
𝑝({𝑠}) and both components of Σ{𝑠,𝑡,𝑢}. Finally, any choice of 𝑝({𝑠, 𝑡, 𝑢}) works. The only multic-
urves which share a curve correspond to the collections {𝑡, 𝑢} and {𝑡, 𝑢, 𝑣}, and we never choose
this curve (the thin pink and teal curve in Figure 14), therefore the third condition of property PP
is satisfied. □

Theorem 6.6. The Generalized Tits Conjecture holds for the spherical Artin group of type𝐻4.

Proof. Let 𝑆 = {𝑠, 𝑡, 𝑢, 𝑣} be the standard generators of 𝐴Γ of type 𝐻4 where 𝑚𝑠𝑡 = 5 and 𝑚𝑡𝑢 =

𝑚𝑢𝑣 = 3. Consider the restriction of a folding homomorphism to a single component of Coxeter
diagram.We get a homomorphismΦ ∶ 𝐴𝐻4

→ 𝐴𝐸8
as pictured in the left of Figure 15.We also con-

sider the Perron–Vannier representation 𝐴𝐸6
→ Mod(Σ), as discussed in Section 2.6. The images

of the squares of the original generators, and of the elements Δ2
𝑇
for other irreducible subsets

𝑇 ⊆ 𝑆, are Dehn twists around curves in two copies of Σ in Figure 14. Let  denote the collection
of all these curves. As in previously considered cases, by Theorem 5.3 sufficiently large powers 𝑘
of Dehn twists around single curves in  generate a RAAG. We need to verify that Property PP is
satisfied for {Φ(Δ2𝑘

𝑇
)}. Specifically, we need to make choices for the following irreducible subsets

of 𝑆: {𝑠}, {𝑡}, {𝑠, 𝑡}, {𝑡, 𝑢}, {𝑠, 𝑡, 𝑢}, {𝑡, 𝑢, 𝑣}. There is a unique curve in Σ𝑡,𝑢 that intersects the curve
corresponding to 𝑣, we choose that curve for 𝑝({𝑡, 𝑢}). Note that that curve intersects both bound-
ary components of Σ{𝑠}, both boundary components of Σ{𝑠,𝑡} and the unique boundary component
of Σ{𝑢,𝑣}. For each choice of a curve in 𝜕Σ{𝑠}, there is a unique intersecting curve in 𝜕Σ{𝑡}, and there
is a unique curve in 𝜕Σ{𝑠,𝑡} that is the composition of those two curves. Wemake such a consistent
choice of 𝑝({𝑠}), 𝑝({𝑡}), 𝑝({𝑠, 𝑡}). That also forces a choice of 𝑝({𝑡, 𝑢, 𝑣}) and 𝑝({𝑠, 𝑡, 𝑢}). Since no
multicurves share a curve, the third condition of property PP is trivially satisfied. □

7 APPLICATIONS

If the Generalized Tits Conjecture holds in full generality, one immediate application is that the
subgroups of Artin groups are as complicated as subgroups of right-angledArtin groups. The latter
are currently more well understood. In this section, we give a few applications of this idea.

7.1 Incoherence

Recall that a group 𝐺 is coherent if every finitely generated subgroup of 𝐺 is finitely presented.
Droms had showed that the right-angled Artin group RA𝐿 was coherent if and only if 𝐿 was a
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chordal graph [21]. Gordon showed that if the Artin group of type𝐻3 was incoherent, there was a
similar classification of coherent Artin groups. Wise answered this in the affirmative in 2013.

Theorem 7.1 [43]. The Artin group of type𝐻3 is incoherent.

Since 𝐴 of type 𝐻3 satisfies the Generalized Tits Conjecture, we can give an alternative proof
of Wise’s theorem. In this case, the nerve 𝐿⊘ of the RAAG subgroup RA in 𝐴 is the cone on
a pentagon. The RAAG based on a pentagon is well known to be incoherent, for example, the
Bestvina–Brady subgroup of the RAAG (the kernel of the map to ℤ which sends every generator
to 1) is finitely generated and not finitely presented.

7.2 Hyperbolic surface subgroups

In [27], Gordon, Long and Reid studied which Coxeter groups and Artin groups contained hyper-
bolic surface subgroups. They showed that all finite-type Artin groups except types 𝐴1, 𝐼2(𝑚) and
𝐻3 contained these subgroups. The first two classes do not contain such subgroups (more gener-
ally, any Artin group where the nerve 𝐿 is a tree does not contain a hyperbolic surface subgroup),
and type𝐻3 was left as an open question. It follows from the Generalized Tits Conjecture that the
answer to their question is yes.

Theorem 7.2. Every Artin group with 𝑠, 𝑡, 𝑢 ∈ 𝑆 so that𝑚𝑠𝑡,𝑚𝑡𝑢,𝑚𝑢𝑠 < ∞ and at most one of them
equals 2, contains a surface subgroup.

Proof. The subgroup 𝐴{𝑠,𝑡,𝑢} satisfies the Generalized Tits Conjecture and the nerve of RA{𝑠,𝑡,𝑢}

is a pentagon, hexagon or a cone on a pentagon. The RAAG based on a pentagon or a hexagon
is commensurable to a right-angled Coxeter group which has a pentagon or a hexagon as a full
subcomplex [16]. It follows that the Coxeter group contains a hyperbolic surface subgroup, hence
so does the RAAG, and hence so does the Artin group. □

Corollary 7.3. The Artin group of type𝐻3 contains a hyperbolic surface subgroup.

Gordon–Long–Reid also consideredArtin groups of Euclidean type, and asked specifically if the
Artin group of type 𝐵̃2 or type 𝐺̃2 contains a hyperbolic surface subgroup. The nerves of theseArtin
groups are triangles with labels (2, 4, 4) and (2, 3, 6), respectively. In unpublished work, Sang–
hyun Kim can show the existence of such a subgroup in the 𝐵̃2 case, but we believe the 𝐺̃2 case
was still open. In either case, these groups are locally reducible. Therefore, the answer to this
question is also yes, and follows as above from the Generalized Tits Conjecture.

Corollary 7.4. The Artin groups of types 𝐵̃2 and 𝐺̃2 contain hyperbolic surface subgroups.

At this point, we do not have a complete characterization of which Artin groups contain hyper-
bolic surface subgroups. This is still open in the right-angled case. On the other hand, these should
be easier to construct outside of the right-angled case. For example, if the nerve 𝐿 is a 4-cycle, then
the RAAG is 𝐹2 × 𝐹2, which does not contain such a subgroup. On the other hand, if any edge
has a label > 2 then the Artin group is locally reducible and the associated RAAG subgroup has
nerve an 𝑛-gon with 𝑛 ⩾ 5.
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7.3 Subgroups of type 𝑭𝒏 and not 𝑭𝒏+𝟏

Spherical Artin groups are generally too high dimensional for coherence to be an interesting ques-
tion. A more interesting question is when a spherical Artin group contains a subgroup which is
type 𝐹𝑛 but not type 𝐹𝑛+1 where 𝑛 + 2 is the cohomological dimension (recall a group is type 𝐹𝑛

if it admits a classifying space with finite 𝑛-skeleton). For example, the type 𝐻3 Artin group has
cohomological dimension 3, so coherence is an interesting question. It follows again from the
Generalized Tits Conjecture that Artin groups of type 𝐻4 or 𝐹4 have subgroups which are 𝐹2 but
not 𝐹3.
In [44], Zaremsky showed that the pure braid groups 𝑃𝐵𝑛 contained subgroups𝑁 so that𝑁 was

type 𝐹𝑚−3 but not 𝐹𝑚−2 for 3 ⩽ 𝑚 ⩽ 𝑛. The existence of these subgroups again follows from the
fact that the Generalized Tits Conjecture holds for the braid groups (on the other hand Zaremsky’s
examples are normal and ours are not). In this case, the nerve of the RAAG subgroup is the cone
on a flag triangulation of 𝑆𝑛−1. The Bestvina–Brady subgroup of this RAAG is type 𝐹𝑛−3 but not
type 𝐹𝑛−2. To get subgroups that are 𝐹𝑚−3 but not 𝐹𝑚−2 for 3 ⩽ 𝑚 < 𝑛, one can instead map RA

to ℤ by sending some generators to 0.
Since the Generalized Tits Conjecture holds for type 𝐷𝑛, we have an analogous theorem with

the same proof as above.

Theorem 7.5. The Artin group of type𝐷𝑛 contains subgroups𝑁 so that𝑁 is type𝐹𝑚−3 but not𝐹𝑚−2

for 3 ⩽ 𝑚 ⩽ 𝑛.

Of course, the Artin group of type 𝐷𝑛 contains the braid group 𝐴𝑛−1, so the only improvement
on what Zaremsky’s theorem provides is 𝑛 = 𝑚.

7.4 Subgroup separability

A subgroup𝐻 of a group𝐺 is separable if𝐻 is closed in the profinite topology of𝐺, or equivalently
if every𝐻 is equal to the intersection of all the subgroups of finite index of𝐺 containing𝐻. A group
𝐺 is subgroup separable if every finitely generated subgroup of 𝐺 is separable in 𝐺.
In [1] Almeida–Lima used our result to formulate a criterion for subgroup separability of Artin

group, generalizing the criterion for RAAG’s due to Metaftsis–Raptis [34]. They prove that an
Artin group 𝐴 is subgroup separable if and only if 𝐴 is obtained from Artin groups of rank 2 via a
sequence of two operations: taking free products and taking direct product with ℤ.

8 QUESTIONS

We end the paper with some open questions.

Question 8.1. Does the Generalized Tits Conjecture hold for spherical Artin groups of type 𝐸𝑛?

If one can show the conjecture holds for all spherical Artin groups, a natural next step is the
Artin groups of FC type.
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Question 8.2. Does the conjecture hold for all Artin groups of FC type?

It would be very interesting to know some geometric properties of these subgroups.

Question 8.3. Each standard free abelian subgroup quasi-isometrically embeds into the Artin
group 𝐴. When the Generalized Tits Conjecture is true, are the entire RAAG subgroups quasi-
isometrically embedded?Does a quasi-isometry between twoArtin groups coarsely preserve these
RAAG subgroups?
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