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Abstract

We construct the first examples of normal subgroups of mapping class groups that
are isomorphic to non-free right-angled Artin groups. Our construction also gives
normal, non-free right-angled Artin subgroups of other groups, such as braid groups
and pure braid groups, as well as many subgroups of the mapping class group, such
as the Torelli subgroup. Our work recovers and generalizes the seminal result of
Dahmani–Guirardel–Osin, which gives free, purely pseudo-Anosov normal subgroups
of mapping class groups. We give two applications of our methods: (1) we produce an
explicit proper normal subgroup of the mapping class group that is not contained in
any level m congruence subgroup and (2) we produce an explicit example of a pseudo-
Anosov mapping class with the property that all of its even powers have free normal
closure and its odd powers normally generate the entire mapping class group. The tech-
nical theorem at the heart of our work is a new version of the windmill apparatus
of Dahmani–Guirardel–Osin, which is tailored to the setting of group actions on the
projection complexes of Bestvina–Bromberg–Fujiwara.

1. Introduction

This paper is an investigation into the structure of normal subgroups of the mapping class group.
Although there is no hope of a complete classification of such subgroups into isomorphism types,
we may hope for broader descriptions of the various possible behaviors. One of the main goals of
this paper is to give new examples of right-angled Artin groups (RAAGs) that embed as normal
subgroups of mapping class groups.

1.1 Overview
We begin with an overview of the content, and context, of this paper. The first examples of
normal, right-angled Artin subgroups of mapping class groups of arbitrary surfaces were given
in the celebrated work of Dahmani–Guirardel–Osin [DGO17]. They proved that if f is pseudo-
Anosov, then the normal closure of some high power of f is a free group of infinite rank.

The Dahmani–Guirardel–Osin result cannot be generalized to arbitrary mapping classes of
infinite order. Indeed, if f is a mapping class with sufficiently small support (say, a power of a
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Dehn twist about a non-separating curve), then f has a conjugate that commutes with it. Thus,
the normal closure of f is not free.

In the absence of freeness, we may hope that the normal closure of a power of f is isomor-
phic to a RAAG, that is, a group where all of the defining relations are commutations among
generators. However, Brendle and the third author [BM19] showed that if the support of a map-
ping class is sufficiently small (in a precise sense that they define) then its normal closure is not
isomorphic, or even abstractly commensurable, to a RAAG; see also [CLM14].

In summary: if the support of a mapping class is the entire surface (the pseudo-Anosov case),
then a large power has normal closure a free group, and if the support is sufficiently small, then
the normal closure cannot be any RAAG. The main result of this paper, Theorem 1.1 below,
can be summarized as follows:

If the support of a mapping class is sufficiently large, then it has a large power whose normal
closure is a right-angled Artin group.

As we show, Theorem 1.1 applies not only to single elements but also to finite collections.
Theorem 1.1 further applies to normal closures in arbitrary subgroups of the mapping class
group as well. Thus, for example, we may apply Theorem 1.1 in order to construct new normal,
right-angled Artin subgroups of the pure braid group and the Torelli group.

Theorem 1.1 gives the precise isomorphism types of the RAAGs that arise from our
construction. Specifically, each is a free product of groups of the following form:

F∞, ∗
∞

(F∞ × F∞), ∗
∞

(F∞ × Z), and ∗
∞

(F∞ × F∞ × Z).

The 14 non-free RAAGs arising as a free product in this way are the first known examples of
non-free, normal, right-angled Artin subgroups of the mapping class group. We show in § 2 that
all 15 RAAGs described previously (including the free RAAG) also appear as normal subgroups
of the Torelli group and the pure braid group.

As applications of Theorem 1.1 we exhibit two new phenomena.

(i) There is a normal subgroup of the mapping class group that is not contained in any level
m congruence subgroup.

(ii) There is a pseudo-Anosov mapping class with the property that all of its odd powers have
normal closure equal to the mapping class group and all of its non-zero even powers have
normal closure a free group of infinite rank.

See Theorems 1.2 and 1.5 for the precise statements. The former answers a question raised in
earlier work by Lanier and the third author.

In order to prove Theorem 1.1 we appeal to, and develop, the theory of projection complexes,
introduced by Bestvina–Bromberg–Fujiwara [BBF15]. We give a general result (Theorem 1.6),
which says that if a group has a ‘spinning’ action on a projection complex, then the group is
isomorphic to a free product of certain vertex stabilizers. The projection complexes that we
consider in the proof of Theorem 1.1 are novel in that the vertices correspond to disconnected
subsurfaces of the given surface. Theorem 1.6 applies much more generally, though, and has
applications, for example, to the theory of Out(Fn) (see § 1.7).

Outline of the introduction. The rest of the introduction is structured as follows. We begin by
giving the statement of our main result in § 1.2. We give some first consequences in § 1.3, where
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we explicitly construct right-angled Artin subgroups of the mapping class group by directly
applying Theorem 1.1. In § 1.4 we discuss Theorem 1.2, our construction of normal subgroups
of the mapping class group that are not contained in congruence subgroups. In § 1.5 we give
a complete picture of which RAAGs arise from our construction (the 15 examples discussed
previously). Then in § 1.6 we discuss some of the finer details about the statement of our main
theorem, addressing the question: given a pseudo-Anosov mapping class, precisely which powers
do, and do not, have free normal closure? Here we state Theorem 1.5. In § 1.7 we discuss our
technical results about group actions on projection complexes. Finally, in § 1.8 we give an outline
of the remainder of the paper.

1.2 Statement of the main result
The statement of our main result, Theorem 1.1 below, requires a number of definitions and some
notation.

Mapping class groups and pseudo-Anosov mapping classes. Let Sg denote the closed, connected,
orientable surface of genus g, and let Sg,p denote the surface obtained from Sg by deleting p points
(so Sg,0 = Sg). Finally, let Sb

g,p be the surface obtained from Sg,p by deleting the interiors of b

disjoint disks (so S0
g,p = Sg,p). The mapping class group Mod(Sb

g,p) is defined as the group of con-
nected components of Homeo+(Sb

g,p, ∂Sb
g,p), the group of orientation-preserving homeomorphisms

of Sb
g,p that fix the boundary pointwise. In what follows, fix S = Sb

g,p.
The Nielsen–Thurston classification theorem states that each element of Mod(S) is either

periodic, reducible, or pseudo-Anosov; see, e.g., [FM12, Chapter 13]. The group Mod(S) acts
on the space of projective measured foliations PMF(S) and an element is pseudo-Anosov if and
only if the cyclic subgroup it generates acts with source–sink dynamics; in this case the source
is denoted F− and the sink F+.

Partial pseudo-Anosov mapping classes. By a subsurface of S we will mean a closed submanifold
X with the property that each component of ∂X is either a component of ∂S or an essential,
non-peripheral simple closed curve in S (essential means not homotopic to a point or a puncture,
and non-peripheral means not homotopic to a component of ∂S). We further assume that no two
connected components of S are homotopic to each other (in other words, if X has an annular
component, then no other component is a parallel annulus). We also let X̄ denote the surface
obtained from X by collapsing each component of the boundary to a marked point (we may
alternatively regard the marked points as punctures).

For a subgroup G of Mod(S), let StabG(X) be the stabilizer in G of the homotopy class
of X. There is a well-defined map StabG(X) → Mod(X̄). We denote the image of f ∈ StabG(X)
by f̄ .

A partial pseudo-Anosov mapping class is an f ∈ Mod(S) that has a representative supported
on a connected subsurface X and whose image f̄ in Mod(X̄) is pseudo-Anosov.

It follows from the Birman–Lubotzky–McCarthy theory of canonical reduction systems
[BLM83] that the support X of a partial pseudo-Anosov mapping class f is a well-defined
homotopy class of subsurfaces of S.

Independence. We say that pseudo-Anosov mapping classes f1, f2 ∈ Mod(S) are independent
if their corresponding sets of fixed points in PMF(S̄) are disjoint (equivalently, not equal).
McCarthy [McC85] proved that f1 and f2 are independent in this sense if and only if no non-trivial
power of f̄1 is equal to a power of f̄2 (if ∂S = ∅ then S̄ = S and f̄i = fi).
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Suppose that G is a subgroup of Mod(S). We further say that f1, f2 ∈ G are G-independent
if every conjugate of f1 by an element of G is independent of f2 (equivalently, the fixed sets in
PMF(S̄) lie in different G-orbits).

The definitions of independence and G-independence carry over to the case where f1 and f2

are partial pseudo-Anosov elements with the same support X. Specifically, they are independent if
the corresponding maps f̄1 and f̄2 are independent, and they are G-independent if the conjugates
by StabG(X) are independent.

We may further extend the definition to the case where f1 and f2 are arbitrary partial
pseudo-Anosov elements. Specifically, we say that f1 and f2 are G-independent if either (1) their
supports do not lie in the same G-orbit or (2) their supports do lie in the same G-orbit and
conjugates of f1 and f2 with the same support are G-independent as in the previous paragraph.

Even further, let f1 and f2 be two mapping classes and assume that each fi is a pseudo-
Anosov mapping class, a partial pseudo-Anosov mapping class, or a power of a Dehn twist. Then
we say that f1 and f2 are G-independent if either (1) their supports lie in different G-orbits or
(2) their supports lie in the same G-orbit, they are not both powers of Dehn twists, and they
are G-independent as described previously.

Finally, if F ⊆ Mod(S) is an arbitrary collection of pseudo-Anosov mapping classes, partial
pseudo-Anosov elements, and powers of Dehn twists, then we say that F is G-independent if
each pair of elements of F is G-independent as described previously.

Elementary closure and NEC mapping classes. Suppose ∂S = ∅. Again let G be a subgroup of
Mod(S), and let f ∈ G be a pseudo-Anosov element. The elementary closure in G of f , written
ECG(f), is defined to be the stabilizer in G of the associated pair of fixed points in PMF(S).
For G = Mod(S) we simply write EC(f). We say that f is an NEC element (for ‘normal in
elementary closure’) of G if 〈f〉 is normal in ECG(f).

McCarthy [McC85] proved that EC(f) is an extension of Z or D∞ by a finite subgroup of
Mod(S). As the order of a finite subgroup of Mod(S) is bounded by a function of S, it follows that
there is a d = d(S) so that the dth power of any pseudo-Anosov mapping class is NEC in Mod(S).
A pseudo-Anosov element that is NEC in Mod(S) is also NEC in an arbitrary subgroup G, and
so there is a d = d(S) so that the dth power of any pseudo-Anosov element of any subgroup G

is an NEC element of G.
For the case where ∂S 	= ∅, we say that a pseudo-Anosov f ∈ Mod(S) is NEC if f̄ ∈ Mod(S̄)

is.
Finally, we may again carry over the definitions to the partial pseudo-Anosov case. Let

f ∈ Mod(S) be a partial pseudo-Anosov element with support X. Consider the map StabG(X) →
Mod(X̄). Denote the image of StabG(X) by Ḡ and the image of f by f̄ . We say that f is an
NEC element of G if f̄ is an NEC element of Ḡ.

A power of a Dehn twist is, by definition, an NEC element of Mod(S).
In this paper, we give two further sufficient conditions for a pseudo-Anosov mapping

class to be an NEC element of Mod(S). See the discussion after Proposition 1.4 as well as
Lemma 9.3.

Orbit-overlapping subsurfaces. . . . Let X and Y be two homotopy classes of connected subsurfaces
of S. We say that X and Y overlap if the boundary of X has essential intersection with Y , and vice
versa (meaning that the boundary of every representative of X intersects every representative
of Y , and vice versa).
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If the boundaries of (representatives of) X and Y have essential intersection, then X and Y

overlap. However, the converse is not true: consider, for example, the case where X and Y are
the complements of disjoint, homotopically distinct non-separating annuli in S.

We may extend the definition of overlapping to the case of subsurfaces that are not necessarily
connected. We say that two arbitrary subsurfaces X and Y overlap if each component of X

overlaps with each component of Y .
Let G be a subgroup of Mod(S). We say that a homotopy class of subsurfaces X is

G-overlapping if for each h ∈ G we either have that hX is equal to X or it overlaps with X.
We say that a family X of homotopy classes of subsurfaces of S is G-overlapping if each X ∈ X
is G-overlapping and for each distinct pair X, Y ∈ X any elements of the G-orbits of X and Y

overlap. In particular, we must have that X and Y lie in different G-orbits.
One example of a Mod(Sg)-overlapping subsurface of Sg is the complement of a non-

separating annulus. Another example of a Mod(Sg)-overlapping subsurface of Sg is an annular
neighborhood of a separating curve of genus g/2, that is, a separating curve that divides Sg

into two surfaces of genus g/2 (we may also say that the curve itself is Mod(Sg)-overlapping).
Of course, if G1 � G2, then a G2-overlapping family of subsurfaces is G1-overlapping. Thus, the
given examples are G-overlapping for each subgroup G � Mod(Sg).

In general, the G-overlapping condition is quite restrictive. For instance, Corollary 2.2 in
§ 2 states that if G = Mod(S) and X is a G-overlapping subsurface, then X has at most one
annular component and at most two non-annular components. Proposition 2.1 gives further
restrictions.

In their work on the large-scale geometry of big mapping class groups, Mann–Rafi [MR20]
define the notion of a non-displaceable subsurface of a surface, which is an analogue of our
G-overlapping condition in the case that G = Mod(S). For a connected subsurface, their notion
is the same as our notion of Mod(S)-overlapping, but for disconnected subsurfaces it is less
restrictive.

. . .and the associated mapping classes. As previously, let G be a subgroup of Mod(S). Let X be a
G-overlapping family of homotopy classes of subsurfaces of S. We say that a family of mapping
classes F ⊆ G is carried by X if there is a function

σ : F → X

so that the following conditions hold:

(i) each f ∈ F is a pseudo-Anosov mapping class, partial pseudo-Anosov mapping class, or a
power of a Dehn twist, and the support of f is (the homotopy class of) a component of
(a representative of) σ(f); and

(ii) for any component X of an element of X , there is an f ∈ F and g ∈ G so that the support
of gfg−1 is X.

In the case where no two components of elements of X lie in the same G-orbit, we may replace
condition (2) with the simpler condition that for any component X of an element of X , there is
an f ∈ F whose support is X. Condition (2) is required for the situation where an element of X
has two components X1 and X2 in the same G-orbit; say gX1 = X2. In this case, if the family
F had both an element f1 with support X1 and the element f2 = gf1g

−1 with support X2 (as
per the simpler condition), then F would not be G-independent.
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Statement of the main theorem. In order to state our main theorem, we need further notation.
First, for a subset A of a group G we denote by A(n) the set {an | a ∈ A}. Also, if G is a group
and A ⊆ G we denote by 〈〈A〉〉G the normal closure of A in G.

Suppose that G is a subgroup of Mod(S), that X is a G-overlapping family of homotopy
classes of subsurfaces of S, and that F ⊆ G is a family of mapping classes carried by X . Also
suppose that Y = hX for some X ∈ X , h ∈ G. For n > 0 we define

RY = h(〈〈(σ−1(X))(n)〉〉StabG(X))h
−1.

This subgroup of G is well-defined, independent of h. For X ∈ X , the group RX is the normal
closure in StabG(X) of the nth powers of the elements of F that are supported in X. For Y = hX,
we have RY is the conjugate of RX by h. We emphasize that the notation RY does not reflect
the dependence on F and n.

Finally, we denote by aY and bY the numbers of annular and non-annular components of a
subsurface Y ⊆ S (or a homotopy class).

Theorem 1.1. Let S = Sb
g,p, let G be a subgroup of Mod(S), let X be a G-overlapping family of

subsurfaces of S, and let F be a finite, G-independent family of mapping classes that are carried

by X and are NEC in G. There is an N > 0 with the following properties:

(i) for each n ≥ N and any set of orbit representatives Y for the action of 〈〈F (n)〉〉G on G · X ,

we have

〈〈F (n)〉〉G ∼= ∗
Y ∈ Y

RY ;

(ii) further, for each Y ∈ Y we have

RY
∼= F bY∞ × ZaY .

As every f ∈ Mod(S) has a power p that is NEC in G, and because a power of an NEC
mapping class is NEC, we may remove the NEC hypothesis from Theorem 1.1 at the expense
of replacing ‘for all n > N ’ with ‘there exists an N so that for all multiples n of N ’; specifically,
N is chosen so that each element of F (N) is NEC in G. In other words, if we remove the NEC
hypothesis, the conclusion holds for some specific N (and its multiples) instead of all sufficiently
large n.

It follows from the proof that there exists a set of orbit representatives Y so that the
isomorphism in the first statement of Theorem 1.1 is given by inclusion.

Connection to the deep relations question of Ivanov. Let Tk(S) denote the normal subgroup of
Mod(S) generated by all kth powers of Dehn twists. Ivanov asked [Iva06, § 12] if Tk(S) has a
presentation where the generators are all kth powers of Dehn twists and the relations are the
obvious ones, namely the relations

T k
d T k

c T−k
d = T k

T k
d (c)

.

This question was recently answered in the affirmative by Dahmani [Dah18]. In the proof,
Dahmani applies a version of the Dahmani–Guirardel–Osin machinery.

One interpretation of our Theorem 1.1 is that there is a presentation for the group 〈〈F (n)〉〉G
where the set of generators is the union of all G-conjugates of F (n), and where the relations are
the obvious ones. Specifically, the generators are of the form hfh−1 with f ∈ F (n) and h ∈ G.
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Denoting each such generator hfh−1 as fh, the relations are all equalities of the form

gkfhg−1
k = fgkh.

These relations are indeed obvious, as can be seen by expanding them out. Once we have
the presentation of the normal closure given by Theorem 1.1, we can obtain the presen-
tation here by repeatedly performing the Tietze transformation of adding a new generator
and writing it in terms of the old generators. In this sense, our result is analogous to
Dahmani’s.

1.3 First examples
We list here some immediate consequences of Theorem 1.1, which exhibit some of the variety
of applications. In what follows, I(Sg) is the Torelli subgroup of Mod(Sg), which is defined to
be the kernel of the action of Mod(Sg) on H1(Sg; Z). In addition, we identify the pure braid
group on n strands with the pure mapping class group of a disk Dn with n marked points in the
interior; see [FM12, Chapter 9].

(i) Taking X = {S} and G = Mod(S) we obtain the result of Dahmani–Guirardel–Osin that
the normal closure of a suitable power of a pseudo-Anosov mapping class is isomorphic
to F∞.

(ii) Taking X = {X} where X is connected and Mod(S)-overlapping and taking G = Mod(S),
we obtain that the normal closure of a suitable power of a partial pseudo-Anosov mapping
class with support X is isomorphic to F∞.

(iii) Taking X = {A} where A is an orbit-overlapping annulus in S, for example an annulus
dividing S into two homeomorphic subsurfaces as in Figure 1, and taking G = Mod(S), we
obtain that the normal closure of a suitable power of a Dehn twist about A is isomorphic
to F∞.

(iv) Taking X = {A ∪ B} where A is as in example (iii) and B is the complement of an open
neighborhood of A (see Figure 1), taking fA to be a suitable power of a Dehn twist about
A, taking fB to be a suitable power of a partial pseudo-Anosov mapping class supported
on one component of B, and taking G = Mod(S), we obtain that the normal closure of
{fA, fB} in Mod(S) is isomorphic to

∗
∞

(
F∞ × F∞ × Z

)
.

(v) Taking X = {A} where A is any separating annulus in Sg and taking G = I(Sg), we
obtain that the normal closure in I(Sg) of a suitable power of a Dehn twist about A is
isomorphic to F∞. Similarly the normal closure in I(Sg) of a suitable power of any partial
pseudo-Anosov element of I(Sg) is isomorphic to F∞.

(vi) Taking X = {A} to be any subsurface of Dn and taking G to be the pure braid group,
and taking f to be any partial pseudo-Anosov element or Dehn twist supported on A, we
obtain that the normal closure of a suitable power of f is isomorphic to F∞.

(vii) Taking X = {A ∪ B ∪ C} where A is an annulus in Dn surrounding more than two marked
points but fewer than n − 1 marked points, taking B and C to be the complementary
regions to open neighborhood of A, and taking G to be the pure braid group, and taking
fA, fB, and fC to be partial pseudo-Anosov elements and Dehn twists with supports equal
to A, B, and C, we obtain that the normal closure of suitable powers of fA, fB, and fC is
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Figure 1. An orbit overlapping subsurface in Sg.

isomorphic to

∗
∞

(
F∞ × F∞ × Z

)
.

(viii) Taking X = {A1 ∪ · · · ∪ An} where the Ai are pairwise disjoint and each Ai is the support
of a partial pseudo-Anosov mapping class fi and taking G to be the subgroup of Mod(S)
consisting of elements that preserve each Ai, we obtain that the normal closure in G of
suitable powers of the fi is isomorphic to the direct product of n copies of F∞.

1.4 Application: non-congruence normal subgroups
We give here an application of Theorem 1.1 to the general theory of normal subgroups of the
mapping class group. The following theorem answers a question asked in (the first version of) a
paper by Lanier and the third author [LM18].

Theorem 1.2. Let g ≥ 2. There exists a proper normal subgroup of Mod(Sg) that is not

contained in any proper level m congruence subgroup of Mod(Sg).

To prove Theorem 1.2, we first choose independent NEC pseudo-Anosov mapping classes f1

and f2, each of whose actions on H1(Sg; Z) is equal to that of a Dehn twist about some non-
separating curve. Then for distinct large primes p1 and p2, the normal closure N of {fp1

1 , fp2
2 }

is the desired subgroup. Indeed, Theorem 1.1 implies N is free (hence, proper) and it is evident
that N is not contained in any level m congruence subgroup. The main work is to prove that f1

and f2 exist. In the process, we make f1 and f2 (but not p1 and p2) explicit.
After learning about our work, Ashot Minasyan pointed out to us that Theorem 1.2 can also

be derived from earlier work of Hull [Hul16]. We explain the details of this argument in § 9.

1.5 Which RAAGs?
Putting the two statements of Theorem 1.1 together and applying the restrictions on aY and bY

from Corollary 2.2 (mentioned previously), we see that when G = Mod(S) the group 〈〈F (n)〉〉G
is isomorphic to a free product of the groups

F∞, ∗
∞

(F∞ × Z), ∗
∞

(F∞ × F∞), and ∗
∞

(F∞ × F∞ × Z);

We prove in § 2 that all possibilities occur, that is, any group that is a free product of groups

∗
∞

F bi∞ × Zai ,

where ai ∈ {0, 1} and bi ∈ {0, 1, 2} for all i, is isomorphic to some 〈〈F (n)〉〉Mod(S); see Theorem 2.3.
In particular, this gives the first examples of normal, non-free, right-angled Artin subgroups of
the mapping class group.
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Theorem 1.1 applies to mapping classes whose supports are ‘sufficiently large’. On the other
hand, a result of Brendle and the third author roughly states that the normal closure of any
mapping class with ‘sufficiently small’ support is not isomorphic to a RAAG [BM19, Corollary
1.4]. This leads us to the following conjecture.

Conjecture 1.3. Let S = Sg,p. If N is a non-trivial normal subgroup of Mod(S) and N is
isomorphic to a RAAG then N is isomorphic to one of the right-angled Artin subgroups of
Mod(S) afforded by our construction. In particular, N is isomorphic to a free product of the
groups

F∞, ∗
∞

(
F∞ × Z

)
, ∗

∞

(
F∞ × F∞

)
, and ∗

∞

(
F∞ × F∞ × Z

)
.

For specific values of g and n the conjecture may be sharpened. For instance, when S = Sg

the conjecture says that the RAAG is isomorphic to a free product of the groups

F∞, ∗
∞

(
F∞ × F∞

)
, and ∗

∞

(
F∞ × F∞ × Z

)
,

because the group ∗ (F∞ × Z) does not arise from our construction in this case (this is a
consequence of Proposition 2.1); cf. Theorem 2.4. Similarly, when at least one of g or n is odd,
the group ∗ (F∞ × F∞ × Z) does not appear, etc.

Other normal free groups. . . . Farb explicitly asked whether or not a pseudo-Anosov map-
ping class has a power with free normal closure [Far06, Question 2.9]. Before the work of
Dahmani–Guirardel–Osin, the only known examples of free, normal subgroups of the mapping
class group were those due to Whittlesey [Whi00]. She proved that the Brunnian subgroup of
Mod(S0,n) is free. As a consequence, she proved that there is a corresponding free, normal, all
pseudo-Anosov subgroup of Mod(S2).

. . .and non-normal RAAGs. Long before the work of Dahmani–Guirardel–Osin, it was proven
that if two curves have geometric intersection number greater than 1 then the corresponding
Dehn twists generate a free group of rank two. This result was proved by Ishida [Ish96] and
Hamidi–Tehrani [HT02], and also appears in Handel’s notes from Thurston’s course on mapping
class groups in Princeton from 1975. Ivanov [Iva92, Corollary 8.4] and McCarthy [McC85] proved
that high powers of independent pseudo-Anosov mapping classes generate a free group of rank
two. Since then there have been many different constructions of non-normal free subgroups of
the mapping class group with various properties; see, for instance, the work of Fujiwara [Fuj15]
and of the second author [Man10, Man13].

Beyond free groups, there are a number of papers devoted to the problem of finding right-
angled Artin subgroups of mapping class groups. Constructions of such subgroups are given by
Leininger and the first two authors of this paper [CLM12], Crisp–Farb [CF], Crisp–Paris [CP01],
Crisp–Wiest [CW07], Koberda [Kob12], Lönne [Lön10], Runnels [Run20], and Seo [Seo19]. Each
of these works has its own points of emphasis, but one over-arching theme is that every finitely
generated RAAG is isomorphic to a subgroup of some mapping class group. In all of these works,
the resulting subgroup is not normal.

1.6 Which powers?
As mentioned previously, the special case of Theorem 1.1 where each element of F is pseudo-
Anosov is due to Dahmani–Guirardel–Osin. The most obvious distinctions between their work
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and ours are that Theorem 1.1 applies to certain types of reducible mapping classes, and also
that our normal closures are not always free groups. Beyond this, we help clarify the situation
as to which powers of a pseudo-Anosov mapping class do, and do not, have free normal closure.
We now discuss these two points in more detail.

Which powers do have free normal closure?. In a forthcoming paper we apply the techniques of
this paper to show the following.

(i) If f ∈ Mod(Sg,p) is an NEC pseudo-Anosov element, then 〈〈fN 〉〉 is free for

N ≥ exp
(
exp

(
106 · δ2

g,p · (3g − 3 + p)2
))

.

(ii) If c is an orbit overlapping curve and p = 0, then 〈〈TN
c 〉〉 is free for N ≥ 53,489.

Here, δg,p is any hyperbolicity constant for the curve graph of Sg,p; it has been shown that δg,p

can be taken to be 17, independently of Sg,p (see [HPW15]).
It is an interesting problem to sharpen these values of N . For the case of an orbit overlapping

curve, we can see that N = 1 does not suffice to ensure that 〈〈TN
c 〉〉 is free. For example, when c

is a curve of genus g/2 in Sg, the lantern relation can be used to exhibit the non-freeness (if a, b,
and c are curves of genus g/2 that lie in a four-holed sphere L in Sg, then by the lantern relation
we have TaTb = T−1

c M where M is the multitwist about the boundary of L, from which we see
that TaTb and Tc commute but do not have a common power). On the other hand, we do not
know whether or not 〈〈T 2

c 〉〉 is free. Similarly, N = 1 does not suffice in the pseudo-Anosov case:
as explained in Proposition 1.4, every pseudo-Anosov element of the Torelli group I(Sg) is NEC,
and Lanier and the third author proved [LM20, Theorem 1.3] that there is a pseudo-Anosov
element of I(Sg) whose normal closure in Mod(Sg) is equal to I(Sg).

Which powers do not have free normal closure?. It follows from the work of
Dahmani–Guirardel–Osin, specifically Corollary 6.36 and Theorem 6.8 in their paper [DGO17],
that sufficiently large powers of NEC pseudo-Anosov mapping classes have free normal closure
(this is also a special case of Theorem 1.1). Many results about pseudo-Anosov mapping classes
hold for sufficiently large powers, for example, the result of Ivanov and McCarthy mentioned
previously. Thus, one may be tempted to think that all sufficiently large powers of a pseudo-
Anosov mapping class have free normal closure. The following proposition shows that this is not
the case.

Proposition 1.4. Let f ∈ Mod(S) be a pseudo-Anosov mapping class that is not NEC. Then

for arbitrarily large n, the group 〈〈fn〉〉 contains a non-trivial periodic element; in particular,

〈〈fn〉〉 is not free.

Indeed, any h ∈ EC(f) conjugates f to hfh−1 = f±1r for some r in the finite group of
symmetries of the singular Euclidean structure on S associated to f , as these are precisely the
pseudo-Anosov elements in EC(f) with the same stretch factor as f (this follows from McCarthy’s
description of EC(f) in his unpublished paper [McC85]). If f is not NEC, then some h gives a
non-trivial r = f∓1hfh−1 in 〈〈f〉〉. Moreover, if f is not NEC, then arbitrarily large powers of f

are not NEC, hence the proposition.
It follows immediately from Proposition 1.4 that if f lies in a normal subgroup of Mod(S)

that is torsion free, then f is NEC. As an example, if f lies in the level m congruence subgroup
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of Mod(Sg) with m ≥ 3, then f is NEC in Mod(Sg). In particular, every pseudo-Anosov element
of the Torelli group I(Sg) is NEC.

Proposition 1.4 shows that the NEC condition is necessary in order for a pseudo-Anosov
mapping class to have free normal closure. However, it is not sufficient. Indeed, as mentioned
previously, Lanier and the third author gave an example of a NEC pseudo-Anosov mapping class
with normal closure I(Sg). On the other hand, the following question seems to be open: is the
normal closure of an NEC pseudo-Anosov mapping class torsion free?

In the case of a closed surface, we can strengthen the conclusion of Proposition 1.4: not
only does 〈〈fn〉〉 fail to be free, but it fails to be abstractly commensurable to any RAAG.
Indeed, it follows from work of Lanier and the third author [LM20, Theorem 1.1] that the
normal closure of any non-trivial periodic element of Mod(Sg), hence the normal closure of fn,
contains I(Sg). In addition, Brendle and the third author proved that the normal closures of
any subgroup of Mod(Sg) containing I(Sg) is not abstractly commensurable with any RAAG
[BM19, Corollary 1.4].

The failure of 〈〈fn〉〉 to be free (or abstractly commensurable to any RAAG) is underscored
by the following result, which we prove in § 9.

Theorem 1.5. For each g ≥ 3 there exists a pseudo-Anosov f ∈ Mod(Sg) so that if n is odd

then

〈〈fn〉〉 = Mod(Sg),

and if n is even and non-zero, then

〈〈fn〉〉 ∼= F∞.

The mapping classes that appear in the proof of Theorem 1.5 are based on those used by
Lanier and the third author to show that there are pseudo-Anosov elements of Mod(Sg) with
the property that all of their odd powers are normal generators (in particular, there are normal
generators for Mod(Sg) with arbitrarily large translation lengths on the curve complex) [LM20,
Theorem 1.4].

1.7 Windmills and spinning families
Our next goal is to explain the main technical theorem used to prove Theorem 1.1, namely,
Theorem 1.6. This theorem concerns the theory of group actions on projection complexes. Briefly,
a projection complex is a graph Γ that comes equipped with a collection of functions

dv : V \ {v} × V \ {v} → R≥0,

where V is the set of vertices of Γ and v ∈ V . Projection complexes were defined by
Bestvina–Bromberg–Fujiwara; see § 3 for the full definition, along with examples and motivation.
Our definition is a mild modification of the original definition of Bestvina–Bromberg–Fujiwara
in that we require the projection complex to satisfy additional properties (such as the bounded
geodesic image property).

After stating Theorem 1.6, we explain forthcoming work on the geometry of the corresponding
quotient complexes, and then we state Theorem 1.7. The latter is the simplest type of application
of Theorem 1.6, where the output is a free group. In § 1.8 we explain how Theorems 1.6 and 1.7
are pieced together to prove Theorem 1.1.
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Windmills in projection complexes. Let P be a projection complex, and let G be a group that
acts on P. Further, for each vertex v of P, let Rv be a subgroup of the stabilizer of v in G.
Let L > 0. We say that the family of subgroups {Rv} is an equivariant L-spinning family of
subgroups of G if it satisfies the following two conditions.

• Equivariance: if g lies in G and v is a vertex of P, then

gRvg
−1 = Rgv.

• Spinning condition: for any distinct vertices v and w of P and any non-trivial h ∈ Rv we
have

dv(w, hw) ≥ L.

The equivariance condition implies that for each vertex v, the subgroup Rv is normal in Stab(v),
and that the subgroup 〈Rv〉 of G generated by the Rv is normal in G. Furthermore, if we choose
orbit representatives {vi} for the action of G on the vertices of P, then 〈Rv〉 is the normal closure
of the set {Rvi}.

Theorem 1.6. Let P be a projection complex and let G be a group acting on P. There exists

a constant L(P) with the following property. If L ≥ L(P), if {Rv} is an equivariant L-spinning

family of subgroups of G, and if O is any set of orbit representatives for the action of 〈Rv〉 on

the set of vertices of P, then 〈Rv〉 is isomorphic to the free product

∗
v ∈ O

Rv.

In the statement of Theorem 1.6, we emphasize that 〈Rv〉 is the group generated by all of the
Rv, not just one Rv. Also, it follows from the proof that there exists a set of orbit representatives
O so that the isomorphism in Theorem 1.6 is given by inclusion.

To prove Theorem 1.6 we introduce the notion of a windmill in a projection complex; see
§ 4. A windmill is a subgraph of P that serves as a proxy for the Bass–Serre tree for the desired
free product decomposition. Our definition of a windmill is derived from the theory of windmills
for group actions on hyperbolic spaces, due to Dahmani–Guirardel–Osin, which, in turn, has its
origins in the work of Gromov [Gro01, § 26].

As we explain in § 3, every simplicial tree can be regarded as a projection complex (and,
conversely, a projection complex is a quasi-tree [BBF15, Theorem 3.16]). In § 5 we give the proof
of Theorem 1.6 in the special case where P is a tree, as a warmup for the general case.

After the first version of this paper appeared, Bestvina–Dickmann–Domat–Kwak–Patel–Stark
gave a new proof of Theorem 1.6. Their proof produces an 〈Rv〉-invariant tree in P that is the
Bass–Serre tree for the given free product decomposition. In their paper [BDDKPS20], they also
explain how to derive a version of the main result of the paper by Dahmani–Guirardel–Osin
[DGO17, Theorem 5.3a] from Theorem 1.6.

Hyperbolicity of the quotient. As previously, Tk(S) denotes the normal subgroup of Mod(S)
generated by kth powers of Dehn twists. Building on the aforementioned work of Dahmani, it was
recently shown by Dahmani–Hagen–Sisto that for suitable k the quotient group Mod(S)/Tk(S) is
acylindrically hyperbolic [DHS21] (in particular, the group Tk(S) has infinite index in Mod(S)).
One of the major steps in the proof is to show that the quotient of the curve complex by Tk(S)
is hyperbolic.
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In analogy with this result, the first two authors prove in a separate paper that under
certain hypotheses, the quotient complex P/〈Rv〉 arising in Theorem 1.6 is hyperbolic and that
the quotient group G/〈Rv〉 is acylindrically hyperbolic [CM]. The argument follows along the
lines of the work of Dahmani–Hagen–Sisto [DHS21].

Free groups from windmills. Our next result, Theorem 1.7, is the simplest type of application
of Theorem 1.6, in that the Rv subgroups are all isomorphic to Z (and so the output is F∞).
Theorem 1.7 also serves as a sort of base case for Theorem 1.1; in the outline of the paper given
in the following, we explain this in more depth.

For the statement we require several definitions. First, when we say that a space is hyperbolic,
we mean that it is a metric space that is δ-hyperbolic in the sense of Gromov. Fix some hyperbolic
space X and suppose a group G acts on X by isometries. Certain types of elements of G are
called WPD elements (for ‘weakly properly discontinuous’). The idea is that f is WPD if its
translation length is positive and if long segments of a quasi-axis for f have a finite coarse
stabilizer; see § 3.2 for the details. One important example for our work is where G = Mod(S)
and X = C(S); in this case, the WPD elements are exactly the pseudo-Anosov elements of
Mod(S).

Each WPD element f ∈ G has two fixed points in ∂X, and so the elementary closure can
be defined for f in the same way as for pseudo-Anosov elements of Mod(S): it is the stabilizer
of this pair of points in ∂X. We say that f is NEC if it is normal in its elementary closure.
In addition, we say that f1 and f2 are independent if EC(f1) ∩ EC(f2) is finite and they are
normally independent if every conjugate of f1 is independent of f2. Finally, a family of WPD
elements is normally independent if they are pairwise normally independent.

Theorem 1.7. Suppose G acts on a hyperbolic space X and {f1, . . . , fm} ⊆ G is a normally

independent collection of NEC WPD elements of G. For any t ≥ 0 there is a constant N such

that for n ≥ N the group

〈〈fn
1 , . . . , fn

m〉〉G
has the following properties:

(i) it is isomorphic to F∞ with a free basis consisting of conjugates of the fn
i ; and

(ii) the translation length of each non-trivial element is at least t.

As before, every WPD element has a power that is NEC and so Theorem 1.7 may be applied
to any normally independent collection of WPD elements after replacing each by a power.

In addition to the mapping class group, another application of Theorem 1.7 is to the outer
automorphism group of a finitely generated free group Fn. In this case the space X is the free
factor complex of Fn, and the collection {f1, . . . , fm} ⊆ Out(Fn) is any collection of normally
independent fully irreducible outer automorphisms. See the paper by Bestvina–Feighn [BF14]
for the relevant definitions.

1.8 Outline of the paper
We begin in § 2 by describing the basic properties of orbit-overlapping families of subsurfaces. In
particular, in § 2.1 we classify all orbit-overlapping families for an arbitrary normal subgroup of
the mapping class group. We also show in Theorem 2.3 that all of the RAAGs discussed before
do indeed appear as normal subgroups of some mapping class group. Putting these two results
together, we obtain a complete classification of right-angled Artin subgroups than can arise from
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our construction. We also show that the same RAAGs appear as normal subgroups of pure braids
groups and Torelli groups.

In § 3 we give the definition of a projection complex. After explaining the basic examples,
we present a new example based on disconnected subsurfaces that is used for the proof of
Theorem 1.1. We conclude this section with a construction of Bestvina–Bromberg–Fujiwara
and Dahmani–Guirardel–Osin that allows us to build a projection complex from a group
action on a hyperbolic space. For the proof of Theorem 1.7 we apply their construction to
the case of the Mod(S) action on the curve graph C(S); the key fact about this action that
is needed for the construction is that the action of a pseudo-Anosov mapping class on C(S)
is WPD.

Section 4 provides the architecture for the proof of Theorem 1.6, and gives two successive
reductions of Theorem 1.6. We begin by defining the windmill associated to the action of a
group G on a projection complex P. A windmill is the direct limit of an increasing union of
certain subgraphs Wi. We then define an increasing sequence of free products Fi, each equipped
with a homomorphism to G and an action on Wi. Proposition 4.1 states that Theorem 1.6
holds if each homomorphism Fi → G is injective; this is the first reduction. A natural way
to prove the injectivity is to show that the induced action on P is faithful. In § 4 we intro-
duce the notions of pivot points and waypoints as tools for showing that this action is faithful
(Proposition 4.2).

In § 5 we use the machinery developed in § 4 to prove Theorem 1.6 in the special case where
the projection complex is a tree. The special case is stated as Theorem 5.1. While this theorem is
an immediate consequence of the Bass–Serre theory for group actions on trees, the proof serves
as a demonstration of the windmill machinery in action, and also serves as a template for the
proof of Theorem 1.6 in the following section.

Section 6 contains the proof of Theorem 1.6, our main technical result about projection
complexes. The proof is analogous to the proof of Theorem 5.1, but it is more complicated. The
main new difficulty is that the graphs Wi used to define the windmill are not necessarily convex
(in a tree any connected subset is convex).

We next turn toward the proof of Theorem 1.1. First, in § 7 we prove Theorem 1.7.
This theorem gives the special case of Theorem 1.1 where X = {S}; this special case serves
as a sort of base case for Theorem 1.1. The idea of the proof of Theorem 1.7 is to use
the aforementioned construction of Bestvina–Bromberg–Fujiwara and Dahmani–Guirardel–Osin
to translate the given action by WPD elements to an equivariant spinning action on a
projection complex, and then to apply our result about actions on projection complexes,
Theorem 1.6.

In § 8 we build on Theorems 1.6 and 1.7 in order to prove Theorem 1.1. The first step is to
build a projection complex from the given G-overlapping family of subsurfaces X ; the vertices
correspond to the subsurfaces of S lying in the G-orbits of the elements of X . The L-spinning
condition for this action is then ensured by Theorem 1.7 and the orbit overlapping condition.
With this in place, we may apply Theorem 1.6 to obtain Theorem 1.1. We note that Theorem 1.6
is applied twice overall, once in the proof of Theorem 1.1 and once in the proof of Theorem 1.7
(which is then used in the proof of Theorem 1.1).

In § 9 we prove two applications of Theorem 1.1, namely, Theorems 1.2 and 1.5. In addi-
tion to our theorem, both proofs use the Thurston construction for pseudo-Anosov mapping
classes, and the theory of elementary closures of pseudo-Anosov mapping classes developed by
McCarthy.
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2. Classification of the RAAGs that arise from Theorem 1.1

We begin in § 2.1 by restricting the RAAGs that could arise from Theorem 1.1 in the case when
G is normal in Mod(S); there are 15 possibilities. In § 2.2 we show that all 15 possibilities do
indeed arise for Mod(Sg,p) with g, p ≥ 6 and then we show that certain specific RAAGs arise in
the closed case, where p = 0. Then in § 2.3 we show that all 15 possibilities also arise in the cases
of the pure braid group and the Torelli group.

2.1 Overlapping subsurfaces
Although any subsurface X ⊆ S is G-overlapping when G = Stab(X), when G is a normal sub-
group of Mod(S) there are topological conditions that must be satisfied by any G-overlapping
subsurface. These conditions then impose restrictions on the RAAGs that could arise from
Theorem 1.1 when G is normal in Mod(S).

Proposition 2.1. Suppose that G � Mod(S), that X is a G-overlapping subsurface, that X1

and X2 are arbitrary components of X, and that there is a partial pseudo-Anosov element or

a power of a Dehn twist in G with support contained in X1. Then every component of the

boundary of X1 either lies in ∂S or is homotopic to a component of the boundary of X2.

Proof. Suppose for the sake of contradiction that some component d of ∂X1 is not homotopic to
a component of the boundary of S or X2. It follows that there is a curve c that intersects d but
not X2. Let f be a partial pseudo-Anosov mapping class or a Dehn twist with support contained
in X1. By modifying c if needed, we may further assume that c intersects the support of f . For
any m and n, the element g = T−n

c fmTn
c lies in G as G is normal in Mod(S). For all choices of

m and n, we have that gX2 = X2, as the support of g is contained in the complement of X2. We
show for large m and n that gX1 is not equal to X1. This will mean that gX is not equal to X

and that gX does not overlap X, in contrast to the hypothesis that X is G-overlapping.
To show that gX1 is not equal to X1 for large enough m and n, we show that g(d) intersects

d for large enough m and n. Applying Tn
c to both curves g(d) and d, this is equivalent to the

statement that fmTn
c (d) intersects Tn

c (d). For large n, Tn
c (d) intersects the support of f (this

follows from [FM12, Proposition 3.4]), and then for large m it follows that fm(Tn
c (d)) intersects

Tn
c (d) (in the case that f is a power of a Dehn twist use the formula [FM12, Proposition 3.4]

again and if f is a partial pseudo-Anosov element use the fact due to Masur–Minsky [MM99,
Proposition 4.6] that f has positive translation on the curve complex for the support of f and
the fact that the subsurface projection [MM00] of Tn

c (d) to the support of f is well defined).
This completes the proof. �

Corollary 2.2. Suppose that G � Mod(S), that X is a G-overlapping subsurface of S, and

that there is a partial pseudo-Anosov element or a power of a Dehn twist in G with support

contained in X. Then, 0 ≤ aX ≤ 1 and 0 ≤ bX ≤ 2.

Proof. As a subsurface of S does not have parallel annuli, it follows from Proposition 2.1 that
aX ≤ 1. Suppose bX ≥ 2 and let X1 and X2 be two non-annular components of X. It follows
from Proposition 2.1 that the complement in S of X1 ∪ X2 is the union of annuli. Thus bX = 2,
as desired. �

We say that a subsurface X of S is compatible with a subsurface Y if there is a homeo-
morphism f of S such that f(X) ⊆ Y ; otherwise, we say that X is incompatible with Y . We say
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that X and Y are mutually incompatible if neither is compatible with the other. Similarly, for
a subgroup G of Mod(S) we say that X is G-compatible with Y if this f can be chosen so that
its homotopy class lies in G; the terms G-incompatible and mutually G-incompatible are also
defined analogously.

We say that a multicurve C is a dividing set if S − C consists of two components and S − C ′ is
connected for any proper submulticurve C ′ ⊂ C. In particular, any separating curve is a dividing
set. Given a dividing set C, we let A be a closed regular neighborhood of C and we let L and R

be the two components of the complement of an open annular neighborhood of A.
By Corollary 2.2 there are five possibilities for the pair (aX , bX) for a G-overlapping subsur-

face X, where G satisfies the hypotheses of the corollary. Using Proposition 2.1 we can explicitly
describe X in each of the five cases, as follows:

(0, 1) X is a connected subsurface that is incompatible with its complementary region;

(0, 2) X = L ∪ R for a dividing set C with L and R either homeomorphic or mutually
incompatible;

(1, 0) X = A for a separating curve C with L and R either homeomorphic or mutually
incompatible;

(1, 1) X = L ∪ A for a separating curve C with L and R mutually incompatible;

(1, 2) X = L ∪ A ∪ R for a separating curve C with L and R either homeomorphic or mutually
incompatible.

Let G be a normal subgroup of Mod(S) that satisfies the hypotheses of Corollary 2.2. By the
corollary, the only RAAGs that may result from an application of Theorem 1.1 are of the form

∗
(a, b) ∈ A

(∗
∞

(
(F∞)b × Za

))
,

where A is a subset of {0, 1} × {0, 1, 2}. As an infinite free product of infinite cyclic groups is
isomorphic to an infinite free product of infinitely generated free groups, we may assume that
A does not contain, say, (0, 1). In summary, there are 15 non-trivial isomorphism types of right-
angled Artin subgroups of G that may arise from an application of our Theorem 1.1, and they
correspond to the 15 non-empty subsets of {(1, 0), (1, 1), (0, 2), (1, 2)}.

2.2 Mapping class groups
In this section, we prove that in certain mapping class groups, all 15 of the RAAGs from § 2.1
arise as normal subgroups. Then we determine which of these 15 groups arise in the case that
the surface is closed.

Theorem 2.3. Let g, p ≥ 6. For each of the 15 non-empty subsets A of {(1, 0), (1, 1), (0, 2), (1, 2)}
there is a normal subgroup of Mod(Sg,p) isomorphic to

∗
(a, b) ∈ A

(∗
∞

(
(F∞)b × Za

))
.

Proof. Let C1, C2, C3 and C4 be the four curves in Sg,p as indicated in Figure 2 for the case of
S6,6; for g > 6 and p > 6 we may simply add more handles to the region with three handles and
more marked points to the region with three marked points.

Let Ai be a closed annular neighborhood of Ci and let Li and Ri be the components of the
complement of an open annular neighborhood of Ai for i = 1, . . . , 4. By construction, any pair of
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Figure 2. The separating curves in Theorem 2.3.

subsurfaces in {Li | i = 1, . . . , 4} ∪ {Ri | i = 1, . . . 4} is mutually incompatible with the possible
exception of L1 and R1 (which are homeomorphic when g = p = 6). From this it follows that

X = {A1, L2 ∪ A2, L3 ∪ R3, L4 ∪ A4 ∪ R4}

is Mod(Sg,p)-overlapping.
Applying Theorem 1.1 to all possible subsets of X (and choosing F appropriately) we obtain

the desired conclusion.
More specifically, each element (a, b) of {(1, 0), (1, 1), (0, 2), (1, 2)} corresponds to an element

X(a,b) ∈ X as follows:

(1, 0)� A1,

(1, 1)� L2 ∪ A2,

(0, 2)� L3 ∪ R3,

(1, 2)� L4 ∪ A4 ∪ R4.

We choose suitable mapping classes for each component of each such X(a,b). In each case, we
may use the standard fact that a surface Sg′,p′ containing an essential curve has pseudo-Anosov
elements in its mapping class group; in particular each Li and Ri that appears in X is the support
of some partial pseudo-Anosov element. �

Theorem 2.4. Let g ≥ 2.

(i) If g is even, there are normal subgroups of Mod(Sg) isomorphic to

F∞, ∗
∞

(F∞ × F∞ × Z), ∗
∞

(F∞ × F∞),

and also the free product of the third with either of the first two if g ≥ 4.

(ii) If g is odd, there are normal subgroups of Mod(Sg) isomorphic to

F∞, ∗
∞

(F∞ × F∞),

and also the free product of these.
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Figure 3. (Colour online) The dividing sets for Theorem 2.4.

Moreover, these are the only normal right-angled Artin subgroups of Mod(Sg) that arise from

the construction of Theorem 1.1.

Proof. We begin with the first two statements. For the two cases (g even and g odd), let C1 and
C2 be the multicurves indicated in the top and bottom of Figure 3, respectively. We define Ai,
Li, and Ri as in the proof of Theorem 2.3.

The desired subgroups are constructed in the same way as in the proof of Theorem 2.3.
For instance, when g is even we may construct the free product of ∗

∞
(F∞ × F∞ × Z) with

∗
∞

(F∞ × F∞) by taking

X = {A1 ∪ L1 ∪ R1, L2 ∪ R2},

and we may construct the free product of F∞ with ∗
∞

(F∞ × F∞) by taking

X = {A1, L2 ∪ R2}.

Similarly, when g is odd we may construct, for example, the free product F∞ with ∗
∞

(F∞ × F∞)

by taking

X = {L1, L2 ∪ R2}.

The other RAAGs from the statement of the theorem are obtained by removing elements (or
components of elements) of the given sets X .

The last statement follows from a case-by-case analysis. For example, the group ∗
∞

(F∞ × Z)

does not arise because there does not exist a separating curve in Sg with the property that the
two complementary regions are mutually incompatible. For the other cases, the reasoning is
similar. �

2.3 Pure braid groups and Torelli groups
The idea behind the examples in § 2.2 can be extended to create examples in both the pure braid
group PBn and the Torelli group I(Sg).

For the pure braid group, we require some setup. A subsurface X of Dn induces a partition
of the marked points of Dn: two marked points are in the same subset if and only if there is
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Figure 4. (Colour online) The curves in the proof of Theorem 2.5.

a path between them that does not cross the boundary of X. We say that two partitions of a
set are mutually compatible if each component of one partition either contains or is contained in
a component of the other partition. It is a fact that two subsurfaces of Dn are mutually PBn-
incompatible if the corresponding partitions of the marked points are mutually incompatible.

Theorem 2.5. Suppose n ≥ 5. For each of the 15 non-empty subsets A of

{(1, 0), (1, 1), (0, 2), (1, 2)},

there is a normal subgroup of PBn isomorphic to

∗
(a, b) ∈ A

(∗
∞

(
(F∞)b × Za

))
.

Proof. Let C1, C2, C3, and C4 be the four curves in Dn indicated in Figure 4. The figure shows
the case n = 5; for n > 5 we may simply add marked points in the exterior of all four curves.
We define Ai, Li, and Ri as in the proof of Theorem 2.3.

Consider the following set of subsurfaces of Dn:

{A1, A2, A4} ∪ {L2, L3, L4} ∪ {R3, R4}.

Any two elements of this set with distinct subscripts induce incompatible partitions of the set
of marked points of Dn. As previously, it follows that every pair of subsurfaces in the set

X = {A1, L2 ∪ A2, L3 ∪ R3, L4 ∪ A4 ∪ R4}

is mutually PBn-incompatible. From this it follows that X is PBn-overlapping. Applying
Theorem 1.1 to all possible subsets of X (and choosing F appropriately) we obtain the desired
conclusion (because each Li and Ri that appears in X is either a disk with three or more marked
points or an annulus with two or more marked points, they all can be realized as the support of
a partial pseudo-Anosov element of PBn). �

The situation for the Torelli groups is similar to that for the pure braid groups. Let X be a
subsurface of Sg that is either a separating annulus or a subsurface with connected boundary.
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Figure 5. (Colour online) The curves in the proof of Theorem 2.6. Each Ci is symmetric about
the plane of the page, and only half of each curve is shown.

In either case X induces a direct sum decomposition of H1(Sg; Q) into two symplectic subspaces.
In the annulus case, the two subspaces are the elements of H1(Sg; Q) with representatives on
one side or the other of the annulus. In the other case, the two subspaces are the elements of
H1(Sg; Q) either represented in X or its complement. Similar to the case of the pure braid group,
we say that two direct sum decompositions of H1(Sg; Q) are compatible if each summand of one
decomposition either contains or is contained in a summand of the other decomposition.

In the following, the genus of a separating curve C in Sg is the minimum genus of a
complementary component.

Theorem 2.6. Suppose g ≥ 4. For each of the 15 non-empty subsets A of {(1, 0), (1, 1), (0, 2),
(1, 2)} there is a normal subgroup of I(Sg) isomorphic to

∗
(a, b) ∈ A

(∗
∞

(
(F∞)b × Za

))
.

Proof. Let C1, C2, C3, and C4 be four separating curves in Sg, each with genus at least two, and
so that the corresponding direct sum decompositions of H1(Sg; Q) are pairwise incompatible.
One such configuration for a surface of genus four is indicated in Figure 5; for higher genus we
may add handles to any complementary region. We then define Ai, Li, and Ri as in the proof of
Theorem 2.3. (For the surface of genus four, any four curves of genus two giving distinct direct
sum decompositions of H1(Sg; Q) will suffice, and any such configuration can be extended to
higher genus by adding extra handles to a single complementary region).

Consider the following set of subsurfaces of Sg:

{A1, A2, A4} ∪ {L2, L3, L4} ∪ {R3, R4}.

The decomposition of H1(Sg; Q) induced by a separating curve in Sg is the same as the decomposi-
tion induced by either of its complementary regions. Thus, any two elements of the above set with
distinct subscripts induce incompatible direct sum decompositions of H1(Sg; Q). Because I(Sg)
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acts trivially on H1(Sg; Q), it follows that every pair of subsurfaces in the set

X = {A1, L2 ∪ A2, L3 ∪ R3, L4 ∪ A4 ∪ R4}

is mutually I(Sg)-incompatible. It follows that X is I(Sg)-overlapping. Applying Theorem 1.1
to all possible subsets of X , and choosing F appropriately, we obtain the desired conclusion
(we may apply, for example, the Thurston construction of pseudo-Anosov mapping classes to
produce partial pseudo-Anosov elements of I(Sg) with support in any Li or Ri). �

3. Projection complexes

In § 3.1, we recall the definition of a projection complex and explain how any tree may be
viewed as a projection complex. Then, in § 3.2, we recall the theory of WPD elements and
explain the construction of a projection complex from a collection of WPD elements. Finally, in
§ 3.3 we explain how to build a projection complex from the curve complexes of orbit overlapping
subsurfaces of a given surface; our new contribution, Proposition 3.2, is a version for disconnected
subsurfaces.

3.1 The definition
Let Y be a set and let θ ≥ 0 be a constant. Assume that for each y ∈ Y there is a function

dy : (Y \ {y}) × (Y \ {y}) → R≥0

with the following properties.

• Symmetry: dy(x, z) = dy(z, x) for all x, y, z ∈ Y.
• Triangle inequality: dy(x, z) + dy(z, w) ≥ dy(x, w) for all x, y, z, w ∈ Y.
• Inequality on triples: min{dy(x, z), dz(x, y)} ≤ θ for all x, y, z ∈ Y.
• Finiteness: #{y ∈ Y | dy(x, z) > θ} is finite for all x, z ∈ Y.

These conditions are known as the projection complex axioms. When we say that a set Y and
a collection of such functions {dy}y∈Y satisfy the projection complex axioms the constant θ is
implicit.

For a given K ≥ 0, we define a graph PK(Y) with vertices corresponding to the elements in
Y. To define the edges, we require the notion of modified distance functions.

Given the functions {dy}, Bestvina–Bromberg–Fujiwara [BBF15] constructed another col-
lection of functions {d′y}y∈Y, where each d′y shares the same domain and target as dy. Because
the definition of the d′y is technical and because we do not use the definition in this paper,
we do not state it here. Bestvina–Bromberg–Fujiwara [BBF15, Theorem 3.3B] showed that
the modified functions are coarsely equivalent to the original functions: for x 	= y 	= z ∈ Y,
d′y(x, z) ≤ dy(x, z) ≤ d′y(x, z) + 2θ.

Fix K ≥ 0. Then two vertices x, z of PK(Y) are connected by an edge if d′y(x, z) ≤ K for all
y ∈ Y − {x, z}. Let d denote the resulting path metric on PK(Y).

Bestvina–Bromberg–Fujiwara showed that for K large enough relative to θ, there are con-
stants Ce, Cp, and Cg, so that the following properties hold (see [BBF15, Proposition 3.14, and
Lemma 3.18]).

(i) Bounded edge image. If x 	= y 	= z are vertices of PK(Y) and d(x, z) = 1, then dy(x, z) ≤ Ce.
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(ii) Bounded path image. If a path in PK(Y) connects vertices x to z without passing through
the 2-neighborhood of the vertex y, then dy(x, z) ≤ Cp.

(iii) Bounded geodesic image. If a geodesic in PK(Y) connects vertices x to z without passing
through the vertex y, then dy(x, z) ≤ Cg.

(The bounded edge image property follows from the definition of the edges of PK(Y), with
Ce = K + 2θ.) If K is large enough so that the graph PK(Y) satisfies the bounded edge, path,
and geodesic properties for some Ce, Cp, and Cg, then we say that PK(Y) is a projection
complex.

For a projection complex, we refer to Ce, Cp, and Cg as the edge constant, the path constant,
and the geodesic constant, respectively.

We note that our terminology is not standard; in the papers by Bestvina–Bromberg–Fujiwara
[BBF15] and Bestvina–Bromberg–Fujiwara–Sisto [BBFS19], every PK(Y) is called a projection
complex.

Group actions on projection complexes. We say that a group G acts on a projection complex
PK(Y) if G acts on the set Y in such a way that the associated distance functions dy are
G-invariant, that is, dgy(gx, gz) = dy(x, z). We note that if the original distance functions dy are
G-invariant, then the modified distance functions are G-invariant as well, and so the action of G

on Y in particular extends to an action of G on the graph PK(Y) by simplicial automorphisms.

Trees are projection complexes. As an illustration of the definition of a projection complex, we
now explain how an arbitrary simplicial tree can be viewed as a projection complex. Let T be a
simplicial tree and Y the set of vertices in T . We set

dy(x, z) =

{
1 if y is on the geodesic from x to z,

0 otherwise.

These functions satisfy the projection complex axioms for any θ ≥ 0. Note that the inequality
on triples axiom is merely the fact that for any triple of points in a tree, at most one is on
the geodesic between the other two. For this example, the modified distance functions are the
same as the original distance functions and moreover for any 0 < K < 1 we see that PK(Y) is
isomorphic to T . On the other hand, if K ≥ 1, then PK(Y) is a complete graph.

3.2 Projection complexes from WPD elements
In this section, we give the first important general construction of a projection complex. We
begin by briefly describing two motivating examples. Suppose we have either:

(i) a collection of elements of a free group acting on the Cayley graph of the free group; or
(ii) a collection of elements of a surface group acting on the hyperbolic plane.

In either case, there is a projection complex where the vertices are the orbits of the axes of the
given elements and the distance functions are given as follows: if x, y, and z are axes for the
given elements, then dy(x, z) is the diameter of the union of the nearest-point projections of x

and z to y. It is an exercise in either graph theory or hyperbolic geometry to show that these
functions give rise to a projection complex.

In the rest of this section, we describe a general setup for constructing projection complexes,
inspired by these two examples. The end result is Proposition 3.1. In order to state it we require
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a number of definitions. In the remainder of this section, let X be a hyperbolic metric space and
let G be a group acting on X.

Distance functions from nearest-point projection. For a subset Z of X and a point p ∈ X, the
projection of p to Z is the (possibly empty) subset

πZ(x) = {z ∈ Z | d(x, z) ≤ d(x, z′) for all z′ ∈ Z}.

This defines a function πZ : X → ℘(Z).
Let Y be a collection of subsets of X and for each a in Y, define πa : X → ℘(a) as previously. If

πa(b) is bounded and non-empty for all pairs a, b ∈ Y, we may define da : Y \ {a} × Y \ {a} → R

by

da(b, c) = diam(πa(b) ∪ πa(c)).

Then the family {da}a∈Y satisfies the first two projection complex axioms. Our goal in what
follows is to describe conditions under which the other two axioms are also satisfied.

One easy special case is where X is a simplicial tree and Y is any collection of dis-
joint geodesics. To verify the last two axioms, the key observation is that the geodesics y

with non-zero dy(x, z) are precisely those sharing an edge with the shortest path between
x and z.

Translation length and hyperbolic elements. Let f ∈ G. The translation length of f is the limit

τ(f) = lim
n→∞

d(p, fnp)
n

.

for some p ∈ X; this limit is independent of the point p. We say f is hyperbolic if τ(f) > 0.

Weak proper discontinuity. We say f ∈ G is a WPD element if it is hyperbolic and for all D ≥ 0
and p ∈ X there exists M ≥ 0 such that the set

{g ∈ G | d
(
p, gp

)
≤ D and d

(
fMp, g

(
fMp

))
≤ D}

is finite. The WPD elements for the Mod(S) action on C(S) are precisely the pseudo-Anosov
mapping classes [BF02].

Elementary closure. Suppose f ∈ G is a WPD element and let O be the orbit of some point X

under 〈f〉. Define the elementary closure, EC(f), to be the subgroup of g ∈ G such that there
exists a Δ ≥ 0 with gO contained in the Δ-neighborhood of O. The group EC(f) is well-defined
independent of the orbit. Bestvina–Bromberg–Fujiwara proved [BBF13, Proposition 4.7] that for
such an f ∈ G, there is a short exact sequence

1 → EC0(f) → EC(f) → Γ → 1,

where Γ is isomorphic to either Z or Z2 ∗ Z2 and EC0(f) is finite. The set EC(f) · O is called a
quasi-axis bundle for f . It follows from the definitions that the stabilizer of any quasi-axis bundle
is EC(f).

As X is hyperbolic, any hyperbolic isometry acts with north–south dynamics on the boundary
of X. It follows readily that for a WPD element f ∈ G, the group EC(f) is the stabilizer in G

of the pair of fixed points in ∂X for f . In particular, if f ∈ Mod(S) is pseudo-Anosov and X
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is the curve complex C(S), then EC(f) is the stabilizer in G of the pair of projective measured
foliations on S fixed by f , as defined in the introduction.

Normal independence. We say that WPD elements f1 and f2 in G are independent if EC(f1) ∩
EC(f2) is finite. This is equivalent to requiring that the fixed points sets for f1 and f2 in ∂X

are disjoint. We further say that f1 and f2 are normally independent if every conjugate of f1 is
independent of f2. We say that a collection of WPD elements is (normally) independent if they
are pairwise (normally) independent.

For Proposition 3.1, we use the easy observation that normally independent elements cannot
have conjugate powers. In fact, one can prove that two WPD elements of a group acting on a
hyperbolic space are normally independent if and only if they fail to have conjugate non-trivial
powers.

The following result of Dahmani–Guirardel–Osin [DGO17] will be used to construct a
projection complex in § 7 (for the action of the mapping class group on the curve complex).

Proposition 3.1 (Dahmani–Guirardel–Osin). Let G be a group and X a hyperbolic metric

space on which G acts. Let {f1, . . . , fm} be a normally independent family of WPD elements

and for each fi let βi ⊆ X be a quasi-axis bundle. Then the set Y = G · {β1, . . . , βm} together

with the distance functions {dβ}β∈Y satisfy the projection complex axioms.

If P is a projection complex arising from Proposition 3.1, and if the translation distances
of the fi are all bounded below by L, then the collection {〈gfig

−1〉 | g ∈ G, 1 ≤ i ≤ m} is an
equivariant L-spinning family of subgroups. We use this fact in the proof of Theorem 1.7 in § 7.

Dahmani–Guirardel–Osin did not state Proposition 3.1 explicitly, but it follows from their
work as we now explain. Proposition 3.1 has the same hypothesis as Theorem 6.8 in their paper,
whose proof hinges on showing that the groups EC(fi) are geometrically separated, as defined
in that paper. Lemma 4.47 in their paper proves, in particular, that the G-translates of the
quasi-axis bundles (i.e. the orbits of the geometrically separated subgroups) and the associated
distance functions satisfy the projection complex axioms. In their paper, the quasi-axes bundles
βi are all orbits of a common basepoint, but standard coarse geometry for hyperbolic spaces
can be used to extend Lemma 4.47 to arbitrarily chosen quasi-axis bundles, up to changing the
constants of the projection complex.

Proposition 3.1 actually holds with the assumption that X is a hyperbolic space replaced by
the requirement that the WPD elements have strongly contracting axes. The argument in the
case of a single element appears in the first version of a paper by Bestvina–Bromberg–Fujiwara
[BBF13], and we prove the general case in a forthcoming paper.

3.3 Projection complexes from subsurface projections
We recall the Bestvina–Bromberg–Fujiwara construction of the projection complex associated to
the curve complexes of a collection of orbit-overlapping connected subsurfaces of a given surface.
We then give our generalization to the case of disconnected subsurfaces.

Projection complexes from connected G-overlapping subsurfaces. Given a non-annular connected
subsurface X ⊆ S, and a curve γ in the curve complex C(S), the projection of γ to X is the
subset πX(γ) ⊂ C(X) of curves that have a representative disjoint from some arc in X ∩ γ. When
X ⊆ S is an annulus, the definitions of C(X) and πX : C(S) → ℘(C(X)) are more complicated;
see [MM00] for details. In either case, when πX(γ) is non-empty, the diameter of πX(γ) is at
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most two [MM00, Lemma 2.3]. Moreover, the set πX(γ) is non-empty whenever γ essentially
intersects X.

If Y is a Mod(S)-invariant family of isotopy classes of connected subsurfaces of S such that
πY (∂X) is non-empty for all distinct X, Y ∈ Y, then subsurface projection defines a function
dY : Y − {Y } × Y − {Y } → R≥0 by

dY (X, Z) = diamC(Y )(πY (∂X) ∪ πY (∂Z)).

These functions clearly satisfy the first two projection complex axioms. That the inequality
on triples axiom is satisfied for θ = 10 is known as the Behrstock inequality [Beh06, Man10].
Bestvina–Bromberg–Fujiwara [BBF15, Lemma 5.3] show that the finiteness axiom holds for
θ = 3.

Projection complexes from arbitrary G-overlapping subsurfaces. Let G be a subgroup of Mod(S)
and let X be an G-overlapping family of subsurfaces of S. Set Y = G · X . Given Y ∈ Y we define
a function dY : Y − {Y } × Y − {Y } → R≥0 by

dY (X, Z) =
∑

Y ′∈π0(Y )

dY ′(X, Z),

where dY ′ is the subsurface projection distance defined above. As X is an G-overlapping family,
each term in the summand is defined. The following proposition gives us the projection complex
used for Theorem 1.1.

Proposition 3.2. Suppose G is a subgroup of Mod(S) and X is a G-overlapping family of

subsurfaces. Then the set Y = G · X together with the distance functions {dY }Y ∈Y satisfy the

projection complex axioms.

Proof. The first two projection complex axioms hold for the functions dY , because they hold for
the summands.

Let C denote the maximum number of components of a subsurface in Y. Suppose dY (X, Z) >

12C. Thus, dY ′(X, Z) > 12 for some Y ′ ∈ π0(Y ) and, hence, dY ′(X ′, Z ′) > 10 for each X ′ ∈
π0(X) and Z ′ ∈ π0(Z). Thus, by the Behrstock inequality, we have dX′(Y, Z) ≤ 10 for any com-
ponent X ′ ∈ π0(X). Hence, dX(Y, Z) ≤ 10C. This shows that the inequality on triples axiom
holds for {dY }Y ∈Y using θ = 12C.

Finally, as #{Y | dY (X, Z) > 3} < ∞ for any connected subsurfaces X, Z ⊆ S, we see the
same is true for {Y ∈ Y | dY (X, Z) > 5C} for any X, Z ∈ Y. Indeed, fix X, Z ∈ Y. If dY (X, Z) >

5C, then dY ′(X, Z) > 5 for some Y ′ ∈ π0(Y ). Hence, dY ′(X ′, Z ′) > 3 for any X ′ ∈ π0(X) and
Z ′ ∈ π0(Z). Thus, there are only finitely many possibilities for the subsurface Y ′. However, as
the subsurfaces in Y are either equal or overlapping, such a subsurface Y ′ can be a component for
only a single subsurface in Y. Thus, the finiteness axiom holds and the proposition is proved. �

4. Windmills and waypoints in projection complexes

Here we develop our theory of windmills for group actions on projection complexes. In § 6 we
use this to prove Theorem 1.6, which states that if we have a group G acting on a projection
complex P and if we have an equivariant L-spinning family {Rv} of subgroups of G, then when
L is large, the subgroup of G generated by all Rv is isomorphic to the free product of some of
the Rv.
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We begin with the basic definitions regarding windmills, which allow us to rephrase
Theorem 1.6 as Proposition 4.1. Then we introduce the notions of pivot points and waypoints,
which gives a further reduction of Proposition 4.1, given in Proposition 4.2.

4.1 Windmill data
Given an action of a group G on a projection complex P with an equivariant family of subgroups
{Rv} of G, we can inductively define a sequence of subgraphs Wi of P, a sequence of subsets
Oi of the set of vertices of P, and a sequence of subgroups Hi of G as follows. (In fact, the
constructions of this section apply to group actions on arbitrary graphs.)

Let v0 be some base point for P. To begin the inductive definitions at i = 0, we define:

• H0 = Rv0 ; and
• W0 = O0 = {v0}.

For i ≥ 1, we denote by Ni the 1-neighborhood of Wi−1, we denote by Li the vertices of Ni \ Wi−1,
and we define:

• Hi = 〈Rv | v ∈ Ni〉;
• Wi = Hi · Ni; and
• Oi = a set of orbit representatives for the action of Hi−1 on Li.

The letter W here stands for ‘windmill’ and we refer to the set

{(Hi, Wi,Oi)}∞i=0

as a set of windmill data for the equivariant family {Rv}.
We can see inductively that each Wi is connected. The keys to the inductive step are that

Hi acts on Wi and that each generator g of Hi has the property that
(
gNi

)
∩ Ni 	= ∅.

Given this windmill data, we may further define both a sequence of groups and a sequence
of homomorphisms, for i ≥ 0:

• Fi =
( ∗

v ∈ Oi

Rv

)
∗ Fi−1; and

• ρi : Fi → Hi, the natural map.

In the definition of F0 we treat F−1 as the trivial subgroup, and so F0 = Rv0 . Note that, by
definition, each ρi is injective on each Rv ⊆ Fi.

We refer to the collection {(Fi, ρi)}∞i=0 as the free product data associated to the windmill
data {(Hi, Wi,Oi)}∞i=0.

We denote the direct limit of the Fi by F :

F = lim−→ Fi.

There is a natural partition of F into sets {F (i)}∞i=−1 defined by

F (i) = Fi \ Fi−1,

where we treat F−2 as the empty set, and so F (−1) = {id} and F (0) = Rv0 \ {id}. We refer to
each F (i) as the ith level of F .

The subgroup H of G generated by the Rv is the direct limit of the Hi. With this setup in
hand we may rephrase Theorem 1.6 in the following way.
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Proposition 4.1. Let P be a projection complex, G a group that acts on P, and {Rv} an

equivariant family of subgroups. Choose windmill data {(Hi, Wi,Oi)}∞i=0. Then the conclusion

of Theorem 1.6 holds if each ρi is injective.

Proof. If v and w are two vertices of P in the same H-orbit, then by the equivariance condition,
we have Rv

∼= Rw. Thus, we may check that the conclusion of Theorem 1.6 holds for any particular
choice O of orbit representatives. We check that it holds for O =

⋃
Oi.

First we verify that
⋃
Oi is indeed a set of orbit representatives. The equivariance condition

means two vertices v, w in the same orbit have conjugate corresponding subgroups Rv and Rw.
On the other hand, if v, w ∈

⋃
Oi, then Rv and Rw are free factors in the domain Fi of ρi, and

distinct free factors of a free product have trivially intersecting conjugates. Thus, injectivity of
the ρi implies that distinct vertices of

⋃
Oi represent distinct H-orbit representatives. We must

also show that every H-orbit is represented in
⋃
Oi. Given O an H-orbit of vertices in P, there

exists a minimal i such that O ∩ Ni is not empty. By minimality of i, if w is in O ∩ Ni, then it is
not contained in Wi−1 = Hi−1 · Ni−1. In particular, w ∈ Li and, thus, has an orbit representative
in Oi.

The ρi induce a natural surjective map ρ : F → H. The statement that 〈Rv〉 is isomorphic
to the free product

∗
v ∈ ⋃Oi

Rv

is equivalent to the statement that ρ is injective, which is in turn equivalent to the statement
that each ρi is injective. This is true by hypothesis, and so the proof is complete. �

4.2 Pivot points and waypoints
We continue with the notation of the previous section. To each element of F at a given level i ≥ 0,
we associate a subset of the vertices of P, as follows. Each h ∈ F (i) has a syllable decomposition
h1 · · ·hn with respect to the free product decomposition used to define Fi. Specifically, each
syllable hj is either a non-trivial element of Fi−1 or a non-trivial element of Rvj with vj ∈ Oi,
and also the following property is satisfied: no two consecutive syllables are of the first type and
consecutive syllables hj and hj+1 of the second type have distinct corresponding fixed vertices
vj and vj+1. We refer to n as the syllable length of h.

Let i ≥ 1 and fix some h ∈ F (i) with syllable decomposition h = h1 · · ·hn. For j ∈ {1, . . . , n}
with hj /∈ Fi−1 and with corresponding fixed vertex vj we define a vertex wj of P as follows:

wj = h1 . . . hj−1vj .

Note that vj and wj are not defined for hj ∈ Fi−1. Let Piv(h) be the ordered list of points wj ,
and call these the pivot points for h. For h ∈ F0 we define Piv(h) to be empty.

Each group Fi acts on P via ρi. We say that a vertex v of P is a waypoint for h ∈ Fi if it is
not equal to v0 or hv0 and every geodesic from v0 to hv0 passes through v. If at least one pivot
point for h is a waypoint, it follows that ρi(h) is non-trivial. Recall that Proposition 4.1 reduces
Theorem 1.6 to proving injectivity of ρi for all i. Hence, we have further reduced our task to
proving that every non-trivial h ∈ F (i) has a waypoint, for all i ≥ 1. We record this fact in the
following proposition.

Proposition 4.2. Let P be a projection complex, G a group that acts on P, and {Rv} an

equivariant family of subgroups. Choose windmill data {(Hi, Wi,Oi)}∞i=0 and let {(Fi, ρi)}∞i=0
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be the associated free product data. If for each i ≥ 1 and each h ∈ F (i) at least one element of

Piv(h) is a waypoint for h, then the conclusion of Theorem 1.6 holds.

5. Windmills in trees

In this section, we show how the windmill machinery developed in § 4 is used in a special case,
namely, the case of a group acting on a tree. Let G be a group acting on a tree T , with {Rv}
an equivariant spinning family of subgroups. The spinning condition takes a particularly simple
form in the case of a tree, as follows.

• Spinning condition for trees: For any vertex v of T , any incident edge e of T , and any
non-trivial h ∈ Rv we have

h(e) 	= e.

We have the following special case of Theorem 1.6.

Theorem 5.1. Let T be a tree and let G be a group acting on T . If {Rv} is an equivariant

spinning family of subgroups of G with windmill data {(Hi, Wi,Oi)}∞i=0, then the subgroup H

of G generated by the Rv is isomorphic to the free product

∗
v ∈ ⋃Oi

Rv.

Theorem 5.1 is a recasting of a standard fact from the Bass–Serre theory of group actions
on trees. As the Rv are vertex stabilizer subgroups, it follows from Bass–Serre theory that the
quotient T /H is a tree and, hence, that H is isomorphic to a free product

∗Rvj ,

where {vj} is a set of orbit representatives for the action of H on the set of vertices of T (see
[Ser03, § 5.1]). Because T is a tree, we can find such a set of representatives by choosing a lift of
T /H to T . The windmill data, more specifically Oi, exactly describe such a set of representatives,
as shown in the proof of Proposition 4.1.

The proof that we give of Theorem 5.1 can be thought of as a rephrasing of the standard argu-
ment from Bass–Serre theory. This rephrasing models our proof of the more general Theorem 1.6.
Before giving the proof, we require the following technical lemma, which is also required for the
proof of Theorem 1.6.

A consequence of distinctness of waypoints. In the proof of Theorems 5.1 and 1.6 we show
inductively that the set of pivot points Piv(h) for an element h ∈ F (i) are distinct waypoints.
The inductive argument uses the following technical lemma.

Lemma 5.2. Let P be a projection complex, G a group that acts on P, and {Rv} an equivariant

family of subgroups. Choose windmill data and let {(Fi, ρi)}∞i=0 be the associated free product

data. Fix i ≥ 0, and suppose the pivot points Piv(h) are distinct waypoints for each h ∈ Fi. If

h ∈ Fi and 〈h〉 has a bounded orbit, then h lies in Rw for some w ∈ Wi.

Proof. Consider h ∈ Fi at some level j ≤ i. If 〈h〉 has a bounded orbit, then the number of
waypoints in Piv(hn) is bounded, independently of n, and therefore the length of the syllable
decomposition of hn ∈ F (j) is also bounded, independently of n. This means that h is conjugate
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to an element with syllable length at most one. As h ∈ F (j), that means h lies in gRvg
−1 with

v ∈
⋃i

j=0Oj where j ≤ i and g ∈ Fi. Therefore h lies in Rw for w = gv. �

Proof of Theorem 5.1. As in the definition of the windmill data, W0 consists of a basepoint,
which we denote by v0. In addition, for i ≥ 1, we denote the 1-neighborhood of Wi−1 in T by Ni

and Li = Ni \ Wi−1. Let {(Fi, ρi)}∞i=0 be the free product data associated to the given windmill
data, let F denote the direct limit of the Fi, let H denote the direct limit of the Hi, and let F (i)

denote the ith level of F .
As per Proposition 4.2, it is enough to show for each i ≥ 1 and each h ∈ F (i) that some

element of Piv(h) is a waypoint. To prove this for all i ≥ 1, we prove the following stronger
statement by induction on i ≥ 0: for each element h ∈ Fi, the pivot points of Piv(h) are waypoints
and they appear in order along the geodesic from v0 to hv0 (in particular, they are distinct, which
will allow us to apply Lemma 5.2). To mirror the proof of Theorem 1.6 in § 6, we break up the
inductive hypothesis into two statements.

(A) If h ∈ Fi and w ∈ Piv(h), then w is a waypoint for h.
(B) If h ∈ Fi, the elements of Piv(h) appear in order along the geodesic from v0 to hv0.

The base cases of statements (A) and (B), when i = 0, are vacuous. Thus, henceforth assume
that i ≥ 1, and that our inductive hypothesis holds for all h with level less than i. We now give
the inductive steps for statements (A) and (B) in turn.

Proof of statement (A). It suffices to consider h ∈ F (i). We consider a secondary induction on the
syllable length n of h. Thus, suppose that h has syllable decomposition h1 · · ·hn where n ≥ 0.
For the secondary induction, our base case is n = 0. As i ≥ 1 and the identity lies in F (−1), there
is no element of F (i) with syllable length zero, and so the base case for the secondary induction
is vacuous.

Assume now that n ≥ 1. Let wk ∈ Piv(h). The pivot point wk corresponds to some syllable
hk that lies at level i. Let hσ = h1 · · ·hk−1 and hτ = hk+1 · · ·hn (σ and τ stand for ‘starting’
and ‘terminal’). Let vk denote the vertex of Oi with hk ∈ Rvk

. With this notation in hand, we
write

h = hσhkhτ and so wk = hσvk.

Applying h−1
σ to all vertices, statement (A) is equivalent to the statement that vk lies strictly

between h−1
σ v0 and hkhτv0.

Consider the diagram in Figure 6, which shows the case when hσ, hτ ∈ F (i). There we have
drawn the geodesics from v0 to the vertices h−1

σ v0, vk, and hτv0, respectively. These paths are
solid, dashed, and dotted, respectively. The paths might overlap near v0, as suggested by the
figure. Let P be the geodesic from h−1

σ v0 to vk and let Q be the geodesic from vk to hτv0. As
hk fixes vk, we have that hkQ is the geodesic path from vk to hkhτv0 and moreover that the
concatenation of P and hkQ is a path from h−1

σ v0 to hkhτv0 that contains vk.
To prove statement (A), then, it is enough to prove that both P and Q are non-trivial and

that the concatenation of P and hkQ is a geodesic. To do this, it is enough to show that both
P and Q contain the (unique) edge e connecting vk to Wi−1; equivalently that P and Q each
contain a vertex of Ni other than vk. It then follows from the spinning hypothesis that hk(e) 	= e,
and hence that the concatenation of P and hkQ is geodesic near vk, hence is a geodesic. We treat
the case of Q, with the case of P being the essentially the same.
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Figure 6. The vertices and paths used in the proof of Theorem 5.1.

There are two cases, according to whether hτ lies in Fi−1 or in F (i). In the first case, we have
that hτv0 lies in Wi−1. As hτv0 is a vertex of Q, this completes the proof in the first case.

The second case is where hτ lies in F (i). Let vτ be the first pivot point for hτ . We claim that
vτ lies on Q (as shown in Figure 6). Indeed, by the induction on syllable length applied to hτ ,
we have that vτ lies on the geodesic from v0 to hτv0. Further, because vτ is a leaf of the tree Ni,
and because v0 lies in Ni, any geodesic from a vertex of Ni to hτv0 contains vτ , in particular the
path Q contains vτ (recall that Q contains vk ∈ Ni). Thus, to show that Q contains a vertex of
Ni other than vk, it suffices to show the following claim.

Claim. The vertex vτ is distinct from vk.

From the definitions, vτ is the fixed point of the first syllable of hτ that is not contained in Fi−1.
If this syllable is hk+1, then by the definition of syllable decomposition,we have vk 	= vk+1 = vτ .

The other case of the claim is where hk+1 ∈ Fi−1. In this case we must show that vk 	=
hk+1vk+2 = vτ . Assume for the sake of contradiction that vk = hk+1vk+2. To obtain the con-
tradiction, we show that hk+1 fixes vk, that is also lies in some Rw, and further that w 	= vk.
Together, these three items violate the spinning hypothesis.

As vk and vk+2 are vertices of Oi, which is a set of orbit representatives for the action of
Hi−1 on Li, it follows from the assumption vk = hk+1vk+2 that vk = vk+2. Thus, vk is fixed by
hk+1, which is the first item. By the inductive hypothesis that all pivot points are waypoints for
elements in Fi−1 and because hk+1 fixes vk, it follows from Lemma 5.2 that hk+1 lies in some Rw

with w ∈ Wi−1, which is the second item. As vk lies in Li, and because the latter is disjoint from
Wi−1, we obtain the third item. This completes the proof of the claim, hence statement (A).

Proof of statement (B). Take h ∈ F (i) as in the proof of statement (A). It suffices to show that
if wk is an element of Piv(h) that is not last in the order, and if w� is the immediately following
element of Piv(h), then w� lies strictly between wk and hv0 in T . As previously, we fix the
decomposition hσhkhτ of h and we take vk to be the vertex of T associated to hk. We have that
w� = hσhkvτ where vτ is the first pivot point for hτ . We may assume that hτ lies in F (i), for
otherwise wk would be the final pivot point. Similarly to our restatement of statement (A), we
may apply (hσhk)−1 to all vertices in statement (B) in order to obtain the equivalent statement
that vτ lies strictly between vk and hτv0. This is further equivalent to the statement that vτ lies
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in the interior of Q, which is the geodesic from vk and hτv0. We observed this fact previously,
and so the proof is complete. �

6. Proof of main technical theorem

In this section we prove our main technical theorem, Theorem 1.6. This theorem states that if
a group G acts on a projection complex P with an equivariant L-spinning family of subgroups
{Rv}v∈P and L is sufficiently large, then the normal subgroup generated by {Rv}v∈P is a free
product of some of the Rv.

Our proof comes after a lemma that speaks to the difference between Theorem 1.6 and the
special case considered in Theorem 5.1 about trees. The proofs of both theorems use windmills
in virtually the same way, but the general case is complicated by the fact that windmills in a
general projection complex need not be convex. Rather, we have Lemma 6.1, which is critical to
our proof.

A convexity-like property of windmills in projection complexes. In the statement of the following
lemma, Cp is the path constant associated to P, as in § 3.1.

Lemma 6.1. Let P be a projection complex, G a group that acts on P, and {Rv} an equivariant

family of subgroups with windmill data {(Hi, Wi,Oi)}∞i=0. If x and y are vertices of Wi−2 and

v /∈ Wi, then dv(x, y) ≤ Cp.

Proof. For i ≥ 2, the distance between any vertex of P \ Wi and any vertex of Wi−2 in P is at
least three. This follows from the definitions, because each Wi contains the 1-neighborhood of
Wi−1. As Wi−2 is connected, the lemma now follows from the bounded path image property. �

Proof of Theorem 1.6. As in the statement, G is a group acting on a projection complex P. Let
θ be the constant from the definition of P, and let Ce, Cg, and Cp be the associated constants
from § 3.1, all of which ultimately depend on θ. We prove the theorem for L(P) = 3(11Ce +
6Cg + 5Cp + θ) + 1. In other words, we assume that G has an equivariant L-spinning family of
subgroups {Rv} with L ≥ L(P), and show that the normal closure of the union of the Rv can
be decomposed into the free product described in the statement. As in § 4, let {Hi, Wi,Oi} be
windmill data associated to the action of G on P and let {Fi, ρi} be the associated free product
data. As in the definition of the windmill data, W0 consists of a basepoint, which we denote v0.
In addition for i ≥ 1, we denote the 1-neighborhood of Wi−1 in P by Ni and Li = Ni \ Wi−1.

Let m = 11Ce + 6Cg + 5Cp; in particular, L(P) = 3(m + θ) + 1. To prove the theorem we
show by induction on i that the following statements hold for all i ≥ 0.

(A) If h ∈ Fi and w ∈ Piv(h), then dw(v0, hv0) > m + θ.
(B) If h ∈ Fi, the elements of Piv(h) appear in order along any geodesic from v0 to hv0.
(C) For x ∈ Ni+1 and v /∈ Wi with v 	= x, we have dv(v0, x) ≤ m.

Respectively, these statements say that pivot points are waypoints, waypoints are distinct, and
vertices outside a given Wi see bounded projection between points inside Wi (even Ni+1), which
strengthens the convexity-like property of Lemma 6.1. The precise relevance of each statement
to the proof is as follows. By the bounded geodesic image property, statement (A) implies that
the pivot points of h are waypoints, because m + θ ≥ Cg. By Proposition 4.2, this will complete
the proof of the theorem, once verified for all i. Statement (B) further implies that the waypoints
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are distinct, which allow us to apply Lemma 5.2 in the same way as in the proof of Theorem 5.1.
Statement (C) enables induction, as in effect it upgrades to Wi the Wi−2 in Lemma 6.1.

For the base case of our induction on i, we consider the level i = 0. Statements (A) and (B)
are vacuous. The hypotheses of statement (C) imply that v /∈ {x, v0}. As d(v0, x) = 1, we have
dv(v0, x) ≤ Ce ≤ m, where Ce is the edge constant from § 3.1.

Now consider the level i ≥ 1 and assume the three statements hold for smaller levels. We
prove each statement in turn. First, we prove statement (A) by our assumption on lower levels,
and inducting on the syllable length of h. Then we upgrade statement (A) to statement (B).
These are key to proving the new level of statement (C), which is, in turn, used to prove the
next level of statements (A) and (B).

Proof of statement (A). It suffices to consider h ∈ F (i). We begin a second induction on the
syllable length of h, using the decomposition h = h1 · · ·hn described in § 4.2. For the base case
of the induction on syllable length, suppose n = 0. As i ≥ 1 and the identity lies in F (−1), there
is no element of F (i) with syllable length zero, and so the base case for the secondary induction
is vacuous.

Now suppose that n ≥ 1 and that statement (A) holds for elements of F (i) with syllable
length less than n. Let wk ∈ Piv(h) be a pivot point for h, so wk = h1 · · ·hk−1vk where vk ∈ Oi

is fixed by hk. As in § 5, let h = hσhkhτ , where hσ and hτ are possibly trivial subwords.

Step 1: the quantity dwk
(v0, hv0) is defined, as are dvk

(v0, h
−1
σ v0) and dvk

(v0, hτv0). We use the
latter two quantities in Step 2. The quantity dwk

(v0, hv0) is defined if and only if wk /∈ {v0, hv0}.
We start by showing that wk 	= hv0. There are two cases: either hτ ∈ Fi−1 or hτ ∈ F (i). In the
first case, we have hτv0 ∈ Fi−1 · Ni−1 = Wi−1. As vk ∈ Li, which is disjoint from Wi−1, we have
vk 	= hτv0 and therefore wk = hσvk = hσhkvk 	= hv0 as desired.

The second case is where hτ lies in F (i). Let vτ be the first pivot point for hτ . By induction
on n, statement (A) gives dvτ (v0, hτv0) > m + θ. We observe that both vτ and vk are elements of
Li. We claim that vτ 	= vk. This is exactly the claim from the proof of Theorem 5.1, whose proof
uses the inductive hypothesis that statements (A) and (B) are true for the lower levels to invoke
Lemma 5.2. In this context the same proof works after replacing ‘spinning’ with ‘L-spinning’.
Hence, we may apply statement (C) inductively (with respect to i) to conclude dvτ (v0, vk) ≤ m.
As we have shown that dvτ (v0, hτv0) > m + θ and that dvτ (v0, vk) ≤ m, it follows that vk 	= hτv0

and therefore, as in the first case, we have wk 	= hv0.
To confirm that dwk

(v0, hv0) is defined, it remains to show that wk 	= v0. To see this, we
first observe that h−1wk is a pivot point for h−1. Hence, the previous argument shows that
h−1wk 	= h−1v0 and, thus, wk 	= v0 as well.

To address the quantities dvk
(v0, h

−1
σ v0) and dvk

(v0, hτv0), we observe that vk is a pivot point
for hkhτ , which lies in F (i) and has syllable length at most n. Thus, applying the same argument
to hkhτ instead of h, we deduce that vk /∈ {v0, hkhτv0}. In particular, vk 	= v0. Further, because
vk is fixed by hk we also have vk 	= hτv0. Similarly we have vk /∈ {v0, h

−1
σ v0} as well.

Step 2: we have dwk
(v0, hv0) > m + θ. Using the invariance of the distance functions under the

group action, the triangle inequality, and the L-spinning hypothesis, we have

dwk
(v0, hv0) = dvk

(h−1
σ v0, hkhτv0)

≥ dvk
(v0, hkv0) − dvk

(v0, h
−1
σ v0) − dvk

(hkv0, hkhτv0)

≥ L − (dvk
(v0, h

−1
σ v0) + dvk

(v0, hτv0)).
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We show that dvk
(v0, hτv0) ≤ m + θ. As h−1

σ has functionally identical features (replacing h

with h−1), the same argument also shows that dvk
(v0, h

−1
σ v0) ≤ m + θ. Incorporating this into

above inequality, we conclude that

dwk
(v0, hv0) ≥ dvk

(v0, hkv0) − 2(m + θ) ≥ L − 2(m + θ) > m + θ, (1)

which completes the proof of statement (A).
Towards bounding dvk

(v0, hτv0), there are the same two cases as in Step 1: either hτ ∈ Fi−1

or hτ ∈ F (i). In the first case, we observed in Step 1 that hτv0 ∈ Wi−1 ⊆ Ni, vk /∈ Wi−1 and that
vk 	= hτv0. Thus by induction on level i, statement (C) implies that dvk

(v0, hτv0) ≤ m ≤ m + θ.
It remains to consider the second case. Let vτ be the first pivot point in Piv(hτ ). In this

case, we have already observed in Step 1 that dvτ (v0, hτv0) > m + θ and dvτ (v0, vk) ≤ m. We
thus have

dvτ (vk, hτv0) ≥ dvτ (v0, hτv0) − dvτ (v0, vk) > (m + θ) − m > θ.

Using the inequality on triples, we obtain dvk
(vτ , hτv0) ≤ θ. As shown in Step 1, vk and vτ are

distinct vertices of Li, we apply statement (C) inductively (with respect to i) to obtain that
dvk

(v0, vτ ) ≤ m. We thus have

dvk
(v0, hτv0) ≤ dvk

(vτ , hτv0) + dvk
(v0, vτ ) ≤ θ + m,

completing the proof of statement (A).

Proof of statement (B). Recall that Piv(h) = {wj}j∈I is an ordered set with index set I a (possibly
proper) subset of {1, . . . , n}. Our goal is to show that these vertices appear in order on any
geodesic from v0 to hv0.

Let wk, w� ∈ Piv(h) be consecutive, so wk = hσvk and w� = hσhkvτ where vτ is the first
pivot point of hτ , again using the syllable decomposition h = hσhkhτ . As previously, we have
that vk 	= vτ and, thus, wk 	= w�. Using the triangle inequality, statement (A), and invariance of
the distance functions, we have

dwk
(v0, w�) ≥ dwk

(v0, hv0) − dwk
(w�, hv0) ≥ m + θ − dvk

(vτ , hτv0).

As in the proof of statement (A), using the inequality on triples, we may deduce that
dvk

(vτ , hτv0) ≤ θ and, therefore, dwk
(v0, w�) ≥ m > Cg. By the bounded geodesic image property,

any geodesic from v0 to w� passes through wk.

Proof of statement (C). Recall we are given v /∈ Wi and x ∈ Ni+1 such that x 	= v, and our goal
is to bound dv(x, v0) by m = 11Ce + 6Cg + 5Cp. There is an x0 ∈ Wi with d(x, x0) ≤ 1. If there
is a geodesic from x0 to v0 that avoids v, in particular if Wi is convex, then by the bounded edge
and geodesic image properties we have

dv(v0, x) ≤ dv(v0, x0) + dv(x0, x) ≤ Cg + Ce ≤ m.

However, it might be the case that every geodesic from x0 to v0 passes through v. In this case,
we build a path from x0 to v0 consisting of: at most 10 edges avoiding v, at most six geodesics
avoiding v, and at most five paths that each lie in some Fi-translate of Wi−2. As v /∈ Wi and Wi

is Fi-invariant, the projection of any path in an Fi-translate of Wi−2 to v is bounded by Cp by
Lemma 6.1. Using this fact and the bounded edge and geodesic image properties, it follows that

dv(v0, x) ≤ dv(v0, x0) + dv(x0, x) ≤ (10Ce + 6Cg + 5Cp) + Ce = m.
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Figure 7. Steps 1 and 2 of statement (C) in the proof of Theorem 1.6.

Figure 7 illustrates the idea. In the rest of the proof we refer to edges avoiding v, geodesics
avoiding v, and paths lying in an Fi-translate of Wi−2 as paths of type e, g, and p, respectively.
In addition, we assume throughout that i > 1; the case i = 1 follows the same idea but is simpler.

Step 1: connect x0 to hv0 for some h ∈ Fi. Using the definition of a windmill, there is an h ∈ Fi,
x′ ∈ Wi−2 and a path of length 2 from x0 to hx′ that does not include v (two paths of type e).
As Wi−2 is connected, there is a path in hWi−2 from hv0 to hx′ (path of type p).

Step 2: replace a segment of a geodesic from v0 to hv0 if it passes through v. If there is a
geodesic from v0 to hv0 avoiding v we are done, since this is a path of type g. Otherwise,
v lies on every geodesic from v0 to hv0. Fix such a geodesic. There are consecutive points
w, w′ ∈ Piv(h) ∪ {v0, hv0} such that v lies between w and w′ on this geodesic (extend the order
on Piv(h) so v0 is minimal and hv0 is maximal). The (possibly trivial) subgeodesics from v0 to w

and from w′ to hv0 are of type g. By definition of the pivot points, w and w′ are in hσNi for an
initial subword hσ of h. We replace the segment of the geodesic from w to w′ by a concatenation
of geodesics from w to hσv0 and from hσv0 to w′. If both of these geodesics avoid v (so they are
of type g), then we are done. Suppose, in contrast, that one or both passes through v. We treat
the case that the geodesic from w to hσv0 passes through v; the other case is identical.

Step 3: connect w to hσh′v0 for some h′ ∈ Fi−1. As w ∈ hσNi, this is identical to Step 1 with h,
x0, and hv0 replaced by hσ, w, and hσh′v0. Like Step 1, this step contributes two paths of type
e and at most one path of type p.

Step 4: replace a segment of a geodesic from hσv0 to hσh′v0 if it is passes through v. We proceed
as in Step 2. The geodesic splits into two paths of type g and geodesic from u and u′ that lie in
hσh′

σNi−1 for some initial subword h′
σ (here u and u′ are analogous to w and w′ from Step 2).

There is a path from u to u′ consisting of two paths of type e and a path of type p. �

7. Proof of the pseudo-Anosov case

In this section, we prove Theorem 1.7, which states that if a group G acts on a hyperbolic
space X and {f1, . . . , fm} ⊆ G is a normally independent collection of NEC WPD elements,
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then for any t ≥ 0 there is an N so that for n ≥ N the group 〈〈fn
1 , . . . , fn

m〉〉G has the following
properties:

(i) it is isomorphic to F∞ and has a free basis consisting of conjugates of the fn
i ; and

(ii) the X-translation length of each non-trivial element is at least t.

The main application in this paper is the case where the fi are pseudo-Anosov elements of the
mapping class group and X is the curve complex.

The first statement of Theorem 1.7 will be proved by applying Theorem 1.6 to the projection
complex produced by Proposition 3.1. To prove the second statement, we will need to understand
translation lengths in terms of projections. Before giving the proof of the theorem, we introduce
two tools.

A distance formula for WPD elements. The following proposition gives a lower bound on distance
in a hyperbolic space, in terms of projections to quasi-axis bundles. In the statement, dα is the
distance function defined in § 3.2. In addition, for a constant M ≥ 0 and x ∈ R we define {{x}}M

to be x if x ≥ M and zero otherwise.

Proposition 7.1. Let X be a hyperbolic metric space, let G be a group acting on X, and let

{f1, . . . , fm} ⊆ G be a collection of WPD elements. Let A be the collection of quasi-axis bundles

in X for the G-conjugates of the fi. Then there exists a constant M such that for any x, y ∈ X,

we have

d(x, y) ≥ 1
6

∑
α∈A

{{dα(x, y)}}M .

The formula is reminiscent of the Masur–Minsky distance formula for elements in the map-
ping class group in terms of subsurface projections [MM00]. This inequality is surely well-known
to experts (cf. [BBF15, Theorem 4.13]). We provide a proof in a forthcoming paper.

A lower bound on projections to pivot points. In order to apply Proposition 7.1, we need the
following lemma, which says that the local spinning around a pivot point, dvk

(v0, hkv0), is a
lower bound on global projection distance, dw(v0, hv0). In the statement, L(P) is the constant
from Theorem 1.6.

Lemma 7.2. Let P be a projection complex, G a group that acts on P, and {Rv} an equivariant

L-spinning family subgroups with L ≥ L(P). Choose windmill data and let F be the associated

free product. Let h ∈ F and let h1 · · ·h� be the syllable decomposition of h. Let 1 ≤ k ≤ � and

let wk = h1 · · ·hk−1vk ∈ Piv(h). Then

dwk
(v0, hv0) ≥

1
3
dvk

(v0, hkv0).

Proof. By the inequality (1) from the proof of Theorem 1.6, we have that

dwk
(v0, hv0) ≥ dvk

(v0, hkv0) − 2L/3.

As dvk
(v0, hkv0) ≥ L, the proposition follows. �

Proof of Theorem 1.7. We begin with the first statement. For each fi we fix a quasi-axis bundle
βi ⊆ X. Let Y be the set of G-translates of these subsets of X. By Proposition 3.1, the set
Y and the distance functions {dβ}β∈Y satisfy the projection complex axioms; let P be this
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projection complex. Let L = L(P) be the constant from Theorem 1.6 and let τ be the minimum
translation length of the fi. Then, as long as N ≥ L/τ , the first statement is an application of
Theorem 1.6. It remains to prove the second statement.

Towards proving the second statement, let Δ ≥ 0 be such that diamπβ(β′) ≤ Δ for all distinct
β, β′ ∈ Y. (The existence of Δ is implicit in Proposition 3.1; a direct reference for the existence
also appears in the paper by Dahmani–Guirardel–Osin [DGO17, Lemma 4.46].) In addition, let M

be the constant from Proposition 7.1 applied to X and the collection of quasi-axis bundles Y. We
show that the second statement, hence the theorem, holds for N = (1/τ) max{L, 24Δ, 4M, 24t}.
To this end, we let n ≥ N .

Choose windmill data {Hi, Wi,Oi} and say W0 = {v0}. Suppose h ∈ 〈〈fn
1 , . . . , fn

m〉〉G is non-
trivial. Let h1 · · ·h� be the syllable decomposition of h with respect to the free product data
associated to the given windmill data. As translation length is a conjugacy invariant, we may
assume that h is cyclically reduced. We treat, in turn, the cases where the syllable length of h is
one and where it is greater than one.

If h has syllable length one, then h is a power of some fn
i , and so for any x ∈ X we have

d(x, hpx) ≥ pnτ for all p ≥ 0. Thus, as nτ ≥ t the translation length of h is at least t, as desired.
Now assume that the syllable length of h is at least two. Let x ∈ X be a point in the quasi-

axis bundle v0 ∈ Y. To bound d(x, hx) from below, we apply Proposition 7.1, focusing only on
the summands corresponding to the quasi-axis bundles in X that are pivot points for h. In order
to estimate these terms from below, we apply Lemma 7.2.

Let wk = h1 · · ·hk−1vk be an element of Piv(h). As hk is a power of some fn
i , it follows from

Lemma 7.2 that

dwk
(v0, hv0) ≥

1
3
dvk

(v0, hkv0) ≥
nτ

3
.

Hence, as the diameters of πwk
(v0) and πwk

(hv0) are at most Δ, we have

dwk
(x, hx) ≥ dwk

(v0, hv0) − 2Δ ≥ nτ

3
− nτ

12
=

nτ

4
.

Hence, by Proposition 7.1, the fact that nτ/4 ≥ M , and the fact that nτ/24 ≥ t, we find

d(x, hx) ≥ 1
6

∑
w∈Piv(h)

{{dw(x, hx)}}M ≥ 1
6

∑
w∈Piv(h)

nτ

4
≥ |Piv(h)| t.

As h is cyclically reduced and has at least two syllables, we have that |Piv(hp)| = p |Piv(h)| for
p ≥ 0 and, hence, the previous argument applied to hp shows that d(x, hpx) ≥ p |Piv(h)| t. Thus,
the translation length of h in X is at least t, as desired. �

8. Proof of the main theorem

In this section, we prove Theorem 1.1, which states that if G is a subgroup of Mod(S), X is a
G-overlapping family of subsurfaces, F is a finite, G-independent family of mapping classes that
are carried by X and are NEC in G, then there is an N > 0 with the following properties:

(i) for each n ≥ N and any set of orbit representatives Y for the action of 〈〈F (n)〉〉G on G · X
we have

〈〈F (n)〉〉G ∼= ∗
Y ∈ Y

RY ;

(ii) further, for each Y ∈ Y we have RY
∼= F bY∞ × ZaY .
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Symmetrization. Let G, X , and F be as previously. We explain here how to derive a family of
mapping classes from F that is symmetric in the sense that the subsets of elements supported
on two components of X ∈ X in the same StabG(X)-orbit are conjugate in StabG(X).

First we require some notation. Fix some X ∈ X . Given a component X ′ ∈ π0(X), let FX′

be the subset of σ−1(X) consisting of all elements whose support is X ′. The set σ−1(X) is the
disjoint union of FX′ over the components X ′ ∈ π0(X).

Suppose now that X0, . . . , Xk ∈ π0(X) lie in the same StabG(X)-orbit. Let g0 ∈ G be
the identity and fix elements g1, . . . , gk ∈ StabG(X) such that giX0 = Xi. Then consider the
set ⋃

i,j

(gjg
−1
i )FXi(gjg

−1
i )−1

and let F̂ be the union of these sets over all X ∈ X and all StabG(X)-orbits of components of X.
We refer to F̂ as the symmetrization of F .

There is an induced function σ̂ from F̂ to the set of components of elements of X ; this
function takes an element of F̂ to its support.

For X ∈ X the normal closure in StabG(X) of the union of the sets σ̂−1(X ′) with X ′ a
component of X is equal to the group RX , because the new elements are conjugates of the
originals by elements in StabG(X). The sets σ̂−1(X ′) are G-independent and each element of F̂
is NEC.

Applying Theorem 1.7 when the surface has boundary. To understand the group structure of
RX for X ∈ X , we would like to apply Theorem 1.7 to the action of σ̂−1(X ′) ⊂ StabG(X ′)
on C(X ′) for each non-annular component X ′ of X. Unfortunately the elements in σ̂−1(X ′)
are not necessarily WPD elements for this action. Indeed, if c is a component of ∂X ′ then
Tc acts trivially on C(X ′) and so if a power of Tc lies in G then no element of StabG(X ′) is
WPD.

Instead, we proceed as in the discussion on partial pseudo-Anosov mapping classes from
the introduction. There is a homomorphism StabG(X ′) → Mod(X̄ ′) obtained by collapsing each
component of the boundary to a marked point; let Ḡ denote the image. As in the proof of
Theorem 1.7, there is a natural projection complex that Ḡ acts on. The vertices correspond to
the quasi-axes bundles in C(X̄ ′) for the images of the elements in σ̂−1(X ′).

Using the action of StabG(X ′) on this projection complex, we can argue as in the proof of
Theorem 1.7 that for any t ≥ 0 there is an N so that for n ≥ N the subgroup

〈〈fn | f ∈ σ̂−1(X ′)〉〉StabG(X′)

is an infinitely generated free group with basis consisting of conjugates of the various fn

and that the translation length of any non-trivial element in this subgroup on C(X ′) is at
least t.

Proof of Theorem 1.1. As in the statement, let X be a G-overlapping family of subsurfaces and
let F ⊂ G be a finite family of mapping classes that are carried by X and are G-independent.

If X = {S}, then each element of F is pseudo-Anosov. In particular, F is a collection of
G-independent NEC pseudo-Anosov mapping classes. The theorem then follows from
Theorem 1.7, applying the previous discussion in the case that ∂S 	= ∅.
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We may thus assume in the remainder that X 	= {S}. Let Y = G · X and let P be the
projection complex obtained by Proposition 3.2. Recall that the distance functions are

dY (X, Z) =
∑

Y ′∈π0(Y )

dY ′(X, Z),

where dY ′ is the subsurface projection distance. Let L = L(P) be the constant from Theorem 1.6.
Let F̂ be the symmetrization of F with corresponding function σ̂, as defined at the start of

the section. Fix some X ∈ X . For X ′ ∈ π0(X) we define

R̂X′ = 〈〈fn | f ∈ σ̂−1(X ′)〉〉StabG(X′).

The proof proceeds in the following three steps.

(i) There exists an NX so that for X ′ ∈ π0(X) and n ≥ NX the following statements hold:
(a) R̂X′ is Z if X ′ is an annulus and F∞ otherwise; and
(b) the translation length of each element of R̂X′ acting on C(X ′) is at least L.

(ii) We have RX
∼= F bX∞ × ZaX .

(iii) The action of RX on P is L-spinning.

As X is finite, the theorem follows from these statements and Theorem 1.6, taking N to be the
maximum of the NX .

Step 1. We define a constant NX′ for each component X ′ ∈ π0(X) and take NX to be maximum
of these.

If X ′ is an annulus, then σ̂−1(X ′) consists of a single element f . This element f is a power
of the Dehn twist supported on this annulus. We have dX′(x, fnx) ≥ |n| + 2 for any x ∈ C(S)
that intersects X ′. As 〈f〉 is normal in StabG(X ′) we have that R̂X′ = 〈fn〉 ∼= Z. In this case, we
define NX′ to be L.

It remains to treat the case where X ′ is non-annular. As explained at the start of the section,
the proof of Theorem 1.7 shows that there is a constant NX′ such that for n ≥ NX′ the subgroup
R̂X′ is an infinitely generated free group with basis consisting of conjugates of the various fn

and such that the translation length of any non-trivial element of R̂X′ on C(X ′) is at least L.

Step 2. As X is G-overlapping, it follows that for each X ′ ∈ π0(X) the group StabG(X ′) is a
subgroup of StabG(X). There is a natural function

Ψ:
∏

X′∈π0(X)

R̂X′ → StabG(X)

that multiplies the coordinate entries of an element in the abstract direct product. The function
Ψ is a well-defined homomorphism because elements in the factor subgroups of

∏
X′∈π0(X) R̂X′

have support in a single component of X and elements with disjoint support in Mod(S) commute.
By Step 1(a), we have that

∏
X′∈π0(X) R̂X′ ∼= F bX∞ × ZaX . It follows from the definition of

symmetrization that the image of Ψ is RX . It remains to show that Ψ is injective.
Suppose Ψ(f) is trivial and that f is non-trivial. It follows that each coordinate fX′ of f is a

product of powers of Dehn twists about components of ∂X ′. Further, there must be at least one
non-annular component X ′ ∈ π0(X) where fX′ is non-trivial, as X contains no parallel annuli.
As each non-trivial element of R̂X′ has positive translation length on C(X ′) by Step 1(b), and
because Dehn twists about components of ∂X ′ act trivially on C(X ′), this is a contradiction.
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Step 3. Suppose that f ∈ RX is non-trivial and Y ∈ Y − {X}. We write f as a product of elements
fX′ where fX′ ∈ R̂X′ . Then we have

dX(Y, fY ) =
∑

X′∈π0(X)

dX′(Y, fX′Y ) ≥ L,

because at least one of the fX′ is non-trivial and, hence, by Step 1 its translation length in C(X ′)
is at least L. This completes the proof. �

9. Applications

In this section, we use Theorem 1.1 to prove two theorems. First we prove Theorem 1.2, which
gives an explicit construction of a normal subgroup of Mod(Sg) that is not contained in any proper
level m congruence subgroup. We then prove Theorem 1.5, which gives an explicit example of a
pseudo-Anosov mapping class f ∈ Mod(Sg) with the property that all non-zero even powers of
f normally generate a free subgroup of infinite rank and all odd powers of f normally generate
Mod(Sg).

9.1 Thurston’s construction
Our examples will be produced from the Thurston construction of pseudo-Anosov mapping
classes. We begin by recalling a special case of Thurston’s construction, which works for Dehn
twists, and then explain the general case.

Let c and d be curves in Sg that lie in minimal position and have positive geometric intersec-
tion number i(c, d). Let X be the surface with marked points obtained as follows: we take a closed
regular neighborhood of c ∪ d in Sg, take the union of this neighborhood with any complemen-
tary regions in Sg that are disks, and then collapse each remaining component of the boundary
to a marked point. By construction, the curves c and d fill X, meaning that the complementary
regions are disks with at most one marked point. If c and d fill Sg to begin with, then X = Sg.

The curves c and d induce a cell decomposition of X (the vertices are the points of c ∩ d) and
the dual complex is a square complex. There is a singular Euclidean structure on X where each
2-cell of the square complex is a Euclidean square. In what follows we take X to be endowed
with this structure.

There are two transverse measured foliations on X where the leaves are geodesics parallel
to c and d, respectively, and where the transverse measures are given by the metric. We refer to
these foliations as the horizontal and vertical foliations of X. These foliations have singularities
at the vertices of the square complex.

Let Aff(X) denote the group of orientation-preserving homeomorphisms of X that preserve
the affine structure on X induced by the singular Euclidean metric associated to X. If the com-
plement of the marked points in X has negative Euler characteristic, then homotopic elements
of Aff(X) are equal, and so we may regard Aff(X) as a subgroup of Mod(X). We denote by
Isom(X) the finite subgroup of Aff(X) consisting of isometries of the singular Euclidean metric
[FLP91, Expose 9].

The horizontal and vertical foliations on X give an orthonormal frame field, well defined up to
sign: at each point, we take unit tangent vectors pointing in the horizontal and vertical directions
so that the two vectors (in that order) agree with some fixed orientation on X. With these
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coordinates we obtain a derivative map

D : Aff(X) → PSL2 R.

The Dehn twists Tc and Td both lie in Aff(X). Taking n = i(c, d) we have

DTc =
(

1 n

0 1

)
and DTd =

(
1 0

−n 1

)
.

Thurston [Thu88, Theorem 7] proved that f ∈ 〈Tc, Td〉 is periodic, reducible, or pseudo-Anosov
exactly according to whether Df is elliptic, parabolic, or hyperbolic. In the pseudo-Anosov case,
the stretch factor of f is equal to the absolute value of the leading eigenvalue of Df .

The singular Euclidean metric on X associated to the stable and unstable foliations of a
pseudo-Anosov f ∈ 〈Tc, Td〉 is equal to the original one defined in terms of the curves c and d.
In particular, the stable and unstable foliations are geodesic, and we refer to the corresponding
directions in the tangent spaces of the non-singular points as the stable and unstable directions.
As the two singular Euclidean structures coincide, the elementary closure of f is a subgroup of
Aff(X).

A multicurve in Sg is a collection of pairwise disjoint curves in Sg. Given a multicurve A,
the associated multi-twist is the product of the Dehn twists about the curves in A. Given two
multicurves A and B in Sg, there is an analogous Thurston construction. We may form the
surface X as in the case where A and B are curves. Instead of a square decomposition we use
a rectangle decomposition; the lengths and widths of the rectangles are completely determined
by the pairwise intersection numbers of the curves in A and B. As before, there is an associated
flat structure on X and a homomorphism D : Aff(X) → PSL2 R. The Nielsen–Thurston type of
f is determined by Df in the same way as before.

9.2 Two lemmas
We now state and prove the two lemmas (and a corollary) that will be used to prove Theorems 1.2
and 1.5. The proof of the first lemma is due to Marissa Loving [Lov19].

Lemma 9.1. Let g ≥ 2. Let c and d be curves in Sg with i(c, d) > 0. Then the mapping classes

f1 = TcT
−1
d and f2 = TcT

−2
d are normally independent (partial) pseudo-Anosov mapping classes.

Proof. Let X be the singular Euclidean surface with marked points obtained from c and d as
previously and denote i(c, d) by n. We regard f1 and f2 as elements of Mod(X). The mapping
classes f1 and f2 fall under the Thurston construction. Using the derivative map as before, we
see that f1 and f2 are pseudo-Anosov with stretch factors

λ1 =
n2 + 2 + n

√
n2 + 4

2
and λ2 = n2 + 1 + n

√
n2 + 2.

In particular, λ1 and λ2 lie in the quadratic fields Q(
√

m + 2) and Q(
√

m), where m = n2 + 2.
We claim that Q(

√
m + 2) 	= Q(

√
m), which is the same as saying that m and m + 2 have

different square-free parts. If m is even, then m + 2 is also even, but exactly one of m and m + 2
is divisible by four, and the claim follows. If m is odd, then no prime factor of m also divides
m + 2, and so again the claim follows.

For p ∈ Z, the stretch factor of any conjugate of fp
i is λ

|p|
i . The stretch factor of a (par-

tial) pseudo-Anosov mapping class is irrational, and so λp
i is irrational. If a conjugate of fp

1

1846

https://doi.org/10.1112/S0010437X21007417 Published online by Cambridge University Press

https://doi.org/10.1112/S0010437X21007417


RAAGs as normal subgroups of mapping class groups

were equal to a power of f2 then λ
|p|
1 would be an irrational element of both Q(

√
m + 2) and

Q(
√

m). However, two quadratic fields with a common irrational element are equal. The lemma
follows. �

We require one further definition for the statement of the next lemma. Let f be a pseudo-
Anosov mapping class with fixed points F+ and F− in PMF(Sg). Recall that the group EC(f)
is the stabilizer of {F+, F−} in PMF(Sg), and EC∗(f) denotes the subgroup fixing both F+ and
F−. The index of EC∗(f) in EC(f) is at most two.

The following lemma was communicated to us by Chris Leininger [Lei19].

Lemma 9.2. Let A and B be multicurves that fill Sg, and let X be the associated singular

Euclidean surface. Let f be a pseudo-Anosov element of 〈TA, TB〉, and let h be a periodic element

of EC(f). Then h preserves A ∪ B. Moreover, h lies in EC∗(f) if and only if h preserves both A

and B.

Proof. As h is periodic, Dh is a rotation. Moreover, this rotation must preserve the pair of
eigenspaces for Df . If Dh preserves the two eigenspaces, then Dh is trivial, in which case h fixes
the horizontal and vertical directions, hence A and B. If Dh interchanges the eigenspaces, then
it must be that the stable and unstable directions are orthogonal and that Dh is rotation by π/2.
Thus, Dh also interchanges the horizontal and vertical directions in Sg. The curves of A and B

are exactly the curves with vertical or horizontal trajectories, so A and B are interchanged. �

Lemma 9.3. Let A and B be multicurves in Sg that fill Sg, and assume that there is no element

of Mod(Sg) interchanging A and B. Let f be a pseudo-Anosov element of 〈TA, TB〉. Then f is

central in EC(f). In particular, f is NEC.

Proof. We first claim that EC(f) = EC∗(f). Let h ∈ EC(f). If h has infinite order, then h2 is
of infinite order and preserves the points of PMF(Sg) corresponding to the stable and unstable
foliations for f . It follows that h2 is pseudo-Anosov [FLP91, Exposé 9, Lemme 15]. By the
Nielsen–Thurston classification theorem, h is also pseudo-Anosov. As a pseudo-Anosov mapping
class has exactly two fixed points in PMF(Sg), it follows that h2 and h have the same pair of
fixed points, hence h ∈ EC∗(f). If h is of finite order, then it follows from Lemma 9.2 and the
assumption on A and B that h ∈ EC∗(f). This completes the proof of the claim.

Let f0 be a root of f with minimal stretch factor. There is an internal semidirect product
decomposition as follows:

EC∗(f) ∼= 〈f0〉 � Isom(X).

The proof of this statement can be found in the unpublished paper by McCarthy [McC85].
Clearly f0 commutes with f . In addition, because each element of Isom(X) is of finite order, it
follows from Lemma 9.2 and the assumption on A and B that each element of Isom(X) preserves
both A and B, and hence commutes with f . The lemma follows. �

9.3 Proofs of the theorems
We are ready now to prove Theorems 1.2 and 1.5. The construction in the proof of Theorem 1.2
was suggested by Mladen Bestvina [Bes18].

Proof of Theorem 1.2. Choose a non-separating curve c and a separating curve d so that c and d

fill the surface Sg. Let f1 = TcT
−1
d and let f2 = TcT

−2
d . By the Thurston construction, f1 and f2
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Figure 8. (Colour online) The two multicurves used in the proof of Theorem 1.5.

are pseudo-Anosov, by Lemma 9.1 they are normally independent, and by Lemma 9.3 they are
both NEC. We may thus apply Theorem 1.7. Specifically, we may choose distinct prime numbers
p1 and p2 so that the normal closure N of fp1

1 and fp2
2 is a free group. In particular, N is a

proper subgroup of Mod(Sg).
It remains to show that N is not contained in any congruence subgroup of Mod(Sg). As Td

acts trivially on H1(Sg; Z) the action of fp1
1 on H1(Sg; Z) is the same as that of T p1

c . In particular,
fp1
1 lies in Mod(Sg)[m] if and only if m divides p1. Similarly, fp2

2 lies in Mod(Sg)[m] if and only
if m divides p2. Thus, there is no proper subgroup Mod(Sg)[m] containing N , as desired. �

We were informed by Ashot Minasyan [Min19] of an alternative example a subgroup of
Mod(Sg) satisfying the conclusion of Theorem 1.2. This example is, in fact, not contained in
any proper normal subgroup of finite index. The construction uses a result of Michael Hull, and
proceeds as follows. Let A be a finitely generated group that has no finite quotients other than
the trivial group and set G = A ∗ A. Note that G also does not have any finite quotients other
than the trivial group. The action of G on the corresponding Bass–Serre tree shows that G is
acylindrically hyperbolic. As Mod(Sg) is also acylindrically hyperbolic [Bow08], it follows from
a result of Hull that there is a group Q that is a quotient of both G and Mod(S) (see [Hul16,
Corollary 1.6]). As Q is a quotient of G, it too does not have any finite quotients other than
the trivial group. Let K be the kernel of the map Mod(Sg) → Q. If K is contained in a proper
normal subgroup H of finite index in Mod(Sg), then the image of H in Q is a proper normal
finite index subgroup of Q, which is a contradiction as Q does not have any finite quotients other
than the trivial group.

The proof of Theorem 1.5 is inspired by the work of the third author with Lanier [LM20,
Theorem 1.4]. Specifically, they gave a recipe for constructing a pseudo-Anosov mapping class
with the property that all of its odd powers are normal generators for Mod(Sg). Our construction
here is an explicit special case of their recipe, designed so that its even powers have the desired
property.

Proof of Theorem 1.5. Fix g ≥ 3. Let A and B be the multicurves in Sg indicated in Figure 8
(there is only one way to partition the set of curves in the figure into two multicurves). By the
Thurston construction the mapping class f = TAT−1

B is pseudo-Anosov.
Let D2g denote the dihedral group of order 2g. There is a standard action of D2g on Sg

by orientation-preserving homeomorphisms, giving rise to a subgroup of Mod(Sg) isomorphic to
D2g. We refer to this subgroup as simply D2g. Since this action preserves A and B, it follows
that D2g lies in the normalizer (indeed, centralizer) of 〈f〉. In particular, D2g lies in EC(f).

1848

https://doi.org/10.1112/S0010437X21007417 Published online by Cambridge University Press

https://doi.org/10.1112/S0010437X21007417


RAAGs as normal subgroups of mapping class groups

Let k be an element of D2g corresponding to a reflection of a 2g-gon and let h = kf . We will
show that some power of h satisfies the conclusion of the theorem.

First, we claim that all odd powers of h have normal closure equal to Mod(Sg). Thus, let n be
odd. We follow here the argument of Lanier and the third author [LM20, proof of Theorem 1.4].
As k has order two and because k commutes with f , we have that hn = kfn. Let r denote one of
the generators for the cyclic subgroup of D2g of order g. The commutator [r, hn] = (rhnr−1)h−n

lies in the normal closure of hn. As D2g lies in the centralizer of f we have that

[r, hn] = rhnr−1h−n = rkfnr−1kf−n = rkr−1k = r2,

where the last equality uses the relation kr−1k = r in D2g. Lanier and the third author [LM20,
Theorem 1.1] showed that for g ≥ 3 the normal closure of any non-trivial periodic element of
Mod(Sg) besides a hyperelliptic involution is Mod(Sg). As r2 is non-trivial and is not a hyper-
elliptic involution (consider, for instance, the action on H1(Sg; Z)), it follows that the normal
closure of r2, hence hn, is Mod(Sg), as desired.

Next, we claim that all sufficiently large even powers of h have normal closure isomorphic to
F∞. If n is even, then hn = (f2)n; so a large even power of h is a large power of f . There is no
element of Mod(Sg) interchanging A and B, because these two sets contain different numbers of
curves. Thus, by Lemma 9.3, the mapping class f is NEC. By our Theorem 1.7, all sufficiently
large powers of f , hence all sufficiently large even powers of h, have normal closure isomorphic
to F∞, as desired.

If n is odd and sufficiently large, then it follows from the previous two claims that hn satisfies
the conclusion of the theorem. �
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